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Abstract. As is known, the minimum magnetic energy state for a frozen plasma,
subject to the infinite topological constraints, corresponds to a nonlinear force-free
field. The magnetic flux invariance in ideal magnetohydrodynamics is possible in
important astrophysical applications. We develop a method for explicitly obtaining
a minimum energy state starting from an arbitrary initial state. This method does
not require the explicit use of the invariance of the differential magnetic helicities.
It is particularly useful when the minimum magnetic energy state for the given
topological structure is unique. We show examples of the application of the method
for this kind of system.

1. Introduction
An important problem in magnetohydrodynamics (MHD) consists of obtaining
the minimum magnetic energy states in a magnetized perfect conducting plasma.
The conditions of ideal MHD can often be applied in several astrophysical prob-
lems. The solenoidal character of the magnetic field, together with the frozen flux
condition, allow an analysis based on topological invariants; the most simple is the
magnetic helicity related with the linkage of the magnetic induction lines (Moffatt
1992).
One of the first results was obtained by Woltjer (Woltjer 1958; see also Priest

1982) who showed that in a closed system the magnetic helicity evaluated over
the whole volume is a temporal invariant; after that, he showed that the minimum
magnetic energy, subject to the constant helicity condition, corresponds to a linear
force-free field. However, this variational principle is not complete, because in a per-
fectly conducting plasma there exist infinite topological invariants (Bhattacharjee
and Dewar 1982); a differential magnetic helicity, which remains constant, can
be associated to each closed field line (Taylor 1974). Taylor asserted that taking
into account all these invariants as constraints, the minimum energy state cor-
responds to a nonlinear force-free field. In fact, if the only forces acting on the
system are the magnetic ones, an equilibrium state requires that the current density
and the magnetic induction be parallel. For a rigorous proof of this statement,
Taylor suggested an extension of the Lagrange multipliers technique for the case
of infinite constraints (Taylor 1986, 1992). A related problem consists of obtaining
the magnetic induction field of the force-free state which corresponds to arbitrary
initial conditions. Following his idea, Taylor noted that in order to determine the
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Lagrange multipliers, one has to take into account the infinite differential helicities
of the initial state (Taylor 1986). Nevertheless, a variational theory according to
this outline is far from being developed (Laurence and Avellaneda 1991).
In this work, we analyze the possibility of finding a minimum magnetic energy

state, starting from an arbitrary initial state, by means of a technique which is
different to Taylor’s proposition. Our aim consists of determining a feasible way to
obtain a nonlinear force-free state, to which a system could evolve with arbitrary
initial conditions. We introduce a new point of view based on the local analysis of
the frozen condition.
The frozen flux condition can be interpreted as a coupling between the magnetic

induction lines and the matter, in such a way so as to preserve the differential
magnetic helicity on each closed field line, limiting the fluid motion. Taking into
account that the magnetic helicity is a measure of the linkage between the magnetic
induction lines, the differential magnetic helicity invariance on all closed field lines
occurs if and only if the plasma is frozen (Moffatt 1992). In this sense we say that the
frozen condition is equivalent to the infinite topological constraints. Therefore, an
alternative way to solve the extremal problem is to take into account the restrictions
on the magnetic induction variations due to the frozen condition. Following this
outline we develop a method for obtaining a local minimum magnetic energy state
which is nonlinear force-free and whose topological structure is identical to that of
an arbitrary specified initial state.
When a plasma has turbulence, its evolution towards the minimum magnetic en-

ergy state could be described by means of Taylor’s relaxation theory (Taylor 1986);
in this case, the final state is linear force-free. However, if there is no turbulence, the
relaxation mechanism must preserve the topological structure; it is precisely in this
kind of system that the method described in this paper has its main application.

2. Variation of the magnetic induction under virtual displacements
We analyze an infinite conducting plasma contained in a volume of perfect con-
ducting and rigid walls. Let us define a continuous field δr(r) with continuous first
derivatives, which represents a virtual displacement of the fluid. In order to avoid
singular currents, the condition

∇ · [(δr · ŭ)ŭ] > −1 (1)

must be satisfied for every direction ŭ. If a continuous displacement field does not
fulfill this condition, it will be sufficient to multiply δr by a constant of scale of
small value. Except for this scale constant and the boundary condition, the virtual
displacement field can be arbitrarily chosen.
Let us consider a magnetic induction field B(r) which is coupled with the plasma.

