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A Q-WADGE HIERARCHY IN QUASI-POLISH SPACES

VICTOR SELIVANOV

Abstract. The Wadge hierarchy was originally defined and studied only in the Baire space (and some
other zero-dimensional spaces). Here we extend the Wadge hierarchy of Borel sets to arbitrary topological
spaces by providing a set-theoretic definition of all its levels. We show that our extension behaves well
in second countable spaces and especially in quasi-Polish spaces. In particular, all levels are preserved
by continuous open surjections between second countable spaces which implies e.g., several Hausdorff–
Kuratowski (HK)-type theorems in quasi-Polish spaces. In fact, many results hold not only for the Wadge
hierarchy of sets but also for its extension to Borel functions from a space to a countable better quasiorder Q.

§1. Introduction. The classical Borel, Luzin, and Hausdorff hierarchies in Polish
spaces, which are defined using set operations, play an important role in descriptive
set theory (DST). Recently, these hierarchies were extended and shown to have
similar nice properties also in quasi-Polish spaces [4] which include many non-
Hausdorff spaces of interest for several branches of mathematics and theoretical
computer science.

The Wadge hierarchy, introduced in [33, 34], is nonclassical in the sense that
it is based on a notion of reducibility that was not recognized in the classical
DST, and on using ingenious versions of Gale-Stewart games rather than on set
operations. For subsets A,B of the Baire space N = �� , A is Wadge reducible to
B (A ≤W B), if A = f–1(B) for some continuous function f on N . The quotient-
poset of the preorder (P(N );≤W ) under the induced equivalence relation ≡W on
the power-set of N is called the structure of Wadge degrees in N . W. Wadge [34]
characterized the structure of Wadge degrees of Borel sets (i.e., the quotient-poset
of (B(N );≤W )) up to isomorphism. In particular, this quotient-poset is semi-well-
ordered, hence it is well-founded and has no three pairwise incomparable elements.
For more information on Wadge degrees see [10, 36].

This gives rise to the Wadge hierarchy {Σα(N )}α<� (for a rather large ordinal �)
in N which is a great refinement of the Borel hierarchy (for more information see
the next section where we also give precise definitions of other notions mentioned
in this introduction). The Wadge hierarchy was originally defined only for the Baire
space. Using the methods of [34] it is easy to check that the structure (B(X );≤W )
of Wadge degrees of Borel sets in any zero-dimensional Polish space X remains
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semi-well-ordered and the Wadge hierarchy in such spaces looks rather similar to
that in the Baire space.

The Wadge hierarchy of sets was an important development in classical DST
not only as a unifying concept (it subsumes all hierarchies known before) but
also as a useful tool to investigate second countable zero-dimensional spaces. We
illustrate this with two examples. In chapter 4 of [31] a complete classification
(up to homeomorphism) of homogeneous zero-dimensional absolute Borel sets was
achieved, completing a series of earlier results in this direction. In theorem 2.4 of
[32] it was shown that any Borel subspace of the Baire space with more than one
point has a nontrivial auto-homeomorphism.

In this paper we attempt to find the “correct” extension of the Wadge hierarchy
from Polish zero-dimensional spaces to arbitrary second countable spaces. There
are at least three approaches to this problem.

The first approach is to show that Wadge reducibility in such spaces behaves
similarly to its behavior in the Baire space, i.e., it is a semi-well-order. Unfortunately,
this is not the case: for many natural quasi-Polish spaces X the structure (B(X );≤W )
is not well-founded and has antichains with more than two elements (see e.g., [1, 5,
8, 19]). Thus, this approach does not lead to a reasonable extension of the Wadge
hierarchy to quasi-Polish spaces.

The second approach was independently suggested in [16, 27]. The approach
is based on the characterization of quasi-Polish spaces as the second countable
T0-spaces X such that there is a total admissible representation � from N onto X [4].
Namely, one can define the Wadge hierarchy {Σα(X )}α<� in X by Σα(X ) = {A ⊆ X |
�–1(A) ∈ Σα(N )}. One easily checks that the definition of Σα(X ) does not depend
on the choice of �,

⋃
α<� Σα(X ) = B(X ), Σα(X ) ⊆ Δ�(X ) for all α < � < �, and

any Σα(X ) is downward closed under the Wadge reducibility in X. This definition
is short and elegant but it gives no real understanding of how the levels Σα(X ) look
like, in particular their set-theoretic descriptions are completely unclear.

The third approach consists in set-theoretic description of subsequent refinements
of the Borel hierarchy. It was thoroughly studied in [4] for the Borel and Hausdorff
hierarchies in quasi-Polish spaces. This study was continued in [26, 27] for an
increasing sequence of pointclasses {Σα(X )}α<�which exhaust the sets of finite Borel

rank, where � = sup{�1, �
�1
1 , �

�
�1
1

1 , ...}. These classes were conjectured to coincide
with the corresponding classes from the second approach and the conjecture was
verified for Σα(X ) withα < ��1

1 (it follows from corollary 5.10 in [27] and theorem 2
in [26]). Thus, we proposed a way to achieve a reasonable set-theoretic definition of
the Wadge hierarchy in X defined as in the second approach.

In this paper we propose a set-theoretic definition for the whole Wadge hierarchy
of Borel sets from the second approach. The definition is an infinitary version of
the so called fine hierarchy introduced and studied in a series of my publications
(see e.g., [18, 23] for a survey). In fact, this paper develops a “classical” infinitary
version of the effective finitary version of the Wadge hierarchy in effective spaces and
computable quasi-Polish spaces recently developed in [28]. Arguably, our infinitary
fine hierarchy (IFH), and hence also the Wadge hierarchy, is a kind of “iterated
difference hierarchy” over levels of the Borel hierarchy; it only remains to make
precise how to “iterate” the difference hierarchies.
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734 VICTOR SELIVANOV

Along with describing (hopefully) the right version of the Wadge hierarchy (by
identifying it with the IFH) in arbitrary spaces we show that it behaves well in
second countable spaces and especially in quasi-Polish spaces. E.g., it provides the
description of all levels Σα(X ) in quasi-Polish spaces (Theorem 6). Also, all levels
of the IFH are preserved by continuous open surjections between second countable
spaces which gives a broad extension of results by Saint Raymond and de Brecht
for the Borel and Hausdorff hierarchies [4, 17] (Theorem 2). In §4.3 we show that
several HK-type theorems are inherited by the continuous open images which yields
some such theorems in arbitrary quasi-Polish spaces.

Notions and results of this paper apply not only to the Wadge hierarchy of sets
discussed so far but also to a more general hierarchy of functionsA : X → Q from a
space X to an arbitrary quasiorder Q. We identify such functions with Q-partitions
of X of the form {A–1(q)}q∈Q in order to stress their close relation to k-partitions
(obtained whenQ = k̄ = {0, ... , k – 1} is an antichain with k-elements) studied e.g.,
in [7, 21, 26, 27].

For Q-partitions A,B of X, let A ≤W B mean that there is a continuous function
f on X such that A(x) ≤Q B(f(x)) for each x ∈ X . The case of sets corresponds
to the case of two-partitions. Let B(QX ) be the set of Borel Q-partitions A (for
which A–1(q) ∈ B(X ) for all q ∈ Q). A celebrated theorem of van Engelen, Miller
and Steel (see theorem 3.2 in [32]) shows that if Q is a countable better quasiorder
(bqo) then WQ = (B(QN );≤W ) is a bqo. Although this theorem gives an important
information about the quotient-poset of WQ, it is far from a characterization.

Many efforts (see e.g., [7, 21, 26, 27] and references therein) to characterize
the quotient-poset of WQ were devoted to k-partitions of N . Our approach in
[21, 26, 27] to this problem was to characterize the initial segments (Δ0

α(kN );≤W )
for bigger and bigger ordinals 2 ≤ α < �1. To achieve this, we defined structures
of iterated labeled trees and forests with the so called homomorphism quasiorder
and discovered useful properties of some natural operations on the iterated labeled
forests and on Q-partitions.

An important progress was recently achieved by T. Kihara and A. Montalbán in
[11] where a full characterization of the quotient-poset ofWQ for arbitrary countable
bqo Q is obtained, using an extended set of iterated labeled trees (T�1(Q);≤h)
with the homomorphism quasiorder ≤h . Namely, (T�1(Q);≤h) is equivalent to
the substructure of WQ formed by the 	-join-irreducible elements (the equivalence
means isomorphism of the corresponding quotient-posets) via an embedding 
 :
T�1(Q) → WQ. The Wadge hierarchy of Q-partitions of N may be thus written
as the family {WQ(T )}T∈T�1 (Q), where WQ(T ) = {A ∈ QN | A ≤W 
(T )}, and it
exhausts all principal ideals of WQ formed by 	-join-irreducible Q-Wadge degrees.
For Q = 2̄ this yields a new characterization of the Wadge hierarchy of sets.

Main results of our paper may be sketched as follows. We define a Q-IFH
{L̂(X,T )}T∈T�1 (Q) of Q-partitions of arbitrary space X via natural set operations
and propose it as the right extension of the Q-Wadge hierarchy. Theorem 3.36
and Corollary 3.33 show that its levels are ordered as one would expect from the
Q-Wadge hierarchy. Theorems 4.7, 4.8 and 4.12 show that this hierarchy in quasi-
Polish spaces satisfies Hausdorff–Kuratowski-type theorems. Theorem 4.10 shows
that this hierarchy in the Baire space coincides with the hierarchy in [11]. For a
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quasi-Polish space X, a continuous open surjection � : N → X , and T ∈ T�1(Q),
let W(X,T ) = {A ∈ QX | A ◦ � ∈ WQ(T )} be the levels of Wadge hierarchy of
Q-partitions defined according to the second approach. Theorem 4.11 shows that
L̂(X,T ) = W(X,T ) for every countable bqo Q and every T ∈ T�1(Q). For the case
of two-partitions we obtain a set-theoretic characterization of the Wadge hierarchy
from the second approach which looks different from a description of the Wadge
hierarchy in [11] (see also [15, 34]). The characterizations in [11, 15, 34] cannot be
straightforwardly extended to arbitrary spaces since they use specific features of the
Baire space.

Having papers [24, 27, 28] at hand would probably simplify reading of the present
paper because they contain simpler versions of some notions and results based on
similar ideas. Technical notions for the infinitary case are harder than for the finitary
case [24, 28] but the ideas are the same. After recalling necessary preliminaries in the
next section, we define in §3 the Q-IFH and establish its general properties. In §4 we
prove the above-mentioned additional properties of the Q-IFH in second countable
spaces and in quasi-Polish spaces.

§2. Preliminaries. In this section we briefly recall some notation, notions and
facts used throughout the paper. Some more special information is recalled in the
corresponding sections below.

2.1. Well and better quasiorders. We use standard set-theoretical notation. In
particular, YX is the set of functions from X to Y, P(X ) is the class of subsets of
a set X, Č is the class of complements X \ C of sets C in C ⊆ P(X ). We assume
the reader to be acquainted with the notion of ordinal (see e.g., [13]). Ordinals are
denoted by α, �, �, .... Every ordinal α is the set of smaller ordinals, in particular
� = {0, 1, 2, ...}.We use some notions and facts of ordinal arithmetic. In particular,
α + � , α · � and α� denote the ordinal addition, multiplication and exponentiation
of α and � , respectively. Every positive ordinal α is uniquely representable in the
Cantor normal form α = �α0 + ··· + �αn where n < � and α ≥ α0 ≥ ··· ≥ αn; we
denote α∗ = �α0 . The first noncountable ordinal is denoted by �1.

