
J. Fluid Mech. (2018), vol. 838, pp. 105–128. c© Cambridge University Press 2018
doi:10.1017/jfm.2017.888

105

Mixing across fluid interfaces compressed by
convective flow in porous media
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We study mixing in the presence of convective flow in a porous medium. Convection
is characterized by the formation of vortices and stagnation points, where the fluid
interface is stretched and compressed enhancing mixing. We analyse the behaviour
of the mixing dynamics in different scenarios using an interface deformation model.
We show that the scalar dissipation rate, which is related to the dissolution fluxes,
is controlled by interfacial processes, specifically the equilibrium between interface
compression and diffusion, which depends on the flow field configuration. We consider
different scenarios of increasing complexity. First, we analyse a double-gyre synthetic
velocity field. Second, a Rayleigh–Bénard instability (the Horton–Rogers–Lapwood
problem), in which stagnation points are located at a fixed interface. This system
experiences a transition from a diffusion controlled mixing to a chaotic convection
as the Rayleigh number increases. Finally, a Rayleigh–Taylor instability with a
moving interface, in which mixing undergoes three different regimes: diffusive,
convection dominated and convection shutdown. The interface compression model
correctly predicts the behaviour of the systems. It shows how the dependency of the
compression rate on diffusion explains the change in the scaling behaviour of the
scalar dissipation rate. The model indicates that the interaction between stagnation
points and the correlation structure of the velocity field is also responsible for the
transition between regimes. We also show the difference in behaviour between the
dissolution fluxes and the mixing state of the systems. We observe that while the
dissolution flux decreases with the Rayleigh number, the system becomes more
homogeneous. That is, mixing is enhanced by reducing diffusion. This observation is
explained by the effect of the instability patterns.

Key words: convection in porous media, geophysical and geological flows, mixing

1. Introduction

Convective flow caused by an unstable stratification of fluid density such as the
Rayleigh–Bénard or the Rayleigh–Taylor instabilities is common in porous media.
The Rayleigh–Bénard instability appears when an unstable density stratification is

† Email address for correspondence: juanj.hidalgo@idaea.csic.es
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106 J. J. Hidalgo and M. Dentz

maintained between the top and bottom boundaries of the domain. This is often
found when the fluid temperature is altered as in geothermal groundwater systems
(Cheng 1979; Sanford, Whitaker & Smart 1998) and heat conduction in metallic
foams (Dyga & Troniewski 2015; Hamadouche, Nebbali & Benahmed 2016) or
during the mixing of freshwater and seawater in coastal aquifers (Cooper 1964;
Abarca, Carrera & Sánchez-Vila 2007). The Rayleigh–Taylor instability occurs when
one fluid is placed on top of a less dense one. A situation found in geological
CO2 storage (Ennis-King & Paterson 2005; Szulczewski, Hesse & Juanes 2013), the
displacement of dense contaminant plumes (Kueper & Frind 1991) or the convection
of compositional melts (Martin, Griffiths & Campbell 1987; Tait & Jaupart 1989;
Wells, Wettlaufer & Orszag 2011). The coupling between flow and transport results
in an enhancement of boundary and dissolution fluxes and fluid mixing. Since mixing
leads to the attenuation of concentration contrasts and dilution (Kitanidis 1994;
Dentz, Le Borgne & Englert 2011; Le Borgne, Dentz & Villermaux 2015) and drives
chemical reactions (De Simoni, Carrera & Sánchez-Vila 2005; Dentz et al. 2011),
understanding how unstable flow and mixing interact is therefore essential to predict
the behaviour of such systems.

The behaviour of mixing and dissolution fluxes is usually expressed in terms of
dimensionless quantities. In Rayleigh–Bénard instabilities, the fluxes are represented
by the Nusselt number Nu (see Otero, Dontcheva & Johnston 2004) and depend
on the strength of the instability given by the Rayleigh number Ra. The numerical
simulations of Otero et al. (2004) found Nu∝ Ra0.9 for 1300 . Ra . 10 000. Hewitt,
Neufeld & Lister (2012) found exponents close to 1 for Ra>1000. These observations
are in agreement with the boundary layer analysis of Howard (1966) that assumes
that the buoyancy flux is independent of the height of the domain. Although the low
Ra regime is not discussed, inspection of figure 3 in Otero et al. (2004) and figure
2 in Hewitt et al. (2012) shows that Nu ∝ Ra1/2 for 100 . Ra . 1000, which differs
from the Nu∝ Ra2/3 predicted by Kimura, Schubert & Straus (1986).

Rayleigh–Taylor instabilities also display different scaling depending on the
dominant mechanism (Slim 2014). The system evolves from Nu ∝ Ra1/2 when
diffusion dominates to Nu ∝ Ra after the onset of the instabilities (Hidalgo, Fe &
Cueto-Felgueroso 2012; Hidalgo et al. 2015). In bounded domains, as the instabilities
attenuate, the relation between Nu and Ra becomes time dependent (Hewitt, Neufeld
& Lister 2013a; Hidalgo et al. 2015).

We focus on the behaviour of dissolution fluxes and fluid mixing in the presence of
convective flow. Mixing in unstable systems occurs at the fluid interfaces, which can
be located at the domain boundaries or at the contact with another fluid and whose
shape is determined by the instability patterns. The patterns organize themselves into
cells, columnar plumes or fingers, and evolve jointly with the velocity field, which
forms vortices and stagnation points. The fluid interface is stretched and compressed
at these locations, especially at stagnation points, affecting the magnitude of the fluxes
across it.

