
J. Fluid Mech. (2019), vol. 866, pp. 112–131. c© Cambridge University Press 2019
doi:10.1017/jfm.2019.86

112

On standing gravity wave-depression cavity
collapse and jetting

D. Krishna Raja1, S. P. Das1,† and E. J. Hopfinger2

1Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
2LEGI, CNRS/UGA, BP 53, 38041 Grenoble Cedex 9, France

(Received 28 April 2018; revised 16 January 2019; accepted 25 January 2019;
first published online 5 March 2019)

Parametrically forced gravity waves can give rise to high-velocity surface jets via the
wave-depression cavity implosion. The present results have been obtained in circular
cylindrical containers of 10 and 15 cm in diameter (Bond number of order 103) in
the large fluid depth limit. First, the phase diagrams of instability threshold and wave
breaking conditions are determined for the working fluid used, here water with 1 %
detergent added. The collapse of the wave-depression cavity is found to be self-similar.
The exponent α of the variation of the cavity radius rm with time τ , in the form
rm/R∝ τ α, is close to 0.5, indicative of inertial collapse, followed by a viscous cut-off
of α ≈ 1. This supports a Froude number scaling of the surface jet velocity caused
by cavity collapse. The dimensionless jet velocity scales with the cavity depth that is
shown to be proportional to the last stable wave amplitude. It can be expressed by a
power law or in terms of finite time singularity related to a singular wave amplitude
that sets the transition from a non-pinching to pinch-off cavity collapse scenario. In
terms of forcing amplitude, cavity collapse and jetting are found to occur in bands of
events of non-pinching and pinching of a bubble at the cavity base. At large forcing
amplitudes, incomplete cavity collapse and splashing can occur and, at even larger
forcing amplitudes, wave growth is again stable up to the singular wave amplitude.
When the cavity is formed, an impulse model shows the importance of the singular
cavity diameter that determines the strength of the impulse.
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1. Introduction
It is well known that when a container, partially filled with liquid, is periodically

forced in the direction perpendicular to the liquid surface, waves, called Faraday
waves, are excited (Benjamin & Ursell 1954; Edwards & Fauve 1994; Kumar &
Tuckerman 1994). The wave pattern and wave type (gravity or capillary) depend
on the forcing frequency and the forcing amplitude determines the amplification of
the wave motion. Miles & Henderson (1990) developed a Lagrangian–Hamiltonian
formulation to explain the weakly nonlinear surface waves in cylindrical containers.
This formulation contains some control parameters that allow one to determine the
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phase diagram of sloshing for the axisymmetric mode. Wave breaking and following
wave-depression cavity collapse occur at forcing amplitudes well above the instability
threshold, i.e. when waves are overdriven.

Understanding large-amplitude wave motions in containers is of practical and
fundamental interest. In liquid storage tanks such as ship tanks (Faltinsen et al. 2000)
containing liquefied methane gas, or in rocket engine fuel tanks, large-amplitude
wave motions can destabilize the tanks and enhance interfacial heat and mass transfer,
hence leading to large pressure variations (Moran et al. 1994; Das & Hopfinger
2009; Ludwig, Dreyer & Hopfinger 2013). It is therefore important to understand, in
common low-viscosity fluids including water, the conditions of wave amplification
leading to breaking. The lowest axisymmetric wave mode considered here is a rare
event in application but is of fundamental interest because cavities produced in this
way are free of large perturbations and are representative of cavities produced by
objects entering or exiting from the free surface (Bergmann et al. 2006; Ding et al.
2015).

Longuet-Higgins (1983) developed a potential flow theory of cavity collapse,
treating the cavity interface as an evolving hyperboloid, of vertex angle 109.5◦. His
theory compared well with vapour bubble collapse and the cavity formed by drop
impact (Longuet-Higgins 1990) but less so with overdriven axisymmetric surface
gravity waves that give rise to cavity collapse and jet formation, as shown by
Longuet-Higgins’s (1983) experiments, for conditions similar to the present ones.
Longuet-Higgins & Dommermuth (2001) have shown numerically the growth of
vertical jets from the standing wave using a boundary-integral time-stepping technique.
Later, Longuet-Higgins & Oguz (1995) formulated a power-law dependence on
time of cavity collapse velocity and acceleration in good qualitative agreement
with numerically obtained free-surface profiles. Longuet-Higgins & Oguz (1997)
explained the power-law scaling of acceleration and collapse velocity with time τ in
different physical situations including the flip-through phenomenon. They discussed
the possibility of a range of exponents α (their β), cavity radius r ∝ τ α, with α

asymptotically limited to 2/3. Burton, Waldrep & Taborek (2005) experimentally
analysed the pinch-off of a gas bubble in fluids of various viscosities, and observed
a power-law behaviour in time with the exponent depending on the viscosity of
the fluid. For very low values of viscosity the radial length scale (minimum radius)
follows τ 1/2, where τ is the time remaining to pinching. In the case of a viscous
liquid (glycerine–water) the radial length scale follows τ (α = 1). For intermediate
viscosities thread formation was observed with a time exponent α > 1/2. Burton &
Taborek (2007) observed viscous–inertial transition for coalescence of two initially
circular lenses in quiescent water. The radial length scale follows τ in the initial
stages and τ 1/2 in the later stages, here τ being time after the initial contact. Thus,
the power-law analysis of collapse and coalescence even at small scales shows the
relevance of inertia and viscous effects with surface tension playing intermediate
roles. In the experiments by Bergmann et al. (2006), where a cavity was produced
by a vertically moving disc, collapse exhibited an exponent α < 0.6 tending towards
0.5 with increasing Froude number defined with the disc radius and velocity.

