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ABSTRACT

In this paper, we present a method for generating a copula by composing two
arbitrary n-dimensional copulas via a vector of bivariate functions, where the
resulting copula is named as the multivariate composite copula. A necessary
and sufficient condition on the vector guaranteeing the composite function to
be a copula is given, and a general approach to construct the vector satisfying
this necessary and sufficient condition via bivariate copulas is provided. The
multivariate composite copula proposes a new framework for the construction
of flexible multivariate copula from existing ones, and it also includes some
known classes of copulas. It is shown that the multivariate composite copula
has a clear probability structure, and it satisfies the characteristic of uniform
convergence as well as the reproduction property for its component copu-
las. Some properties of multivariate composite copulas are discussed. Finally,
numerical illustrations and an empirical example on financial data are pro-
vided to show the advantages of the multivariate composite copula, especially
in capturing the tail dependence.
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1 INTRODUCTION

A copula is a joint distribution function with all Uniform [0, 1] marginal dis-
tributions. Due to Sklar’s Theorem (Sklar, 1959), it is possible to decompose
every n-dimensional distribution function F into a copula C and its univariate
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marginal distributions Fi, i= 1, · · · , n, that is,
F(x1, . . . , xn)=C(F1(x1), . . . , Fn(xn)), xi ∈R, i= 1, . . . , n.

If the marginal distributions Fi, i= 1, . . . , n are continuous, then the copula
C is unique. Sklar’s Theorem allows us to construct an n-dimensional distri-
bution function conveniently by plugging suitable marginals into a copula.
For detailed introduction of copulas and their properties, we refer to Nelsen
(2006), Joe (2014), and Durante and Sempi (2016). Nowadays, copula-based
models are widely applied in a variety of areas, see Frees and Valdez (1998)
and Albrecher et al. (2011) in actuarial science and insurance, Cherubini et al.
(2012) and Embrechts et al. (1997) in finance, and McNeil et al. (2015) in risk
management.

Constructing new copulas based on existing ones has become an impor-
tant research direction for the past few years. In the literature, constructing
new copulas by applying functions to existing ones is a fundamental method.
For example, Genest and Rivest (2001), Klement et al. (2005), Morillas (2005),
Alvoni et al. (2009), Durante et al. (2010), and Valdez and Xiao (2011) applied
a distortion function to copulas for constructing new copulas. Xie et al. (2019)
transformed a given copula C with two distortion functions, Liebscher (2008)
and Mazo et al. (2015) applied a series of distortion functions to multiple
initial copulas for constructing a family of asymmetric copulas, and Lin et
al. (2018) applied the stochastic distortion to obtain new copulas with finan-
cial background. Based on a straightforward “pairwise max” rule, Zhao and
Zhang (2018) utilized power functions to two existing copulas and presented
the max-copula. By looking at the Bernstein copula (Sancetta and Satchell,
2004) from another perspective, Yang et al. (2015) employed a series of bino-
mial cumulative distribution functions to two given copulas C and D, and
then the composite Bernstein copula was presented. These works focus on the
constructions of new copulas from given ones.

Inspired by these works described above and the composite technique, given

two n-dimensional copulas B and C, we define an n-dimensional function B
f◦

C:[0, 1]n → [0, 1] via a series of bivariate functions fi(x, y):[0, 1]2 → [0, 1], i=
1, . . . , n as follows

B
f◦C(u1, . . . , un)=E[B( f1(u1,U1), . . . , fn(un,Un))], (u1, . . . , un) ∈ [0, 1]n, (1)

where f(x, y)= ( f1(x, y), . . . , fn(x, y)) and the random vector (U1, . . . ,Un)
obeys the distribution C. For arbitrary copulas B and C, we provide a nec-

essary and sufficient condition on f for the n-dimensional function B
f◦C to be

a copula. We also present a general approach to construct function vector f via
bivariate copulas.

The constructed copula B
f◦C is a unified version of compound operation

of two n-dimensional copulas B and C. We name the constructed copula B
f◦C

as the multivariate composite copula, and the copulas B and C are called the
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component copulas in this paper. Our method presents a copula construction
framework by applying the composite technique, and it can generate a wide
variety of dependence structures. It is shown that the multivariate composite
copula has the following characteristics:

• The multivariate composite copula provides versatile dependence struc-

tures. The multivariate composite copula B
f◦C inherits some merits from

its component copulas B and C, such as keeping various types of orders
and symmetries, and it has a clear probability mechanism and strong
interpretability.

• The multivariate composite copula has some properties, including
marginality, monotonicity, linearity, symmetry, and exchangeability. The
empirical example on financial data also shows that the multivariate
composite copula is able to capture tail dependence.

• The multivariate composite copula has the characteristics of uniform con-
vergence, and it also has a reproduction characteristic for its component
copulas B,C and the survival copula C̄.

• The family of multivariate composite copulas includes many known cop-
ulas, such as the Bernstein copula (Sancetta and Satchell, 2004), the com-
posite Bernstein copula (Yang et al., 2015), the family of Archimedean
copulas (Nelsen, 2006), the max-copula (Zhao and Zhang, 2018), and the
copulas presented in Liebscher (2008).

The remainder of the paper is structured as follows. Section 2 defines the
multivariate composite copula and discusses its theoretical properties, includ-
ing marginality, monotonicity, linearity, symmetry, and exchangeability. The
reproduction characteristic and the convergence of the multivariate composite
copulas are also presented in Section 2. Several special classes of multivariate
composite copulas are provided in Section 3. In Section 4, simulation studies
and an empirical example on financial data are carried out. Conclusions are
drawn in Section 5. Some proofs are put in the Appendix.

2 GENERAL THEORY OF MULTIVARIATE COMPOSITE COPULAS

2.1 Preliminary

Consider the bivariate function f (x, y):[0, 1]2 → [0, 1]. Let F1,R−I be the family
of the bivariate function f satisfying that for each fixed y ∈ [0, 1], the function
f (x, y), x ∈ [0, 1] is right-continuous and increasing1, and F1,L−D be the family
of the bivariate function f satisfying that for each fixed y ∈ [0, 1], the function
f (x, y), x ∈ [0, 1] is left-continuous and decreasing. Similarly, let F2,R−I be the

1
Throughout this paper, the terms increasing and decreasing mean nondecreasing and nonincreasing,

respectively.
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family of the bivariate function f satisfying that for each fixed x ∈ [0, 1], the
function f (x, y), y ∈ [0, 1] is right-continuous and increasing, and F2,L−D be
the family of the bivariate function f satisfying that for each fixed x ∈ [0, 1],
the function f (x, y), y ∈ [0, 1] is left-continuous and decreasing.

In the next, we introduce the general inverse functions of the above bivariate
functions, where the infimum of the empty set is defined to be 1. When f ∈
F1,R−I , for fixed y ∈ [0, 1] we define

f [−1](u|·, y)= inf{x ∈ [0, 1]: f (x, y)≥ u}.
Similarly, when f ∈F2,R−I , for fixed x ∈ [0, 1] we define

f [−1](u|x, ·)= inf{y ∈ [0, 1]: f (x, y)≥ u}.
When f ∈F1,L−D, for fixed y ∈ [0, 1] we define

f (−1)(u|·, y)= inf{x ∈ [0, 1]: f (x, y)< u}.
And when f ∈F2,L−D, for fixed x ∈ [0, 1] we define

f (−1)(u|x, ·)= inf{y ∈ [0, 1]: f (x, y)< u}.
In the following lemma, we give the properties of the four general inverse

functions defined above. Note that some similar results on the right-continuous
univariate functions have been proposed by Durrett (2010). Our results focus
on the bivariate functions. For the integrity of the content, the properties of
all the four general inverse functions are discussed in the following, and their
proofs are given in Appendix A.1.

Lemma 2.1

(1) When f ∈F1,R−I , we have

f [−1](u|·, y)≤ x⇔ u≤ f (x, y), u, x ∈ [0, 1].

(2) When f ∈F2,R−I , we have

f [−1](u|x, ·)≤ y⇔ u≤ f (x, y), u, y ∈ [0, 1].

(3) When f ∈F1,L−D, we have

x≤ f (−1)(u|·, y)⇔ u≤ f (x, y), u, x ∈ [0, 1].

(4) When f ∈F2,L−D, we have

y≤ f (−1)(u|x, ·)⇔ u≤ f (x, y), u, y ∈ [0, 1].

2.2 Definition of the multivariate composite copula

An n-dimensional copula is an n-dimensional distribution function with all
Uniform [0, 1] marginal distributions. There are three fundamental functions:
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the product copula�(u1, . . . , un)= u1 · · · un, (u1, . . . , un) ∈ [0, 1]n, the Fréchet–
Hoeffding upper boundM(u1, . . . , un)=min{u1, . . . , un}, (u1, . . . , un) ∈ [0, 1]n,
and the Fréchet–Hoeffding lower boundW (u1, . . . , un)=max{u1 + · · · + un −
n+ 1, 0}, (u1, . . . , un) ∈ [0, 1]n. For any n≥ 2, the Fréchet–Hoeffding upper
bound M(u1, . . . , un) is a copula, and the Fréchet–Hoeffding lower bound
W (u1, . . . , un) is a copula only when n= 2. It is also known that for each
n-dimensional copula C,

W (u1, . . . , un)≤C(u1, . . . , un)≤M(u1, . . . , un), (u1, . . . , un) ∈ [0, 1]n.

Note that any n-dimensional copula B satisfies the Lipschitz condition

|B(u1, . . . , un)−B(v1, . . . , vn)| ≤ |u1 − v1| + · · · + |un − vn|, (2)

where (u1, . . . , un), (v1, . . . , vn) ∈ [0, 1]n.
In this paper, for two n-dimensional copulas B and C, let (V1, . . . , Vn) and

(U1, . . . ,Un) be two independent random vectors with joint distribution func-
tions B and C, respectively. The survival copulas of B and C are denoted as B̄
and C̄, respectively, that is,

B̄(x1, . . . , xn)= P(1−Vi ≤ xi, i= 1, . . . , n)
and

C̄(x1, . . . , xn)= P(1−Ui ≤ xi, i= 1, . . . , n).

For more details about copulas, please refer to Nelsen (2006).
In the rest of this paper, some assumptions will be employed:

(1) The function f (x,y) is a bivariate function from [0, 1]2 to [0,1], and for
fixed y ∈ [0, 1], the function f (x, y), x ∈ [0, 1] is increasing.

(2) For each x ∈ [0, 1],
∫ 1
0 f (x, y)dy= x.

Let f(x, y)= ( f1(x, y), . . . , fn(x, y)) and denote f= ( f1, . . . , fn) ∈F if for
each i= 1, . . . , n, the function fi satisfies Assumption A.1 and Assumption A.2.

Given two n-dimensional copulas B,C and the vector f(x, y)= ( f1(x, y), . . . ,

fn(x, y)), (x, y) ∈ [0, 1]2, an n-dimensional function B
f◦C: [0, 1]n → [0,1] is

defined by (1). In the following theorem, a necessary and sufficient condition

on the vector f guaranteeing the function B
f◦C to be a copula is given, and a

clear probability structure of the copula B
f◦C is also provided.

Theorem 2.1 Suppose that B and C are two n-dimensional copulas. Let (V1, . . . ,
Vn) and (U1, . . . ,Un) be two independent random vectors with joint distribution
functions B and C, respectively.