We study the hydrodynamic mechanisms of convective mixing and dissolution
and quantify them in an interface compression model that is able to reproduce
the observed mixing scaling. The model relates the structure of the velocity field to
mixing and dissolution fluxes across the fluid interface. First, we present the governing
equations of the flow and transport in porous media and define the observables that
describe the system, namely, the scalar dissipation rate and concentration probability
density function and discuss their relation to dissolution fluxes and mixing state of
the system. Then we introduce the interface compression model for the mixing
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Mixing across compressed fluid interfaces 107

and dissolution fluxes in the vicinity of a stagnation point. We consider three
scenarios with increasing complexity. A double-gyre synthetic velocity which is
used to validate the interface compression model, a heat transport problem in which
a Rayleigh–Bénard instability is triggered by the boundary conditions, and a two-fluid
system in which the density stratification provokes a Rayleigh–Taylor instability. The
interface compression model shows how mixing is controlled by the structure of the
velocity field, whose properties determine the transition between scalings.

2. Flow and transport governing equations
Under the assumptions of incompressible fluids and the Boussinesq approximation,

the dimensionless governing equations for variable-density single-phase flow in a two-
dimensional (2-D) homogeneous porous medium are (Riaz, Hesse & Tchelepi 2006;
Hidalgo, MacMinn & Juanes 2013):

∇ · q= 0, (2.1)
q=−∇p+ ρ(c)êg, (2.2)

∂c
∂t
+ q · ∇c−

1
Ra
∇

2c= 0, (2.3)

where p is a scaled pressure referred to a hydrostatic datum, q is the dimensionless
Darcy velocity and êg is a unit vector in the direction of gravity. The dimensionless
density ρ is in general a function of concentration c. Choosing as time scale the
advective characteristic time ta = Lc/qcφ, where Lc is the system length scale, φ
the porosity and qc = kρcg/µ the characteristic buoyancy velocity given by the
permeability k, viscosity µ, a representative density ρc and gravity g, the transport
equation (2.3) is controlled only by the Rayleigh number

Ra=
qcLc

φDm
, (2.4)

where Dm is the diffusion coefficient. The different scales must be chosen depending
on the problem solved and will be explained when necessary.

The system behaviour is analysed in terms of the global scalar dissipation rate

〈χ〉 =
1

Ra

∫
Ω

dΩ |∇c|2, (2.5)

where Ω denotes the domain. At the steady state, 〈χ〉 is equal to the flux through
the boundaries (Hidalgo et al. 2012) and since Nu is defined as the flux divided by
the diffusive flux over the domain (1/Ra in the current setup), it can be seen that
〈χ〉 =Nu/Ra.

In closed systems the change of concentration variance (Le Borgne, Dentz & Bolster
2010) is equal to 2〈χ〉. As the system mixes and concentration homogenizes 〈χ〉 goes
to zero. However, in the presence of sinks or sources the concentration variance is
also related to the boundary or dissolution fluxes (Hidalgo et al. 2012). In that case
a non-zero 〈χ〉 proportional to the fluxes can be found in the steady state. In that
case the mixing state of the system is better represented by the probability density
function (p.d.f.) of the concentration calculated by sampling the concentration in all
the domain as

p(c)=
1
A

∫
Ω

δ[c− c(x)] dΩ, (2.6)

where and A is the domain’s area.
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108 J. J. Hidalgo and M. Dentz

The shape of p(c) when the system is well mixed depends on the boundary
conditions. For example, for a well-mixed closed system, p(c) is given by a Dirac
delta centred at the average initial concentration. If Dirichlet boundary conditions
maintain a concentration difference between the system’s boundaries and diffusion is
the only transport mechanism, the concentration profile is linear and the p.d.f. flat.
Segregated systems are characterized by broad concentration p.d.f.s with multiple
local maxima.

To obtain information about the spatial structure we shall use the two-dimensional
autocorrelation function

ACFg(x)=F−1
{
|F{g(x)}|2

}
, (2.7)

where g(x) is the function whose autocorrelation is computed and F stands for
the two-dimensional Fourier transform. The shape of ACF indicates the presence
of periodic structures. The correlation length l is related to the width of the first
maximum of the ACF and gives information about the size of those structures.

3. Interface compression

After the onset of instabilities, the fluid interface evolves under the combined
effect of velocity and diffusion (Elder 1968). In the locations where the velocity field
experiences sharp changes, such as the stagnation points where the flow velocity goes
to zero over a distance equal to the interface thickness, the interface is compressed
and stretched. Diffusion, however, has the opposite effect and acts to increase the
interface width. The thickness s of the interfacial boundary layer is the result of the
competition between hydrodynamic compression and diffusive expansion, which can
be quantified by (Villermaux 2012; Le Borgne, Dentz & Villermaux 2013)

1
s

ds
dt
=−γ +

1
Ra

1
s2
, (3.1)

with γ the dimensionless compression rate and the dimensionless diffusion coefficient
Ra−1. The compression rate is given by the symmetric part of the strain tensor (Ottino
1989)

E =
1
2
(∇q+∇qT)=

[
γ 0
0 −γ

]
. (3.2)

The steady state solution of (3.1) determines the length scale

sB =
1
√
γRa

(3.3)

at which the effects of compression and diffusion equilibrate. This length is known as
the Batchelor scale (Batchelor 1959; Villermaux & Duplat 2006).