We use standard notation and terminology on partially ordered sets (posets) and
quasiorders (qo’s). To avoid complex notation, we sometimes abuse terminology
about posets by applying it also to qo’s; in such cases we just mean the corresponding
quotient-poset. A qo (P;≤) is well-founded if it has no infinite descending chains
a0 > a1 > ··· . In this case there are a unique ordinal rk(P) and a unique rank
function rkP from P onto rk(P) satisfying a < b → rk(a) < rk(b). It is defined by
induction rkP(x) = sup{rkP(y) + 1 | y < x}. The ordinal rk(P) is called the rank
(or height) of P, and the ordinal rkP(x) is called the rank of x ∈ P in P.

A well quasiorder (wqo) is a qo Q = (Q;≤Q) that has neither infinite descending
chains nor infinite antichains. Although wqo’s are closed under many finitary
constructions like forming finite labeled words or trees, they are not always
closed under important infinitary constructions. C. Nash-Williams was able to
find a subclass of wqo’s, called better quasiorders (bqo’s), which contains most
of the “natural” wqo’s (in particular, all finite qo’s) and is closed under many
infinitary constructions. We omit a bit technical notion of bqo which is used only in
formulations and we refer the reader to [29].
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Recall that an (upper) semilattice is a structure (S;
) with binary operation
 such
that (x 
 y) 
 z = x 
 (y 
 z), x 
 y = y 
 x and x 
 x = x, for all x, y, z ∈ S. By
≤ we denote the induced partial order on S: x ≤ y iff x 
 y = y. The operation

 can be recovered from ≤ since x 
 y is the supremum of x, y w.r.t. ≤. By 	-
semilattice we mean a semilattice where also supremums

⊔
yj = y0 
 y1 
 ··· of

countable sequences of elements y0, y1, ... exist. An element x of a 	-semilattice
S is 	-join-irreducible if it cannot be represented as the countable supremum of
elements strictly below x. As first stressed in [22], the 	-join-irreducible elements
play a central role in the study of Wadge degrees of k-partitions. They are also of
principal importance in [11].

2.2. Classical hierarchies in topological spaces. We assume the reader to be
familiar with basic notions of topology [6]. The underlying set of a topological space
X will be usually also denoted by X, in abuse of notation. We usually abbreviate
“topological space” to “space.” A space is zero-dimensional if it has a basis of clopen
sets. Recall that a basis for the topology on X is a set B of open subsets of X such
that for every x ∈ X and open U containing x there is B ∈ B satisfying x ∈ B ⊆ U .
We sometimes shorten “countably based T0-space” to “cb0-space.”

Let � be the space of non-negative integers with the discrete topology. Let N =
�� be the set of all infinite sequences of natural numbers (i.e., of all functions
x : � → �). Let �∗ be the set of finite sequences of elements of �, including the
empty sequence ε. For 	 ∈ �∗ and x ∈ N , we write 	 � x to denote that 	 is an
initial segment of the sequence x. By 	x = 	 · x we denote the concatenation of
	 and x, and by 	 · N the set of all extensions of 	 in N . For x ∈ N , we can
write x = x(0)x(1) ... where x(i) ∈ � for each i < �. For x ∈ N and n < �, let
x � n = x(0) ... x(n – 1) denote the initial segment of x of length n. By endowing
N with the product of the discrete topologies on �, we obtain the so-called Baire
space. The product topology coincides with the topology generated by the collection
of sets of the form 	 · N for 	 ∈ �∗. It is well known that N ×N and N� are
homeomorphic to N (see e.g., [9]).

A tree is a nonempty set T ⊆ �∗ which is closed downwards under the prefix
relation �. The empty string ε is the root of any tree. A leaf of T is a maximal
element of (T ;�). A tree is pruned if it has no leaf. A path through a tree T is an
element x ∈ N such that x � n ∈ T for each n ∈ �. For any tree and any 
 ∈ T , let
[T ] be the set of paths through T and T (
) = {	 | 
	 ∈ T}. We call a tree T normal
if 
(i + 1) ∈ T implies 
i ∈ T . A tree is infinite-branching if with every nonleaf
node 
 it contains all its successors 
i ; every infinite branching tree is normal. A tree
is well founded if there is no path through it (i.e., (T ;�) is well founded). The
rank of the latter poset is called the rank of T ; the ranks of well founded trees are
precisely the countable ordinals. By a forest we mean a set of strings T \ {ε}, for
some tree T ; usually we assume forests to be nonempty. Sometimes we use other
obvious notation on trees. E.g., with any sequence of trees {T0, T1, ...} we associate
the tree T = {ε} ∪ 0 · T0 ∪ 1 · T1 ∪ ··· such that T (i) = Ti for each i < �.

A pointclass in a space X is a class Γ(X ) ⊆ P(X ) of subsets of X . A family of
pointclasses [25] is a family Γ = {Γ(X )}X indexed by arbitrary topological spaces X
(or by spaces in a reasonable class) such that each Γ(X ) is a pointclass in X and Γ
is closed under continuous preimages, i.e., f–1(A) ∈ Γ(X ) for every A ∈ Γ(Y ) and
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every continuous function f : X → Y . A basic example of a family of pointclasses
is given by the family O = {
X }X of topologies in arbitrary spaces X.

We will use the following operations on families of pointclasses: the operation
Γ �→ Γ	 , where Γ(X )	 is the set of all countable unions of sets in Γ(X ), the operation
Γ �→ Γ� , where Γ(X )� is the set of all countable intersections of sets in Γ(X ), the
operation Γ �→ Γc , where Γ(X )c = Γ̌(X ), the operation Γ �→ Γd , where Γ(X )d is
the set of all differences of sets in Γ(X ).

The operations on families of pointclasses enable to provide short uniform
descriptions of the classical hierarchies in arbitrary spaces. E.g., the Borel hierarchy
is the sequence of families of pointclasses {Σ0

α}α<�1 defined by induction on α as
follows [4, 20]: Σ0

0(X ) := {∅}, Σ0
1 := O (the family of open sets), Σ0

2 := (Σ0
1)d	 , and

Σ0
α(X ) = (

⋃
�<α Σ0

�(X ))c	 for α > 2. The sequence {Σ0
α(X )}α<�1 is called the Borel

hierarchy in X. We also set Π0
�(X ) = (Σ0

�(X ))c and Δ0
α(X ) = Σ0

α(X ) ∩ Π0
α(X ). The

classes Σ0
α(X ),Π0

α(X ),Δ0
α(X ) are called levels of the Borel hierarchy in X. The class

B(X ) of Borel sets in X is defined as the union of all levels of the Borel hierarchy in
X ; it coincides with the smallest 	-algebra of subsets of X containing the open sets.
We have Σ0

α(X ) ∪ Π0
α(X ) ⊆ Δ0

�(X ) for all α < � < �1. We do not recall the well
known definition of the Hausdorff difference hierarchy over Σ0

α(X ), α ≥ 1, which is
denoted by {D�(Σ0

α(X ))}�<�1 or by {Σ–1,α
� (X )}�<�1 . The definitions may be found

e.g., in §22.E in [9] or in [27]. We recall some structural properties of pointclasses
(see e.g., §22.C in [9]).

Definition 2.1.

1. A pointclass Γ(X ) has the separation property if for every two disjoint sets
A,B ∈ Γ(X ) there is a set C ∈ Γ(X ) ∩ Γ̌(X ) with A ⊆ C ⊆ X \ B .

2. A pointclass Γ(X ) has the reduction property if for all C0, C1 ∈ Γ(X ) there are
disjoint C ′

0, C
′
1 ∈ Γ(X ) such that C ′

i ⊆ Ci for i < 2 and C0 ∪ C1 = C ′
0 ∪ C ′

1.
The pair (C ′

0, C
′
1) is called a reduct for the pair (C0, C1).

3. A pointclass Γ(X ) has the 	-reduction property if for each countable sequence
C0, C1, ... in Γ(X ) there is a countable sequence C ′

0, C
′
1, ... in Γ(X ) (called

a reduct of C0, C1, ...) such that C ′
i ∩ C ′

j = ∅ for all i �= j and
⋃
i<� C

′
i =⋃

i<� Ci .

It is well-known that if Γ(X ) has the reduction property then the dual class Γ̌(X )
has the separation property, but not vice versa, and that if Γ(X ) has the 	-reduction
property then Γ(X ) has the reduction property but not vice versa. Let X be a cb0-
space. It is known (see e.g., theorem 22.16 in [9] and theorem 3.5 in [25]) that any
level Σ0

2+α(X ), α < �1, has the 	-reduction property, and if X is zero-dimensional
then also Σ0

1(X ) has the 	-reduction property.

2.3. Quasi-Polish spaces and admissible representations. A space X is Polish if it
is countably based and metrizable with a metric d such that (X, d ) is a complete
metric space. Examples of Polish spaces are �, N , the Cantor space C, the space
of reals R and its Cartesian powers Rn (n < �), the closed unit interval [0, 1], the
Hilbert cube [0, 1]� and the space R� .

Quasi-Polish spaces were identified and thoroughly studied by M. de Brecht
[4] (see also [3] for additional information). Informally, this is a natural class of

https://doi.org/10.1017/jsl.2020.52 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.52


738 VICTOR SELIVANOV

spaces which contains all Polish spaces, many important non-Hausdorff spaces
(like �-continuous domains) and has essentially the same DST as Polish spaces
(see below). Let P� be the space of subsets of � equipped with the Scott topology,
a countable basis of which is formed by the sets {A ⊆ � | F ⊆ A}, where F ranges
over the finite subsets of�. By a quasi-Polish space we mean a space homeomorphic
to a Π0

2-subspace of P�. There are several interesting characterizations of
quasi-Polish spaces. For this paper the following characterization in terms of
representations is relevant.

A representation of a set X is a surjection from a subspace of N onto X. Such
a representation is total if its domain is N . Representation 
 is (continuously)
reducible to a representation � (
 ≤c �) if 
 = � ◦ f for some continuous partial
function f on N . Representations 
, � are (continuously) equivalent (
 ≡c �) if

 ≤c � and � ≤c 
. A basic notion of Computable Analysis [35] is the notion of
admissible representation. A representation 
 of a space X is admissible, if it is
continuous and any continuous function � : Z → X from a subset Z ⊆ N to X is
continuously reducible to 
. Clearly, any two admissible representations of a space
are continuously equivalent. By theorem 12 in [2], any continuous open surjection
from a subspace of N onto X is an admissible representation of X. In theorems 41
and 49 of [4] the following characterization of quasi-Polish spaces was obtained:

Proposition 2.2. [4] A cb0-space X is quasi-Polish iff it has a total admissible
representation iff there is a continuous open surjection from N onto X.