(1) If f= ( f1, . . . , fn) ∈F , then the function B f◦C in (1) is a copula.

(2) If f= ( f1, . . . , fn) ∈F and fi ∈F1,R−I , i= 1, . . . , n, then f [−1]
i (Vi|·,Ui) is

a Uniform [0,1] random variable, and the random vector

( f [−1]
1 (V1|·,U1), . . . , f

[−1]
n (Vn|·,Un)),

follows the distribution B
f◦C.
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(3) Suppose that f= ( f1, . . . , fn) satisfies Assumption A.1, then the function

B
f◦C is a copula if and only if f1, . . . , fn satisfy Assumption A.2.

Proof.

(1) From Assumption A.2, we know that
∫ 1
0 fi(1, y)dy= 1 and∫ 1

0 fi(0, y)dy= 0, i= 1, . . . , n. Since for each i= 1, . . . , n, 0≤ fi(x, y)≤ 1,
then fi(0, y)= 0 and fi(1, y)= 1 for almost all y ∈ [0, 1]. For any
i= 1, ..., n and uj ∈ [0, 1], j= 1, . . . , n,

B
f◦C(u1, .., ui−1, 0, ui+1, .., un)

=E[B( f1(u1,U1), ..., fi−1(ui−1,Ui−1), fi(0,Ui), fi+1(ui+1,Ui+1), ...,

fn(un,Un))]

=E[B( f1(u1,U1), ..., fi−1(ui−1,Ui−1), 0, fi+1(ui+1,Ui+1), ..., fn(un,Un))]

= 0

and

B
f◦C(1, .., 1, ui, 1, .., 1)

=E[B( f1(1,U1), ..., fi−1(1,Ui−1), fi(ui,Ui), fi+1(1,Ui+1), ..., fn(1,Un))]

=E(B(1, ..., 1, fi(ui,Ui), 1, ..., 1))

=E[fi(ui,Ui)]

= ui.

Now, it suffices to prove that B
f◦C is n-increasing. Let 1≥ u1i ≥ u0i ≥

0, i= 1, ..., n. Then from Assumption A.2, we have

1∑
l1=0

· · ·
1∑

ln=0

(− 1)
∑n

k=1 lkB
f◦C(ul11 , ..., ulnn )

=E

⎡⎣ 1∑
l1=0

· · ·
1∑

ln=0

(− 1)
∑n

k=1 lkB( f1(u
l1
1 ,U1), ..., fn(ulnn ,Un))

⎤⎦
= P( f1(u01,U1)≤V1 ≤ f1(u11,U1), ..., fn(u0n,Un)≤Vn ≤ fn(u1n,Un))

≥ 0.

Summarizing the above results, we conclude that the function B
f◦C is a

copula.
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(2) If fi ∈F1,R−I , i= 1, . . . , n, then from Lemma 2.1 we have that for any
u ∈ [0, 1] and i= 1, . . . , n,

P( f [−1]
i (Vi|·,Ui)≤ u)=E[P( f [−1]

i (Vi|·,Ui)≤ u|Ui)]

=E[P(Vi ≤ fi(u,Ui)|Ui)]=E[fi(u,Ui)]=
∫ 1

0
fi(u, y)dy= u,

where the last equality follows from Assumption A.2. Hence for each
i= 1, . . . , n, f [−1]

i (Vi|·,Ui) is a Uniform [0,1] random variable, and for
(u1, . . . , un) ∈ [0, 1]n,

P( f [−1]
1 (V1|·,U1)≤ u1, . . . , f

[−1]
n (Vn|·,Un)≤ un)

= E

[
P( f [−1]

1 (V1|·,U1)≤ u1, . . . , f
[−1]
n (Vn|·,Un)≤ un|U1, . . . ,Un)

]
= E[P(V1 ≤ f1(u1,U1), . . . ,Vn ≤ fn(un,Un)|U1, . . . ,Un)]

= E[B( f1(u1,U1), . . . , fn(un,Un))]

= B
f◦C(u1, . . . , un),

which implies that ( f [−1]
1 (V1|·,U1), . . . , f

[−1]
n (Vn|·,Un)) follows the dis-

tribution B
f◦C.

(3) The sufficiency is proved in the part (1). Now, we prove the necessity.

Assume that the function B
f◦C is a copula. For each i= 1, . . . , n, we

have

ui =B
f◦C(1, . . . , ui, . . . , 1)=E[B( f1(1,U1), . . . , fi(ui,Ui), . . . , fn(1,Un))]

≤E[fi(ui,Ui)], ui ∈ [0, 1].

Letting ui = 1 in the above inequality, we know that fi(1, y)= 1, y ∈
[0, 1] almost surely. Then for ui ∈ [0, 1], we have

ui =B
f◦C(1, . . . , ui, . . . , 1)

=E[B( f1(1,U1), . . . , fi(ui,Ui), . . . , fn(1,Un))]

=E[B(1, . . . , fi(ui,Ui), . . . , 1)]=
∫ 1

0
fi(ui, y)dy.

Thus, Assumption A.2 holds. �
In the following, some examples about the multivariate composite copulas

are provided.

Example 2.1 Let fi(x, y)= x, (x, y) ∈ [0, 1]2, i= 1, . . . , n. It is easy to see
that fi(x, y) satisfies Assumption A.1 and Assumption A.2 such that
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f= ( f1, . . . , fn) ∈F . In this case, for any component copulas B and C,

B
f◦C(u1, . . . , un)=E[B(u1, . . . , un)]=B(u1, . . . , un), (u1, . . . , un) ∈ [0, 1]n.

Example 2.2Considering the bivariate case and choosing fi(x, y)= x(1+ θi(1−
x)(1− 2y)), (x, y) ∈ [0, 1]2, −1≤ θi ≤ 1, i= 1, 2, we have that for each x ∈ [0, 1],

∫ 1

0
fi(x, y)dy= x+ θix(1− x)(y− y2)|y=1

y=0 = x,

and for any (x, y) ∈ [0, 1]2, 0≤ fi(x, y)= x(1+ θi(1− x)(1− 2y))≤ 1.
Moreover, for any fixed y ∈ [0, 1],

∂

∂x
fi(x, y)= 1+ θi(1− x)(1− 2y)− xθi(1− 2y)

= 1+ θi(1− 2x)(1− 2y)≤ 1− θi ≤ 0,

then for any fixed y ∈ [0, 1], fi(x, y), x ∈ [0, 1] is increasing. Thus, in this
example, fi(x, y) satisfies Assumption A.1 and Assumption A.2 such that
f= ( f1, f2) ∈F .

Let C(u1, u2)=M(u1, u2) and B(u1, u2)=�(u1, u2), (u1, u2) ∈ [0, 1]2. In this
case,

B
f◦C(u1, u2)=E[f1(u1,U)× f2(u2,U)}]=E

[
2∏
i=1

ui(1+ θi(1− ui)(1− 2U))

]

= u1u2

(
1+ θ1θ2

3
(1− u1)(1− u2)

)
, (u1, u2) ∈ [0, 1]2.

The resulting bivariate composite copula has a polynomial form, and it is a
bivariate Farlie–Gumbel–Morgenstern (FGM) copula with the parameter θ1θ23 .

If θ1 = 0 or θ2 = 0, then B
f◦C(u1, u2)=�(u2, u2).

The family of multivariate composite copulas also includes many known
copulas, such as the Bernstein copula (Sancetta and Satchell, 2004) and
the family of Archimedean copulas (Nelsen, 2006), which will be shown in
Section 3.

We can see that for a given f= ( f1, . . . , fn) ∈F , the function B
f◦C defined

in (1) is a mapping from Cn ×Cn to Cn, where Cn is the space of n-dimensional

copulas. Thus, the copula B
f◦C is a composition of the two copulas B and

C. In this paper, we call B
f◦C the multivariate composite copula, and the

corresponding copulas B and C are named as the component copulas. In the
remainder of this paper, we assume f= ( f1, . . . , fn) ∈F .

Theorem 2.1 provides a clear probabilistic structure of the multivariate
composite copula. When f= ( f1, . . . , fn) ∈F and fi ∈F1,R−I , i= 1, . . . , n,
this probabilistic structure leads to a straightforward simulation method for
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generating random numbers from the multivariate composite copula B
f◦C.

The simulation method is described in the following procedure:

(1) Generate a random vector (V1, . . . ,Vn) from the copula B and a ran-
dom vector (U1, . . . ,Un) from the copula C, where (V1, . . . ,Vn) and
(U1, . . . ,Un) are independent.

(2) Calculate ( f [−1]
1 (V1|·,U1), . . . , f

[−1]
n (Vn|·,Un)) to get a random vector

that follows the multivariate composite copula B
f◦C.

From Theorem 2.1, we can get the explicit expression of the multivari-

ate composite copula B
f◦C by focusing on the copula B. The following

proposition shows that if for each fixed i= 1, . . . , n, the function fi(x, y) is
right-continuous and monotonic with respect to (w.r.t.) y when x is fixed, then

the multivariate composite copula B
f◦C has other two explicit expressions by

using copulas C and C̄, respectively.

Proposition 2.1 Suppose that f= ( f1, . . . , fn) ∈F , and B and C are two
n-dimensional copulas.

(1) If fi(x, y) ∈F2,R−I , i= 1, . . . , n, then for (u1, . . . , un) ∈ [0, 1]n,

B
f◦C(u1, . . . , un)=E[C̄(1− f [−1]

1 (V1|u1, ·), . . . , 1− f [−1]
n (Vn|un, ·))]. (3)

(2) If fi(x, y) ∈F2,L−D, i= 1, . . . , n, then for (u1, . . . , un) ∈ [0, 1]n,

B
f◦C(u1, . . . , un)=E[C( f (−1)

1 (V1|u1, ·), . . . , f (−1)
n (Vn|un, ·))]. (4)

Proof.

(1) For (u1, . . . , un) ∈ [0, 1]n, from Lemma 2.1 we have

E[C̄(1− f [−1]
1 (V1|u1, ·), . . . , 1− f [−1]

n (Vn|un, ·))]
= E[P(1−U1 ≤ 1− f [−1]

1 (V1|u1, ·), . . . , 1−Un

≤ 1− f [−1]
n (Vn|un, ·)|V1, . . . ,Vn)]

= E[P(U1 ≥ f [−1]
1 (V1|u1, ·), . . . ,Un ≥ f [−1]

n (Vn|un, ·)|V1, . . . ,Vn)]

= E[P(V1 ≤ f1(u1,U1), . . . ,Vn ≤ fn(un,Un)|V1, . . . ,Vn)]

= E[P(V1 ≤ f1(u1,U1), . . . ,Vn ≤ fn(un,Un)|U1, . . . ,Un)]

= B
f◦C(u1, . . . , un).

Then, the part (1) of the proposition is proved.
(2) The proof is similar to that of the part (1), so we omit the proof. �
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In the following proposition, we consider the density of the multivariate

composite copula B
f◦C. The proof will be given in Appendix A.2.