We choose an arbitrary loop C1 into the plasma and an open surface S1, limited
by C1. When a virtual displacement field δr(r) is applied, the magnetic induction
B(r) must transform into B′(r) satisfying the frozen condition. Furthermore C1 is
transformed into C2; we define S2 as the union of S1 and the surface limited by
C1 and C2, tangent to the displacements δr. The frozen condition requires that the
flux of B through S1 must be equal to the flux of B′ through S2. Then∫

S1

B · dS =
∫

S1

B′ · dS+
∮

C1

B′ · (δr× dl). (2)
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Introducing δB as

δB(r) = B′(r) − B(r), (3)

and neglecting terms of order greater than one in the variations, using Stokes
theorem and the arbitrariness of C1 and S1 we have

δB(r) = ∇ × [δr(r) × B(r)]. (4)

This result must not be confused with that which one obtains for real displace-
ments dξ. Taking into account that for real displacements v = dξ/dt, from the
induction equation we obtain the well-known result

dB(r, t) = ∇ × [dξ(r, t) × B(r, t)]. (5)

Real displacements were used by Bernstein et al. (1958) in their treatment of
stability. The main difference between (4) and (5) is that the former preserves the
topological structure while the latter also describes temporal evolutions.
Using the result (4) we reobtain the minimum magnetic energy condition for an

infinitely conducting plasma, contained in a volume of perfect conducting and rigid
walls:

∇ × B = α(r)B. (6)

This result was proposed originally by Taylor (1974, 1986).

3. Determination of a local minimum magnetic energy state
In this section we develop a method for the determination of a local minimum
magnetic energy state, starting from arbitrary initial conditions.
The set of real states obtained by the successive application of (5) does not

include, in general, the minimum magnetic energy state. The importance of (4) is
made evident here; it allows, from the initial state, a sequence of states connected
by infinitesimal virtual displacements to be built, whose limit is a state of local
minimum magnetic energy. In order to obtain these virtual displacements we start
writing the magnetic energy of the state with magnetic induction B+ δB

1
2µ0

∫
V

|B+ δB|2 dV =
1

2µ0

∫
V

B2 dV+
1
µ0

∫
V

B · δB dV+
1

2µ0

∫
V

|δB|2 dV, (7)

this energy will be lower than the one previous to the displacement only if∫
V

B · δB dV < 0. (8)

From (4) we obtain the result∫
V

B · δB dV =
∫

V

∇ · [(δr× B) × B] dV+
∫

V

(δr× B) · (∇ × B) dV

=
∮

S

[(δr× B) × B] · dS+
∫

V

[B× (∇ × B)] · δr dV, (9)

taking into account the boundary conditions

δr(rs) · dS = 0, (10)

B(rs) · dS = 0, (11)
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the surface integral vanishes. Then, condition (8) reads∫
V

[B× (∇ × B)] · δr dV < 0, (12)

resulting in the virtual displacements which carry more efficiently to states of lower
energy having equal sense as (∇ × B) × B.
Therefore, the virtual displacements can be written

δr = [(∇ × B) × B]f(r, ε)δε, (13)

where f(r, ε) is a regular, positive scalar function that must be chosen in such a
way that δr be null on the boundaries. Apart from this, it can be built in order to
simplify the resolution of the problem. Furthermore, ε is a parameter independent
of the position that labels the magnetic induction field B(r, ε) of the different states;
the initial state corresponds to B(r, 0).
Successive application of (13) together with (4), gives

B(r, ε) = B(r, 0) +
∫ ε

0

∇ × {f(r, ε′)[(∇ × B(r, ε′)) × B(r, ε′)] × B(r, ε′)} dε′, (14)

in the limit for ε → ∞, we arrive at a local minimum magnetic energy state. Then,
this method connects the specified initial state with one of the local minimum energy
states with the same topological structure. This method is particularly useful when
the problem, for a given initial condition, admits only one force-free solution. In
the next section we analyze examples of this kind of topological structure.

4. Examples with cylindrical symmetry
We consider a frozen plasma confined between two cylindrical, rigid and perfectly
conducting walls, of radii Ri and Re. Let us suppose that two states with B1(r)
and B2(r) can be connected by virtual displacements that preserve the topology.
Taking into account the symmetry, the magnetic flux conservation drives to

r2A2ϕ(r2) = r1A1ϕ(r1), (15)

A2z(r2) = A1z(r1), (16)

where A is the vector potential and r1 and r2 are the radial positions of the same
plasma element, before and after the displacement, respectively. From (15) and (16)
the following invariant can be obtained:

B2ϕ(r2)
r2B2z(r2)

=
B1ϕ(r1)

r1B1z(r1)
= h(r1). (17)

If B1(r1) is known, one can evaluate the function h(r1). The relation (17) can be
written as

r2B2ϕ(r2) = r2
2B2z(r2)h(r1). (18)