In general the scalar transport in the vicinity of a stagnation point located at a fluid
interface can be described by the advection–diffusion equation (Ranz 1979; Villermaux
2012; Le Borgne et al. 2013; Hidalgo et al. 2015)

∂c
∂t
= γ z

∂c
∂z
+

1
Ra
∂2c
∂z2

, (3.4)
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Mixing across compressed fluid interfaces 109

where horizontal gradients are disregarded because they are small along the interface
and the stagnation point is located at z=0. Following Hidalgo et al. (2015), the steady
state solution for c along its characteristics gives

c= cb +
1− cb

2
erfc

(
z√
2s2

B

)
, (3.5)

where it is considered that the concentration far above the interface (z→−∞) is 1
and far below the interface (z→∞) has a value cb, which can be different from zero.

Using (3.5) in (2.5) we obtain the expression for 〈χ〉

〈χ〉 =
ωe
√

4π

(1− cb)
2

sB Ra
, (3.6)

where ωe denotes an effective interface length in the horizontal direction. The form
of ωe depends on the characteristics of the flow and will be discussed for each of the
considered scenarios.

4. Mixing around a stagnation point: the double gyre
To illustrate the interface compression model we analyse the behaviour of fluxes and

mixing using a double-gyre velocity field (Shadden, Lekien & Marsden 2005). This
a simplified model of convective flow, because flow and transport are uncoupled, and
flow around stagnation points. Similar models have been used to characterize mixing
in oceanic circulation (Musgrave 1985).

4.1. Double gyre
We consider a rectangular domain of length 2 and height 1 in which the incompressi-
ble velocity q= (qx, qz) is given by

qx = sin(nπx) cos(πz)/n (4.1)
qz =− cos(nπx) sin(πz), (4.2)

where n is a positive integer equal to 1 for the double gyre. Concentration is
prescribed on top and bottom boundaries so that

c(x, z)=
{

0, at z= 0,
1, at z= 1, (4.3)

and the lateral boundaries are periodic. Density is constant and flow and transport are
not coupled. There is no characteristic buoyancy velocity, so we take qc=max(qz)= 1
and Ra= qcLc/φDm, which is in fact a Péclet number since the velocity field is not
related to convective instabilities.

4.2. Interface compression and scalar dissipation
The velocity field varies smoothly along the vertical direction, compresses the fluid
against the top boundary and maintains the concentration gradient. The structure of
the velocity field can also be visualized through the determinant of |E|, which displays
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110 J. J. Hidalgo and M. Dentz

10 2–1–20 0.5 1.0 0 0.5 1.0 0.8 0.9 1.0

(a) (b) (c) (d )

FIGURE 1. (Colour online) (a–d) Steady state concentration and velocity field (arrows) for
the double gyre (Ra= 5000), determinant of the strain tensor E , magnitude of the velocity
and 2-D normalized autocorrelation of the velocity field. The autocorrelation is computed
using the Wiener–Khinchin theorem and results are shifted so that the maximum is at the
centre of the domain.

extremes at the stagnation points. The velocity 2-D autocorrelation also reveals the
periodicity of the velocity field (figure 1d).

There are eight stagnation points in the domain (figure 1). At the steady state only
the ones at the boundaries contribute to mixing because the concentration gradients
inside the domain are zero. We take the one at the centre of the top boundary where
the interface is compressed for the calculations. The compression rate at that point is
γ =π and (3.3) gives sB =

√
1/πRa. Therefore from (3.6) we obtain

〈χ〉 ∼
1

2
√

Ra
. (4.4)

The Ra−1/2 dependence was observed by Ching & Lo (2001) for similar velocity
fields. In the double gyre, the velocity changes in a scale of the order of the domain
and γ is therefore independent of the value of Ra. Thus the Ra−1/2 behaviour
is characteristic of systems in which the velocity field (and γ ) and diffusion are
uncoupled.

To verify the stagnation point model, we solved the double-gyre transport problem
for 500<Ra< 20 000. As expected, the effect of the convection increases the mixing
efficiency of the system (figure 2a), which arrives to a steady state much faster than
the diffusion only case. The global scalar dissipation rate displays the expected Ra−1/2

behaviour (figure 2b).
As time passes the interface is compressed at the stagnation point until the

compression of the velocity field is balanced by diffusion and the width equilibrates
at the Batchelor scale sB. The interface width can be estimated as the square root of
the second central moment (variance) of c(1− c) at the stagnation point as illustrated
in figure 3. There is a good agreement between the theoretical Batchelor scale and
the numerical model (figure 4).

The number of stagnation points nsp and convection cells in the system increases
with n. There are 2n− 1 convection cells and 2n stagnation points where the interface
is compressed. The compression rate at the stagnation points is independent of n
and so is max(qz). Therefore, Ra does not change. The simulations show that 〈χ〉
decreases with the number of cells (figure 5). The decrease of dissolution efficiency
per stagnation point is caused by a reduction in the width of the cells. This reduction
behaves as n−1 in good agreement with the numerical results.