Proposition 2.2 Suppose that f= ( f1, . . . , fn) ∈F , and B and C are two

n-dimensional copulas. The multivariate composite copula B
f◦C admits a

bounded density if one of the following three conditions holds:

a) The component copula B admits a bounded density on [0, 1]n and for each
fixed y ∈ [0, 1], the partial derivatives ∂fi(x,y)

∂x , x ∈ [0, 1], i= 1, . . . , n exist
and are bounded.

b) The component copula C admits a density on [0, 1]n, fi(x, y) ∈F2,R−I , i=
1, . . . , n, and for each fixed x ∈ [0, 1] the partial derivatives ∂f

[−1]
i (y|x,·)
∂y , y ∈

[0, 1], i= 1, . . . , n exist and are bounded.
c) The component copula C admits a density on [0, 1]n, fi(x, y) ∈F2,L−D, i=

1, . . . , n, and for each fixed x ∈ [0, 1] the partial derivatives ∂f
(−1)
i (y|x,·)
∂y , y ∈

[0, 1], i= 1, . . . , n exist and are bounded.

Remark 2.1. Proposition 2.2 implies that even if one of the component copulas
does not admit a density, the multivariate composite copula can admit a density.

2.3 The function f satisfying Assumption A.1 and Assumption A.2

From Theorem 2.1, it is known that functions fi(x, y), i= 1, . . . , n satisfying
Assumption A.1 and Assumption A.2 play an important role in constructing

the multivariate composite copula B
f◦C. In this subsection, we show how to

construct the function f satisfying Assumption A.1 and Assumption A.2. The
relationship between the function f and the modified partial Dini derivative
of the bivariate copula (Fang et al., 2020) is established, and then a gen-
eral approach for constructing the function f satisfying Assumption A.1 and
Assumption A.2 via an arbitrary bivariate copula is provided.

Following the notation of Fang et al. (2020), we denote D1C(x, y) and
D2C(x, y) as the modified partial Dini derivatives of the bivariate copula C
at x and y, respectively, that is,

D1C(x, y)=
⎧⎨⎩

inf
v>y

D+
1 C(x, v), 0≤ x< 1, 0≤ y≤ 1,

inf
v>y

D−
1 C(1, v), x= 1, 0≤ y≤ 1,

and

D2C(x, y)=
⎧⎨⎩

inf
u>x

D+
2 C(u, y), 0≤ y< 1, 0≤ x≤ 1,

inf
u>x

D−
2 C(u, 1), y= 1, 0≤ x≤ 1,
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where D+
1 C,D

−
1 C,D

+
2 C and D−

2 C are defined as

D+
1 C(x, y)= lim sup

h↓0
C(x+ h, y)−C(x, y)

h
,

D−
1 C(x, y)= lim sup

h↓0
C(x, y)−C(x− h, y)

h
,

D+
2 C(x, y)= lim sup

h↓0
C(x, y+ h)−C(x, y)

h
,

D−
2 C(x, y)= lim sup

h↓0
C(x, y)−C(x, y− h)

h
.

For example, D1M(x, y)= I{x≤y}, D2M(x, y)= I{y≤x} and D1W (x, y)=
D2W (x, y)= I{1−x≤y}, where IA is an indicator function of the set A, that is,
IA equals 1 when A is true and equals zero otherwise.

The following lemma gives the property of the modified partial Dini
derivative of the bivariate copula C.

Lemma 2.2. (Fang et al., 2020, Theorem 2.1) For fixed x ∈ [0, 1],D1C(x, y), y ∈
[0, 1] is a cumulative distribution function. And for fixed y ∈ [0, 1],D2C(x, y), x ∈
[0, 1] is a cumulative distribution function. Moreover, for fixed (x, y) ∈ [0, 1]2,
D1C(x, y) and D2C(x, y) satisfy that

C(x, y)=
∫ x

0
D1C(u, y)du, C(x, y)=

∫ y

0
D2C(x, v)dv.

The relationship between the function f and the modified partial Dini
derivatives of bivariate copulas is obtained in the following theorem.

Theorem 2.2 The following two statements hold.

(1) For any bivariate copula D, let f (x, y)=D2D(x, y), (x, y) ∈ [0, 1]2, then
f(x,y) satisfies Assumption A.1 and Assumption A.2. Moreover, for given
y ∈ [0, 1], f(x,y), x ∈ [0, 1] is right-continuous w.r.t. x.

(2) If f(x,y) satisfies Assumption A.1 and Assumption A.2, then D(x, y)=∫ y
0 f (x, u)du, (x, y) ∈ [0, 1]2 is a bivariate copula.

Proof.

(1) For any bivariate copula D, according to Lemma 2.2, we know that
for given y, f (x, y)=D2D(x, y), x ∈ [0, 1] is a cumulative distribu-
tion function, and thus it is right-continuous w.r.t. x and satisfies
Assumption A.1. Moreover,∫ 1

0
f (x, y)dy=

∫ 1

0
D2D(x, y)dy=D(x, 1)−D(x, 0)= x, x ∈ [0, 1].

Hence, f (x, y)=D2D(x, y), (x, y) ∈ [0, 1]2 also satisfies Assumption A.2.
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(2) Suppose that f (x,y) satisfies Assumption A.1 and Assumption A.2, we
define D(x, y)= ∫ y0 f (x, u)du, (x, y) ∈ [0, 1]2.

From Assumption A.2, we have

D(x, 1)=
∫ 1

0
f (x, u)du= x, D(x, 0)=

∫ 0

0
f (x, u)du= 0, x ∈ [0, 1].

Specially,
∫ 1
0 f (1, y)dy= 1, and

∫ 1
0 f (0, y)dy= 0. Since 0≤ f (x, y)≤ 1, then

f (0, y)= 0 and f (1, y)= 1 for almost all y ∈ [0, 1]. Thus, for each y ∈ [0, 1], we
have that

D(1, y)=
∫ y

0
f (1, u)du= y, D(0, y)=

∫ y

0
f (0, u)du= 0, y ∈ [0, 1].

Now, it suffices to prove that D(x,y) is 2-increasing, that is, for every subset
R= [x1, x2]× [y1, y2], x1 ≤ x2, y1 ≤ y2 contained in the unit square,

VD(R)=D(x2, y2)−D(x1, y2)−D(x2, y1)+D(x1, y1)≥ 0.

In fact, we have

VD(R)=
∫ y2

y1
( f (x2, u)− f (x1, u))du≥ 0,

where the inequality holds because for fixed y ∈ [0, 1], the function f (x, y), x ∈
[0, 1] is increasing.

In summary, D(x, y)= ∫ y0 f (x, u)du, (x, y) ∈ [0, 1]2 is a copula. �
From Theorems 2.1 and 2.2, we can rewrite the multivariate composite

copula B
f◦C as B

D
C, that is
B

f◦C ≡B
D
C(u1, . . . , un)

=E[B(D2D1(u1,U1), ...,D2Dn(un,Un))], (u1, . . . , un) ∈ [0, 1]n, (5)

here D(u, v)= (D1(u, v), . . . ,Dn(u, v)) and D2Di(u, v), i= 1, ..., n are the
modified partial Dini derivatives of bivariate copulas Di(u, v), i= 1, . . . , n
w.r.t. v.

Note that for a bivariate copula D, ∂D(x,y)
∂y exists for almost all y ∈ [0, 1] and

it is almost surely equal to the conditional cumulative distribution function
P(X ≤ x|Y = y), (x, y) ∈ [0, 1]2, here (X ,Y ) is a bivariate random vector with

the joint distribution function D. In the expression of B
D
C defined in (5),

we need a pointwisely defined function on [0,1], where ∂D(x,y)
∂y may fail to be

defined on some points. Thus, we use D2D(x, y) instead of ∂D(x,y)
∂y .

If the conditional cumulative distribution function P(X ≤ x|Y = y) is con-
tinuous with respect to y, then the modified partial Dini derivative D2D(x, y)
equals P(X ≤ x|Y = y), and thus the function f can be chosen as the condi-
tional distribution function extracted from a bivariate copula. Such a char-
acteristic of f would provide a more intuitive approach for constructing the
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function satisfying Assumptions A.1 and A.2. In detail, assume that for each
i= 1, . . . , n, the conditional cumulative distribution function P(Xi ≤ x|Yi = y)
is continuous with respect to y, where the joint distribution function of (Xi,Yi)
is a bivariate copula Di, and then let fi(x, y)= P(Xi ≤ x|Yi = y), (x, y) ∈ [0, 1]2,
i= 1, . . . , n. Since fi is chosen as a conditional distribution function, then it
is right-continuous and increasing, that is, fi ∈F1,R−I . It is also easy to see
that for each i= 1, . . . , n, f [−1]

i (Vi|·,Ui) is a Uniform [0,1] random variable

and the random vector ( f [−1]
1 (V1|·,U1), . . . , f

[−1]
n (Vn|·,Un)) follows the distri-

bution B
f◦C. Hence, in this case, the intuitive explanation for the function fi is

provided, and then all proofs can be made much simper.

2.4 Properties of the multivariate composite copulas

This section aims at investigating some properties of multivariate compos-
ite copulas, including marginality, monotonicity, linearity, symmetry, and
exchangeability.

In the following proposition, we show that for a multivariate composite cop-

ula B
f◦C, every marginal distribution of the multivariate composite copula

can also be expressed as a multivariate composite copula, where its two corre-
sponding component copulas are the marginal distributions of the copulas B
and C, respectively.

Proposition 2.3. Suppose that f= ( f1, . . . , fn) ∈F , and B as well as C
are n-dimensional copulas. For each i= 1, . . . , n, we denote f−i = ( f1, . . . ,
fi−1, fi+1, . . . , fn). Then

B
f◦C(u1, . . . , ui−1, 1, ui+1, . . . , un)=B−i

f−i◦ C−i(u1, . . . , ui−1, ui+1, . . . , un),

where

B−i(u1, . . . , ui−1, ui+1, . . . , un):=B(u1, . . . , ui−1, 1, ui+1, . . . , un),

and

C−i(u1, . . . , ui−1, ui+1, . . . , un):=C(u1, . . . , ui−1, 1, ui+1, . . . , un),

are the (n− 1)-marginal copulas of B and C, respectively.

Proof. Applying (1) we know that

B
f◦C(u1, . . . , ui−1, 1, ui+1, . . . , un)

= E[B( f1(u1,U1), . . . , fi−1(ui−1,Ui−1), fi(1,Ui), fi+1(ui+1,Ui+1),
. . . , fn(un,Un))]

= E[B( f1(u1,U1), . . . , fi−1(ui−1,Ui−1), 1, fi+1(ui+1,Ui+1), . . . , fn(un,Un))]

= E[B−i( f1(u1,U1), . . . , fi−1(ui−1,Ui−1), fi+1(ui+1,Ui+1), . . . , fn(un,Un))], (6)
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where the second equality holds since for y ∈ [0, 1] and i= 1, . . . , n, fi(1, y)= 1
almost surely. Note that the random vector (U1, . . . ,Ui−1,Ui+1, . . . ,Un) obeys
the distribution C−i. Then (6) gives us the desired result. �

The above proposition presents the relationship between the marginal cop-

ulas of a multivariate composite copula B
f◦C and the marginal distributions

of two corresponding component copulas B and C.
Let C1 and C2 be n-dimensional copulas, and C̄1 and C̄2 denote the corre-

sponding n-dimensional survival copulas. We first give the definition of order
between the copulas C1 and C2. The copula C2 is said to be more positively
lower orthant dependent (PLOD) than C1, if

C1(u1, . . . , un)≤C2(u1, . . . , un), ∀(u1, . . . , un) ∈ [0, 1]n.

Similarly, the copula C2 is said to be more positively upper orthant dependent
(PUOD) than C1, if

C̄1(u1, . . . , un)≤ C̄2(u1, . . . , un), ∀(u1, . . . , un) ∈ [0, 1]n.