The classical Borel, Luzin and Hausdorff hierarchies in quasi-Polish spaces have
properties very similar to their properties in Polish spaces [4]. In particular, for
any uncountable quasi-Polish space X and any α < �1, Σ0

α(X ) �⊆ Π0
α(X ). For any

quasi-Polish space X, the Suslin theorem
⋃
α<�1

Σ0
1+α(X ) = B(X ) = Δ1

1(X ) and the

HK theorem [4, 9] (saying that
⋃
�<�1

Σ–1,α
� (X ) = Δ0

α+1(X ) for all α ≥ 1) hold.
Quasi-Polish spaces also share properties of Polish spaces related to Baire category

(see e.g., §I.8 of [9] or §7 of [3] for a general background). According to an
extension of a basic fact for Polish spaces from [17], every quasi-Polish space X
is completely Baire, in particular every nonempty closed set F ⊆ X is nonmeager
in F (see corollary 52 in [4] or corollary 7.8 in [3]). Using the technique of category
quantifiers (§8.J in [9]), one can show the following preservation property [3, 4, 17]
of levels of the Borel hierarchy.

Proposition 2.3. [3, 4, 17] Letf : X → Y be a continuous open surjection between
cb0-spaces, α < �1, and A ⊆ Y . Then A ∈ Σ0

1+α(Y ) iff f–1(A) ∈ Σ0
1+α(X ). Also,

every fiber f–1(y) is quasi-Polish, hence nonmeager in f–1(y).

2.4. Wadge hierarchy in N . Here we give some additional information on the
Wadge hierarchy in the Baire space. In [34] W. Wadge proved that the structure
(B(N );≤W ) of Borel sets in the Baire space is semi-well-ordered (i.e., it is well-
founded and for all A,B ∈ B(N ) we have A ≤W B or B ≤W A). In particular,
there is no antichain of size 3 in (B(N );≤W ). He has also computed the rank �
of (B(N );≤W ) which we call the Wadge ordinal. Recall that a set A is self-dual if
A ≤W A. W. Wadge has shown that if a Borel set is self-dual (resp. nonself-dual)
then any Borel set of the next Wadge rank is nonself-dual (resp. self-dual), a Borel
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set of Wadge rank of countable cofinality is self-dual, and a Borel set of Wadge rank
of uncountable cofinality is nonself-dual. This characterizes the structure of Wadge
degrees of Borel sets up to isomorphism.

In theorem 2 of [37], and also in [30], the following separation theorem for the
Wadge hierarchy was established: For any nonself-dual Borel set A exactly one of
the principal ideals {X | X ≤W A}, {X | X ≤W A} has the separation property.
The mentioned results give rise to the Wadge hierarchy which is, by definition, the
sequence {Σα(N )}α<� of all nonself-dual principal ideals of (B(N );≤W ) that do
not have the separation property and satisfy for all α < � < � the strict inclusion
Σα(N ) ⊂ Δ�(N ) where, as usual, Δα(N ) = Σα(N ) ∩ Πα(N ).

The Wadge hierarchy subsumes the classical hierarchies in the Baire space, in
particular Σα(N ) = Σ–1

α (N ) for each α < �1, Σ1(N ) = Σ0
1(N ), Σ�1(N ) = Σ0

2(N ),
Σ
�
�1
1

(N ) = Σ0
3(N ) and so on. Thus, the sets of finite Borel rank coincide with

the sets of Wadge rank less than � = sup{�1, �
�1
1 , �

(�
�1
1 )

1 , ...}. Note that � is the
smallest solution of the ordinal equation�κ1 = κ. Hence, the reader should carefully
distinguish Σα(N ) and Σ0

α(N ). To give the reader an impression about the Wadge
ordinal we note that the rank of the qo (Δ0

�(N );≤W ) is the �1-st solution of the
ordinal equation �κ1 = κ [34]. We summarize properties of the Wadge hierarchy of
sets in the Baire space which will be tested for survival under extensions to cb0-spaces
(or to quasi-Polish spaces) and to Q-partitions:

1. The levels of the Wadge hierarchy are semi-well-ordered by inclusion.
2. The Wadge hierarchy does not collapse, i.e., Σα �⊆ Πα for all α < �.
3. The Wadge degrees of Borel sets coincide with the sets Σα \ Πα , Πα \ Σα ,

Δα+1 \ (Σα ∪ Πα) (where α < �), and Δ� \ (
⋃
α<� Σα) (where � < � is a limit

ordinal of countable cofinality).
4. If � < � is a limit ordinal of uncountable cofinality then Δ� =

⋃
α<� Σα .

5. All levels are downward closed under Wadge reducibility.
6. The levels in item (3) are precisely those having Wadge complete sets.

§3. Infinitary fine hierarchies in a set. In this section we define the infinitary fine
hierarchy and prove some of its basic properties. The Q-partition version of this
hierarchy will be called the Q-IFH, for abbreviation. This section extends (and in
fact simplifies) the corresponding material from §5 in [27]. The first three subsections
describe some related technical notions.

3.1. IteratedQ-trees. Here we describe a notation system for levels of the Q-IFH.
For any qo Q, a Q-tree is a pair (T, t) consisting of an infinite-branching well founded
tree T ⊆ �∗ and a labeling t : T → Q. Let T (Q) be the set of Q-trees quasi-ordered
by the relation: (T, t) ≤h (V, v) iff there is a monotone function ϕ : T → V with
∀v ∈ T (t(x) ≤Q v(ϕ(x))); such a function ϕ is called a morphism from (T, t) to
(V, v). As follows from Laver’s results in [14], if Q is bqo then so is also (T (Q);≤h)
which is usually shortened to T (Q). Thus, T is an operator on the class BQO of all
bqo’s. The operator T and its iterates like T ◦ T ◦ T were introduced in [22, 27] and
turned out crucial for characterizing some initial segments of Wk̄ [26, 27].

In [11] a more powerful iteration procedure was invented which yields the set
T�1(Q) of labeled trees sufficient for characterizingWQ, as discussed in Introduction.
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We give a slightly different (but equivalent) definition of T�1(Q) more convenient
for our purposes here. The differences are caused by our desire to first work only
with trees (introducing forests at the last stage), and to relate the qo � (defined
below) to the qo ≤h .

Let 	 = 	(Q,�1) = {q, sα, Fq, Fα | q ∈ Q,α < �1} be the signature consisting of
constant symbols q, unary function symbols sα , and �-ary function symbols Fq, Fα
(of course we assume all signature symbols to be distinct, in particularQ ∩ �1 = ∅).
LetT	 be the set of	-terms without variables obtained by the standard inductive def-
inition: Any constant symbol q is a term; if u is a term then so is also sα(u); if u0, u1, ...
are terms then so are also Fq(u0, ...), Fα(u0, ...). Informally, Fq(u0, ...) and Fα(u0, ...)
are interpreted as q → (u0 
 ··· ) and sα(u0) → (u1 
 ··· ) respectively (cf. [11] where
e.g., the first expression denotes the tree ε ∪ 0 · u0 ∪ ··· with the root ε labeled by q),
hence our modification simply avoids forests from the inductive definition.

The 	-terms are represented by (or even identified with) the normal well founded
trees with constants on the leafs and other signature symbols on the nonleaf nodes
such that the nodes labeled with sα have the unique successor while the nodes labeled
by Fq of Fα have all successors; we refer to such trees as syntactic trees, in order to
distinguish them from trees of another kind. As usual, the rank of a term u, denoted
rk(u), is the rank of its syntactic tree; ranks enable definitions and proofs by induc-
tion on terms because the subterms of u are precisely the terms with syntactic tree of
the form u(
), see §2.2. Obviously, the set T	 is partitioned into three parts: constant
terms (i.e., the terms q for some q ∈ Q), s-terms (i.e., the terms sα(u) for unique
α < �1 and u ∈ T	) and F-terms (i.e., the terms Fq(u0, ...) or Fα(u0, ...) for unique
q ∈ Q, α < �1, and u0, u1, ... ∈ T	). We define by induction on terms the binary
relation � on T	 as follows (cf. definition 3.1 and its extensions in [11]). The relation
� on T	 is in fact equivalent to the relation � in [11] restricted to the tree-terms.

Definition 3.1.

1. q � r iff q ≤Q r;
2. q � sα(u) iff q � u;
3. q � Fr(u0, ...) iff q � r or q � ui for some i ≥ 0;
4. q � Fα(u0, ...) iff q � ui for some i ≥ 0;
5. sα(u) � r iff u � r;
6. sα(u) � s�(v) iff (α < � and u � s�(v)) or (α = � and u � v) or (α > � and
sα(u) � v);

7. sα(u) � Fr(v0, ...) iff sα(u) � r or sα(u) � vi for some i ≥ 0;
8. sα(u) � F�(v0, ...) iff sα(u) � s�(v0) or sα(u) � vi for some i ≥ 1;
9. Fq(u0, ...) � r iff q � r and ui � r for all i ≥ 0;

10. Fq(u0, ...) � sα(v) iff q � sα(v) and ui � sα(v) for all i ≥ 0;
11. Fq(u0, ...) � Fr(v0, ...) iff (q � r and ui � Fr(v0, ...) for all i ≥ 0) or
Fq(u0, ...) � vi for some i ≥ 0;

12. Fq(u0, ...) � F�(v0, ...) iff (q � s�(v0) and ui � F�(v0, ...) for all i ≥ 0) or
Fq(u0, ...) � vi for some i ≥ 1;

13. Fα(u0, ...) � r iff sα(u0) � r and ui � r for all i ≥ 1;
14. Fα(u0, ...) � s�(v) iff sα(u0) � s�(v) and ui � s�(v) for all i ≥ 1;
15. Fα(u0, ...) � Fr(v0, ...) iff (sα(u0) � r and ui � Fr(v0, ...) for all i ≥ 1) or
Fα(u0, ...) � vi for some i ≥ 0;
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16. Fα(u0, ...) � F�(v0, ...) iff (sα(u0) � s�(v0) and ui � F�(v0, ...) for all i ≥ 1)
or Fα(u0, ...) � vi for some i ≥ 1.

From results in [11] it follows that (T	 ; �) is a bqo. Let Tq,s be the set of constant
terms and s-terms. Then (Tq,s ; �) is bqo, hence (T (Tq,s);≤h) is also bqo. The next
definition makes precise the relation between the introduced qo’s � and ≤h .

Definition 3.2. We associate with any u ∈ T	 the labeled tree T (u) by induction
as follows: T (q) is the singleton tree labeled by q, T (sα(u)) is the singleton
tree labeled by sα(u), T (Fq(u0, ...)) = q → (T (u0) 
 T (u1) 
 ··· ), T (Fα(u0, ...)) =
sα(u0) → (T (u1) 
 T (u2) 
 ··· ).

Please be careful in distinguishing T (u) (which is an element of T (Tq,s)) and the
tree T (
) above 
 ∈ T . Obviously, T (u) is a singleton tree iff u ∈ Tq,s . The next
lemma is checked by cases from Definition 3.1 using induction on terms.

Lemma 3.3. The function u �→ T (u) is an isomorphism between (T	 ; �) and
(T (Tq,s);≤h).

Examples 3.4.