Concerning jetting, following axisymmetric wave-depression cavity collapse,
Longuet-Higgins (1983) measured jet velocities of 8 m s−1 using water in a container
of 16.5 cm in diameter. More recently, Zeff et al. (2000) considered wave-depression
cavity collapse using a glycerine–water solution which allows one to obtain smooth
cavity boundaries and hence ‘perfect’ collapse as parasitic capillary waves are damped
by viscosity. The experimentally observed jet velocity, in their container of 12.6 cm in
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diameter, reached values as high as 52 m s−1. A capillary scaling with Uc= (σ/ρR)1/2

(Weber number) of the jet velocity has been used. Das & Hopfinger (2008) conducted
experiments with two different container sizes, 5 and 10 cm in diameter, and three
different working fluids and, based on these experiments, suggested a scaling with
gravitational velocity scale Ug = (gR)1/2 (Froude number scaling). The justification
has been the large Bond number in these experiments, i.e. inertia is dominant over
surface tension forces.

In the light of the foregoing discussion, there is sufficient motivation to study in
some detail the collapse of gravity wave-depression cavities as well as the dependency
of the jet velocity on cavity depth and shape. We clearly demonstrate that the
implosion of the cavity in a container of a size of the order of 10 cm is an inertial
process and that obtaining high-velocity jets requires very fine tuning in forcing
amplitude. The finite-time singularity scaling of jet velocity is reexamined and in
addition a power-law model is proposed which is of practical interest because it
does not require a singular wave amplitude. In § 2 the experimental conditions are
presented and § 3 contains the experimentally obtained wave response and stability
threshold diagrams. Then in § 4 we discuss the time dependency of cavity collapse.
Section 5 contains the results on jet formation with a power-law analysis and a
finite-time singularity scaling. An impulse model is developed that gives some
physical insight into the dependency of jet formation on the singular cavity radius.
The main conclusions and some further discussions are presented in § 6.

2. Experimental conditions

The experiments were conducted in circular cylindrical containers, made of
Plexiglas, one of diameter 2R= 10 cm and 10 cm deep and the other of 2R= 15 cm
and 18 cm deep, which were mounted on a vertically oscillating vibration exciter
(APS 400 ELECTRO-SEIS) of peak force 440 N. The respective natural frequencies
of the axisymmetric mode (0,1) are 27.82 and 22.53 rad s−1. After calibration, the
vibration amplitude was kept within ±0.30 % of the nominal value and the frequency
within 0.02 %. Since the vibration is normal to the fluid surface, the waves are
sub-harmonically excited. The working fluid used was water with 1 % detergent
solution by volume added to reduce surface tension and prevent contact line pinning.
The fluid properties are: surface tension, σ = 50 dyne cm−1; kinematic viscosity,
ν = 1.062 × 10−6 m2 s−1; density, ρ = 985 kg m−3 at 20 ◦C. The Bond number
Bo= ρgR2/σ = 483 in the smaller container and 1087 in the larger one. Experiments
were conducted at room temperature, generally around 25 ◦C. Experiments were
also conducted using water with surface tension σ = 0.072 N m−1. The fluid
depth-to-radius ratio was h/R= 1.2 that is sufficient to satisfy deep-water conditions
for the axisymmetric mode (Henderson & Miles 1990) with tanh(k01h) ≈ 1. The
container acceleration, a(t) = Aω2

f sin(ωf t), in all experiments is less than 6 m s−2,
where ωf is the forcing frequency, equal to twice the wave frequency ω, and A is
the forcing amplitude. The experiments were conducted by starting each time from
initially unperturbed condition, i.e. interface at rest. The displacement of the shaker
was measured using a Wenglor CP24 laser displacement sensor with a resolution of
20 µm. Wave amplitude and wave trough and shapes were measured by visualizations
and image analysis only. Images were captured using a Photron FASTCAM Mini
UX100 high-speed camera with an acquisition speed of 2000–8000 frames per second.
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FIGURE 1. Instability threshold for the two container sizes: @, experimental instability
threshold for axisymmetric mode (0,1) for 2R= 10 cm;f, coexistence of (2,1) and (0,1);
?, coexistence of (0,1) and (3,1); p, stability threshold for larger container 2R= 15 cm;
∗, non-pinching;E, pinch-off; ×, splash/incomplete cavity collapse. The natural frequency
ω0=27.32 rad s−1 for 2R=10 cm and 22.31 rad s−1 for 2R=15 cm, where ω0=ω01(1−
δ). The solid lines are theoretical instability threshold curves (Miles & Henderson 1990).

3. Wave amplitude response

Figure 1 shows experimental and theoretical forcing amplitude–frequency instability
threshold for water with 1 % detergent. For 2R= 10 cm, the lowest threshold forcing
amplitude is Ac/R = 0.006 with corresponding frequency ω0 = 27.32 rad s−1; for
2R = 15 cm, the instability threshold is Ac/R = 0.0036 with natural frequency
ω0 = 22.31 rad s−1. Note that ω0 = ω01(1− δ), with ω01 the natural frequency of
the wave mode obtained from the dispersion relation (Lighthill 1978)