See Nelsen (2006) for more details. In the following proposition, we discuss the
order of multivariate composite copulas.

Proposition 2.4. Suppose that f= ( f1, . . . , fn) ∈F .

(1) If B2 is more PLOD than B1, then B2
f◦C is more PLOD than B1

f◦C.
(2) If fi(x, y) ∈F2,R−I , i= 1, . . . , n and C2 is more PUOD than C1, then B

f◦
C2 is more PLOD than B

f◦C1.

(3) If fi(x, y) ∈F2,L−D, i= 1, . . . , n and C2 is more PLOD than C1, then B
f◦

C2 is more PLOD than B
f◦C1.

Proof.

(1) For any two n-dimensional copulas B1 and B2, using (1) we have

B1
f◦C(u1, . . . , un)−B2

f◦C(u1, . . . , un)
= E[B1( f1(u1,U1), . . . , fn(un,Un))−B2( f1(u1,U1), . . . , fn(un,Un))], (7)

where the random vector (U1, . . . ,Un) obeys the distribution C. Then
we can prove that the statement (1) holds from the above equality.

(2) For any two n-dimensional copulas C1 and C2, by (3) we have

B
f◦C1(u1, . . . , un)−B

f◦C2(u1, . . . , un)

= E[C̄1(1− f [−1]
1 (V1|u1, ·), . . . , 1− f [−1]

n (Vn|un, ·))
−C̄2(1− f [−1]

1 (V1|u1, ·), . . . , 1− f [−1]
n (Vn|un, ·))], (8)
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where (V1, . . . ,Vn) is a random vector with the joint distribution func-
tion B. Then we can prove that the statement (2) holds by applying the
above equality.

(3) Applying (4), similarly we can prove that the statement (3) holds. �
The following proposition shows that a linear combination of component

copulas can be chosen to further adjust the value of the multivariate composite
copula conveniently. Since this result is a straightforward consequence of (1),
we omit the proof here.

Proposition 2.5 Let λ ∈ [0, 1] be a constant and f= ( f1, . . . , fn) ∈F .
(1) Let B1 and B2 be two n-dimensional copulas. For any n-dimensional copula

C, it holds that

(λB1 + (1− λ)B2)
f◦C(u1, . . . , un)

= λB1
f◦C(u1, . . . , un)+ (1− λ)B2

f◦C(u1, . . . , un).
(2) Let C1 and C2 be two n-dimensional copulas. For any n-dimensional

copula B, it holds that

B
f◦ (λC1 + (1− λ)C2)(u1, . . . , un)

= λB
f◦C1(u1, . . . , un)+ (1− λ)B

f◦C2(u1, . . . , un).

In the next proposition, we discuss the symmetry of the multivariate com-
posite copula. An n-dimensional copula C is said to be radially symmetric,
if C(u1, . . . , un)= C̄(u1, . . . , un) for all (u1, . . . , un) ∈ [0, 1]n, where C̄ is the
survival copula of C. More generally, an n-dimensional copula C is said to
be symmetric, if C(u1, . . . , un)=C(σ (u1, . . . , un)) for all (u1, . . . , un) ∈ [0, 1]n,
where σ is any n-permutation of the sequence {ui}1≤i≤n. See Nelsen (2006) for
more details.

Proposition 2.6 Suppose that f= ( f1, . . . , fn) ∈F .

(1) Let B and C be two n-dimensional copulas. If for each i= 1, . . . , n, the
function fi ∈F1,R−I and

fi(x, y)= 1− fi(1− x, 1− y), (x, y) ∈ [0, 1]2, (9)

then it holds that

B
f◦C(u1, . . . , un)= B̄

f◦ C̄(u1, . . . , un), (u1, . . . , un) ∈ [0, 1]n.

In particular, if n-dimensional copulas B and C are both radially sym-

metric, then the multivariate composite copula B
f◦C is also radially

symmetric.
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(2) If n-dimensional copulas B and C are both symmetric and functions
fi(x, y), i= 1, . . . , n are the same, then the multivariate composite copula

B
f◦C is also symmetric.

Proof.

(1) If the condition (9) holds, from the definition of the survival copula

and the probability structure of the multivariate composite copula B
f◦C

presented in Theorem 2.1, we have that

B
f◦C(u1, . . . , un)

= P(1− f [−1]
1 (V1|·,U1)≤ u1, . . . , 1− f [−1]

n (Vn|·,Un)≤ un)

= P( f [−1]
1 (V1|·,U1)≥ 1− u1, . . . , f

[−1]
n (Vn|·,Un)≥ 1− un)

= P( f1( f
[−1]
1 (V1|·,U1),U1)≥ f1(1− u1,U1), . . . , fn( f

[−1]
n (Vn|·,Un),Un)

≥ fn(1− un,Un))

= P(V1 ≥ f1(1− u1,U1), . . . ,Vn ≥ fn(1− un,Un))

= P(V1 ≥ 1− f1(u1, 1−U1), . . . ,Vn ≥ 1− fn(un, 1−Un)). (10)

Recall that when fi ∈F1,R−I , i= 1, . . . , n, f [−1](u|·, y)= inf{x ∈
[0, 1]:f (x, y)≥ u} and f [−1](u|·, y)≤ x⇔ u≤ f (x, y), u, x ∈ [0, 1]. From

the probability structure of the multivariate composite copula B̄
f◦ C̄,

we also have that

B̄
f◦ C̄(u1, . . . , un)

= E[B̄( f1(u1, 1−U1), . . . , fn(un, 1−Un))]

= P( f [−1]
1 (1−V1|·, 1−U1)≤ u1, . . . , f

[−1]
n (1−Vn|·, 1−Un)≤ un)

= P(1−V1 ≤ f1(u1, 1−U1), . . . , 1−Vn ≤ fn(un, 1−Un)).

Hence, from (10) and the above equation, we get B
f◦C(u1, . . . , un)=

B̄
f◦ C̄(u1, . . . , un), (u1, . . . , un) ∈ [0, 1]n.

(2) We only show the case n= 2, since the proof of n≥ 3 is similar. From

the definition of the multivariate composite copula B
f◦C given in (1),

we know that if the n-dimensional copulas B and C are both symmetric
and functions f1(x, y)= f2(x, y)= f (x, y), (x, y) ∈ [0, 1]2, then

B
f◦C(u1, u2) =E[B( f (u1,U1), f (u2,U2))]=E[B( f (u2,U2), f (u1,U1))]

=E[B( f (u2,U1), f (u1,U2))]=B
f◦C(u2, u1).

Hence, the multivariate composite copula B
f◦C is symmetric. �
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Applying Proposition 2.6, by choosing different functions fi(x, y), i=
1, . . . , n, the multivariate composite copula B

f◦C can have the same symmetry
as the component copulas B and C.

Remark 2.2 In the following, we show how to construct functions fi(x, y), i=
1, . . . , n that satisfy the condition (9).

Assume that Di(x, y), i= 1, . . . , n are bivariate copulas. From Theorem 2.2,
we know that D2Di(x, y), i= 1, . . . , n satisfy Assumption A.1 and
Assumption A.2. If Di(x, y), i= 1, . . . , n are radially symmetric, then

Di(x, y)= D̄i(x, y)= −1+ x+ y+Di(1− x, 1− y), i= 1, . . . , n.

Differentiating the above equation w.r.t. y, we get

D2Di(x, y)= 1−D2Di(1− x, 1− y), i= 1, . . . , n,

then (9) holds. Thus the functions fi(x, y)=D2Di(x, y), i= 1, . . . , n satisfy the
condition (9). Many classes of copulas are radially symmetric (or symmetric),
such as the family of Archimedean copulas, the Fréchet and Mardia family of
copulas, and the Cuadras–Augé family of copulas (Nelsen, 2006).

In general, the compositional operation of copulas defined in (1) is not
exchangeable, that is,

B
f◦C(u1, . . . , un) 
≡C

f◦B(u1, . . . , un), (u1, . . . , un) ∈ [0, 1]n.

For example, letting B 
≡C and fi(x, y)= x, i= 1, . . . , n, then B
f◦C(u1, . . . ,

un)=B(u1, . . . , un), C
f◦B(u1, . . . , un)=C(u1, . . . , un). Thus, we have

B
f◦C(u1, . . . , un) 
≡C

f◦B(u1, . . . , un).
It is also interesting to see whether the compositional operation of copulas

defined in (1) satisfies the law of association.

Proposition 2.7 Let A, B, and C be n-dimensional copulas. If functions fi ∈
F1,R−I , i= 1, . . . , n satisfy that

fi( fi(x, z), y)= fi(x, f
[−1]
i (y|·, z)), (x, y, z) ∈ [0, 1]3, i= 1, . . . , n, (11)

then

(A
f◦B) f◦C(u1, . . . , un)=A

f◦ (B f◦C)(u1, . . . , un), (u1, . . . , un) ∈ [0, 1]n. (12)

Proof. From the definition of the multivariate composite copula given in (1),
we have

(A
f◦B) f◦C(u1, . . . , un) =E[A

f◦B( f1(u1,U1), . . . , fn(un,Un))]

=E[E[A( f1( f1(u1,U1),V1), . . . , fn( fn(un,Un),Vn))]]
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=E[E[A( f1(u1, f
[−1]
1 (V1|·,U1)), . . . , fn(un, f

[−1]
n (Vn|·,Un)))]]

=A
f◦ (B f◦C)(u1, . . . , un),

where the third equality follows from (11) and the fourth equality follows from
the probability structure of the multivariate composite copula presented in
Theorem 2.1. �

In the following, we give two examples of functions fi(x, y), i= 1, . . . , n
satisfying (11).

Example 2.3

(a) Let fi(x, y)=D2�(x, y)= x, i= 1, . . . , n. In this case, we have

fi( fi(x, z), y)= x= fi(x, f
[−1]
i (y|·, z)), (x, y, z) ∈ [0, 1]3, i= 1, . . . , n.

(b) Let fi(x, y)=D2M(x, y)= I{x≥y}, i= 1, . . . , n. Then we have that for i=
1, . . . , n,

fi( fi(x, z), y)= I{I{x≥z}≥y} = I{y=0} + I{1≥y>0, x≥z}

= fi(x, f
[−1]
i (y|·, z)), (x, y, z) ∈ [0, 1]3.

2.5 Reproduction characteristics of multivariate composite copulas

For the component copulas B and C, an interesting question is whether there
exist functions fi(x, y), i= 1, . . . , n such that the corresponding multivariate
composite copula defined in (1) can reproduce the component copulas B or C,

that is, B
f◦C =B or B

f◦C =C.

Proposition 2.8. Let B and C be two n-dimensional copulas.

(a) B
f◦C(u1, . . . , un)=B(u1, . . . , un) if functions fi(x, y)=D2�(x, y)= x,

i= 1, . . . , n;

(b) B
f◦C(u1, . . . , un)=C(u1, . . . , un) if functions fi(x, y)=D2M(x, y)=

I{y≤x}, i= 1, . . . , n;

(c) B
f◦C(u1, . . . , un)= C̄(u1, . . . , un) if functions fi(x, y)=D2W (x, y)=

I{1−x≤y}, i= 1, . . . , n.

Proof.

(a) It can be verified directly from the definition of the multivariate com-
posite copula given in the Equation (1).
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(b) Since functions fi(x, y)= I{y≤x}, i= 1, . . . , n are decreasing w.r.t. y, then

f (−1)
i (y|x, ·)= inf{u ∈ [0, 1] : f (x, u)< y} =

{
x, y ∈ (0, 1],
1, y= 0.