1. If u has no entries of symbols sα, Fα then T (u) is obtained from the syntactic
tree of u by replacing any label Fq (on the nonleaf nodes) by label q. Therefore,
the set of such trees T (u) essentially coincides with the set T (Q) from the
beginning of this subsection.

2. For u = s�(v) where v = Fα(q0, s�(Fq1 (r0, r1, ...)), s�(q2), q3, q4, ...), we have:
T (u) = ({ε}, u) (the singleton tree labeled by u itself), and T (v) =
{ε, 0, 1, 2, 3, ...} labeled resp. by sα(q0), s�(Fq1 (r0, r1, ...)), s�(q2), q3, q4, ....

The next lemma is immediate by induction on terms.

Lemma 3.5. Any term u ∈ T	 satisfies precisely one of the following alternatives:

1. u = q for a unique q ∈ Q;
2. u = s�0 ··· s�m (q) for unique m < �, �0, ... , �m < �1, q ∈ Q;
3. u = Fq(u0, ...) for unique q ∈ Q and u0, ... ∈ T	 ;
4. u = Fα(u0, ...) for unique α < �1, and u0, ... ∈ T	 ;
5. u = s�0 ··· s�m (Fq(u0, ...)) for unique m < �, �0, ... , �m < �1, q ∈ Q, u0, ... ∈

T	 ;
6. u = s�0 ··· s�m (Fα(u0, ...)) for unique m < �, �0, ... , �m < �1, α < �1, u0, ... ∈

T	 .

Terms from items (1) and (2) above will be called singleton terms. With any
singleton term u a unique element q ∈ Q is associated denoted by q(u). Below we
will also need the following technical notions.

Definition 3.6. We associate with any u ∈ T	 the ordinal sh(u) and the term
u′ ∈ T	 as follows: if u is not an s-term then sh(u) = 0 and u′ = u, otherwise sh(u) =
��0 + ··· + ��m and u′ = q, Fq(u0, ...), Fα(u0, ...) if u satisfies resp. the alternative
(2), (5), or (6) above.

Note that “sh” comes from “shift.” We collect some obvious properties of u′.
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Lemma 3.7.

1. u′ = u iff u is not an s-term.
2. u′ is a subterm of u, so u′ � u and if u is an s-term then rk(u′) < rk(u).
3. u′ is not an s-term, hence u′′ = u′.
4. u′ ∈ Q iff u is a singleton term.

Definition 3.8. We associate with any nonsingleton term u ∈ T	 the set F(u) of
sequences S = (
0, ...) in �∗ constructed as follows: 
0 ∈ T (u′) = (T0, t0); if t0(
0)
is a singleton term then S = (
0), otherwise 
1 ∈ T (t0(
0)′) = (T1, t1); if t1(
1) is a
singleton term then S = (
0, 
1), otherwise 
2 ∈ T (t1(
1)′) = (T2, t2); and so on.

Lemma 3.9.

1. For any u ∈ T	 and 
 ∈ T (u), tu(
) � u, where tu is the labeling function on
T (u), and rk(tu(
)) ≤ rk(u).

2. If u is not a singleton term then rk(tu(
)′) < rk(u) for every 
 ∈ T (u).
3. For any nonsingleton term u ∈ T	 , every sequence in F(u) is finite.

Proof. (1) For u ∈ Tq,s the assertion is obvious because 
 = ε and tu(
) = u.
Let u = Fq(u0, ...), then either 
 = ε or 
 ∈ T (ui) for a unique i ≥ 0. In the first
case tu(
) = q � u and rk(tu(
)) = 0 < rk(u). In the second case by induction we
have tu(
) = tui (
) � ui � u and rk(tu(
)) = rk(tui (
)) ≤ rk(ui) < rk(u).

Finally, let u = Fα(u0, ...). Then either 
 = ε or 
 ∈ T (ui) for a unique i ≥ 1. In
the first case tu(
) = sα(u0) � u and rk(tu(
)) = rk(sα(u0)) = rk(u0) + 1 ≤ rk(u).
In the second case we have: tu(
) = tui (
) � ui � u and rk(tu(
)) = rk(tui (
)) ≤
rk(ui) < rk(u).

(2) Since u is not singleton, u is not a q-term. If u is an s-term then tu(
) = u,
so by Lemma 3.7(2) we have rk(tu(
)′) = rk(u′) < rk(u). If u = Fq(u0, ...) then,
by the proof of item (1), rk(tu(
)′) ≤ rk(tu(
)) < rk(u). Finally, let u = Fα(u0, ...).
For 
 �= ε the assertion follows again from the proof of item (1). For 
 = ε we have
tu(ε) = sα(u0), hence, by the proof of item (1) and Lemma 3.7(2), rk(tu(ε)′) =
rk(sα(u0)′) < rk(sα(u0)) ≤ rk(u).

(3) Suppose the contrary: the sequence 
0, 
1, ... from Definition 3.6 is infinite,
hence all terms t0(
0), t1(
1), ... are not singleton. By item (2) we then have rk(u′) >
rk(t0(
0)′) > rk(t1(
1)′) > ··· , contradicting the well-foundedness of syntactic
trees. �

With any (
0, ... , 
m) ∈ F(u) we associate the constant q(
0, ... , 
m) = tm(
m) ∈
Q. For any q ∈ Q we set Fq(u) = {(
0, ... , 
m) ∈ F(u) | q = tm(
m)}.

Examples 3.10.

1. If u has no entries of symbols sα, Fα then sh(u) = 0, u′ = u, and F(u) = {(
) |

 ∈ T (u)}.

2. For the term u = s�(v) from Examples 3.4(2), we have: sh(u) = �� , u′ = v,
T (u′) = {ε, 0, 1, 2, 3, ...} = (T0, t0), t0(ε) = sα(q0), t0(0) = s�(Fq1 (r0, r1, ...)),
t0(1) = s�(q2), t0(2) = q3, t0(3) = q4, ..., sh(t0(ε)) = �α , sh(t0(0)) = �� ,
sh(t0(1)) = �� , sh(t0(2)) = 0, sh(t0(3)) = 0, ..., t0(ε)′ = q0, t0(0)′ =
Fq1 (r0, r1, ...), t0(1)′ = q2, t0(2)′ = q3, t0(3)′ = q4, .... Thus, F(u) = {(ε, ε),
(0, ε), (0, 0), (0, 1), ... , (1, ε), (2), (3), ...} and the corresponding labels of
elements of F(u) are q0, q1, r0, r1, ... , q2, q3, q4, ....
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To be more consistent with notation of previous papers and of Introduction,
we sometimes denote T (Tq,s) by T�1(Q) and use the structures from Lemma 3.3
interchangeably. Let T �

�1
(Q) be the set of nonempty labeled forests obtained from

trees in T�1(Q) by deleting the root (alternatively and equivalently, one can think of
T �
�1

(Q) as the set of countable disjoint unions of trees in T�1(Q)). The relation ≤h
is extended to the larger structure of forests in the obvious way.

The characterization of WQ (see Introduction) in terms of the iterated labeled
trees may be now described as follows (see [11] for more details). The relation �
below denotes the equivalence of qo’s.

Proposition 3.11. [11] We have (T �
�1

(Q);≤h) � (Δ1
1(QN );≤W ), for every count-

able bqo Q. The isomorphism of quotient-posets is induced by a map 
 : T�1(Q) →
Δ1

1(QN ) sending trees onto the 	-join irreducible elements.

For more details on the map 
 see Section 4.4 below. For any � < �1, apply the
construction above to the smaller signature 	(Q, �) = {q, sα, Fq, Fα | q ∈ Q,α < �}
in place of 	(Q,�1). The resulting set of labeled trees is denoted by T�� (Q). We
obtain an operator T�� on BQO. Finally, for any α < �1 we define the operator
Tα on BQO as follows: T0 is the identity operator, and for any positive countable
ordinalα we set Tα = T�α0 ◦ ··· ◦ T�αn where n < � andα0 ≥ ··· ≥ αn are the unique
ordinals with α = �α0 + ··· + �αn . The set of forests T �

α (Q) is obtained from Tα(Q)
by the above construction. In particular, Tα+1 = Tα ◦ T where T is the operator from
the beginning of this subsection.

3.2. Hierarchy bases. We recall (see e.g., [27]) the technical notion of a (hierarchy)
base. Such bases serve as a starting point for constructing the Q-IFH. They have
nothing in common with topological bases.

Definition 3.12. By a base in a set X we mean a sequence L(X ) = {Lα}α<�1 ,
Lα = Lα(X ) ⊆ P(X ), such that every Lα is closed under countable union and finite
intersection (in particular, ∅, X ∈ Lα), and Lα ∪ Ľα ⊆ L� ∩ Ľ� for all α < � < �1.

A major natural example of a hierarchy base in a topological space X is the
Borel base L(X ) = {Σ0

1+α(X )}α<�1 . There are “unnatural” bases, e.g., the bases
{B(X ),B(X ), ...} and {P(X ), P(X ), ··· } over which any IFH of sets collapses to
the first level.

With any base L(X ) in X we associate some new bases as follows. For any � < �1,
letL�(X ) = {L�+α(X )}α ; we call this base in X the�-shift of L(X ). For anyU ⊆ X ,
let L(U ) = {Lα(U )} where Lα(U ) = {U ∩ S | S ∈ Lα(X )}; we call this base in U
the U-restriction of L(X ).

Lemma 3.13.

1. (L�)�(X ) = L�+�(X ).
2. If �∗ < α∗ (see §2.1) then L�α(X ) = Lα(X ). Therefore, many levels of L(X )

remain unchanged under the �-shift.

Proof. (1) Indeed, ((L�)�)α = L��+α = L�+(�+α) = L(�+�)+α = L�+�
α .

(2) Since � + α = α by the definition of �∗ and α∗, L�α(X ) = L�+α(X ) =
Lα(X ). �
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By a morphism g : L(X ) → L(Y ) of bases we mean a function g : P(X ) → P(Y )
such that g(∅) = ∅, g(X ) = Y , g(

⋃
n Un) =

⋃
n g(Un) for every countable sequence

{Un} in P(X ) (so, in particular, U ⊆ V implies g(U ) ⊆ g(V )), and U ∈ Lα(X )
implies g(U ) ∈ Lα(Y ) for each α < �1. Obviously, the identity function onP(X ) is
a morphism of any base in X to itself, and ifg : L(X ) → L(Y ) andh : L(Y ) → L(Z)
are morphisms of bases then h ◦ g : L(X ) → L(Z) is also a morphism. We illustrate
the notion of morphism with the following well known fact. Recall that a function
f : X → Y between spaces is Σ0

1+α-measurable iff f–1(U ) ∈ Σ0
1+α(X ) for any open

set U in Y.

Lemma 3.14. Letf : X → Y be Σ0
1+α-measurable and letL(X ),L(Y ) be the Borel

bases in X,Y resp. Then f–1 : P(Y ) → P(X ) is a morphism from L(Y ) to Lα(X ).
In particular, if f is continuous then f–1 : P(Y ) → P(X ) is a morphism of L(Y )
to L(X ).

The following class of bases will be frequently mentioned in the sequel.