ω2
mn = gkmn

(
1+

k2
mnσ

gρ

)
tanh(kmnh), (3.1)

where ωmn is the natural frequency and the wave mode (m, n) expresses m nodal
diameters and n nodal circles with m= 0, 1, . . . and n= 1, 2, . . . . The damping ratio,
δ= κ/ω, is given by the measured decay rate, κ , of stable wave motion excited close
to Ac/R. Figure 2 shows the decay rates for water with 1 % detergent for the smaller
container (10 cm, symbol@) and the larger container (15 cm, symbolp). The decay
of the wave amplitude is exponential: b = b0 exp(−κt), where b0 is the amplitude
when the forcing is stopped. This gives a damping ratio δ= κ/ω' 0.018 for the small
container and 0.010 for the larger one. The solid lines shown in figure 1 are theoretical
stability thresholds based on the damping ratio calculated from the decay experiments.
The frequency domain of existence of stable wave motion is given by a detuning
parameter (Henderson & Miles 1990). Here, in the 10 cm container, the axisymmetric
mode bifurcates to (2,1) mode at ω/ω0 = 0.935 and to (3,1) mode at ω/ω0 = 1.027.
The shapes of the wave and wave depression for the respective modes are indicated
in the images in figure 1. Above the instability threshold there is coexistence of (0,1)
and (2,1) in the overlap region (�). Coexistence is also observed in the overlap region
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FIGURE 2. Log–linear plot of gravity wave amplitude as a function of time. Here b0
is the wave amplitude when the forcing is stopped. The solid lines are fitted with slope
κ=0.485 s−1 at ω=27.33 rad s−1 (@, 2R=10 cm) and κ=0.22 s−1 at ω=22.30 rad s−1

(×, 2R= 15 cm).

of (0,1) and (3,1) (?). The behaviour is similar in the larger container but is not
shown here.

In the breaking regime at ω/ω0 = 0.95, amplitude sweeps with deviations from
axisymmetry are shown in figure 3. The collapsing axisymmetric cavity has a (2,1)
mode superimposed (figure 3a; A/R = 0.0281). The behaviour is similar at ω/ω0 =

1.035 where the modes (0,1) and (3,1) coexists (figure 3b; A/R = 0.0208), but with
steady-state wave motion.

4. Cavity shape and collapse
4.1. Cavity shapes

Figure 4 shows images of the shapes of the cavity, starting from its maximum depth
and diameter (figure 4e), to the singular shape at t0 just before jet emergence. The
forcing amplitude here is A/R= 0.0223 and ω/ω0 = 0.995, 2R= 15 cm.

Composite images of the wave-depression cavity and of jet formation (upper part of
each image) are shown in figure 5, obtained in container 2R= 15 cm. When A/R=
0.0223 and ω/ω0 = 0.995 (figure 5a), the cavity collapses without pinch-off at the
bottom, whereas when A/R= 0.0224 pinch-off occurs (figure 5b), resulting in a lower
jet velocity because of dissipation of some of the energy in the form of a bubble and
the resulting cavity depth is less.

The bubble pinch-off in the collapsing cavity, when the wave depression is created
by a large-amplitude wave, forms an interface similar to vapour bubble collapse/drop
impact. Based on potential flow theory of collapsing cavities by Longuet-Higgins
(1983), the critical value of vertex angle is 109.5◦. For cavity collapse with bubble
pinch-off, the vertex angle (γ ) is obtained close to the theoretical value (see
figure 6b–d) with an exception when the pinched-off bubble is small (figure 6a)
or very close to the singular event. For near-singular collapse the vertex angle is
found to be less than 90◦.

The decay rate κ of capillary waves (internal damping) is in the linear theory
limit and for a clean surface, κ = 2νk2 (Lamb 1932) and is valid when viscosity
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t t + 0.95T t + 1.4T

t t + 0.44T t + T t + 1.62T t + 1.77T

(a)

(b)

FIGURE 3. (a) Coexistence of two different modes in the breaking regime. Modes (2,1)
and (0,1) coexist in the breaking regime of axisymmetric (0,1) mode (ω/ω0=0.954, A/R=
0.0281). The dominant mode is (0,1). The three images show the last wave amplitude
(stable wave before breaking), cavity formation and jetting (T is the period). The (2,1)
mode interference results in loss of axisymmetry. (b) Coexistence of (0,1) and (3,1) modes
at ω/ω0 = 1.04, A/R = 0.0208. The (3,1) mode is more dominant and if the forcing
amplitude A/R is increased, breaking occurs in (3,1) mode.

effects are weak, which is the case when the wavenumber k �
√
ω/ν (Denner

2016). Krishnan, Hopfinger & Puthenveettil (2017) showed that this damping rate
is a good approximation for damping of small-amplitude capillary waves on the
cavity boundary in bubble collapse in water and even in glycerine–water. Adding
detergent may, besides lowering the surface tension, give rise to surface tension
gradients (hence induced fluid motion) due to straining by waves, in a way similar
to that shown by Hürhnerfuss, Lange & Walter (1985) for other additives. In the
present situation, the amplitude of capillary waves on the cavity boundary is small
so that wave straining is most likely also small. Decay experiments (figure 7) are
conducted with capillary waves in water and with 1 % detergent water solution. As
seen in figure 7, the wave amplitude decay is exponential with constant κ , but in
both water and 1 % detergent solution the decay rate is slightly larger than given
by the classical expression. Writing κ = Cνk2, experiments give C = 2.1 for water
and C = 2.4 for water with 1 % detergent. The wavenumbers k are determined by
measuring the wavelengths in the experiments and are respectively k = 1100 and
1220 m−1. A prefactor larger than 2 is plausible for real fluids as is shown by Rajan
& Henderson (2018) (their equation (75c)). To study capillary wave damping in more
detail goes beyond the scope of the present work. The interest here is to show the
scaling for wave damping and get an estimation for complete damping of capillary
waves.