Thus from (4), we have that

B
f◦C(u1, . . . , un) =E[C( f (−1)

1 (V1|u1, ·), . . . , f (−1)
n (Vn|un, ·))]

=C(u1, . . . , un).

(c) Since the functions fi(x, y)= I{1−x≤y}, i= 1, . . . , n are increasing w.r.t. y,
then

f [−1]
i (y|x, ·)= inf{u ∈ [0, 1] : f (x, u)≥ y} =

{
1− x, y ∈ (0, 1],

0, y= 0.

Thus by the Equation (3), we have that

B
f◦C(u1, . . . , un)=E[C̄(1− f [−1]

1 (V1|u1, ·), . . . , 1− f [−1]
n (Vn|un, ·))]

= C̄(u1, . . . , un). �

Remark 2.3 Proposition 2.8 states that the multivariate composite copula B
f◦C

has the reproduction characteristic, in the sense that it can reproduce copulas
B, C and C̄, respectively. The corresponding functions fi(x, y), i= 1, . . . , n are
derived from the independent copula �, the bivariate Fréchet–Hoeffding upper
boundM and the bivariate Fréchet–Hoeffding lower boundW, respectively. Note
that the three copulas correspond to the three important dependency structures in
insurance and finance: independence, comonotonicity and countermonotonicity
(Dhaena et al. 2002a,b).

The following proposition shows that when both B and C are chosen as the
independent copula �, the Fréchet–Hoeffding upper bound M or the bivari-
ate Fréchet–Hoeffding lower bound W , and f is chosen freely under some
conditions, the multivariate composite copulas are equal to the corresponding
component copulas.

Proposition 2.9 Let f= ( f1, . . . , fn) ∈F .

(1) �
f◦�(u1, . . . , un)=�(u1, . . . , un) for any f ∈F .

(2) M
f◦M(u1, . . . , un)=M(u1, . . . , un) provided that functions fi(x, y)=

f1(x, y), (x, y) ∈ [0, 1]2, i= 1, ..., n.

(3) W
f◦W (u1, u2)=W (u1, u2) provided that n= 2 and functions fi(x, y),

(x, y) ∈ [0, 1]2, i= 1, 2 satisfy the condition (9).
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Proof.

(1) From the definition (1) of the multivariate composite copula, we have

�
f◦�(u1, ..., un)=E

[ n∏
i=1

fi(ui,Ui)
]

=
n∏
i=1

ui =�(u1, ..., un), (u1, . . . , un) ∈ [0, 1]n.

(2) If fi(x, y)= f (x, y), (x, y) ∈ [0, 1]2, i= 1, ..., n, then for a Uniform [0,1]
random variable U ,

M
f◦M(u1, ..., un)

=E[ min{f (u1,U), . . . , f (un,U)}]
=E
[
f ( min{u1, . . . , un},U)

]
=min{u1, . . . , un} =M(u1, ..., un), (u1, . . . , un) ∈ [0, 1]n,

where the third equation holds from the Assumption A.2.
(3) In the case n= 2, we have

W
f◦W (u1, u2)

=E[ max{f1(u1,U)+ f2(u2, 1−U)− 1, 0}]
=E[ max{f1(u1,U)− f2(1− u2,U), 0}(I{u1≥1−u2} + I{u1<1−u2})]
=E[f1(u1,U)− f2(1− u2,U)]I{u1≥1−u2}
= (u1 + u2 − 1)I{u1+u2−1≥0} =max{u1 + u2 − 1, 0}
=W (u1, u2), (u1, u2) ∈ [0, 1]2,

where the second equality follows from condition (9). �
Remark 2.4. Propositions 2.8 and 2.9 state the reproduction property from dif-
ferent viewpoints. Proposition 2.8 shows that for any bivariate copulas B and C,

by choosing suitable f ∈F , the multivariate composite copula B f◦C can repro-
duce the component copulas B and C, respectively. Proposition 2.9 shows the
when both B and C are chosen as �, M or W, and f is chosen freely under some

conditions, the composite copula B
f◦C is equal to the corresponding component

copula.

2.6 Convergence of the sequence of multivariate composite copulas

In this section, some results about the uniform convergence of multivariate
composite copulas are presented.
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We first discuss the convergence of the sequences of multivariate com-

posite copulas {Bk f◦C}k≥1 and {B f◦Ck}k≥1 in the following theorem. It is a
straightforward consequence of (7) and (8), so we omit the proof here.

Theorem 2.3. Suppose that f= ( f1, . . . , fn) ∈F .

(1) If the sequence of copulas {Bk}k≥1 converges to a copula B uniformly as
k goes to infinity, then the sequence of the multivariate composite copulas

{Bk f◦C}k≥1 converges to B
f◦C uniformly.

(2) If the sequence of copulas {Ck}k≥1 converges to a copula C uniformly as
k goes to infinity, then the sequence of the multivariate composite copulas

{B f◦Ck}k≥1 converges to B
f◦C uniformly.

In the following, we provide an example to illustrate the convergence of
the multivariate composite copulas by assuming that the component copulas
are bivariate Frank copulas, which belong to the Archimedean family (Nelsen,
2006).

Example 2.4

(1) Let the component copula Bk be a bivariate Frank copula expressed as

Bk(u, v)=B(u, v;γk)

= − 1
γk

ln (1+ ( exp (− γku)− 1)( exp (− γkv)− 1)
exp (− γk)− 1

), k=1, 2, . . . ,

where γk ∈R/{0}. The Frank copula has an interesting property that
B(u, v;γk)→M(u, v) as γk → ∞, B(u, v;γk) →W (u, v) as γk → −∞
and B(u, v;γk)→�(u, v) as γk → 0. Then from Theorem 2.3, we know

that for an arbitrary bivariate copula C, it holds that Bk
f◦C(u, v)→

M
f◦C(u, v) as γk → ∞, Bk

f◦C(u, v)→W
f◦C(u, v) as γk → −∞ and

Bk
f◦C(u, v)→�

f◦C(u, v) as γk → 0.
(2) Let the component copula Ck be a bivariate Frank copula with

parameter γk. Then from Theorem 2.3, we have that for an arbi-

trary bivariate copula B, it holds that B
f◦Ck(u, v)→B

f◦�(u, v)

as γk → 0, B
f◦Ck(u, v)→B

f◦W (u, v) as γk → −∞ and B
f◦Ck(u, v)→

B
f◦M(u, v) as γk → ∞.

Next, we denote

fk(x, y)= ( f1,k(x, y), . . . , fn,k(x, y)), (x, y) ∈ [0, 1]2, k= 1, 2, . . . .
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Suppose that for each k= 1, 2, . . ., fk ∈F . Given two n-dimensional copulas B

and C, we define the multivariate composite copula B
fk◦ C as

B
fk◦ C(u1, . . . , un)=E[B( f1,k(u1,U1), . . . , fn,k(un,Un))],

(u1, . . . , un) ∈ [0, 1]n, k= 1, 2, . . . , (13)

where (U1, . . . ,Un) is a random vector with the joint distribution function C.
The following theorem discusses the convergence of the sequence of multi-

variate composite copulas {B fk◦ C}k≥1.

Theorem 2.4 Let {fk(x, y), (x, y) ∈ [0, 1]2}k≥1 be a sequence of function vectors.
Suppose that fk ∈F , k≥ 1 and f= ( f1, . . . , fn) ∈F . If for each i= 1, ..., n, the
sequence of functions{∫ 1

0
|fi,k(x, y)− fi(x, y)|dy, x ∈ [0, 1]

}
k≥1

,

converges uniformly to zero as k goes to infinity, then the sequence of multi-

variate composite copulas {B fk◦ C}k≥1 of type (13) converges uniformly to the

multivariate composite copula B
f◦C.

Proof. From the definitions of multivariate composite copulas given in (1)
and (13), we know that

max
(u1,...,un)∈[0,1]n

|B fk◦ C(u1, ..., un)−B
f◦C(u1, ..., un)|

≤ max
(u1,...,un)∈[0,1]n

E[|B( f1,k(u1,U1), . . . , fn,k(un,Un))

−B( f1(u1,U1), . . . , fn(un,Un))|]

≤
n∑
i=1

max
(u1,...,un)∈[0,1]n

E|fi,k(ui,Ui)− fi(ui,Ui)|

=
n∑
i=1

max
(u1,...,un)∈[0,1]n

∫ 1

0
|fi,k(ui, y)− fi(ui, y)|dy,

where the second inequality follows from the Lipschitz condition (2).

Since for each i= 1, ..., n, the sequence of functions
{∫ 1

0 |fi,k(x, y)−
fi(x, y)|dy, x ∈ [0, 1]}k≥1 converges uniformly to zero as k goes to infinity,
then from the above inequality, we can easily see that the sequence of multi-

variate composite copulas {B fk◦ C}k≥1 converges uniformly to the multivariate

composite copula B
f◦C. �
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From Theorem 2.4, we can easily get the following corollary.

Corollary 2.1. Suppose that {fk(x, y), (x, y) ∈ [0, 1]2}k≥1 is a sequence of func-
tion vectors and fk ∈F , k≥ 1. If for each i= 1, ..., n, the sequence of func-
tions {fi,k(x, y), (x, y) ∈ [0, 1]2}k≥1 converges uniformly to fi(x, y), (x, y) ∈ [0, 1]2

as k goes to infinity, then functions fi(x, y), (x, y) ∈ [0, 1]2, i= 1, ..., n satisfy
Assumption A.1 and Assumption A.2. Moreover, the sequence of multivariate

composite copulas {B fk◦ C}k≥1 converges uniformly to the multivariate composite

copula B
f◦C as k→ ∞, where f(x, y)= ( f1(x, y), . . . , fn(x, y)).

Proof. Since functions fi,k(x, y), k= 1, 2, . . ., i= 1, . . . , n are increasing w.r.t.
x and bounded, then we know that the limits fi(x, y)= limk→∞ fi,k(x, y), i=
1, . . . , n are increasing w.r.t. x and

∫ 1

0
fi(x, y)dy=

∫ 1

0
lim
k→∞

fi,k(x, y)dy= lim
k→∞

∫ 1

0
fi,k(x, y)dy= x,

for any x ∈ [0, 1] and i= 1, . . . , n. Thus, functions fi(x, y), (x, y) ∈ [0, 1]2, i=
1, ..., n satisfy Assumption A.1 and Assumption A.2. Furthermore, since the
sequence of functions {fi,k(x, y), (x, y) ∈ [0, 1]2}k≥1 converges uniformly to
fi(x, y), (x, y) ∈ [0, 1]2 as k goes to infinity, then we can easily see that the

sequence of functions
{∫ 1

0 |fi,k(x, y)− fi(x, y)|dy, x ∈ [0, 1]
}
k≥1

converges uni-

formly to zero as k→ ∞. Hence, from Theorem 2.4, we get the desired
results. �

The following proposition is easily derived from Theorem 2.4 and
Proposition 2.8.

Proposition 2.10 Let B and C be n-dimensional copulas and {fk(x, y), (x, y) ∈
[0, 1]2}k≥1 be a sequence of function vectors, where for each k≥ 1, fk ∈F .