Definition 3.15. A base L(X ) is reducible if every Lα(X ) has the 	-reduction
property.

The next fact follows from results in [9] and [25] mentioned in the end of
Subsection 2.2.

Lemma 3.16. The Borel base in every zero-dimensional cb0-space is reducible. The
one-shift of the Borel base in every cb0-space is reducible.

We conclude this subsection with introducing some auxiliary notions used in the
sequel. For any tree T ⊆ �∗ and a T-family {U
} of subsets of X (
 ranges over T),
we define the T-family {Ũ
} of subsets of X by Ũ
 = U
 \

⋃
{U
′ | 
 � 
′ ∈ T}; the

sets Ũ
 will be called components of the family {U
}. The T-family {U
} is monotone
if U
 ⊇ U
′ for all 
 � 
′ ∈ T . We associate with any T-family {U
} the monotone
T-family {U ′


}byU ′

 =

⋃

′�
 U
′ . Below we mostly work with monotone T-families

though the next lemma shows that they are in a sense equivalent to arbitrary ones.

Lemma 3.17. Let T be a well founded tree, L(X ) be a base, and {U
} be a T-
family of Lα-sets. Then the components are differences of Lα-sets (hence they belong
to Lα+1 ∩ Ľα+1),

⋃

 U
 =

⋃

 Ũ
 , Ũ
 = Ũ ′


 , and Ũ
 ∩ Ũ
′ = ∅ for 
 � 
′ ∈ T .

Proof. We check only the second assertion, the proofs of others being even
simpler. Since Ũ
 ⊆ U
 ,

⋃

 U
 ⊇

⋃

 Ũ
 . Conversely, let x ∈

⋃

 U
 . Then the set

{
 ∈ T | x ∈ U
} is nonempty. Since (T ;�) is well founded, x ∈ U
 for some
maximal element 
 of ({
 ∈ T | x ∈ U
};�); but then x ∈ Ũ
 . �

The next lemma is also easy.

Lemma 3.18. Let T be a well founded tree, L(X ) be a base, {Ui
 }i be a sequence
of monotone T-families of Lα-sets, and U
 =

⋃
i U
i

 for each 
 ∈ T . Then {U
} is a

monotone T-family of Lα-sets and Ũ
 ⊆
⋃
i Ũ
i

 for each 
 ∈ T .

We call a T-family {V
} of Lα-sets reduced if it is monotone and satisfies V
i ∩
V
j = ∅ for all 
i, 
j ∈ T , i �= j. Obviously, for any reduced T-family {V
} of Lα-
sets the components Ṽ
 are pairwise disjoint. The reduced T-families form a very
special but important class of the monotone T-families. The next lemma is checked
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by a top-down (assuming that trees grow downwards) application of the 	-reduction
property.

Lemma 3.19. Let T be an infinitely-branching well founded tree, L(X ) be a base,
{U
} be a monotone T-family of Lα-sets, and let Lα have the 	-reduction property.
Then there is a reduced T-family {V
} of Lα-sets such thatV
 ⊆ U
 ,

⋃

 V
 =

⋃

 U
 ,⋃

i{V
i | 
i ∈ T} =
⋃
i{V
 ∩U
i | 
i ∈ T}, and Ṽ
 ⊆ Ũ
 for each 
 ∈ T .

Proof. If T = {ε} is singleton, there is nothing to prove. Otherwise, let {Vi} be
a reduct of {Ui} and let U ′

i
 = Vi ∩Ui
 for all i
 ∈ T . Apply this procedure to the
trees T (i) and further downwards whenever possible. Since T is well founded, we
will finally obtain a desired reduced family which we call a reduct of {U
}. �

Lemma 3.20. For every well founded tree T, a base L(X ), � ∈ T and α < �1, there
is a unique reduced T-family {U
} of Lα-sets such that Ũ� = X (and then necessarily
Ũ
 = ∅ for all 
 ∈ T \ {�}).

Proof. Obviously, it is enough to set U
 = X if 
 � � and U
 = ∅ otherwise. �
3.3. Defining Q-partitions by iterated families. Here we define the notion of a

u-family (u ∈ T	) in a given base L(X ) and explain how such (iterated) families
determine Q-partitions of X. The definitions use induction on terms in §3.1,
induction scheme of Definition 3.2 and Lemma 3.3. The u-families F are defined
simultaneously for all X,L(X ) as follows.

Definition 3.21.

1. F is a q-family in L(X ) iff F = {X}.
2. The sα(u)-families in L(X ) coincide with the u-families in L�α (X ).
3. F is an Fq(u0, ...)-family in L(X ) iff F = ({U
}, {F
}) where {U
} is a

monotone T-family of L0-sets with Uε = X and, for each 
 ∈ T , F
 is a t(
)-
family in L(Ũ
), where (T, t) = T (Fq(u0, ...)).

4. F is an Fα(u0, ...)-family in L(X ) iff F = ({U
}, {F
}) where {U
} is a
monotone T-family of L0-sets with Uε = X and, for each 
 ∈ T , F
 is a t(
)-
family in L(Ũ
), where (T, t) = T (Fα(u0, ...)).

Reduced u-families F are defined by taking {U
}, F
 in (3) and (4) to be reduced.
From Lemma 3.5 we obtain the following information on the structure of u-families
in L(X ) where we use notions from Definition 3.6.

Lemma 3.22. Let F be a u-family in L(X ). If u is a singleton term then F = {X},
otherwise F = ({U
}, {F
}) where {U
} is a monotone T (u′)-family of Lsh(u)

0 -sets
with Uε = X and, for each 
 ∈ T (u′), F
 is a t(
)-family in Lsh(u)(Ũ
).

Now we define (again simultaneously for all X,L(X )) the notion “a u-family F
in L(X ) determines a partition A ∈ QX ”.

Definition 3.23.

1. A q-family F in L(X ) determines A iff A = �x.q is the constant function
A(x) = q.

2. An sα(u)-family F in L(X ) determines A iff F determines A as a u-family in
L�α (X ).
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3. For u ∈ {Fq(u0, ...), Fα(u0, ...)}, a u-family F = ({U
}, {F
}) in L(X ) deter-
mines A iff for each 
 ∈ T (u), F
 determines the restriction A|Ũ
 of A to Ũ
 .

By definitions above and Lemma 3.22, a u-family F in L(X ) that determines
a Q-partition A may be interpreted as a mind-change “algorithm” for computing
the value A(x) ∈ Q for any given x ∈ X as follows. We use the set F(u) from
Definition 3.8 and Lemma 3.9.

If u is a singleton term, A(x) = q(u) is a constant Q-partition. Otherwise, F =
({U
0}, {F
0}) where {U
0} is a monotone u′-family of Lsh(u)

0 -sets withUε = X and,
for each 
0 ∈ T (u′), F
0 is a t0(
0)-family in Lsh(u)(Ũ
0 ) (which coincides with the
t0(
0)′-family in Lsh(u)+sh(t0(
0))(Ũ
0 )). Since the components Ũ
0 (called first level
components of F) cover X (by the definition of a monotone family), x ∈ Ũ
0 for
some 
0 ∈ T (u′); 
0 is searched by the usual mind-change procedure working with
differences of Lsh(u)

0 -sets (see Lemma 3.17).
If the term t0(
0) is singleton, A|Ũ
0 is a constant Q-partition and we have

computed A(x) ∈ Q. Otherwise, F
0 = ({U
0
1}, {F
0
1}) and we can continue the
computation as above and find a second level component Ũ
0
1 of F containing x;

this is a harder mind-change procedure working with differences of Lsh(u)+sh(t0(
0))
0 -

sets. We continue this process until we reach a sequence (
0, ... , 
m) ∈ F(u) such
that x ∈ Ũ
0···
m and tm(
m) is a singleton term; such components Ũ
0···
m are
called terminating and have the associated constants q(
0, ... , 
m) ∈ Q. Note that the
terminating components cover X and if the family F is reduced then the terminating
components form a partition of X. In any case we have: A–1(q) =

⋃
{Ũ
0···
m |

(
0, ... , 
m) ∈ Fq(u)} for each q ∈ Q.
If the family F above is reduced then the computation is “linear” since the

components of each level are pairwise disjoint and cover the parent component,
otherwise the computation is “parallel” since already at the first level x may belong
to several components Ũ
0 (and F may determine no Q-partition).

The described procedure enables to write a u-family F, where u is not a singleton
term, in an explicit (but not completely precise) form ofu′-family ({U
0}, {U
0
1}, ...)
in Lsh(u)(X ) which is sometimes more intuitive than the form ({U
}, {F
}) above.

Examples 3.24.

1. If u has no entries of symbols sα, Fα then a u-family F in L(X ) is essentially
a monotone family T (u)-family {U
} of L0(X )-sets with Uε = X . If F
determines a Q-partition A then A(x) = t(
) whenever x ∈ Ũ
 where T (u) =
(T, t). This case leads to the extension of the difference hierarchy over L0(X )
to Q-partitions (for Q = k̄ this is described in [21, 27]).

2. For the term u = s�(v) from Examples 3.4(2) and 3.10(2), any u-family has
the form ({Uε,U0, U1, U2, U3, ...}, {Uε,ε}, {U0,ε , U0,0, U0,1, ...}, {U1,ε}) where
{Uε,U0, U1, U2, U3, ...} is a monotone T (u′)-family of L�� -sets withUε = X ,
Uε,ε = Ũε , {U0,ε , U0,0, U0,1, ...} is a monotone t0(0)-family of L��+�� -sets with
U0,ε = Ũ0, and U1,ε = Ũ1.

We formulate some properties of the introduced notions. The next lemma is
immediate.
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Lemma 3.25. Let u be a nonsingleton term and let A ∈ QX be determined by a
u′-family ({U
0}, {U
0
1}, ...) in Lsh(u)(X ).

1. If u′ = Fq(u0, ...) then the ui -family ({Ui	0}, {Ui	0
1}, ...) in Lsh(u)(Ui) deter-
mines A|Ui for each i ≥ 0.

2. If u′ = Fα(u0, ...) then the ui+1-family ({Ui	0}, {Ui	0
1}, ...) in Lsh(u)(Ui+1)
determines A|Ui+1 for each i ≥ 0.

Let f : X → Y be a function such that f–1 is a morphism from L(Y ) to L(X ).
Associate with any u-family F in L(Y ) the u-family f–1(F ) in L(X ) as follows:
if u = q then f–1(F ) = {X}; if u = sα(v) then f–1(F ) is the v-family f–1(F ) in
L�α (X ); in the remaining cases we have F = ({U
}, {F
}), and we set f–1(F ) =
({f–1(U
)}, {f–1(F
)}). Clearly, f–1(F ) is indeed a u-family in L(X ). The next
lemma is immediate.

Lemma 3.26. If a u-family F in L(Y ) determines A then the u-family f–1(F ) in
L(X ) determines A ◦ f.

Now we associate with any u-family F in L(X ) and any V ⊆ X the u-family
F |V in the V -restriction L(V ) (see §3.2) as follows: if u = q then F |V = {V }; if
u = sα(v) then F |V is the v-family F |V in L�α (V ); in the remaining cases we have
F = ({U
}, {F
}), and we set F |V = ({V ∩U
}, {F
 |V }). Obviously, F |V is indeed
a u-family in L(V ). The next lemma is immediate by induction.