The characteristic time can be taken as half the gravity wave (mode 0,1) period
t=π/

√
3.832g/R. Disturbances of wavelength λ can thus be considered fully damped

when κt≈ 4. Thus, waves of wavelength

λ/R . 3.98
√

C/ReI (4.1)

will be damped, where ReI = (R3g)1/2/ν is a Reynolds number defined with the
gravitational velocity. For water, in a container of 10 cm in diameter, ReI = 3.5× 104;
hence λ/R< 0.073. In glycerine–water of 102 times the viscosity of water, λ/R≈ 0.3
(assuming C= 2), which is sufficient for obtaining smooth wave-depression contours.
However, it is likely that also in glycerine–water C > 2, so that in glycerine–water
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(a) (d)

(b) (e)

t = t0 (c)

FIGURE 4. Sequence of images showing the shape of the cavity during collapse (A/R=
0.0223 and ω/ω0=0.995) in a near singular event in the 2R=15 cm container. The shape
at t= t0 here is the singular state. Images (a–e) are respectively at times 1, 1.5, 2, 3 and
6 ms before the collapse time t0. Time at Zc (maximum depth of cavity after last stable
wave amplitude) here is 20 ms before t0.

waves λ/R> 0.3 are already damped. Composite images of last stable wave amplitude
and cavity shape 2.5 ms before implosion are shown in figure 7(b). Water shows the
presence of capillary waves on the cavity interface just before cavity implosion. As
the decay rate in 1 % detergent solution is larger, the capillary waves are damped
resulting in a smoother cavity.

4.2. Cavity dynamics
The exponents of the power law in time of cavity radius change are directly related
to the relevant forces that act on the cavity (Longuet-Higgins & Oguz 1995, 1997).
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1 cm 1 cm

(a) (b)

FIGURE 5. Composite images of cavity just before collapse (bottom of each image) and
the jetting (upper part of each image) in container 2R = 15 cm: (a) A/R = 0.0223 and
ω/ω0= 0.995, near singular case with jet velocity as high as 44 m s−1; (b) A/R= 0.0224,
ω/ω0 = 0.995; the velocity is 18 m s−1.

© © © ©

(a) (b) (c) (d)

FIGURE 6. The vertex angles of the interface in four different pinch-off collapses for
2R=15 cm are shown. (a) Just pinch-off for near singular case A/R=0.02796 with vertex
angle γ = 90◦; (b) A/R = 0.0281, γ ≈ 108.5◦; (c) A/R = 0.02987, γ ≈ 110◦; (d) A/R =
0.030, γ ≈ 105.6◦.

0
0.4

0.6

0.8

1.0
1.2(a) (b)

0.05 0.10
t (s)

0.15

b/
b 0

FIGURE 7. (a) Log–linear plot of capillary wave amplitude verses time after forcing
is stopped: +, water, κ = 2.53 s−1; ×, water with 1 % detergent, κ = 3.58 s−1;
ω = 110 rad s−1. (b) Composite images of last wave amplitude (in the upper half) and
cavity shape 2.5 ms before cavity implosion (in the lower half) for water with b/R=0.944
in the left-hand image and 1 % detergent solution with b/R = 0.956 in the right-hand
image.
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z
0
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Zc Z0

Z0

r0

r0

t0tb

r1 rm

rm

r

r

Z

Z z

z

† = t0 - t

Inset

FIGURE 8. Cavity shapes with definitions of Zc, r1, r0 and Z0. Zc is the maximum depth
following the last stable wave amplitude b and r1 is the initial minimum cavity radius.
Z0 is the depth of the cavity when jetting starts and r0 is the radius. Parameters rm and
Z represent the minimum radius and depth of the cavity at any instant of time τ . The
dashed lines correspond to z= 0 for pinch-off and non-pinching cases separately.

Figure 8 indicates how (Z(t) − Z0(t0)) (the axial change of cavity) and the radial
changes are measured when jetting conditions are approached from the full-size cavity
Zc (after last stable wave amplitude). As indicated in the inset, Z0(t0) represents the
cavity depth at time t0 (t0 corresponds to jet initiation) measured from the free surface
and Z(t) refers to the depth at any time instant before the collapse.

Figure 9(a) shows the radial and axial shrinkage of the cavity as a function of
dimensionless time τ ∗ = τ/

√
(R/g), where τ = (t0 − t), for three singular (b close

to singular wave amplitude bs) non-pinch-off regimes, respectively for A/R= 0.0223,
A/R = 0.0273 and A/R = 0.0368. Clearly, two exponents α in rm/R ∝ τ ∗α exist. At
larger times, τ > 1 ms, the exponent is 0.5, for both radial and axial shrinkage.
However, close to the singularity, when τ < 1 ms, the time exponent of radial
shrinkage is α ≈ 1 which is characteristic of viscous effects. The radial shrinkage
of the cavity with pinch-off is shown in figure 9(b), where the change in exponent
from α ≈ 0.5 to 1 also occurs. The small deviation of α from 0.5 is highlighted
when the radial and axial changes are compensated by τ−1/2 as shown in figure 10(a).
Furthermore, with logarithmic correction rm/R(− log(rm/R))1/4 as proposed in bubble
pinch-off (Gordillo et al. 2005; Bergmann et al. 2006) and axisymmetric bubble
collapse (Eggers et al. 2007), the exponent is α= 0.5 (figure 10b). Since both radial
and axial length scale follow the same power-law exponent (α ≈ 1/2), the cavity
collapse is self-similar. Figure 11(a) shows the surface profiles of the collapsing
cavity at different instants of time. When the radial and axial changes are normalized
by τ−1/2 (figure 11b) all the profiles collapse to one curve confirming the self-similar
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FIGURE 9. (a) Log–log plot of radial change of cavity, without pinch-off, as a function of
time τ ∗ = τ/

√
(R/g) for three different forcing amplitudes A/R in container 2R= 15 cm.