(1) If for each i= 1, ..., n, the sequence of functions{∫ 1
0 |fi,k(x, y)− x|dy, x ∈ [0, 1]

}
k≥1

converges uniformly to zero as

k→ ∞, then the sequence of multivariate composite copulas {B fk◦ C}k≥1
converges uniformly to the copula B as k→ ∞.

(2) If for each i= 1, ..., n, the sequence of functions{ ∫ 1
0 |fi,k(x, y)− I{y≤x}|dy, x ∈ [0, 1]

}
k≥1

converges uniformly to

zero as k→ ∞, then the sequence of multivariate composite copulas

{B fk◦ C}k≥1 converges uniformly to the copula C as k→ ∞.
(3) If for each i= 1, ..., n, the sequence of functions{∫ 1

0 |fi,k(x, y)− I{1−x≤y}|dy, x ∈ [0, 1]
}
k≥1

converges uniformly to
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zero as k→ ∞, then the sequence of multivariate composite copulas

{B fk◦ C}k≥1 converges uniformly to the copula C̄ as k→ ∞.

In the following, we provide an example to illustrate the convergence of the

sequence of multivariate composite copulas {B fk◦ C}k≥1.

Example 2.5. Let functions fi,k(x, y)=D2D(x, y;γk), k= 1, 2, . . . and i=
1, . . . , n, where D(x, y;γk) is a Frank copula with the parameter γk,

D2D(x, y;γk)= exp (− γky)( exp (− γkx)− 1)
( exp (− γk)− 1)+ ( exp (− γkx)− 1)( exp (− γky)− 1)

.

Noting that for fixed x ∈ [0, 1], D2D(x, y;γk) is decreasing w.r.t. y, we have∫ 1

0
|D2D(x, y;γk)− x|dy

≤max{|D2D(x, 0;γk)− x|, |D2D(x, 1;γk)− x|}

=max
{∣∣∣∣exp (− γkx)− 1

exp (− γk)− 1
− x

∣∣∣∣,∣∣∣∣ exp (− γk)( exp (− γkx)− 1)
( exp (− γk)− 1) exp (− γkx)

− x

∣∣∣∣}, x ∈ [0, 1].

Since limγk→0
exp (−γkx)−1
exp (−γk)−1 = x and exp (− γkx) is equicontinuous, then from the

above inequality, we know that
∫ 1
0 |D2D(x, y;γk)− x|dy converges uniformly

to zero as γk → 0.

Note that

lim
γk→∞ max

x∈[0,1]

∫ 1

0
|D2D(x, y;γk)− I{y≤x}|dy

= lim
γk→∞ max

x∈[0,1]

∫ x

0
(1−D2D(x, y;γk))dy+ lim

γk→∞ max
x∈[0,1]

∫ 1

x
D2D(x, y;γk)dy

≤ lim
γk→∞

∫ 1

0
max
x∈[0,1]

(1−D2D(x, y;γk))I{y<x}dy

+ lim
γk→∞

∫ 1

0
max
x∈[0,1]

D2D(x, y;γk)I{y>x}dy

=
∫ 1

0
lim
γk→∞ max

x∈[0,1]
(1−D2D(x, y;γk))I{y<x}dy

+
∫ 1

0
lim
γk→∞ max

x∈[0,1]
D2D(x, y;γk)I{y>x}dy

= 0,
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here the last equality holds due to the fact that

lim
γk→∞ D2D(x, y;γk)=

{
1, x> y,

0, x< y.

Thus
∫ 1
0 |D2D(x, y;γk)− I{y≤x}|dy, x ∈ [0, 1] converges uniformly to zero as

γk → ∞. Similarly,
∫ 1
0 |D2D(x, y;γk) −I{1−x≤y}|dy, x ∈ [0, 1] converges to zero

uniformly as γk → −∞. From Proposition 2.10, we know that for arbitrary
component copulas B and C, it holds that

lim
k→∞

B
fk◦ C =

⎧⎪⎨⎪⎩
B, if γk → 0 as k→ ∞,

C, if γk → ∞ as k→ ∞,

C̄, if γk → −∞ as k→ ∞.

3 SOME CLASSES OF MULTIVARIATE COMPOSITE COPULAS

In this section, we show that as a unified composition of two copulas B
and C, the family of multivariate composite copulas includes many known
copulas, such as the Bernstein copula (Sancetta and Satchell, 2004), the com-
posite Bernstein copula (Yang et al., 2015), the family of Archimedean copulas
(Nelsen, 2006), the max-copula (Zhao and Zhang, 2018) and the copulas
presented in Liebscher (2008). This implies that the multivariate composite
copulas of type (1) can generate a wide variety of dependence structures.

3.1 Bernstein copula and composite Bernstein copula

In the rest of this paper, for a cumulative distribution function F , denote
F−1(y)= inf{x:F(x)≥ y}, y ∈ [0, 1] as its inverse function. Let FBin(m,u), m ∈N,
u ∈ [0, 1] be the binomial cumulative distribution function and define

fi(x, y)=
F−1
Bin(mi,x)

(y)

mi
, mi ∈N, (x, y) ∈ [0, 1]2, i= 1, . . . , n.

Note that F−1
Bin(mi,x)

(y), i= 1, . . . , n are increasing w.r.t. x and∫ 1

0
fi(x, y)dy=

∫ 1

0

F−1
Bin(mi,x)

(y)

mi
dy=

∫ mi

0

t
mi
dFBin(mi,x)(t)= x, i= 1, . . . , n.

Then functions fi(x, y), (x, y) ∈ [0, 1]2, i= 1, ..., n satisfy Assumptions A.1 and
A.2. In this case, the multivariate composite copula

B
f◦C(u1, ..., un)=E

[
B

(
F−1
Bin(m1,u1)

(U1)

m1
, . . . ,

F−1
Bin(mn,un)

(Un)

mn

)]
=Cm1,...,mn(u1, . . . , un|B,C),
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which is the composite Bernstein copula Cm1,...,mn(u1, . . . , un|B,C) introduced
by Yang et al. (2015), where the random vector (U1, . . . ,Un) obeys the dis-
tribution C̄. The composite Bernstein copula can incorporate both prior
information and data into the statistical estimation. If C =�, thenU1, . . . ,Un
are independent. Hence,

B
f◦C(u1, ..., un)

=E

[
B

(
F−1
Bin(m1,u1)

(U1)

m1
, . . . ,

F−1
Bin(mn,un)

(Un)

mn

)]

=
m1∑
v1=0

· · ·
mn∑
vn=0

B
(
v1
m1

, . . . ,
vn
mn

)(
m1
v1

)
uv11 (1− u1)m1−v1 · · ·

×
(
mn
vn

)
uvnn (1− un)mn−vn .

It belongs to the Bernstein copulas put forward by Sancetta and Satchell
(2004). Note that the Bernstein copula can approximate each copula. Among
many recent research papers on the Bernstein copula, please refer to Sancetta
(2007), Baker (2008), Janssen et al. (2012), Dou et al. (2016), and Scheffer and
Weiß (2017).

From the above results, we know that both the Bernstein copula and the
composite Bernstein copula belong to the family of multivariate composite
copulas.

Note that for each i= 1, . . . , n, E[F−1
B(mi,x)

(U)]=mix and Var(F−1
B(mi,x)

(U))=
mix(1− x), then we have

∫ 1

0

∣∣∣∣∣F
−1
B(mi,x)

(y)

mi
− x

∣∣∣∣∣ dy=E

[∣∣∣∣∣F
−1
B(mi,x)

(U)

mi
− x

∣∣∣∣∣
]

≤

√√√√√E

⎡⎣(F−1
B(mi,x)

(U)

mi
− x

)2⎤⎦

=
√
Var(F−1

B(mi,x)
(U))

mi
=
√
x(1− x)
mi

, x ∈ [0, 1].

Then for each i= 1, . . . , n, the sequence of functions {∫ 10 |F−1
B(mi,x)

(y)/mi −
x|dy, x ∈ [0, 1]}mi≥1 converges uniformly to zero as mi goes to infinity. From
Proposition 2.10, we know that both the Bernstein copula and the composite
Bernstein copula converge uniformly to the copula B as mi → ∞, i= 1, ..., n.
This result is also obtained by Yang et al. (2015).

3.2 The family of Archimedean copulas

The family of Archimedean copulas is an important copula family widely
applied in quantitative finance (Schönbucher, 2003), actuarial science
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(Albrecher et al., 2011), and biostatistics (Lakhal et al., 2008), due to its
analytically tractable form and good properties.

Consider an Archimedean copula C with the strict generator ψ , where ψ :
[0,+∞]→ [0,1] is the Laplace transform of a cumulative distribution function
F(x) with F(0)= 0, that is,

ψ(t)=
∫ ∞

0
e−xtdF(x), t≥ 0. (14)

Then the Archimedean copula C is expressed as

C(u1, . . . , un)=ψ

(
n∑
i=1

ψ−1(ui)

)
, (u1, . . . , un) ∈ [0, 1]n,

where ψ−1 is the inverse function of the generator ψ . See Nelsen (2006),
McNeil and Nešlehová (2009) and Xie et al. (2017) for more details.

In the following, we show that an Archimedean copula with the genera-
tor (14) is a special multivariate composite copula. Rewrite (14) as ψ(t)=
E[e−F−1(U)·t], t≥ 0, where U is a Uniform [0,1] random variable We define
fi(x, y)= exp (−ψ−1(x)F−1(y)), (x, y) ∈ [0, 1]2, i= 1, . . . , n.

From (14), we know that ψ(t), t≥ 0 is decreasing. Then ψ−1(x), x ∈ [0, 1] is
decreasing. Thus, fi(x, y)= exp (−ψ−1(x)F−1(y)), (x, y) ∈ [0, 1]2, i= 1, ..., n are
increasing functions w.r.t. x. Furthermore, for any x ∈ [0, 1] and i= 1, ..., n, it
holds that∫ 1

0
fi(x, y)dy=

∫ 1

0
exp (−ψ−1(x)F−1(y))dy=ψ(ψ−1(x))= x.

Hence, we conclude that functions fi(x, y)= exp (−ψ−1(x)F−1(y)), (x, y) ∈
[0, 1]2, i= 1, ..., n satisfy Assumptions A.1 and A.2.

Let the component copulas B=� and C =M, that is, U1 = · · · =Un =U ,
where U is a Uniform [0,1] random variable. Then

B
f◦C(u1, ..., un)

=E[B( exp (−ψ−1(u1)F−1(U)), . . . , exp (−ψ−1(un)F−1(U)))]

=E

[
exp

(
−

n∑
i=1

ψ−1(ui)F
−1
X (U)

)]

=ψ
( n∑
i=1

ψ−1(ui)
)
, (u1, . . . , un) ∈ [0, 1]n.

It is an Archimedean copula with the generator ψ .
In summary, if the generator of an Archimedean copula can be written as an

inverse of Laplace transform of a cumulative distribution function, then this

Archimedean copula is also a special multivariate composite copula B
f◦C with

the component copulas B=� and C =M.
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3.3 Asymmetric copulas in Liebscher (2008) and max-copula in Zhao and
Zhang (2018)

A function D : [0, 1]→ [0, 1] is called a distortion function if D is increas-
ing, continuous and satisfies D(0)= 0, D(1)= 1. Let g1i, g2i, i= 1, . . . , n be
distortion functions satisfying g1i(x)g2i(x)= x, x ∈ [0, 1] and

fi(x, y)=
⎧⎨⎩0, 0≤ x< g−1

2i (y),

g1i(x), g−1
2i (y)≤ x≤ 1,

where g−1
2i (y)= inf{x : g2i(x)≥ y}, y ∈ [0, 1]. Since distortion functions g1i(x)

and g2i(x), x ∈ [0, 1] are increasing and continuous, the functions fi(x, y),
(x, y) ∈ [0, 1]2, i= 1, ..., n are increasing and right-continuous w.r.t. x when y
is fixed. Moreover, for any x ∈ [0, 1] and i= 1, ..., n, it holds that∫ 1

0
fi(x, y)dy=

∫ 1

0
(0I{0≤x<g−1

2i (y)} + g1i(x)I{g−1
2i (y)≤x≤1})dy= g1i(x)g2i(x)= x.