Let us suppose now that B2(r2) is a force-free field; there exists a scalar function
α(r2) such that

d

dr2
[r2B2ϕ(r2)] = r2α(r2)B2z(r2), (19)

d

dr2
B2z(r2) = −α(r2)B2ϕ(r2) = −r2α(r2)h(r1)B2z(r2). (20)
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Replacing the differential relations (19) and (20) in the derivative of (18) we obtain
the following expression for α(r2):

α(r2) =
[
2h(r1) + r2

dh(r1)
dr1

dr1

dr2

] [
1 + r2

2h
2(r1)

]−1
. (21)

We consider now the particular case in which the state 1 is such that h(r1) is a
constant

h(r1) = C. (22)

In this case, α is a specific function of r2,

α(r2) =
2C

1 + C2r2
2

(23)

and (20) is a linear differential equation for B2z. Taking into account the frozen
condition, its solution is

B2z(r2) =
[
ln

(
1 + C2R2

e

1 + C2R2
i

)]−1 2C2D

1 + C2r2
2

=
B2ϕ

Cr2
(24)

where

D =
∫ Re

Ri

r1B1z(r1) dr1. (25)

Therefore, when the initial state satisfies that B1ϕ/B1z is proportional to r1, the
corresponding force-free solution is unique. The following examples are particular
cases of this kind of topological structure.

4.1. Example 1

We show a simple example in which the application of the method described in
Sec. 3 can be performed analytically and numerically.
We consider the initial magnetic induction given by

B1(r) = B0ϕ̆, Ri < r < Re. (26)

In order to preserve the cylindrical symmetry, it is convenient to choose the function
f(r, ε) independent of ϕ and z; thus, for the successive states

B(r, ε) = Bϕ(r, ε)ϕ̆. (27)

Then, the differential equation associated with the integral equation (14), takes the
simple form

∂Bϕ

∂ε
(r, ε) =

∂

∂r

[
f(r, ε)

r
B2

ϕ

∂

∂r
(rBϕ)

]

=
∂

∂r

[
g(r, ε)

∂

∂r
(rBϕ)

]
. (28)

An appropriate choice of g(r, ε) allows us to resolve this equation; we find that if

g(r, ε) = (1 + ε)−1

[
(Re − Ri)

ln(r/Ri)
ln(Re/Ri)

− (r − Ri)
]

, (29)

the solution of (28) is

Bϕ(r, ε) =
B0

1 + ε

[
1 +

ε(Re − Ri)
ln(Re/Ri)

1
r

]
. (30)
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Table 1. B2ϕ/B0 for example 1 as a function of r/Re (Ri = 0.2 Re), as obtained with the
analytical solution and the numerical calculations.

r/Re Analytic (A) (B) (C)

0.20 0.2444 0.2435 0.2424 0.2485
0.25 0.1958 0.1950 0.1942 0.1988
0.30 0.1633 0.1627 0.1620 0.1657
0.35 0.1400 0.1396 0.1390 0.1420
0.40 0.1226 0.1222 0.1217 0.1243
0.45 0.1091 0.1087 0.1083 0.1105
0.50 0.0982 0.0979 0.0975 0.0994
0.55 0.0894 0.0891 0.0888 0.0903
0.60 0.0820 0.0818 0.0815 0.0820
0.65 0.0758 0.0756 0.0752 0.0764
0.70 0.0704 0.0703 0.0700 0.0710
0.75 0.0658 0.0657 0.0654 0.0662
0.80 0.0618 0.0617 0.0614 0.0621
0.85 0.0583 0.0581 0.0579 0.0584
0.90 0.0551 0.0550 0.0548 0.0552
0.95 0.0523 0.0522 0.0520 0.0523
1.00 0.0497 0.0496 0.0495 0.0497

We want to remark that with this expression for g(r, ε), the corresponding f(r, ε)
vanishes at Ri and Re and is positive in (Ri, Re).
The minimum magnetic energy state is obtained by making ε → ∞ in (30):

B2(r) = B(r, ∞) =
B0(Re − Ri)
ln(Re/Ri)

1
r
ϕ̆, Ri < r < Re. (31)

This expression coincides with (24) for the particular case in which C → ∞, D → 0
and CD → B0(Re − Ri).
The complex form of f(r, ε) that results from (29) suggests that analytical solu-

tions are not always obtainable; perhaps only trivial topologies can be solved in this
way. Nevertheless, convergent numerical solutions are obtained with simple forms
of f(r, ε). We have chosen three different expressions for resolving this example:

(A)

f(r, ε) = ε

[
sin

(
π

r − Ri

Re − Ri

)]1/2

, (32)

(B)

f(r, ε) = ε

[
sin

(
π

r − Ri

Re − Ri

)
+ 0.15 sin

(
7π

r − Ri

Re − Ri

)]1/2

, (33)