At the beginning, radial cavity shrinkage follows rm/R ∝ τ ∗α with α = 0.5 over a short
time; then, α is slightly larger, α = 0.53, with a viscous cut-off of α ≈ 1 at small τ ∗. ∗,
A/R= 0.0223, Uj = 45 m s−1;E, A/R= 0.0273, Uj = 36 m s−1; ×, A/R= 0.0368, Uj =

28 m s−1;@, axial change of cavity, (Z(t)− Z0(t0)), corresponding to A/R= 0.0223,Uj=

45 m s−1 with ‘a’–‘e’ corresponding to the cavity images in figure 4. (b) Radial change
of cavity with pinch-off as a function of τ ∗ for A/R= 0.0224 (see figure 5b). As in (a),
α changes from 0.5 to α ≈ 1.

cavity collapse. The self-similarity is lost when crossover from α = 0.5 to 1 is
approached. This crossover is similar to the one observed by Burton & Taborek
(2007) for coalescence of liquid lenses where they observed viscous scaling of neck
radius (α ≈ 1) until 1 ms and thereafter inertial scaling (α ≈ 0.5). In capillary-driven
flow, onset of viscous effects is related to a critical value of Ohnesorge number
Ohc = µ/

√
ρRσ ≈ 0.03 which is the inverse of a Reynolds number defined with

the capillary velocity. In the present case, the transition is inertial–viscous, hence
determined by a critical value of the inertial Reynolds number ReI = (R3g)1/2/ν. A
time of 1 ms corresponds to ReI ≈ 500.

Zeff et al. (2000) in their experiments on wave-depression cavity collapse in a
container of size similar (12.5 cm in diameter) to that used in the present experiments,
assumed that the collapse is driven by surface tension which is related to a power
law (Z(t)− Z0(t0))∝ τ

2/3. The choice of surface tension and inertia as the competing
forces, based on the analysis of Keller & Miksis (1983) in breaking of liquid sheets,
limits their analyses to an exponent 2/3. Clearly, as shown in figure 9(a), in the
present experiments, cavity shrinkage (Z(t)−Z0(t0)) scales as (Z(t)−Z0(t0))∝ (t0− t)α,
with α = 0.527 for container size 2R = 15 cm with a similar value in the case of
container size 2R= 10 cm. The considerably more viscous liquid used by Zeff et al.
(2000) limits the time range of existence of exponent 0.5 and hence might lead to a
larger apparent value of the exponent.

In the case of a large cavity generated by a moving circular disc (Bergmann
et al. 2006), collapse always results in bubble pinch-off. In these experiments the
time evolution of radial length scale follows a time exponent α ≈ 0.6. The cavity
collapse with bubble pinch-off, as shown in figure 5(b), is similar. It occurs in the
present experiments when the last stable wave amplitude b exceeds the singular wave
amplitude bs. As in the case of no pinch-off, the radial change of the collapsing cavity
follows a power law rm/R∝ τ ∗α up to certain time with a crossover from 0.5 to nearly
α≈ 1 at τ ≈ 1 ms as is seen in figure 9(b). This differs from the results of Bergmann
et al. (2006) where the exponent is closer to 0.6, tending towards 0.5 only at large
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FIGURE 10. (a) Log–log plot of radial change of cavity compensated with τ ∗−1/2 as
a function of τ ∗. The left-hand axis shows the radial evolution of cavity and the
right-hand axis (of different scale) shows the axial change of collapsing cavity. The
symbols ∗, A/R = 0.0223, Uj = 45 m s−1; ×, A/R = 0.0273, Uj = 36 m s−1; and ◦,
A/R= 0.0368, Uj = 28 m s−1 represent the radial changes similar to figure 9(a), and the
symbols @ and 6 show the axial change of cavity for 2R = 15 cm and 2R = 10 cm,
respectively. (b) Log–log plot of radial change of cavity with time with logarithmic
correction (rm/R)(−log(rm/R))1/4 for the same conditions as in (a). The dashed line shows
the 0.5 slope.
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FIGURE 11. (a) Cavity shapes of the near singular collapse for A/R= 0.0223, at times
20, 18, 14, 10, 5, 2 and 1 ms before t0 for container of 2R = 15 cm. The radial and
axial changes follow the power law τ 1/2. (b) Cavity shapes scaled with the power law
τ 1/2. The axes are non-dimensionalized with container radius and compensated with τ−1/2.
The surface profiles at different times collapse well into one self-similar form.

Froude number, defined with the disc radius and speed. In the present experiments,
a similar Froude number Frc can be defined with cavity radius r1 and wave velocity
Vw = bω in the form Frc = (bω)2/gr1 which has a value Frc ≈ 10. The difference in
exponents for similar Froude numbers in the Bergmann et al. (2006) experiments is
attributed to the initial shapes of the cavities. In the present experiments, the initial
shape is already close to self-similar shape which is not the case in with the cavity
created by a moving disc.
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FIGURE 12. (a) Jet velocities plotted against A/R as indicated in figure 1, at ω/ω0=0.995
for the container 2R= 15 cm. The highest values correspond to near singular events. The
non-pinching (∗) is followed by pinching (E). For higher bands, pinching is followed by
splash or incomplete cavity collapse (0.031 < A/R < 0.033) which is again followed by
a non-pinch-off zone. The highest velocity obtained is 45 m s−1. The dotted lines show
the transition from non-pinch-off to pinch-off cavity collapse. (b) The dimensionless last
stable wave amplitude b/R as a function of forcing amplitude A/R.