Thus functions fi(x, y), (x, y) ∈ [0, 1]2, i= 1, ..., n satisfy Assumptions A.1 and
A.2. Noting that for each i= 1, . . . , n,

f [−1]
i (x|·, y)=

⎧⎨⎩0, x= 0,

max{g−1
1i (x), g

−1
2i (y)}, x ∈ (0, 1],

where g−1
1i (x)= inf{u:g1i(u)≥ x}, x ∈ [0, 1], and ( f [−1]

1 (V1|·,U1), . . . , f
[−1]
n

(Vn|·,Un)) has the distribution B
f◦C, it yields that

B
f◦C(u1, ..., un)

= P( f [−1]
1 (V1|·,U1)≤ u1, . . . , f

[−1]
n (Vn|·,Un)≤ un)

= P(max{g−1
11 (V1), g

−1
21 (U1)} ≤ u1, . . . , max{g−1

1n (Vn), g
−1
2n (Un)} ≤ un)

= P(g−1
11 (V1)≤ u1, . . . , g

−1
1n (Vn)≤ un)P(g

−1
21 (U1)≤ u1, . . . , g

−1
2n (Un)≤ un)

=B(g11(u1), . . . , g1n(un))C(g21(u1), . . . , g2n(un)), (u1, . . . , un) ∈ [0, 1]n.

It is an asymmetric copula presented by Liebscher (2008),0988 and it is also
considered by Mazo et al. (2015) and Durante and Sempi (2016) recently.
Furthermore, for each i= 1, . . . , n, letting g1i(x)= xc and g2i(x)= x1−c with
a constant c ∈ (0, 1), it yields

B
f◦C(u1, ..., un)=B(uc1, ..., u

c
n)C(u

1−c
1 , ..., u1−cn ), (u1, . . . , un) ∈ [0, 1]n.

It is a max-copula introduced by Zhao and Zhang (2018). The max-copula is
capable of modeling asymmetric dependence as well as joint tail behavior.

In conclusion, the asymmetric multivariate copulas in Liebscher (2008)
and the max-copula in Zhao and Zhang (2018) are also special multivariate
composite copulas of type (1).
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4 NUMERICAL ILLUSTRATION AND EMPIRICAL ANALYSIS

4.1 Numerical results

For understanding the characteristics of multivariate composite copulas, some
numerical results are provided in the following. First, we explain the conver-
gence characteristic of multivariate composite copulas through scatter plots,
Kendall’s τ and Spearman’s ρ, then we illustrate the reproduction characteris-
tics and continuity characteristics of multivariate composite copulas.

4.1.1 Convergence of multivariate composite copulas
The Clayton copula, the Gumbel copula, and the Frank copula are
three important classes of Archimedean family (Nelsen, 2006; McNeil and
Nešlehová, 2009). First, we choose these three classes of copulas as the compo-
nent copulas B, C, and the copula D, respectively. To be more specific, let
bivariate copulas B and C be the Gumbel copula and the Clayton copula,
respectively, that is, for the parameters α ∈ [1,∞) and β ∈ [− 1,∞]\{0},

B(u, v;α)= exp [− ((− ln (u))α + (− ln (v))α)1/α], (u, v) ∈ [0, 1]2,

C(u, v;β)= (max{u−β + v−β − 1, 0})−1/β , (u, v) ∈ [0, 1]2 .

Choose functions f1(x, y)= f2(x, y)=D2D(x, y;γ ), where D(x, y;γ ) is a Frank
copula with parameter γ . Setting α = 3 and β = 1, we give the scatter plots

of bivariate composite copula B
f◦C to illustrate the convergence of the multi-

variate composite copulas. From the stochastic mechanism of the multivariate
composite copula given in Theorem 2.1 and the simulation method presented
in Subsection 2.2, we generate 8000 samples of the bivariate composite copula

B
f◦C for different γ and compare them with samples of component copulas

B, C, and C̄. The scatter plots are present in Figure 1.
The most widely known scale-invariant measures of association are

Kendall’s τ and Spearman’s ρ, both of which “measure” a form of dependence
known as concordance (Nelsen, 2006). For a bivariate copula A, the Kendall’s
τ and Spearman’s ρ are defined as τ = 4E[A(U ,V )]− 1 and ρ = 12E[UV ]− 3,
respectively, where U and V are Uniform [0,1] random variables whose joint
distribution function is A. In Table 1, we present the values of Kendall’s τ and

Spearman’s ρ of the bivariate composite copula B
f◦C for different γ .

The values of Kendall’s τ and Spearman’s ρ presented in Table 1 as well as
the scatter plots illustrated in Figure 1 show the convergence of the bivariate

composite copula B
f◦C presented in Theorem 2.4 and Proposition 2.10.

Table 1 shows that both Kendall’s τ and Spearman’s ρ of the bivariate com-

posite copula B
f◦C increase as γ increases if γ < 0, and decrease as γ increases

if γ > 0. From Table 1, we can also see that both Kendall’s τ and Spearman’s

ρ of the bivariate composite copula B
f◦C tend to the corresponding values of
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TABLE 1.

MEASURES OF ASSOCIATION FOR THE DIFFERENT PARAMETER γ , WHERE B IS A GUMBEL
COPULA WITH α= 3, C IS A GLAYTON COPULA WITH β = 1, AND FUNCTIONS

f1(x, y)= f2(x, y)=D2D(x, y;γ ), WHERE D IS A FRANK COPULA WITH PARAMETER γ .

γ Kendall’s τ Spearman’s ρ γ Kendall’s τ Spearman’s ρ

–300 0.3208632 0.4621779 300 0.3208789 0.4622554
–100 0.3214540 0.4629320 100 0.3218142 0.4633139
– 10 0.3834792 0.5428360 10 0.3867831 0.5471431
–1 0.6477913 0.8310887 1 0.6498370 0.8344805
–0.1 0.6641596 0.8449373 0.1 0.6644589 0.8453837
–0.01 0.6643699 0.8452449 0.01 0.6644092 0.8452867

FIGURE 1. The scatter plots of the composite copula B
f◦C for different γ , where B is a Gumbel copula with

parameter α = 3, C is a Clayton copula with parameter β = 1 and f1(x, y)= f2(x, y)=D2D(x, y;γ ), D is a
Frank copula with parameter γ .
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TABLE 2.

MEASURES OF ASSOCIATION FOR THE GUMBEL COPULA
WITH α= 3, THE CLAYTON COPULA WITH β = 1, AND THE

SURVIVAL CLAYTON COPULA WITH β = 1.

Kendall’s τ Spearman’s ρ

Gumbel copula 0.6666667 0.8481670
Clayton copula 0.3333333 0.4784902
Survival Clayton copula 0.3333333 0.4784902

the Gumbel copula B, the Clayton copula C, or the survival Clayton copula C̄
as γ approaches zero, ∞ or −∞.

The convergence characteristic is also presented in the scatter plots of the

bivariate composite copula B
f◦C. The scatter plots presented in Figure 1(a)–

(c) are very similar. When γ is big enough, the scatter plots of the bivariate

composite copula B
f◦C presented in Figure 1(d)–(e) are similar to that of the

component copula C presented in Figure 1(f) ; when γ is small enough, the

scatter plots of the bivariate composite copula B
f◦C presented in Figure 1(g)–

(h) are similar to that of the survival copula C̄ presented in Figure 1(i).

4.1.2 Reproduction and continuity of multivariate composite copulas
We choose functions f1(x, y)= f2(x, y)=D2D(x, y;θ), where D is a FGM
copula with the parameter θ , that is, D(x, y;θ)= xy(1+ θ(1− x)(1− y)), θ ∈
[− 1, 1]. In this case, the functions fi(x, y), (x, y) ∈ [0, 1]2, i= 1, 2 satisfy the
condition (9). Let the component copula B be a bivariate Frank copula
with parameter γ . Choosing the copula C to be �, M and W , respec-

tively, we present the scatter plots of the bivariate composite copula B
f◦C in

Figure 2 to illustrate the continuity given in Theorem 2.3 and the reproduction
characteristics given in Proposition 2.9.

From Figure 2(a)–(c), we can see that the scatter plots of the bivariate com-

posite copula B
f◦� are very similar to that of the product copula � when

γ is close to zero. When γ is big enough, the scatter plots of the bivariate

composite copula B
f◦M presented in Figure 2(d)–(e) are similar to that of the

Fréchet–Hoeffding upper bound M presented in Figure 2(f), and when γ is

small enough, the scatter plots of the bivariate composite copula B
f◦W pre-

sented in Figure 2(g)–(h) are similar to that of Fréchet–Hoeffding lower bound
W presented in Figure 2(i).

4.2 Empirical example

In this subsection, we analyze the Yield to Maturity data of one-year
Chinese treasury bond and five-year Chinese treasury bond. The multivariate
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FIGURE 2. The scatter plots of the composite copula B
f◦C for different γ , where B is a Frank copula with

parameter γ , C is the product copula �, the Fréchet–Hoeffding upper boundM and Fréchet–Hoeffding
lower boundW , respectively, and f1(x, y)= f2(x, y)=D2D(x, y;θ), where D is a FGM copula with parameter

θ = 0.5.

composite copula is applied to model the empirical data, and its goodness of
fit is compared with that of the component copula. The Yield to Maturity data
of one-year Chinese treasury bond and five-year Chinese treasury bond are
chosen from 2020/4/20 to 2021/6/302. There are 300 trading days in this period.

We first estimate the marginal distributions empirically and then estimate
the parameters of the copulas by the Maximum Likelihood Estimation (MLE)
method. To be specific, based on the method introduced by Chen and Fan

2
The data can be downloaded from the website: https://yield.chinabond.com.cn/cbweb-mn/yield_

main?locale=en_US.
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(2006), the Yield to Maturity of one-year Chinese treasury bond R1Y
t and five-

year Chinese treasury bond R5Y
t can be converted into pseudo-samples Ût and

V̂t, where

Ût = 1
n+ 1

n∑
k=1

I{R1Y
k ≤R1Y

t }, V̂t =
1

n+ 1

n∑
k=1

I{R5Y
k ≤R5Y

t }, t= 0, . . . , n, (15)

and n is the size of the data. In our data set, n= 300. Then the pseudo-samples
(Ût, V̂t), t= 0, . . . , n are used to estimate the parametric copula Â(u, v) by
MLE method.

The scatter-plot for the pseudo-samples (Ût, V̂t) is presented in Figure 2.
From this figure, we find out that the scatter-plot for the pseudo-samples
of Yield to Maturity data of one-year Chinese treasury bond and five-year
Chinese treasury bond is similar to the one for the simulation of the Student t
copula (Nelsen, 2006). Thus, two component copulas are chosen as Student t
copulas. Our intention is to compose these two component copulas, and then
use the constructed composite copula to fit the empirical data well.