(C)

f(r, ε) = ε

[
sin

(
π

r − Ri

Re − Ri

)
+ 0.15 sin

(
15π

r − Ri

Re − Ri

)]1/2

. (34)

In Table 1, values of the non-null component of the magnetic induction, B2ϕ(r),
are shown for different distances from the axis. The values obtained with the analy-
tical solution are given in the second column and in the other columns the numerical
calculations performed with the three functions given above are shown.
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Table 2. B2ϕ/B0 for example 2 as a function of r/Re , as obtained with the analytical
solution and the numerical calculations.

r/Re Analytic (A) (B) (C)

0.20 0.2823 0.2796 0.2795 0.2795
0.25 0.3454 0.3420 0.3419 0.3419
0.30 0.4040 0.4002 0.4001 0.4001
0.35 0.4577 0.4537 0.4536 0.4537
0.40 0.5062 0.5023 0.5022 0.5022
0.45 0.5493 0.5457 0.5456 0.5457
0.50 0.5872 0.5840 0.5839 0.5840
0.55 0.6199 0.6174 0.6173 0.6173
0.60 0.6476 0.6460 0.6459 0.6460
0.65 0.6708 0.6701 0.6701 0.6701
0.70 0.6896 0.6901 0.6901 0.6901
0.75 0.7046 0.7062 0.7063 0.7063
0.80 0.7161 0.7189 0.7190 0.7190
0.85 0.7244 0.7285 0.7287 0.7286
0.90 0.7299 0.7352 0.7354 0.7353
0.95 0.7330 0.7393 0.7394 0.7394
1.00 0.7340 0.7408 0.7408 0.7410

Table 3. B2z/B0 for example 2 as a function of r/Re , as obtained with the analytical
solution and the numerical calculations.

r/Re Analytic (A) (B) (C)

0.20 1.411 1.396 1.395 1.395
0.25 1.381 1.367 1.366 1.366
0.30 1.346 1.333 1.333 1.333
0.35 1.307 1.296 1.296 1.296
0.40 1.265 1.255 1.255 1.255
0.45 1.220 1.212 1.212 1.212
0.50 1.174 1.168 1.168 1.168
0.55 1.127 1.122 1.122 1.122
0.60 1.079 1.077 1.077 1.077
0.65 1.032 1.031 1.031 1.031
0.70 0.985 0.986 0.986 0.986
0.75 0.939 0.942 0.942 0.942
0.80 0.895 0.899 0.899 0.899
0.85 0.852 0.857 0.857 0.857
0.90 0.811 0.817 0.817 0.817
0.95 0.771 0.778 0.778 0.779
0.10 0.734 0.741 0.741 0.741

4.2. Example 2

We consider the same system of example 1, with different initial conditions. We
suppose that the initial magnetic induction field has non-null components B1ϕ(r)
and B1z(r), given by

B1ϕ(r) = B0
r

Re
, (35)

B1z(r) = B0. (36)

This problem was solved by computational calculations, using the integration func-
tions (A), (B) and (C) of example 1. In Tables 2 and 3 we show the results obtained
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for these cases forB2ϕ andB2z respectively. These are compared with the analytical
solution given by (24).

5. Comments and conclusions
The most important contribution of this paper consists of the formulation of a
method to obtain a local minimum magnetic energy state, starting from an arbit-
rary initial state, for a perfectly conducting plasma. According to Taylor, this state
is nonlinear force-free. This method takes into account the topological constraints
of a frozen plasma and does not require the explicit use of the invariance of the
differential magnetic helicities on each closed field line; however, the consequences
of the topological linkage, which can be derived from this invariance, are taken into
account through the frozen plasma condition.
We want to remark that our method determines a minimum magnetic energy

state, but this state will not necessarily be attained by the system for two reasons.
First, there could exist more than one local minimum. In addition, a dissipation
mechanism is necessary, but it can not be Joule’s effect since perfect conductivity
has been assumed. Following Moffatt’s idea (Moffatt 1992), the magnetic energy
can be converted into kinetic energy, which can be dissipated by means of viscous
forces, preserving the frozen condition. We want to highlight the difference between
this relaxation mechanism and Taylor’s (Taylor 1986). Taylor’s relaxation requires
turbulence; it produces reconnection of the field lines and local ohmic dissipation,
breaking the invariance of the differential magnetic helicities. These relaxation
processes occur in different physical conditions.
Our method is particularly useful when it can be proved that the problem admits

only one force-free solution. We show that cylindrical problems with particular to-
pological structures have only one minimum magnetic energy state. Two examples
of application of the method are given. A good agreement of the numerical and
analytical results is obtained.
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