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This paper presents low-order models of Rayleigh–Bénard convection of a radiating gas
in a cubic cell, in the Rayleigh number range Ra ∈ [106–108]. Numerical simulations
are carried out for an air–H2O–CO2 mixture assumed to be radiating (coupled case) or
transparent (uncoupled case). When coupling with radiation, it is shown that the kinetic
energy of the flow and the thermal energy increase. At Ra = 106, planar flow states are
observed when radiation is taken into account, while diagonal flow states prevail in the
uncoupled case. From Ra ≥ 3 × 107, quasi-stable diagonal flows are observed in both
coupled and uncoupled simulations, with occasional brief reorientations. The reorientation
frequency seems to decrease with the Rayleigh number and seems to increase with
radiation. A proper orthogonal decomposition (POD) analysis reveals that 11 of the first 12
POD eigenfunctions are preserved over the Rayleigh number range, whatever the coupling
conditions. However, POD eigenvalues are higher with radiation. POD-based low-order
models are derived at different Rayleigh numbers, for both coupled and uncoupled cases.
Radiative transfer effects are added in the model in an a priori fashion, from uncoupled
simulation data. Coupled POD models predict the energy increase with radiation and
the loss of stability of the diagonal rolls at Ra = 106. Uncoupled and coupled models
correctly reproduce reorientation frequencies over the Rayleigh number range. Finally, a
generalised model is derived, solely based on uncoupled simulation data at Ra = 107 and
energy scaling laws. This generalised model captures the change in dynamics associated
with radiation effects and variations in Rayleigh number, except at Ra = 106.
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1. Introduction

The problem of Rayleigh–Bénard convection (RBC) consists of a fluid layer confined
between two horizontal plates, heated from below and cooled from above. This problem
has been widely studied to model buoyancy-driven flows encountered in geophysics or
engineering, and to understand the fundamental properties of turbulence. In the turbulent
regime, the complexity comes from the chaotic nature of the flow and the wide range of
time and length scales on which velocity and temperature fields vary.

The dynamics of turbulent RBC becomes more complicated when the working fluid is
a radiating gas, which emits and absorbs thermal radiation. It is the case, for instance,
in the atmosphere or in confined environments such as buildings, where the fluid (the
air) contains radiating molecules in the infrared such as water vapour or carbon dioxide.
Radiative transfer effects on turbulent convection were first investigated by Spiegel (1957),
who showed that radiation acts as a dissipation mechanism of temperature fluctuations.
This damping effect prevails over conductive dissipation for large and intermediate
turbulent scales and vanishes for small turbulent scales from a critical length scale
depending on the radiative properties of the medium (Soufiani 1991). However, in the case
of thermally driven flow, radiation also affects the mean temperature gradient and buoyant
motion. Several researchers have reported an increase of the mean kinetic energy of the
flow due to an increase of the mean potential energy in various configurations involving a
radiating gas: in a differentially heated cavity (Kogawa et al. 2017), in a Rayleigh–Bénard
cavity (Soucasse, Rivière & Soufiani 2014a) or for a confined plume generated by
a linear heat source (Wang et al. 2020). The cost of radiative transfer computations
in a turbulent medium restricts the numerical investigation of radiation effects due to
the angular, spectral and spatial dependence of the radiation field. Experimental works
are also challenging to undertake, as non-intrusive techniques that do not perturb the
radiation field are required. Therefore, the question arises whether a low-order model could
capture radiation effects on RBC, given that radiative transfer rather affects the large and
intermediate scales of the flow.

In the case of a non-radiating gas, the large-scale motion in RBC, also referred to as
large-scale circulation (LSC), has aroused a great interest as it intermittently changes
orientation. In cylindrical cells with aspect ratio of unity (diameter equal to height),
azimuthal rotation of the LSC and reversal of the LSC (sudden change of direction in
the same circulation plane) have been reported by experimental studies (Sreenivasan,
Bershadski & Niemela 2002; Brown, Nikolaenko & Ahlers 2005) and numerical studies
(Benzi & Verzicco 2008; Mishra et al. 2011). In cubic cells, low-frequency reorientations
of the LSC have been observed between four quasi-stable states, corresponding to the
LSC lying in the two diagonal vertical planes of the cube associated with clockwise and
anticlockwise motion (Vasiliev et al. 2016; Foroozani et al. 2017). For both cylindrical and
rectangular cells, it has been shown that the LSC dynamics is very sensitive to the aspect
ratio (Xi & Xia 2008; Vasiliev & Frick 2011; Ni, Huang & Xia 2015).

Several models have been proposed to explain the LSC dynamics in RBC for
non-radiating gases. Brown & Ahlers (2007, 2008) derived a stochastic two-equation
model to predict the time evolution of the strength and the azimuthal orientation of the
LSC in cylindrical geometries. This model has been extended for cubical geometries, by
the addition of a potential term which drives the azimuthal angle towards the vertical edges
of the cube and the LSC in the diagonal planes (Bai, Ji & Brown 2016; Ji & Brown 2020).
Another phenomenological model for reversals in a square cell has been proposed by
Araujo, Grossmann & Lohse (2005). From this model, the authors have established a range
of Prandtl and Rayleigh numbers where reversals occur and a scaling law for the reversal
frequency. Other modelling approaches rely on modal decomposition of temperature
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and velocity fields based on Fourier modes (Chandra & Verma 2011), Koopman modes
(Giannakis et al. 2018) or proper orthogonal decomposition (POD) modes (Bailon-Cuba,
Emran & Schumacher 2010; Podvin & Sergent 2012).