4.3. Mixing state
The mixing state of the system is represented by the concentration p.d.f. p(c) and
its variance σ 2

c , which also shows the effect of convection. Without convection the
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10–1
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100 10–1

10–2

10–3

10010–1 102101

Diffusion only
Double gyre

104103 105102

(a) (b)

FIGURE 2. (a) Comparison between a diffusion only case (black solid line), that is
velocity equal zero, and the case with a double-gyre velocity field for Ra= 10 000 (grey
solid line). The global scalar dissipation rate scales as t−1/2 for late times in the diffusion
case while the double gyre evolves to a constant behaviour. (b) Dependence of the total
mixing 〈χ〉 with Ra for the double gyre.

0

(a) (b) (c)
0.5 1.0 0 0.15 0.30 0 0.15 0.30

 0.5

 0

1

 0

 0.5  0.98

1 1

z

FIGURE 3. (a) Concentration profile and (b,c) c(1− c) of the concentration for the double
gyre (n = 1) at x = 0.5 for times t = 0, 0.4, 100. It can be seen how the interface is
compressed against the top and bottom boundary as the system approaches steady state.
The decrease in the interface width is shown by the shape of c(1− c).

p.d.f. (figure 6a) is uniform for all the concentration range because the concentration
profile is linear. As Ra increases and the well-mixed area inside the convection cells
grows and the concentration differences are confined near the boundaries. The weight
of the extreme concentration decreases and the p.d.f. sharpens around the mean value
of 0.5. The peaks at c = 0 and c = 1 corresponding to the boundary conditions are
always visible. The secondary peaks correspond to the areas around the stagnation
points near the boundaries where the mean concentration is in between that of the
boundary and the well-mixed zone inside the cells.
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10–1

10–2

10–3

104103 105102

Ra

Simulations

Theory

FIGURE 4. Computed (dots) interface width at the stagnation point and theoretical (solid
line) Batchelor scale (sB = (πRa)−1/2).

10–2

10–3

10–4

100 102101

FIGURE 5. Global scalar dissipation rate with increasing number of stagnation points nsp
for Ra= 10 000. The solid horizontal line corresponds to the case in which diffusion is
the only transport mechanism (nsp = 0).

Convection also helps in making the system more homogeneous. When diffusion
is the only mixing mechanism p(c) has the maximum variance possible because all
values of concentration are equiprobable (figure 6b). The concentration variance σ 2

c
is inversely proportional to Ra reflecting the above-mentioned reduction of the area
occupied by concentration gradients.

The number of cells also affects the system state. The concentration p.d.f. displays
a sharper shape (figure 7a) and the number of secondary peaks increases with n. The
stirring of additional convection cells, however, does not improve the homogeneity of
the steady state system significantly. The variance of concentration (figure 7b) is not
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10–1

10–2

100

101

102

103 10–1

10–2

10–3

0 0.25 0.50 0.75 1.00

Diffusion only Diffusion only
Convective500

1000
5000
10 000
20 000

Ra

104103 105102

(a) (b)

FIGURE 6. Steady state concentration p.d.f. for the double-gyre case (n= 1) and different
values of Ra (a) and the p.d.f. variance (b). The diffusion only case is computed with
Ra= 10 000.

10–1

10–2

10–3

100

101

102 10–1

10–2

10–3

(b)

0 0.25 0.50 0.75 1.00 100 102101

(a)

10
2 4 16

n

FIGURE 7. Concentration p.d.f. (a) and variance (b) for the multiple-gyre case for
different values of n and Ra = 10 000. The velocity field homogenizes the system.
However, the efficiency above n= 1 decreases significantly.

reduced significantly by the addition of more cells. It is interesting to note that the
higher the dissolution flux, i.e. higher 〈χ〉, the less well mixed the system is.

5. Mixing across immobile interfaces
We consider now a system for which the instabilities originate at the boundary and

propagate to the rest of the finite domain. The interface is then fixed on one side and
the shape of the instability patterns is constrained in principle by the geometry of the
system.

5.1. The Horton–Rogers–Lapwood problem
The Horton–Rogers–Lapwood (HRL) problem (Horton & Rogers 1945; Lapwood
1948) is a heat transport problem in which convection is triggered by a Rayleigh–
Bénard instability caused by the temperature difference between the top and bottom
boundaries. We solve the problem in a rectangular domain of aspect ratio 2 (as in the
double-gyre case) with impervious top and bottom boundaries and periodic boundary
conditions on the sides. Temperature T = 1 is prescribed at the top boundary and
T = 0 at the bottom one. The dimensionless density of the fluid increases linearly
with temperature as ρ = βT , where β is a positive constant. The system is again
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0 0.5 1.0 –2–4 0 2 4 0.50 0.75 1.00 0 0.015 0.025
c(a) (b) (c) (d )

FIGURE 8. (Colour online) (a–d) Concentration, determinant of the strain tensor E ,
modulus of the velocity and 2-D normalized autocorrelation of the velocity field for the
Horton–Rogers–Lapwood problem and different Ra at time t=1000. The autocorrelation is
computed using the Wiener–Khinchin theorem and results are shifted so that the maximum
is at the centre of the domain.

characterized by the Rayleigh number (2.4), which in this case takes the form
Ra= kβLc/φµDm since qc = kβ/µ.

The system is stable for Ra< 4π2. For 4π2 . Ra . 1300 (Graham & Steen 1994)
the instability patterns occupy the whole domain in the form of convection cells
(figure 8). For higher Ra the system evolves to a chaotic convection regime in
which flow is organized in columnar patterns (Hewitt, Neufeld & Lister 2013b). This
transition occurs around Rac ∼ 1300, which will be called critical Rayleigh number
in the following.