5. Jet velocity scaling
5.1. Forcing amplitude dependency

When the wave-depression cavity collapses, a jet is formed, a phenomenon observed
by Longuet-Higgins (1983) and analysed in terms of finite-time singularity by Zeff
et al. (2000). As discussed in § 4, in the present experiments the collapse is driven
by gravity as is indicated by the time dependency of the cavity shrinkage. The cavity
aspect ratio, Zc/r1 (see figure 8 for definition), plays an important role in generating
high-velocity jets. A small diameter and deep cavity give rise to high jet velocity.

At a given frequency, b/R depends (nonlinearly) on the forcing amplitude A/R
(figure 12b) which suggests representing the jet velocity as a function of A/R. This is
shown in figure 12(a) where the non-dimensional jet velocity is plotted as a function
of A/R for a range of forcing amplitudes 0.0198 6 A/R 6 0.038 and at constant
frequency close to the natural frequency (ω/ω0 = 0.995) to obtain a clear mode (0,1)
wave. The results would be the same if the frequency were different as long as there
is no contamination by other modes of the type indicated in figure 3. Jetting starts
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FIGURE 13. Wave-amplitude growth as a function of t/T:@, A/R= 0.0198 (no pinch-off),
with very low jet velocity; ×, A/R= 0.0216 andE, A/R= 0.027 with same jet velocity,
Uj≈ 13 m s−1; +, A/R= 0.0224 (pinch-off) and ∗, A/R= 0.0281 with similar jet velocity.
In the two no-pinch-off and pinch-off cases the last stable wave amplitudes (b/R) are the
same, but t/T is less when A/R is larger. Dotted horizontal line indicates the same last
stable wave amplitude for different bands.

above a certain forcing amplitude and when it is increased further the jet velocity
increases rapidly. The aspect ratio (Zc/r1) of the fully grown cavity increases with
forcing amplitude until pinch-off occurs when b > bs (bs is referred to as singular
wave amplitude). Then, there is a range of A/R over which pinch-off persists and
the wave amplitude decreases, until, at larger forcing amplitudes, the last stable wave
amplitude starts to increase again. This pattern is repeated with the bands having
varying width (figure 12a). At higher A/R, splashing with incomplete cavity collapse
can occur. This incomplete cavity collapse is again followed by proper cavity collapse
with no bubble pinch-off. As it is very difficult to continually operate the shaker with
high precision, the bands cannot be determined with greater accuracy. Nevertheless,
their existence is well established. From figure 12 it is clear that the transition from
non-pinch-off to pinch-off is very sensitive to A/R. Nearly perfect singularity (perfect
collapse of cavity) needs a very fine adjustment of A/R. At large values of A/R, the
axisymmetric mode starts to coexist with the asymmetric mode (2,1) and the wave
motion tends to become chaotic.

In figure 13 wave-amplitude growth rates are shown for different forcing amplitudes.
It is seen that the last stable wave amplitude is reached in less than 10 wave periods
and the growth rate increases with A/R. Symbols × and ◦ represent non-pinch-off
cases at A/R = 0.0216 and A/R = 0.027 (see figure 12a) with the same value of
b/R, and hence result in a similar jet velocity. This also holds for the pinch-off cases.
Since the growth rate increases with A/R, the bands of non-pinching to pinching get
narrower with forcing amplitude (figure 12a).

5.2. Power-law scaling
The jet velocity has been measured just above the free surface and each experimental
run has been started with the fluid interface at rest. As demonstrated here, the jet
velocity is also given by the final, near singular cavity collapse rate. The cavity starts
to shrink rapidly in the radial and to a lesser extent in the vertical direction and after
the cavity radius has decreased to r0 and Z0 there is vertical retraction at the jet speed.
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FIGURE 14. (a), Dimensionless time t∗j = tj/(
√

R/g(b/R)−9) as a function of b/R. The
solid line shows the best least-squares fit of the data. (b) Log–log plot of dependency
of jet velocity (Uj/(gR)1/2) on last stable wave amplitude (b/R). The dashed line shows
the power-law fit with an exponent 10 and prefactor 60 in (5.4). Symbol @ shows the
pinch-off cavity collapse, where the jet velocities are reduced due to the loss of energy
by the downward jet.

Experiments show that Zc(t) is proportional to the last stable wave amplitude and
when there is no pinch-off Z0(t0) is proportional to Zc(t), thus

Z0(t0)/b= B1, (5.1)

where B1 ≈ 0.62 (no pinch-off) is a constant.
After the singular time t0, the cavity retracts vertically at a constant velocity so that

the jet velocity is given by

Uj = Z0(t0)/tj = B1b/tj, (5.2)

where tj is the time from the start of vertical retraction (from Z0(t0)) to jet emergence
at the free surface. A constant jet velocity inside the cavity implies that the impulse
that initiates the jet happens over a distance 1z� Z0. The dimensionless jet velocity
is then given by

Uj
√

Rg
=

B1

tj
√

g/R
b
R
. (5.3)

Experiments show that the dimensionless time tj
√

g/R decreases rapidly with b/R,
i.e. tj/(

√
R/g∼ (b/R)−n), and figure 11a, in which is plotted t∗j = tj/(

√
R/g(b/R)−9) as

a function of b/R, indicates that n≈ 9 and t∗j ≈ 0.0104. Substitution of these values
in (5.2) gives

Uj
√

Rg
=

0.62
0.0104

(
b
R

)n+1

≈ 60
(

b
R

)10

. (5.4)

In figure 14(b) the dimensionless jet velocity Uj/
√

Rg is plotted as a function of
b/R in a doubly logarithmic plot. It is seen that the measured jet velocities are in good
agreement with the power-law model. The square symbols in figure 14(b) represent
jetting with bubble pinch-off.