Now, we choose two bivariate copulas D1,D2 and set fi(x, y)=D2Di(x, y),

(x, y) ∈ [0, 1]2, i= 1, 2. FromTheorem 2.1 and Theorem 2.2,B
f◦C is a bivariate

composite copula. For showing the connection with copulas D1 and D2, we

write B
f◦C as B

D
C, that is,
B

f◦C(u, v)=B
D
C(u, v)=E[B(D2D1(u,U1),D2D2(v,U2))],

where the joint distribution of the random vector (U1,U2) is C. Now we fit the

data by the bivariate composite copula B
D
C. Suppose that the copulas B, D1,

and D2 are absolutely continuous and their density functions are b, d1, and d2,

respectively. Then the density function of B
D
C is

b
D
 c(u, v)=

∫
[0,1]2

b(D2D1(u, u1),D2D2(v, u2))d1(u, u1)d2(v, u2)dC(u1, u2).

We estimate the parameters of copula B
D
C by MLE method. Letting obser-

vations be (x1, y1), ..., (xn, yn), the log-likelihood function is

l(X ,Y ;
)=
n∏
i=1

b
D
 c(xi, yi;
)

=
n∏
i=1

∫
[0,1]2

b(D2D1(xi, u1),D2D2(yi, u2))d1(xi, u1)d2(yi, u2)dC(u1, u2),

where 
 is the parameter vector of log-likelihood function. The component
copula B is taken as a Student t copula with v= 2 degrees of freedom and the
dependence parameter ζ1, and the component copula C is taken as another
Student t copula with v= 2 degrees of freedom and the dependence parameter
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TABLE 3.

THE VALUES OF AIC AND BIC FOR THE FITTED STUDENT t COPULA AND BIVARIATE
COMPOSITE COPULA B

D
C, WHERE THE COMPONENT COPULAS B, C ARE CHOSEN AS
STUDENT t COPULAS WITH DIFFERENT PARAMETERS, AND D1, D2 ARE CHOSEN AS

GAUSSIAN COPULAS WITH THE SAME PARAMETER.

Copula k n ln L̂ AIC BIC

B
D
C(D= (D1,D2)) 3 300 331.0104 –656.0208 –644.9095

Student t copula 1 300 316.4871 –630.9742 –627.2704

ζ2. Since the Gaussian copula is widely used to model the dependence structure
in finance and insurance (Li, 2000; Brigo et al., 2014), then D1 and D2 are
chosen as Gaussian copulas with the same parameter γ . Then the parameter

= (ζ1, ζ2, γ ). The estimated parameter vector 
̂ of the bivariate composite

copula B
D
C is 
̂= (ζ̂1, ζ̂2, γ̂ )= (0.97513, 0.40869,−0.01474).

To compare the goodness of fit of the bivariate composite copulas B
D
C

with the ones of the other copulas, we also fit the data by the component
copula, that is, the Student t copula with v= 2 degrees of freedom and the
dependence parameter ρ. The fitted Student t copula satisfies ρ̂ = 0.9372.

Furthermore, in order to take the number of parameters into account for
comparing different models on real data, the goodness of fit based on the
Akaike Information Criterion (AIC) and the Bayesian Information Criterion
(BIC) are discussed, respectively, where the two criteria are defined, respec-
tively, as

AIC= 2k− 2 ln (L̂) and BIC= k ln (n)− 2 ln (L̂),

here n is the sample size, k is the number of free parameters in the copula,
and L̂ is the maximized value of the likelihood function for the estimated cop-
ula. In Table 3, we show the values of AIC and BIC for the fitted composite

copula B
D
C and the fitted component copula (Student t copula). From these

numerical results, we find out that the values of both AIC and BIC for the

fitted composite copula B
D
C are smaller than these for the fitted Student t

copula. Therefore, the multivariate composite copula performs better than the
component copula based on both AIC and BIC.

From Figure 2, we also find out that there exists an obvious dependence
between the empirical data of one-year Chinese treasury bond and five-year
Chinese treasury bond (2020/4/20–2021/6/30) on the lower tail part. The tail
dependence is one of the most important characteristics of financial data
(Coval et al., 2009; Donnelly and Embrechts, 2010), and the tail dependence
coefficient is a copula-based measure of association to measure the tail depen-
dence (McNeil et al., 2015). For a bivariate copula A, its lower tail dependence
coefficient is defined as λL = limu→0+ A(u, u)/u provided that the limit exists.
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FIGURE 3. The scatter-plot for the pseudo-samples of Yield to Maturity data of one-year Chinese treasury
bond and five-year Chinese treasury bond (2020/4/20-2021/6/30).

The lower tail dependence coefficient λL is in [0, 1], and large tail dependence
coefficient corresponds to strong correlation on the tail part. The Student t
copula has a positive tail dependence coefficient, and thus can capture the
tail dependence of financial data (Schloegl and O’Kane, 2005; Jondeau and
Rockinger, 2006). In the following, it is shown that the multivariate composite
copula also fits the empirical data well on the tail part.

In order to analyze the fitting effect on the tail part, we calculate the

empirical quantile lower dependence functions λ̂L(u)= Â(u,u)
u for the fitted

composite copula B
D
C with the estimated parameter vector 
̂= (ζ̂1, ζ̂2, γ̂ )=

(0.97513, 0.40869,−0.01474) and the fitted component copula (Student t cop-
ula) with the estimated parameter ρ̂ = 0.9372, respectively. The fitting effect of
two different copulas on the lower tail part is shown in Figure 3. As shown
in Figure 3, there exists a significant dependence between the empirical data
of one-year Chinese treasury bond and five-year Chinese treasury bond on the

lower tail part, and the bivariate composite copula B
D
C fits the empirical data

better than the Student t copula on the tail part.

Hence, the multivariate composite copula B
D
C fits the empirical data more

accurately. Furthermore, the multivariate composite copula B
f◦C is quite flex-

ible to model different dependency structures because the component copulas
B, C and the function vector f can be chosen conveniently. In conclusion,
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FIGURE 4. The values of Â(u,u)
u , u ∈ (0.05, 0.30) for different copulas, where “t” represents the Student t

copula and “MCC(D=Gaussian)” represents the multivariate composite copula with the Gaussian copula.

the multivariate composite copula B
f◦C has a great deal of advantages and

flexibility in the potential applications.

5 CONCLUSIONS

In this paper, we proposed the family of multivariate composite copulas, which
is a unified composition of two arbitrary n-dimensional copulas linked by a
vector of bivariate functions. A necessary and sufficient condition on the vector
of bivariate functions guaranteeing the composite function to be a copula has
been provided, and a general approach to construct the vector satisfying this
condition via bivariate copulas has also been presented.

The multivariate composite copula has a clear probability structure and
enjoys tractable theoretical properties, such as marginality, monotonicity, lin-
earity, symmetry, and exchangeability.Moreover, it enjoys the characteristic of
uniform convergence when the component copulas or the bivariate functions
in the vector are uniformly convergent. The multivariate composite copula
also has the reproduction property for its component copulas by choosing
some special vectors. Some known copulas belong to the family of multivariate
composite copulas, such as the family of Archimedean copulas, the Bernstein
copula, the composite Bernstein copula, and the max-copula. Empirical results
have shown that the multivariate composite copula fits the empirical data
of one-year Chinese treasury bond and five-year Chinese treasury bond well
on both the tail parts and the whole region. Hence, the multivariate com-
posite copula has a great deal of advantages and flexibility in the potential
applications.
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A APPENDIX

A.1 Proof of Lemma 2.1

(1) Note that the properties of the right-continuous univariate functions have
been proved by Durrett (2010). We give a more detailed discussion to ver-
ify that the result still holds for the general inverse functions of the bivariate
functions. Fix y ∈ [0, 1]. Assume that f [−1](u|·, y)≤ x, u ∈ [0, 1]. Since f (x,y) is
increasing w.r.t. x when y is fixed, then f ( f [−1](u|·, y), y)≤ f (x, y). Noting also
that f (x,y) is right-continuous w.r.t. x when y is fixed, we have

u≤ f ( inf{x ∈ [0, 1]:f (x, y)≥ u}, y)= f ( f [−1](u|·, y), y), u ∈ [0, 1].

Thus, we have u≤ f (x, y), u ∈ [0, 1].
On the contrary, assume that u≤ f (x, y), u ∈ [0, 1]. For fixed y ∈ [0, 1], if

f [−1](u|·, y)> x, then inf{x ∈ [0, 1]:f (x, y)≥ u}> x. Thus, we have f (x, y)< u
due to that f (x,y) is increasing and right-continuous w.r.t. x when y is fixed,
which leads to a contradiction with the assumption u≤ f (x, y). Then, we have
f [−1](u|·, y)≤ x, u ∈ [0, 1].

(2) The proof is similar to that of part (1), and it is omitted.
(3) Fix y ∈ [0, 1]. Assume that x≤ f (−1)(u|·, y), u ∈ [0, 1]. If f (x, y)< u, u ∈

[0, 1], then there exists a constant ε > 0 such that f (x− ε, y)< u, u ∈ [0, 1] due
to that f (x,y) is left-continuous and decreasing w.r.t. x when y is fixed. Thus,
x− ε ≥ inf{x ∈ [0, 1]:f (x, y)< u} = f (−1)(u|·, y), which leads to a contradiction
with the assumption x≤ f (−1)(u|·, y). Then, we have u≤ f (x, y), u ∈ [0, 1].

On the contrary, let u≤ f (x, y), thus x 
∈ {x ∈ [0, 1]:f (x, y)< u}, which leads
to x≤ f (−1)(u|x, ·) directly.
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(4) The proof is similar to that of part (3), and it is omitted.

A.2 Proof of Proposition 2.2

(a) Since the proof of n≥ 3 is similar to that of n= 2, we only verify that the

multivariate composite copula B
f◦C admits a bounded density when n= 2.

First, denote � as

�=B( f1(u1 + x1,U1), f2(u2 + x2,U2))−B( f1(u1 + x1,U1), f2(u2,U2))

−B( f1(u1,U1), f2(u2 + x2,U2))+B( f1(u1,U1), f2(u2,U2))

From the above definition, we have

∂2

∂u1∂u2
E[B( f1(u1,U1), f2(u2,U2))]= lim

(x1, x2)→(0,0)
E

[
�

x1x2

]
= lim

(x1, x2)→(0,0)
E

[
�

( f1(u1 + x1,U1)− f1(u1,U1))( f2(u2 + x2,U2)− f2(u2,U2))
×

f1(u1 + x1,U1)− f1(u1,U1)
x1

× f2(u2 + x2,U2)− f2(u2,U2)
x2

]
.

Since B has a bounded density b and fi(x, y), i= 1, 2 have bounded partial
derivative w.r.t. x, then all three terms in the expectation presented above are
bounded. According to the dominated convergence theorem, the order of oper-

ations of the limit and the expectation can be exchanged. Then B
f◦C has a

bounded density functionE[b( f1(u1,U1), f2(u2,U2)) ∂
∂u1

f1(u1,U1) ∂
∂u2

f2(u2,U2)].
(b) Similar to the proof of (a), from the Equation (3), we can verify that the

multivariate composite copula B
f◦C has a density function.

(c) From the Equation (4), we can verify similarly that the multivariate

composite copula B
f◦C has a density function.
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