The stagnation points in this problem are located at the top and bottom boundaries
(figure 8). For moderate Ra they are found in between the convection cells and
remain stationary once the convection is fully developed. For high Ra when the
system experiences chaotic convection, the stagnation points are located at the
boundaries from where the columnar plumes grow. They appear and disappear along
the boundary as the small proto-plumes merge and interact.

5.2. Interface compression and scalar dissipation
The global scalar dissipation rate 〈χ〉 reflects the transition of the system from an
uncoupled, self-organized, convective regime, in which 〈χ〉 ∝ Ra−1/2 as in the double-
gyre scenario, to a convection dominated regime characterized by 〈χ〉∝Ra0 (figure 9).
The origin of this change in the system’s behaviour lies in the structure of the velocity
field. As shown in figure 8, for low Ra the strain and the velocity field resemble
that of the double gyre as the similarities in velocity and velocity autocorrelation
indicate. The velocity structure is dominated by the convection pattern, which depends
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104103 105102

10–1

10–2

10–3

Gyre
HRL

Ra

FIGURE 9. Dependence of the global scalar dissipation rate on the Rayleigh number
for the double-gyre system and the Horton–Rogers–Lapwood (HRL) problem. Mixing for
HRL problem changes its behaviour from uncoupled (∝ Ra−1/2) to convective around the
critical Rayleigh number. This behaviour has also been observed by Otero et al. (2004)
and Hewitt et al. (2012).

on the size and aspect ratio of the domain. Therefore the velocity changes happen
in the scale of the domain size, as in the double-gyre case, and the compression
rate is independent of Ra. In the convection dominated regime, however, the size of
the domain becomes unimportant because the mixing process happens at the scale of
the interface, which is of the order of the Batchelor scale. Velocity changes across a
distance of the order of sB and γ grows linearly with Ra. That is, compression and
diffusion become coupled.

This change in behaviour is reflected in the correlation length in the horizontal
direction of the velocity and the strain. The correlation length depends on the number
of convection cells for Ra < Rac. When a new cell is created as happens between
Ra=750 (2 cells, see figure 8) and Ra=1000 (3 cells) the correlation length decreases
(figure 10). It increases again when Ra = 1500 and the system has two cells again.
For Ra> Rac the correlation lengths decrease rapidly, indicating the transition to the
convective dominated regime.

The interface compression model (3.1)–(3.6) explains the observed behaviours
of 〈χ〉 in the different regimes based on the scalings of the compression rate γ .
Regardless of the regime, the difference in concentration across the interface at the
steady state is the one between the boundaries, that is cb = 0. The effective length
ωe associated with the stagnation points during first regime is weakly dependent on
Ra because it is linked to the number of convection cells, which oscillates between
2 and 3 (figure 8). The compression rate is, as explained before, independent of Ra.
Therefore from (3.3) and (3.6) we obtain sB, 〈χ〉 ∝ Ra−1/2.

During the convection dominated regime velocity changes sharply across the
interface thickness, γ ∼ 1/sB and (3.3) yields sB ∼ Ra−1. The effective length ωe is
independent of Ra because it is proportional to the number of stagnation points (∼Ra)
times their individual effective length, which is proportional to the wavelength of the
most unstable mode (∼Ra−1) (Riaz et al. 2006; Hidalgo et al. 2015). Therefore from
(3.6) we obtain 〈χ〉 ∼ Ra0.
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FIGURE 10. Horton–Rogers–Lapwood problem velocity correlation length in the
horizontal direction for both components of the velocity (a) and strain correlation length
in both directions (b). The correlation length is computed using the magnitudes averaged
from t= 20 to t= 100.

Numerical simulations confirm the former analysis. As in the double-gyre case, we
define the interface width as the square root of the second central moment of c(1− c).
We compute the second central moment at all locations along the top boundary and
take as representative of the interface width the minimum measured value since the
movement along the boundary of the stagnation point and the alternation of places
where the interface is compressed leads to a time average that overestimates the
interface width. We observe (figure 11) that there is a change in the scaling of
the interface width around Rac from a value close to the Ra−1/2 predicted by the
model to a Ra−1 value virtually equal to the model prediction and the observations
in previous works (Rees, Selim & Ennis-King 2008; Hidalgo & Carrera 2009; Slim
& Ramakrishnan 2010; Hewitt et al. 2013a).

5.3. Mixing state
Similarly to the double-gyre case the increasing strength of convection narrows
the concentration p.d.f. around the average concentration c = 0.5 (figure 12a).
However, p(c) is not as sharp as in the double-gyre case because the area between
the convection cells or columnar plumes where the fluid is well mixed is smaller.
This area grows as Ra increases, which leads to a smaller concentration variance
(figure 12b) and a more homogeneous system.

Contrary to the scalar dissipation rate 〈χ〉, which is dominated by the concentration
gradients at the interface, the mixing state of the system does not become independent
of Ra as the system passes to the chaotic convection regime. The decrease in mixing
efficiency happens around Ra≈ 10 000, which is one order of magnitude bigger than
Rac.