Lemma 3.27. If a u-family F in L(X ) determines A then the u-family F |V in L(V )
determines A|V .

Let {Gi}, Gi = ({Ui
0}, {U
i

0
1

}, ...), be a sequence of u-families (u is a nonsingle-
ton term) in L(Yi), Yi ⊆ X . Then G = ({U
0}, {U
0
1}, ...), where U
0 =

⋃
i U
i

0

,
U
0
1 =

⋃
i U
i

0
1
..., is a u-family inL(Y ) whereY =

⋃
i Yi . The next lemma follows

from Lemma 3.18.

Lemma 3.28. Let A ∈ QX . If the u-family Gi in L(Yi) determines A|Yi for each
i ≥ 0 then the u-family G in L(Y ) determines A|Y .

The next lemma is also clear.

Lemma 3.29. Let A ∈ QX , Y ∈ L0(X ) ∩ Ľ0(X ), A(x) = q for x ∈ X \ Y , let
A|Y be determined by a u-family F in L(Y ), and let Ũ
0···
m be a terminating
component of F with q = q(
0, ... , 
m). Then there is a u-family F ′ in L(X ) such
that its (
0, ... , 
m)-terminating component is Ũ
0···
m ∪ (X \ Y ), all other terminating
components coincide with those of F, and F ′ determines A.

Let F = ({U
0}, {U
0
1}, ...) and G = ({V
0}, {V
0
1}, ...) be u-families in L(X ).
We say that G is a reduct of F if G is reduced and Ṽ
0···
m ⊆ Ũ
0···
m for each
(
0, ... , 
m) ∈ F(u).

Lemma 3.30. Let L(X ) be a reducible base in X and u ∈ T	 . Then any u-family F in
L(X ) has a reduct G. Moreover, if F determines A then any reduct of F determines A.

Proof. We follow the procedure of computing A(x) described above. If u is a
singleton term, we set G = F = {X}; then F,G determine the same constant Q-
partition. Otherwise, F has the form as above. Let G as above be obtained from F by
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repeated reductions from Lemma 3.19, so in particular Ṽ
0···
m ⊆ Ũ
0···
m for each
(
0, ... , 
m) ∈ F(u).

For the second assertion, let F determine A and let G be a reduct of F. For any
x ∈ X , let Ṽ
0···
m be the unique terminating component of G containing x. Then
also x ∈ Ũ
0···
m , hence A(x) = q(
0, ... , 
m) and G determines A. �

The next lemma follows from the results above.

Lemma 3.31. Every u-family F in L(X ) determines at most one Q-partition of X.
Every reduced u-family G in L(X ) determines precisely one Q-partition of X.

Proof. The second assertion follows from the remark that the terminating
components of G form a partition of X. For the first assertion, let F in L(X )
determine Q-partitions A,B of X. Let x ∈ X . If u is a singleton term, F determines
a constant Q-partition, so in particularA(x) = B(x). Otherwise, F = ({U
}, {F
})
as specified above. By the procedure of computing A(x), there is a terminating
component Ũ
0···
m � x of F. By Definition 3.23, A(x) = q(
0, ... , 
m) = B(x). �

3.4. Infinitary fine hierarchy over a base. Here we define the Q-IFH over a given
base and prove some of its properties.

Definition 3.32. For any base L(X ) in X, qo Q, and u ∈ T	 , let L̂(X, u) =⋃
{L(X, v) | v � u} where L(X, v) is the set of Q-partitions of X determined by

some v-family in L(X ). The family {L̂(X, u)}u∈T	 is called the infinitary Q-fine
hierarchy over L(X ).

Corollary 3.33. If Q is bqo then ({L̂(X, u) | u ∈ T	};⊆) is bqo.

Proof. Clearly, u �→ L̂(X, u) is a monotone surjection from bqo (T	 ; �) onto
({L̂(X, u) | u ∈ T	};⊆). Hence, the latter structure is also bqo. �

The algorithm of computing A(x) described above explains in which sense
the Q-IFH over L(X ) may be considered as an “iterated difference hierarchy.”
Classes L(X, u) play a major technical role in the proofs below while properties
of classes L̂(X, u) capture more properties of the Q-Wadge hierarchy. Clearly, if
Q is an antichain then L(X, u) = L̂(X, u) for every u ∈ T	 . By Lemma 3.3, we
can equivalently denote the Q-IFH over L(X ) as {L̂(X,T )}T∈T�1 (Q), as we did in
Introduction. The next lemma describes the behavior of Q-IFH w.r.t. the operations
on bases from §3.2.

Lemma 3.34.

1. For any α < �1, L(X, sα(u)) = L�α (X, u) and L(X, u) = Lsh(u)(X, u′).
2. For any V ⊆ X , A ∈ L(X, u) implies A|V ∈ L(V, u).
3. Let u be nonsingleton and A determined by a u-family ({U
0}, {U
0
1}, ...) in

L(X ). If u′ = Fq(u0, ...) (resp. u′ = Fα(u0, ...)) then A|Ui ∈ L(X, ui) for each
i ≥ 0 (resp. i ≥ 1).

4. Let A ∈ QX , u0, u1, ... ∈ T	 , and let {Ui}i≥0 be nonempty open sets not
exhausting X such that A|V = �v.q (where V = N \

⋃
i Ui) and A|Ui ∈

L(Ui , ui) for all i ≥ 0. Then A ∈ L(X, u) where u = Fq(u0, ...).
5. Let A ∈ QX , u0, u1, ... ∈ T	 , and let {Ui}i≥1 be nonempty open sets not

exhausting X such that A|V ∈ L(X, sα(u0)) (where V = N \
⋃
i≥1Ui) and

A|Ui ∈ L(Ui , ui) for all i ≥ 1. Then A ∈ L(X, u) where u = Fα(u0, ...).
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Proof. (1), (2) and (3) follow resp. from Definition 3.23, Lemma 3.27, and
Lemma 3.25.

(4) Let A|Ui ∈ L(X, ui) be determined by a ui -family Gi = ({Ui
0}, {U
i

0
1

}, ...)
in L(Ui), for each i ≥ 0. By Definition 3.2, T (u) = q → (T (u0) 
 T (u1) 
 ··· ). We
define the u-familyG = ({V
0}, {V
0
1}, ...) in L(X ) as follows:Vε = X ,Vi
0 = Ui
0 ,
Vi
0
1 = Ui
0
1 , and so on. Then G determines A, hence A ∈ L(X, u).

(5) Similar to (4). �
Next we discuss inclusions of levels of the Q-IFH.

Lemma 3.35.

1. L(X, u) ⊆ L(X, sα(u)).
2. L(X, q) ⊆ L(X,Fq(u0, ...)).
3. L(X, ui) ⊆ L(X,Fq(u0, ...)) for all i ≥ 0.
4. L(X, sα(u0)) ⊆ L(X,Fα(u0, ...)).
5. L(X, ui+1) ⊆ L(X,Fα(u0, ...)) for all i ≥ 0.
6. Let u, v ∈ T	 , �, � < �1, and L�(X, u) ⊆ L�(X, v) for all X and L(X ). Then

Lα+�(X, u) ⊆ Lα+�(X, v) for all α < �1, X,L(X ).

Proof. (1) Let A ∈ L(X, u), then A is determined by a u-family F in L(X ).
By Definition 3.12, F is also a u-family in L�α (X ), hence A ∈ L�α (X, u). By
Lemma 3.34(1), A ∈ L(X, sα(u)).

(2) and (3) follow resp. from Lemmas 3.20 and 3.34(3). Let Fi = G . For any 
 ∈
T (u) \ {i}, let F
 be the trivial reduced t(
)-family in L(∅) with empty components.
By Definition 3.2, the family F determines A.

Items (4) and (5) are checked by manipulations similar to those in (2) and (3).
(6) For the base Lα(X ) the given inclusion reads (Lα)�(X, u) ⊆ (Lα)�(X, v). By

Lemma 3.13(1), Lα+�(X, u) ⊆ Lα+�(X, v). �
The main result about inclusions of levels of the Q-IFH is the following

theorem.

Theorem 3.36. If Q is antichain and u � v, then L(X, u) ⊆ L(X, v) for all
X,L(X ).

Proof. We argue by induction of Definition 3.1.
(1) Let q � r, then q ≤Q r, hence q = r, hence trivially L(X, q) ⊆ L(X, r).
(2) Let q � sα(u), then q � u, hence by induction and Lemma 3.35(1) L(X, q) ⊆

L(X, u) ⊆ L(X, sα(u)).
(3) Let q � Fr(u0, ...), then q � r or q � ui for some i ≥ 0, and the inclusion

follows by induction and Lemma 3.35(2,3).
(4) Let q � Fα(u0, ...), then q � sα(u0) or q � ui for some i ≥ 1, and the inclusion

follows by induction and Lemma 3.35(4,5).
(5) Let sα(u) � r, then u � r. By induction, L�α (X, u) ⊆ L�α (X, r) = {�x.r}.

By Lemma 3.34(1), L(X, sα(u)) = {�x.r} ⊆ L(X, r).
(6) Let sα(u) � s�(v). Then (α < � and u � s�(v)) or (α = � and u � v)

or (α > � and sα(u) � v). In the first case, by induction we have L(X, u) ⊆
L(X, s�(v)) ⊆ L�� (X, v). By Lemmas 3.35(6), 3.13(2) and 3.34(1), L(X, sα(u)) =

L�α (X, u) ⊆ L�α+�� (X, v) = L�� (X, v) = L(X, s�(v)). In the second case, by
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induction we have L(X, u) ⊆ L(X, v), hence L�α (X, u) ⊆ L�� (X, v), hence
L(X, sα(u)) ⊆ L(X, s�(v)). The third case is even easier.

(7) Let sα(u) � Fr(v0, ...), then sα(u) � r or sα(u) � vi for some i ≥ 0. The
assertion follows by Lemma 3.35(2) or (3), respectively.

(8) Let sα(u) � F�(v0, ...), then sα(u) � s�(v0) or sα(u) � vi for some i ≥ 1. The
assertion follows by Lemma 3.35(4) or (5), respectively.

(9) LetFq(u0, ...) � r, then q � r and ui � r for all i ≥ 0. In this case the argument
of item (5) works.

(10) Let Fq(u0, ...) � sα(v), then q � sα(v) and ui � sα(v) for all i ≥ 0. If v
is a singleton term, the argument of item (9) works, so let v be a nonsingleton
term. Without loss of generality we way think that v is an F-term (otherwise,
L�α (X, v) = L�α+sh(v)(X, v′), and we can work with the F-term v′ instead of v).