5.3. Finite-time singularity scaling
The behaviour shown in figure 12(a) suggests a finite-time singularity scaling. Zeff
et al. (2000) proposed a constant Weber number behaviour, We = ρU2

j (b − bs)/σ ,
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FIGURE 15. (a) Dimensionless time tj/(
√
(R/g)|b− bs|/b) as a function of b/R. The

error bars show that the experimental error gets larger close to the singular cases when
tj gets close to the frame resolution. The constant line (——) corresponds to the best
least-squares fit. (b) Singular scaling for the first band in A/R (ω/ω0 = 0.995) for two
different container sizes 2R= 15 cm (0.0198<A/R< 0.0257, figure 12a) and 2R= 10 cm.
Symbols ×, ∗ show the non-pinching cavities and @, ◦ show the pinch-off cavities for
2R = 15 cm and 2R = 10 cm, respectively. The dashed line shows the theoretical line
plotted with B1/B2 = 2.5.

where bs is the singular wave amplitude beyond which pinch-off occurs and the jet
velocity decreases rapidly as is seen in figure 12(a). This capillary scaling is of
dimensionless form:

Uj
√
σ/ρR

=

[
Wec

R
|b− bs|

]1/2

, (5.5)

where Wec is determined from the best fit of the data. As mentioned above, the
diameter in their experiments is in the range of those of the present cylindrical
containers used. The collapse should, therefore, be driven by inertia as indicated
by the value of the exponent α (see § 4.2). Furthermore, the ratio of static
pressure ρgZc to the surface tension force σ/r1 gives a modified Bond number
(ρgR2/σ)(r1Zc)/R2

≈ 40 indicating that inertial forces are dominant and suggesting a
Froude number scaling.

In § 5.2 it is shown that tj, in (5.2), scales as
√

R/g, with a prefactor that depends
strongly on b. In finite-time singularity scaling, when the singularity is approached,
i.e. b→ bs, the time tj→ 0. Thus, the expression of the time tj can be written as

tj = B2

[
|b− bs|

b

]1/2 √
R/g. (5.6)

In figure 15(a), the dimensionless time tj/(
√
(R/g)|b− bs|/b) corresponding to B2

is plotted as a function of b/R. The solid line is the best fit and is B2 = 0.252.
Substituting the expression for tj, equation (5.6), in (5.2) gives for the dimensionless
jet velocity

Uj
√

Rg
=

B1

B2

[
b
R

]3/2 [ R
|b− bs|

]1/2

, (5.7)

where B1/B2≈ 2.5. In figure 15(b) the dimensionless jet velocity Uj/
√

Rg is compared
with the singular scaling (5.7). There is good agreement and the singular amplitude
bs at which the jet velocity could theoretically be infinite is well identified.
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5.4. Impulse model
It is of interest to develop an impulse model in an attempt to clarify how the jet
velocity is related to Ur, the radial cavity shrinkage velocity, and to determine the
vertical extent of the pressure impulse. As the cavity collapses, fluid particles move
towards the centre of the cavity and then accelerate axially, resulting in a thin, high-
velocity jet. In other words, strong radial momentum creates a high-pressure peak at
the centre whereas pressure at the free surface is constant. This gives rise to strong
acceleration of the fluid particle in the form of a jet as observed by Longuet-Higgins
(2001). The pressure is localized (flip-through) in a way similar to wave impact in
shallow water (Cooker & Peregrine 1995). The pressure builds up in a very short
time, so that the momentum equation is dominated by the time-dependent pressure
gradient. The viscous and surface tension terms are negligible (large Reynolds and
Weber numbers) and the gravity term is of the order of the convective term or less
(Froude number of order one or larger). The importance of the convective term with
respect to the unsteady terms in the momentum equation is of order Uδt/L and taking
for U the jet velocity Uj, for δt the impulse time and for the spatial gradient scale
L= R, the ratio of convective term is of order Ujδt/R. It has been shown above that
Ujtj 6 0.6R and, since the velocity inside the cavity is constant, it is necessary that
δt� tj so that Ujδt/R� 1. This also applies in the radial direction where L∼ r1, but
U is also less than Uj. Hence, the governing equation reduces to (Cooker & Peregrine
1991)

∂ui

∂t
=−

1
ρ

∂p(r, z, t)
∂xi

, (5.8)

where i= (r, z) and z= 0 is at the free surface (see figure 8). Integrating (5.8) over
the time interval ta to tb, we get

uib − uia =−
1
ρ

∂P
∂xi
, (5.9)

where P(xi) is the pressure impulse:

P(r, z)=
∫ tb

ta

p(r, z, t) dt, (5.10)

where (tb− ta) is the pressure impulse time interval (∼1 ms), and r and z are of range
r ≈ r0 and z ≈ (Z0 + δz). At the free surface, the pressure is constant and we take
as reference P= 0. In the radial direction, at time tb the radial velocity urb = 0 and
∂P/∂r=0. At time t< ta (r> r0), the radial velocity ura scales with the cavity collapse
velocity Ur =−Cr

√
gR. The coefficient Cr can be evaluated from figure 10(a), which

shows that rm/R≈ 0.4τ ∗1/2 for τ ∗> 10−2, recalling that τ ∗= τ/
√

R/g, τ = (t0− t) and
rm is the minimum radius of cavity at any instant of time. The radial velocity is then

Ur =−
drm

dτ
≈−

0.2
τ ∗1/2

√
Rg≈−0.08

R
rm

√
Rg, (5.11)

giving Cr = 0.08(R/rm). Equation (5.11) indicates that Ur increases with decreasing
rm and is constant in the viscous regime when τ ∗ < 10−2 (see figure 10a).