The dependence of σ 2
c on Ra implies an in principle counter-intuitive behaviour:

mixing increases with reducing diffusion. The responsible for this behaviour is the
increasingly chaotic convection, which stirs the system below the interface more
efficiently than the convection cells, and leads together with a decreasing but finite
diffusion to a more efficient homogenization of the mixture.
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FIGURE 11. Interface width dependence on Ra for the Horton–Rogers–Lapwood problem.
The width is computed as the average between t= 20 and t= 100 of the minimum along
the horizontal direction of the square root of the second central moment of c(1− c).
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FIGURE 12. Probability density function of the time averaged concentration for the HRL
problem (a) and p.d.f. variance (b). Concentration was averaged from t = 20 to t = 100.
Colours indicate different Ra. For high Ra the p.d.f.s display some noise for the extreme
values of concentration.

6. Stagnation points at mobile interfaces
In stratified fluid systems the interface between the fluids is not stationary and in

general does not remain flat (Hewitt et al. 2013a). We relax now the assumption of
a fixed flat interface and analyse a system subject to a Rayleigh–Taylor instability
triggered by an unstable stratification of fluids. The interface compression and mixing
model for this system was previously developed by Hidalgo et al. (2015), which we
further discuss below.

6.1. Rayleigh–Taylor instability
We consider a rectangular domain of length 1 and height 2 with top and bottom
impervious boundaries and periodic boundary conditions on the sides (figure 13).
Initially the system is in equilibrium with a less dense fluid on top of a dense one
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0 0.5 1.0 0 0.5 1.0 0 0.5 1.0–2–4 0 2 4
c(a) (b) (c) (d )

FIGURE 13. (Colour online) (a–d) Concentration, determinant of the strain tensor E ,
modulus of the velocity and 2-D normalized autocorrelation of the velocity field for the
two-fluid system under a Rayleigh–Taylor instability for Ra= 10 000 at different times.

with the interface located at z = 1. The fluids are fully miscible. Instabilities are
triggered by a fluid nonlinear non-monotonic density law based on the mixtures of
propylene-glycol and water (Backhaus, Turitsyn & Ecke 2011; Dow Chemical 2011)
which is approximated in dimensionless form by ρ(c) = 6.19c3

− 17.86c2
+ 8.07c

(Hidalgo et al. 2015). Note that the dimensionless density is zero for c= 0 (bottom
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FIGURE 14. Evolution with time of the global scalar dissipation rate for the two-fluid
system with Ra = 10 000 for the numerical simulation (grey dots) and the interface
compression model (black dots).

fluid) and negative for c= 1 (top fluid). The maximum density is found at cm = 0.26
so that the mixture of the fluids is denser than any of the pure ones (Neufeld,
Hesse & Riaz 2010; Hidalgo et al. 2012, 2015). Again, the system is completely
characterized by the Rayleigh number (2.4) defined with qc = k1ρgH0/µ, where 1ρ
is the density difference between the maximum and the bottom fluid, and Lc =H0 is
the initial position of the interface.

6.2. Interface compression and scalar dissipation
The global scalar dissipation rate (figure 14) shows that there are three main regimes:
diffusive, convection dominated and convection shutdown. At the beginning the fluids
mix diffusively until the increase of density at the interface creates instabilities
that lead to a convection dominated regime. The convection dominated regime
is characterized by a constant global scalar dissipation rate and the formation of
fingering patterns. As the fluids mix and the concentration difference between the
fluids diminishes, convection and mixing slow down.

As in the previous problems, mixing is related to the interface and velocity structure
evolution. The main difference with the double gyre and the HRL problem is that the
interface between the fluids is not at rest as can be seen in the concentration maps
in figure 13. As the top fluid dissolves in the bottom fluid the interface moves up.
Figure 15(a) shows the velocity of the interface computed from c(1− c) as illustrated
in panels (b,c). The maximum speed is observed during the convection dominated
regime after which the interface velocity decreases.

The compression rate γ is given by the net velocity change across the interface as

γ =
qb − qi

s
, (6.1)

where qb is the velocity of the up-welling fluid and qi is the interface velocity at
the stagnation point. The up-welling fluid moves with a velocity proportional to the
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FIGURE 15. Interface velocity for the two-fluid system with Ra= 10 000 (a). Overlines
indicate horizontally averaged magnitudes. The interface position is determined as first
zero of the derivative of c(1− c) with respect to z after the maximum. This is illustrated
in plots (b) and (c) where the c and c(1− c) are plotted for t = 1.4, Ra = 10 000. The
position of the interface is indicated by the black dashed line.
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FIGURE 16. Buoyancy velocity in the two-fluid system qb= 1− ρ(cb) (solid line) can be
approximated by ((cm − cb)/cm)

2 (dots). For the simulations in this study cm = 0.26.

difference with respect to the maximum density. For the chosen density law and
cb < cm, qb can be approximated by (figure 16)

qb(cb)=

(
cm − cb

cm

)2

, (6.2)

where, we recall, cb is the average concentration below the interface and cm the
concentration for which density is maximum.

The velocity of the interface at the stagnation point is proportional to the dissolution
flux, therefore

qi =
1− cb

s Ra
, (6.3)
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and the compression rate can be written as

γ =
1
s

(
qb −

1− cb

s Ra

)
. (6.4)

Then, the steady state solution of (3.1) is approximated by (see Hidalgo et al. 2015)

s≈
2− cb

(1− cb)2 Ra
. (6.5)

Equations (6.4) and (6.5) show that the fact that the interface motion leads to
a lower compression of the interface and smaller dissolution flux across it than in
the HRL problem. The difference in the dissolution flux between fixed and moving
interfaces was noted by Hidalgo et al. (2012).