Let A ∈ L(X,Fq(u0, ...)), we have to show that A ∈ L(X, sα(v)). Let
({U
0}, {U
0
1}, ...) be a u-family in L(X ) that determines A, then A(x) = q
for each x ∈ Ũε (note that Ũε ∈ L�α0 (X ) ∩ Ľ�α0 (X )) and, by Lemma 3.25, A|Ui is
determined by the ui -family ({Ui
1}, ...) in L(Ui) for every i ≥ 0. By induction,
A|Ui ∈ L�α (Ui , v) for every i ≥ 0, so let Gi = ({V i
0}, {V

i

0
1

}, ...) be a v-family

in L�α (Ui) that determines A|Ui . By Lemma 3.28, the v-family G =
⋃
i Gi =

({V
0}, {V
0
1}, ...) in L�α (
⋃
i Ui) determines A⋃

i Ui
. By Lemma 3.29, the sα(v)-

family G ′ determines A, hence A ∈ L(X, sα(v)).
(11) Let Fq(u0, ...) � Fr(v0, ...), then (q � r and ui � Fr(v0, ...) for all i ≥ 0) or

Fq(u0, ...) � vi for some i ≥ 0; the second case follows from Lemma 3.35(3), so
consider the first case. Since Q is antichain, q = r. Let A ∈ L(X,Fq(u0, ...)), we
have to show that A ∈ L(X,Fq(v0, ...)). Let ({U
0}, {U
0
1}, ...) be a u-family in
L(X ), where u = Fq(u0, ...), that determines A, then A(x) = q for each x ∈ Ũε ,
and, by Lemma 3.25,A|Ui is determined by the family ({Ui
1}, ...) in L(Ui) for each
i ≥ 0. By induction, A|Ui ∈ L(Ui , v) for each i ≥ 0, where v = Fq(v0, ...), so A|Ui
is determined by a v-family Gi = ({V i
0}, {V

i

0
1

}, ...) in L(Ui). By Lemma 3.28, the
v-family G = ({V
0}, {V
0
1}, ...) in L(

⋃
i Ui) determines A|⋃

i Ui
. Correcting the

v-family G by changingVε to X, we obtain a v-familyG ′ in L(X ) that determines A.
Thus, A ∈ L(X, v).

Items (12), (15) and (16) are checked similar to (10) and (11), item (13) similar
to (9), item (14) similar to (11). �

We conclude this subsection with a result about the reduction property. Let the
classes red-L(X, u) be defined as the classes L(X, u) in Definition 3.32 but with
the reduced families in place of arbitrary families. Note that in many spaces the
inclusion red-L(X, u) ⊂ L(X, u) is proper (e.g., this holds for X = P� where two
nonempty open sets always have nonempty intersection). Let red-L̂(X, u) =

⋃
{red-

L(X, v) | v � u}.

Proposition 3.37. If L(X ) is a reducible base then L(X, u) =red-L(X, u) and
L̂(X, u) =red-L̂(X, u) for each u ∈ T	 .

Proof. The inclusion ⊇ is obvious. Conversely, let A ∈ L(X, u), then A is
determined by a u-family F in L(X ). By Lemma 3.30, A is determined by a u-family
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G in L(X ) which is a reduct of F. Thus, A is in red-L(X, u). The assertion for L̂
follows. �

§4. Infinitary fine hierarchies in cb0-spaces. In this section we study the Q-IFH in
cb0-spaces. We show that some important properties are preserved by continuous
open surjections while others are not, and we give the set-theoretic description of
the Q-Wadge hierarchy in the Baire space. From now on all bases we discuss are the
Borel bases L(X ) = {Σ0

1+α(X )}α<�1 in cb0-spaces X.

4.1. General properties. Here we collect some general properties of Q-IFH in
cb0-spaces. As we know from Lemma 3.16, most of levels of the Borel hierarchy
in X have the 	-reduction property. By Proposition 3.37, this implies the following
simpler characterization of many levels of the Q-IFH in X.

Proposition 4.1. For any cb0-space X and any u ∈ T	 , red-L1(X, u) = L1(X, u).
If X is zero-dimensional then red-L(X, u) = L(X, u) for all u ∈ T	 . Similarly for
L̂(X, u).

Proposition 4.2. Let f : X → Y be a continuous function and u ∈ T	 . Then
A ∈ L(Y, u) implies A ◦ f ∈ L(X, u), and similarly for L̂(X, u).

Proof. Let A ∈ QY be defined by a u-family F in L(Y ). Since the preimage
function f–1 : P(Y ) → P(X ) is a morphism from L(Y ) to L(X ) by Lemma 3.14,
A ◦ f is determined by the u-family f–1(F ) in L(X ) by Lemma 3.26. Therefore,
A ◦ f ∈ L(X, u). The assertion for L̂(X, u) follows in the obvious way. �

Next we briefly discuss the relation of Q-IFH in X to the Wadge reducibility ≤W
of Q-partitions of X (see Introduction).

Proposition 4.3.

1. If Q is antichain (in particular, Q = k̄) then the levels L̂(X, u) and L(X, u) are
closed downwards under Wadge reducibility.

2. For any zero-dimensional space X, a qo Q and u ∈ T	 , the level L̂(X, u) is closed
downwards under Wadge reducibility.

3. For any cb0-space X, a qo Q and u ∈ T	 , the level L̂1(X, u) is closed downwards
under Wadge reducibility.

Proof. (1) Since ≤Q is the equality on Q, A ≤W B iff A = B ◦ f for some
continuous function f on X. Thus, the assertion is a particular case of Proposition 4.2
when X = Y .

(2) Let A ≤W B via f and B ∈ L̂(X, u), so B ∈ L(X, v) for some v � u. Then
C = B ◦ f ∈ L(X, v) by Proposition 4.2 where X = Y , and A(x) ≤Q C (x) for
each x ∈ X . By Proposition 4.1, C is determined by a reduced v-family F =
({U
0}, {U
0
1}, ...). Any x ∈ X belongs to a unique terminating component Ũ
0···
m
with C (x) = q(
0, ... , 
m). In the syntactic tree of v, any q = C (x) is either a leaf
label or the subscript of an Fq-label. Replacing any such C (x) by A(x), we obtain a
term w such that A ∈ L(X,w) (because A is determined by F in which terminating
labels are changed accordingly). It is easy to see that w � v, hence A ∈ L̂(X, u).

(3) The argument of item (2) works. �
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4.2. Preservation property. Here we show that all levels of the Q-IFH are
preserved by continuous open surjections.

With any functionf : X → Y between cb0-spaces we associate the functionA �→
f[A] from P(X ) to P(Y ) defined by

f[A] = {y ∈ Y | A ∩ f–1(y) is nonmeager in f–1(y)}.

Its importance stems from Baire-category properties of cb0-spaces recalled in §2.3.
The function A �→ f[A] (known as the existential category quantifier, see e.g., §8.J
in [9]) was used e.g., in [4, 17, 27]; we changed its notation trying to make it more
convenient in our context.

The next two lemmas generalize some results from [4, 17, 27]. Please distinguish
f[A] and the image f(A) of A under f.

Lemma 4.4.

1. The function A �→ f[A] is a morphism from L(X ) to L(Y ), and f[A] ⊆ f(A)
for each A ⊆ X .

2. If T is a well founded tree and {U
} is a T-family of Σ0
1+α(X )-sets then {f[U
]}

is a T-family of Σ0
1+α(Y )-sets, and f̃[U
] ⊆ f[Ũ
] for each 
 ∈ T .

Proof. (1) Let y ∈ f[A], then A ∩ f–1(y) is nonmeager in f–1(y).
Then A ∩ f–1(y) is nonempty, hence y ∈ f(A) and f[A] ⊆ f(A). In par-
ticular, f[∅] = ∅. To show that f[X ] = Y we have to check that, for
any y ∈ Y , f–1(y) is nonmeager in f–1(y), and this follows from quasi-
Polishness of f–1(y). The property that f[

⋃
n Un] =

⋃
n f[Un] for every

countable sequence {Un} in P(X ) is well known. The (nontrivial) fact that
U ∈ Σ0

1+α(X ) implies f[U ] ∈ Σ0
1+α(Y ), follows from Proposition 2.3, see

[4, 17].

(2) The first assertion follows from (1), so we check the second one. Let y ∈ f̃[U
],
i.e., y ∈ f[U
] \

⋃
{f[U
′ ] | 
 � 
′ ∈ T}. ThenU
 ∩ f–1(y) is nonmeager inf–1(y)

and, for each 
 � 
′ ∈ T , U
′ ∩ f–1(y) is meager in f–1(y). Then (
⋃
{U
′ | 
 �


′ ∈ T}) ∩ f–1(y) is meager in f–1(y), hence Ũ
 = U
 \
⋃
{U
′ | 
 � 
′ ∈ T} is

nonmeager in f–1(y), i.e., y ∈ f[Ũ
]. �
We associate with any u-family F in L(X ) the u-family f[F ] in L(Y ) by

induction as follows: if u is a singleton term (hence F = {X}) then we set
f[F ] = {Y}; otherwise, u′ is an F-term and F = ({U
}, {F
}) is a u′-family
in Lsh(u)(X ); we set f[F ] = ({f[U
]}, {f[F
]}) which is a u′-family in Lsh(u)(Y ),
hence a u-family in L(Y ).

Lemma 4.5. Let u ∈ T	 , A ∈ Y → Q, and A ◦ f ∈ L(X, u) be determined by a
u-family F in L(X ). Then A is determined by the u-family f[F ] in L(X ).

Proof. If u is a singleton term, the assertion is obvious. Otherwise, u′ is an
F-term and the family F has the form ({U
0}, {U
0
1}, ...), so f[F ] has the form
({f[U
0 ]}, {f[U
0
1 ]}, ...). We have to show that A is determined by f[F ], i.e., for

each y ∈ Y , A(y) = q(
0, ... , 
m), for every terminating component ˜f[U
0···
m ] of
f(F ) containing y. Such a component exists by induction on the rank of u (see the
procedure of computing A(y) described above).
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For any given y ∈ Y and any such component ˜f[U
0···
m ] we have y ∈ f[Ũ
0···
m ]
by Lemma 4.4(2), so y = f(x) for some x ∈ Ũ
0···
m . Thus, A(y) = (A ◦ f)(x) =
q(
0, ... , 
m). �

As an immediate corollary of Lemmas 4.5 and 3.26 we obtain the following
preservation property for levels of the Q-IFH.

Theorem 4.6. Let L(X ),L(Y ) be Borel bases in cb0-spaces X,Y respectively, f :
X → Y a continuous open surjection,A : Y → Q, and u ∈ T	 . ThenA ◦ f ∈ L(X, u)
iff A ∈ L(Y, u), and similarly for L̂(X, u).

Proof. Let A ∈ L(Y, u), then A is determined by a u-family F in L(Y ). By
Lemma 3.26, A ◦ f ∈ L(X, u). Conversely, let A ◦ f ∈ L(X, u), then A ◦ f is
determined by a u-family F in L(X ). By Lemma 4.5, A is determined by the u-
family f[F ] in L(Y ), hence A ∈ L(Y, u). The assertion for L̂(X, u) follows in the
obvious way. �

4.3. Inheritance of HK-type theorems. Here we apply the preservation theorem
to show that some versions of the Hausdorff–Kuratowski theorem (which we call
HK-type theorems for short) are inherited by the continuous open images.

Recall that the Hausdorff theorem in a space X says that
⋃
�<�1

Σ–1,1
� (X ) = Δ0

2(X ).