The vertical velocity at ta is uza = 0 and at time tb

uzb =Uj =−
1
ρ

∂P
∂z
. (5.12)
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FIGURE 16. Comparison of experimental (non-pinch-off data in figure 12a) and theoretical
prediction (impulse model) of jet velocities for container 2R = 15 cm. The prefactor
in (5.14) is 5. The error bars indicate the measurement error of radius r0.

Equation (5.12) shows that the jet velocity is determined by the vertical gradient of
the pressure impulse, which is of order δP/δz. From (5.9) we get δP∼−ρUrδr, hence

Uj ∼Ur
δr
δz
∼−0.08

R
rm

√
Rg
δr
δz
. (5.13)

Taking δr ≈ rm and the axial impulse variation order δz ∼ r0, and noting that z is
downwards, we get

Uj
√

Rg
∼ 0.08

R
r0
. (5.14)

The experimentally obtained dimensionless jet velocities (non-pinch-off data in
figure 12a) are plotted as a function of A/R and compared with impulse model in
figure 16. The theoretical predictions of jet velocity (5.14) with a prefactor of 5,
i.e. Uj/

√
Rg ≈ 0.4(R/r0), are in good agreement with experiments. At the largest

jet velocity, agreement tends to be somewhat less good, which is attributed to
measurement errors because, in this case, the singular cavity radius r0 is very small.
The singular radius is a function of the last stable wave amplitude b, container radius
R and viscosity. The dependency on b and R can be obtained from the singular
scaling (5.7) which gives [

R
ro

]
s

≈
b
R

[
b

b− bs

]1/2

. (5.15)

The ratio (r0/R)/(r0/R)s ≈ 0.22. This gives a prefactor of 0.36 in (5.14), which is
close 0.4 used in figure 16.

The main interest of the impulse model is to demonstrate the parameters that
determine the jet velocity. Further theoretical development of the model would be of
interest but goes beyond the scope of the present work.

6. Conclusions and further discussions

It has been demonstrated that the collapse of the gravity wave-depression cavity in
a circular cylindrical container of a size of the order of 10 cm or larger is an inertial
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process: the Bond number on the cavity scale Boc= (ρgR2/σ)r1/R is large, Boc∼ 102,
and the time variation of the cavity radius, in the form rm/R ∝ τ α, where rm is the
cavity radius, τ = (t − t0) with t0 the instant of singular collapse, is shown to have
an exponent α≈ 0.5 that is indicative of inertial collapse. With logarithmic correction,
the exponent is α = 0.5. At small times τ 6 1 ms, there is a viscous transition to
α ' 1. This is the case for cavity collapse with and without bubble pinch-off at the
cavity base. In the case of no pinch-off, the axial cavity shrinkage exhibits the same
time dependency as the radial variation; hence, the no-pinch-off cavity shape is shown
to be self-similar up to the viscous regime. In the pinch-off case the cavity has a
well-defined vertex angle close to the potential flow theory value of 109.5◦.

Collapse of a cavity of similar size, but created by a moving disc (Bergmann et al.
2006), exhibits an exponent α closer to 0.6, tending towards 0.5 at large Froude
number defined with the disc radius and disc speed. In the present experiments, a
similar Froude number, defined with the cavity radius and the wave velocity, is about
10. The difference in exponents, at similar Froude numbers, is attributed to the initial
shapes of the cavities that are closer to the self-similar shape in the case of the
wave-depression cavity.

A novel result is the demonstration that jetting, for a given forcing frequency,
occurs in bands of forcing amplitudes. Above the wave-breaking threshold, the wave
amplitude grows in time until the wave-depression cavity implodes. The rate of
amplification depends on the forcing amplitude and in each band the amplification
rate increases with forcing amplitude and leads to bubble pinch-off when b> bs, the
singular wave amplitude, which is nearly equal to the container radius. This scenario
is repeated at larger forcing amplitudes, although wave amplification rates are higher.
Bands with irregular cavity collapse and splashing can exist.

The cavity depth (more precisely the cavity aspect ratio), proportional to the last
stable wave amplitude, determines the jet velocity Uj emerging at the water surface.
When scaled with the gravitational velocity Ug=

√
Rg it can be expressed in terms of

a power law. The large value of the exponent indicates the strong dependency of jet
velocity on the cavity depth proportional to the last stable wave amplitude. When b/R
is close to 1 and above, bubble pinch-off at the base of the cavity occurs and the jet
velocity drops off rapidly. This transition from non-pinching to pinch-off occurs at a
singular wave amplitude bs at which the jet velocity can, theoretically, be infinite but
of negligible mass. However, in viscous fluids there is a viscous cut-off, limiting the
jet velocity to finite values in accordance with the power-law scaling. An expression
for Uj/

√
Rg in terms of |b− bs| and b/R is given. This finite-time singularity scaling

is also in good agreement with experiments. The power-law scaling is more practical
because it does not rely on an implicit variable, here the singular wave amplitude.

An expression of the jet velocity in terms of the cavity dimensions is derived via
the impulse model. This model is of interest because it gives some physical insight
about the cavity implosion and the radial and axial gradients of the impulse.

Up-scaling of the results to container sizes of the order of 1 m may not be
straightforward. Perturbations on the wave crest and cavity will be larger as viscous
and surface tension effects will be less active in preventing perturbations. This
behaviour is similar to that of smaller scale cavity collapse in very low-viscosity
and low-surface-tension liquids as for instance FC-72 used by Das & Hopfinger
(2008). In a larger container there is, in addition, the possibility of Rayleigh–Taylor
instability of the wave crest because its downward acceleration can exceed gravity
and the unstable wavelength can be less than the diameter of the wave near its crest.
However, the time during which the downward acceleration exceeds gravity is only a
fraction of the wave period so that the instability may not grow sufficiently to cause
notable perturbation or even splitting of the wave crest.
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