Maximum compression and scalar dissipation rate χ happen at the interface where
the maximum strain is also found (figure 13). There is also a high strain on the sides
of the fingers, however, their contribution to mixing is small because the concentration
difference between the finger centre and the surrounding fluid is low. Moreover, the
increasing width of the fingers softens the concentration gradient therefore reducing
even more their contribution to the mixing as time passes. The close relation between
velocity, mixing and strain is illustrated in figure 17. The maximum strain, indicated
by the determinant of the strain tensor and the maximum of its eigenvalues, occurs
at the same height as the maximum density. At this position the derivative of qz
is maximum too. Maximum scalar dissipation rate however, is found a little above
that point. This is caused by the nonlinear density law, which makes the interface
asymmetric as it is compressed only from the bottom. The interface asymmetry is
more severe in the double gyre and the HRL problem because of the fixed boundaries
(see figure 3).

When convection dominates, the up-welling fluid is still the initial one, therefore
cb = 0 (figure 18) and qb = 1. As a result the interface compression is maximum
(figure 19). Using (6.5) and (3.6) leads to

sB =
2

Ra
(6.6)

and

〈χ〉 =
ωe

4
√

π
, (6.7)

where ωe ∝ nspsB with nsp the number of stagnation points. At the onset of the
instability, the fingers distribute according to the wavelength λc of the most unstable
mode. Therefore the nsp can be estimated using the results of Riaz et al. (2006) as
nsp = 1/λc = (βc Ra)/(2π), which yields ωe = βcπ. Finally,

〈χ〉 =
2

π3/4
βc, (6.8)

which is independent of Ra because of the equilibrium between the diffusive interface
expansion and the compression exerted by the buoyant fluid. Hidalgo et al. (2015)
obtained βc = 0.018 from their simulations, which is cm times the one reported
by Riaz et al. (2006) for a linear density law with cm = 1. Therefore the shape
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FIGURE 17. Horizontally averaged concentration, scalar dissipation rate and density (a),
and vertical component of the velocity, determinant of the strain tensor E and its
maximum eigenvalue λ (b). Some magnitudes are normalized by their maximum value.
Maximum mixing is found above the location of maximum compression (horizontal
dashed line). Data correspond to the Ra= 10 000 case for t= 1.4.

of the density law plays a critical role not only in the location of the maximum
compression (figure 17) but also on the value of the scalar dissipation rate during
convection.

As the concentration of the bottom fluid increases, the interface compression and
convection weaken and the interface width grows rapidly as can be seen comparing
figures 18 and 19 in which the increase in cb happens at the same time the interface
width grows. The 1− cb∼ t−1/4 behaviour in figure 18 is in good agreement with the
results of Hidalgo et al. (2015)

cb = 1− [1+ 2ωe(t− τs)]−1/4 , (6.9)

which reproduces well the behaviour of 〈χ〉 during the convection shutdown
regime (see figure 14). In (6.9) τs is the time when convection shutdown begins
and the effective length behaves as ωe ∝ 0.002

√
Ra reflecting that the Rayleigh

number becomes meaningful again when the fingers reach the bottom of the system.
From that moment on, the velocity field is again influenced by the domain size and
the wide fingers behave similarly to the convection cells of the HRL problem.

As the regimes succeed each other, the structure of the velocity field changes
(figure 13). The maximum velocity is found during the convection dominated
regime and decreases as convection shuts down. The velocity autocorrelation ACF|q|
(figure 13d) reflects the horizontal structure of the fingering pattern with a decreasing
number of local maxima as fingers coarsen. During the convection dominated regime
the velocity and its autocorrelation are similar to the high Ra HRL problem (compare
Ra= 10 000 in figure 8 to t= 3.5 in figure 13). During convection shutdown after the
fingers hit the bottom of the domain, the velocity structure resembles that of the low
Ra HRL problem because the fingering patterns are similar to elongated convection
cells (compare Ra= 750, 1000 in figure 8 to t= 30 in figure 13).
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FIGURE 18. Evolution of the average concentration below the interface for the two-fluid
system (Ra= 10 000). The concentration cb is constant during the convection dominated
regime and decreases as t−1/4 during convection shutdown.
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FIGURE 19. Interface width for the two-fluid system (Ra= 10 000). The interface width
is defined as the square root of the second moment of the horizontal average of c(1− c).
This value follows the expected temporal evolution but overestimates the value of the
interface width because of the influence of the fingers (see figure 15).

The velocity and strain correlation lengths also evolve during the three regimes
(figure 20). The velocity correlation length in both directions is minimum before the
onset of convection after which the maximum velocity is found. Then, the velocity
correlation length reflects the creation of the fingering pattern. While the correlation
length of qz grows and stabilizes around a constant value, the correlation length of qx

continues growing as new fingers form and merge. A similar behaviour is observed
for the correlation length of the strain. Its correlation length in horizontal direction
follows that of the horizontal velocity. In the vertical direction, however, the maximum
correlation length is found after the onset of convection. This is caused by the growing
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FIGURE 20. Evolution with time of the velocity correlation length in the horizontal
direction for both components of the velocity (a) and strain correlation length in both
directions (b) for the two-fluid system with Ra= 10 000.

fingers along which there is a high strain. At late times it decreases as the strain along
the fingers becomes weaker.