The difference hierarchy {Σ–1,1
� (X )} over the open sets in X is usually defined using a

difference operator on the transfinite sequences of open sets (see e.g.,, [9, 25]). Since
in this paper we promote using labeled trees instead of ordinals, we note that levels
Σ–1,1
� (X ) are easily characterized using 2̄-labeled trees in T (2̄) (see the beginning of

§3.1). Namely, by Proposition 4.9 in [25], there is a tree T� ∈ T (2̄) of rank � such
that Σ–1,1

� (X ) = L(X,T�), and anyT ∈ T (2̄) is �-equivalent to one ofT�, T̄� , where
u �→ ū is the automorphism induced by i �→ 1 – i . Thus, the Hausdorff theorem
for X may be written as

⋃
{L(X,T ) | T ∈ T (2̄)} = Δ0

2(X ) (in this subsection
it is more convenient to work with labeled trees rather that with terms, see
Lemma 3.3).

The Kuratowski theorem extends the Hausdorff theorem to any successor level
of the Borel hierarchy in X (see §2.3 for the formulation of this theorem for quasi-
Polish spaces). The Kuratowski theorem has a reformulation in terms of 2̄-labeled
trees in just the same way as for the Hausdorff theorem. Namely, the tree form
of the HK theorem in X looks like

⋃
{L(X,T ) | T ∈ Tα(T (2̄))} = Δ0

1+α+1(X ) for
each α < �1, where some notation from the end of Section 3.1 is used; in particular,
Tα ◦ T = Tα+1.

The tree form of the HK-theorem readily extends to Q-partitions which yields
our first example of inheritance of the HK-type theorems. We say that a cb0-space
X satisfies the HK-theorem for Q-partitions in level 1 + α + 1 < �1, iff

⋃
{L(X,T ) |

T ∈ Tα+1(Q)} = Δ0
1+α+1(QX ). We define the qo ≤co on cb0-spaces by: Y ≤co X iff

there is a continuous open surjection from X onto Y.

Theorem 4.7. If a cb0-space X satisfies the HK-theorem for Q-partitions in level
1 + α + 1 < �1, then so does every space Y ≤co X .

Proof. Since the inclusion
⋃
{L(X,T ) | T ∈ Tα+1(Q)} ⊆ Δ0

1+α+1(QX ) is easy,
we check only the opposite inclusion. Let A ∈ Δ0

1+α+1(QY ) and let f : X → Y be a
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continuous open surjection. ThenA ◦ f ∈ Δ0
1+α+1(QX ), henceA ◦ f ∈ L(X,T ) for

some T ∈ Tα+1(Q). By Theorem 4.6, A ∈ L(Y,T ). �
Our second example is concerned with a version of HK-theorem for limit levels

of the Borel hierarchy. The problem of finding a construction principle for the Δ0
�-

subsets of the Baire space in the case that � is a positive limit countable ordinal
was posed long ago by Luzin and resolved in [34] as an important step to the
complete description of the Wadge hierarchy. We state the inheritance property for
an extension of this result from sets to Q-partitions. We say that a cb0-space X
satisfies the Wadge property for Q-partitions in a limit level � < �1, iff

⋃
{L(X,T ) |

T ∈ T�(Q)} = Δ0
�(Q

X ).
The next result is proved in just the same way as the previous theorem.

Theorem 4.8. If a cb0-space X satisfies the Wadge property for Q-partitions in a
limit level � < �1, then so does every space Y ≤co X .

4.4. CharacterizingQ-Wadge hierarchy in the Baire space. Here we show that the
Q-IFH in the Baire space coincides with the Wadge hierarchy of Q-partitions. The
structure of Wadge degrees of Borel measurable Q-partitions ofN was characterized
in [11] (Proposition 3.11 in §3.1). In particular, a set-theoretic characterization
of the nonself-dual levels of the Q-Wadge hierarchy (with levels W(N , T ) from
Introduction) was provided (Lemma 3.16 and its extensions), by defining classes ΣT
of Q-partitions using set-theoretic operations and showing that W(N , T ) = Σ̂T for
each T ∈ T�1(Q) where Σ̂T = {A ∈ QN | ∃B ∈ ΣT (A ≤W B)}.

The definition of ΣT in [11] uses special features of the Baire space and looks a
bit different from our general definition of levels of the Q-IFH. The main result of
this subsection shows that these classes for the Baire space coincide. For the reader’s
convenience, we cite necessary notions and results from [11] (see also [12]).

Any nonempty closed set C in N and any Q-partition A : C → Q induce a
Q-partition Â : N → Q obtained by composing A with the canonical retraction
from N onto C (abusing notation, A and Â are often identified). Similarly, any
A : U → Q, where U is a nonempty open set in N , may be identified with some
Â : N → Q (see Observations 3.5 and 3.6 in [11]). We recall (in a slightly different
from [11] notation of §3.1) the definition of classes ΣT (in fact, we define Σu for
u ∈ T	 , where T = T (u), see Lemma 3.3, cf. Definition 3.7 and its extensions
in [11]).

Definition 4.9.

1. Σq = {�x.q}.
2. Σsα(u) consists of A ◦ g where A ∈ Σu and g is a Σ0

1+�α -measurable function
on N .

3. ΣFq (u0,...) consists of A ∈ QN such that for some pairwise disjoint nonempty
open sets U0, U1, ... not exhausting N we have: A|V = �v.q (where V = N \⋃
i Ui) and A|Ui ∈ Σui for all i ≥ 0.

4. ΣFα(u0,...) consists of A ∈ QN such that for some pairwise disjoint nonempty
open sets U1, U2, ... not exhausting N we have: A|V ∈ Σsα(u0) (where V =
N \

⋃
i≥1Ui) and A|Ui ∈ Σui for all i ≥ 1.
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In [11] the following basic deep fact was established: For any countable ordinal
α, there is a Σ0

1+α-measurable conciliatory (an important technical notion from
[11]) function Uα : N → N which is universal; that is, for every Σ0

1+α-measurable
function f : N → N , there is a continuous function g : N → N such that f
is equivalent to Uα ◦ g. It was also shown that every 	-join-irreducible Borel
function A : N → Q is Wadge equivalent to a conciliatory function. In fact, for
any u ∈ T	 there is a special Σu-complete conciliatory function 
(u) : N → Q
defined as follows: 
(q) = �x.q; 
(sα(u)) = 
(u) ◦ U�α ; 
(Fq(u0, ...)) = 
(q) →
(
(u0) 
 ··· ); 
(Fα(u0, ...)) = 
(sα(u0)) → (
(u1) 
 ··· ).

Theorem 4.10. For any countable bqo Q we have Σu = L(N , u) and Σ̂u = L̂(N , u)
for every u ∈ T	 . Thus, in the Baire space the Q-IFH coincides with the Q-Wadge
hierarchy.

Proof. It suffices to prove the first equality. Clearly, Σq = L(N , q) for q ∈
Q. To prove Σsα(u) = L(N , sα(u)), note that Σu = L(N , u) by induction and
L(N , sα(u)) = L�α (N , u) by Lemma 3.34(1). Let A ◦ g ∈ Σsα(u) where A ∈ Σu =
L(N , u) and g is L�α (N )-measurable. By Lemmas 3.14 and 3.26, A ◦ g ∈
L�α (N , u), as desired. Conversely, let A ∈ L�α (N , u). By the remarks before
the theorem, 
(sα(u)) = 
(u) ◦ U�α is Wadge complete in L�α (N , u), hence A =
(
(u) ◦ U�α ) ◦ f for some continuous function f onN . ThenA = 
(u) ◦ (U�α ◦ f),

(u) ∈ L(N , u), and U�α ◦ f is L�α (N )-measurable. Thus, A ∈ Σsα(u).

In proving the equality ΣFq (u0,...) = L(N , Fq(u0, ...)), by induction we can assume
that Σui = L(N , ui) for each i ≥ 0. LetA ∈ ΣFq (u0,...), then for some pairwise disjoint
nonempty open sets U0, U1, ... not exhausting N we have: A|V = �v.q (where
V = N \

⋃
i Ui) and A|Ui ∈ Σui for all i ≥ 0. By induction, A|Ui ∈ L(N , ui) for

all i ≥ 0. By Lemma 3.34(4), A ∈ L(N , Fq(u0, ...)). The converse inclusion follows
from Lemma 3.34(3) and Definition 4.9(3). The case of Fα-term is considered
similarly. �

4.5. Infinitary fine hierarchies in quasi-Polish spaces. Here we summarise some
properties of the Q-IFH in quasi-Polish spaces. For any quasi-Polish space X we fix
a continuous open surjection � from N onto X (Proposition 2.2). First we give the
characterization of the Wadge hierarchy of Q-partitions announced in Introduction
(for Q = 2̄ this of course yields a characterization of the Wadge hierarchy of sets).

Theorem 4.11. Let X be a quasi-Polish space, Q a countable bqo, and T ∈ T�1(Q).
Then W(X,T ) = L̂(X,T ).

Proof. By Theorem 4.10 and Proposition 3.11, W(N , T ) = Σ̂T = L̂(N , T ). By
Theorem 4.6, for any A : X → Q we have: A ∈ W(X,T ) iff A ◦ � ∈ L̂(N , T ) iff
A ∈ L̂(X,T ). �

Next we show that the HK-type theorems hold in any quasi-Polish space, which
extends some known results. From Proposition 2.2 we know that X is a quasi-Polish
space iff X ≤co N . This together with Theorems 4.7 and 4.8 implies the following.

Theorem 4.12. Every quasi-Polish space satisfies the HK-theorem for Q-partitions
in any successor level 1 + α + 1 < �1 of the Q-IFH, and also the Wadge property for
Q-partitions in any limit level � < �1 of the Q-IFH.
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Let us summarize which properties of the Wadge hierarchy in the Baire space
(see end of §2.4) hold in arbitrary quasi-Polish spaces. Property (1) holds for
the hierarchies of sets and of Q-partitions for bqo Q (if Q has antichain of size
3, the property holds in the weakened bqo-form). The noncollapse property (2)
does not automatically hold and requires additional investigation in any concrete
space. Property (3) fails in most of natural spaces. Property (4) holds in arbitrary
quasi-Polish space (note that this property is in fact an HK-type theorem); it
would be interesting to investigate it for cb0-spaces which are not quasi-Polish.
By Proposition 4.3, property (5) holds for many (but not all) levels of the Q-IFH
in cb0-spaces. Property (6) does not automatically hold and requires additional
investigation in any concrete space.

We conclude with an additional open question. In this paper we hopefully found
a convincing set-theoretic definition of Q-Wadge hierarchy in quasi-Polish spaces,
restricting our attention to Borel Q-partitions. For this the axioms of ZFC suffice.
A major open question is to extend the results of this paper to a reasonable
class beyond the Borel Q-partitions (perhaps even to all Q-partitions). The Wadge
hierarchy for arbitrary subsets of the Baire space is well known [36] and requires
suitable set-theoretic axioms alternative to ZFC. The definitions of this paper extend
straightforwardly (by taking arbitrarily large ordinal � in the signature 	(Q, �) in
§3.1) but beyond the Borel Q-partitions proofs could turn out different from those
used in this paper. It is currently not clear which set-theoretic axioms should be
used.
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