6.3. Mixing state

The mixing state of the system also changes with the different regimes. In the
beginning the system mixes slowly by diffusion and the concentration p.d.f. has two
distinct peaks at the extreme concentrations (figure 21a). When convection takes
over, the peak around the low concentration shifts as a consequence of the mixing
created by the fingers. The peak around maximum concentration is widen by the
effect of diffusion. Eventually diffusion will take the system to a well-mixed state
with uniform 0.5 concentration because the fluids occupied the same volume initially.
However, there is an intermediate state of duration proportional to Ra characterized by
a skewed concentration p.d.f. displaying high probabilities around the concentration
of the initial top fluid (c= 1) and a peak near cm as shown in figure 21(a) for t= 25.

In the two-fluid system there are no boundary dissolution fluxes, therefore, 〈χ〉
is proportional to the time derivative of the concentration variance. Figure 21(b)
shows how the system homogenization evolves in accordance with 〈χ〉. Initially, the
mixing state is given by the initial conditions. During the onset of the instabilities σ 2

c
increases. However, it reduces as soon as they are fully developed. This shows
that the chaotic convection that creates the fingering structures is an efficient
mixing mechanism. As convection shuts down, the bottom fluid mean concentration
approaches cm for which density is maximum and the density stratification approaches
to a stable configuration. Then, convection weakens and the fingers merge and become
wider, which makes the gradients of concentration at the interface and below smaller.
In this regime the mixing efficiency decreases as well as the speed at which the
system evolves towards the well-mixed state.
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FIGURE 21. (a) Concentration p.d.f. and (b) its variance for different times and
Ra= 10 000.

7. Conclusions
We have studied mixing in porous media under unstable flow conditions using

an interface compression model that is able to reproduce the observed behaviour of
the global scalar dissipation rate 〈χ〉 (equivalent to the Nusselt number). The model,
introduced through the analysis of a problem with a synthetic double-gyre velocity
field, links the dissolution fluxes to the interface width. The width of the interface
is modified by the velocity field, whose characteristics are related to the kind of
instabilities and the concentration evolution.

The Horton–Rogers–Lapwood problem was used to study a Rayleigh–Bénard
instability in which the fluid interface is immobile. The system displays two regimes.
First, it organizes itself into convection cells as in the double gyre. During this regime
the velocity field is not independent of the domain size and the compression rate
γ is independent of diffusion, which leads to 〈χ〉 ∝ Ra−1/2. Then, above Rac, the
convection cells turn into columnar plumes. The velocity autocorrelation decreases
abruptly and the system’s size becomes irrelevant so that γ is of the order of 1/sB,
therefore related to diffusion, and 〈χ〉 ∝ Ra0.

The case in which the interface is mobile was analysed using a Rayleigh–Taylor
instability in which the unstable density stratification was achieved by the mixture of
two fluids with a non-monotonic density law. The system experiences three regimes. A
diffusive regime in which the interface between the fluids grows. Then, a convection
dominated regime after the onset of the instabilities in which 〈χ〉 is independent of
Ra. This behaviour is similar to the high Ra HRL problem. The domain size does
not affect the buoyancy fluxes and the interface width is controlled by a compression
rate linked to diffusion. Finally, a convection shutdown regime in which the system
slowly approaches to a stable density stratification as the fluids mix. This regime is
characterized by a temporal dependency of 〈χ〉. The system then behaves as finite and
the correlation length of the velocity grows.

The interface compression model and the analysis of the velocity field revealed
that the scaling of 〈χ〉 is linked to the system’s size experienced by the velocity
field. When the velocity field and concentration patterns are constrained by the domain
boundaries, 〈χ〉 ∝ Ra−1/2. However, when the structure of the velocity field breaks
because of the strong convection, the size of the domain becomes unimportant and
〈χ〉 independent of Ra.

We have shown that the global scalar dissipation 〈χ〉 is controlled by the dynamics
of the fluid interface around the velocity field stagnation points. It is therefore
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expected that the stagnation points play an central role in the location and magnitude
of mixing induced chemical reactions. The reaction hot spots will be preferentially
found near the locations where maximum dissolution (and maximum local scalar
dissipation rate) takes place. The fingering and columnar patterns contribute much
less to 〈χ〉. However they are essential for the mixing state of the system.

The mixing state of the system also depends on the nature of the instabilities.
The variance of concentration decreases by the mixing of the convection patterns
and increases because of the fluxes through the boundaries. The double-gyre and
HRL problems reach a steady mixing state in which both effects equilibrate and the
variance of the concentration remains constant. In both cases convection makes the
system more homogeneous. For low Ra, the steady state is achieved earlier and the
dissolution fluxes are bigger because they are proportional to Ra−1/2. For high Ra, the
system is better mixed and displays a narrower concentration p.d.f. but it takes more
time to arrive to that state. The Rayleigh–Taylor instability lacks boundary fluxes. The
evolution of the mixing state is governed by the scalar dissipation rate. During the
period in which convection dominates mixing is maximum as well as the dissolution
fluxes. As convection ceases the efficiency of the system to mix itself decreases.
Therefore, the better mixed the system is, the lower the dissolution fluxes. This
suggest that a certain level of segregation might be desirable to maintain chemical
reactions and fluxes through the boundary. Contrary to intuition, the best mixing state,
i.e. lower variance of concentration, is attained for high Ra. That is a reduction in
diffusion favours the homogenization of the concentration. This homogenization is
achieved by the stirring created by the instability patterns.
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