Proper orthogonal decomposition is often used in fluid mechanics to extract large-scale
coherent structures from numerical or experimental data. The POD modes form an
orthogonal basis, which is optimal to represent the flow regarding its energy content.
A low-order model for the flow can be easily derived from a Galerkin projection
of the Navier–Stokes equation onto the orthogonal POD basis. In a previous study
we have developed a POD model for capturing reorientations of the LSC in a cubic
Rayleigh–Bénard cell at a Rayleigh number Ra = 107 (Soucasse et al. 2019). In the
presence of radiating species, we have shown that radiation effects can be taken into
account by a POD model, from a rigorous projection of the radiative source term of the
energy balance onto the POD basis (Soucasse et al. 2020). However, a frequent pitfall
of POD models is that their prediction capabilities are restricted in the neighbourhood
of the flow parameters associated with the data. This paper aims to examine at which
extent radiative transfer effects can be predicted from uncoupled simulation data across
a wide range of Rayleigh numbers in a cubic cell. Direct numerical simulations (DNS),
coupled or uncoupled with radiation, have been performed in the range Ra ∈ [106–108],
where reorientations are more likely to be observed (Sugiyama et al. 2010). A radiating
air–H2O–CO2 mixture at room temperature has been considered to make our study
relevant for building applications. Numerical simulations are presented in § 2 and
associated POD analysis is performed in § 3. Uncoupled POD models (non-radiating case)
and predicted coupled POD models (radiating case) are derived in §§ 4 and 5 at different
Rayleigh numbers. Finally, a general model across the Rayleigh range, solely based on
uncoupled simulation data at Ra = 107 and energy scaling laws, is developed in § 6.

2. DNS

2.1. Problem set-up
We consider the natural convection flow of an air–H2O–CO2 mixture confined in a
cubic Rayleigh–Bénard cell, with top and bottom isothermal walls at Tcold and Thot and
adiabatic vertical walls. The six walls are characterised by uniform grey emissivities
ε, the horizontal isothermal walls being black (ε = 1) and the vertical adiabatic walls
being perfectly diffuse reflecting (ε = 0). The parameter controlling the flow regime is the
Rayleigh number defined by

Ra = gβ�TL3

νf a
, (2.1)

where g is the gravitational acceleration, β = 1/T0 is the thermal expansion coefficient
(T0 being the mean temperature), L is the size of the cavity, νf is the kinematic
viscosity, a is the thermal diffusivity and �T = Thot − Tcold is the temperature difference
between hot and cold walls. We investigate the Rayleigh range Ra ∈ [106–108] in which
reorientations are likely to be observed (Sugiyama et al. 2010). We vary the Rayleigh
number by changing the temperature difference �T and other parameters are fixed. In
order to make our study relevant for building applications, we consider an air–H2O–CO2
mixture at a mean temperature of T0 = 300 K, of molar composition XH2O = 0.02 and
XCO2 = 0.001, and the cavity size is set to L = 1 m, so that the temperature difference
vary in the range �T ∈ [1.1 × 10−2–1.1] K. Thermophysical properties are assumed to
be uniform (low temperature differences), not affected by the small amount of water
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vapour and carbon dioxide, and constant at all Rayleigh numbers (thermal conductivity
λ = 0.0263 W m−1 K−1, thermal diffusivity a = 2.25 × 10−5 m2 s−1, Prandtl number
Pr = νf /a = 0.707).

Mass, momentum and energy balance are made dimensionless using the cavity size L,
the reference time L2/(a

√
Ra) and the reduced temperature θ = (T − T0)/�T and write

under Boussinesq approximation as

∇ · u = 0, (2.2)

∂u
∂t

+ u · ∇u = −∇p + Prθez + Pr√
Ra

∇2u, (2.3)

∂θ

∂t
+ u · ∇θ = 1√

Ra

(
∇2θ + Prad

)
, (2.4)

where u = (u, v,w) is the dimensionless velocity vector and p the dimensionless motion
pressure. The velocity is zero on all walls. The temperature is set to 0.5 and −0.5,
respectively, on the bottom and top walls. The conductive flux −∇θ · n is zero on the
four lateral walls, as these walls have a zero radiative emissivity.

The dimensionless radiative power Prad in (2.4) accounts for absorption and emission
of thermal radiation by the medium and is defined by

Prad(r) = L2

λ�T

∫
ν

κν

(∫
4π

Iν(Ω, r) dΩ − 4πI◦
ν (T(r))

)
dν, (2.5)

where Iν(Ω, r) is the actual radiative intensity at frequency ν, direction Ω and position r.
I◦
ν (T(r)) is the Planck equilibrium intensity at temperature T and κν is the absorption

coefficient of the medium. In accordance with the Boussinesq approximation, the
absorption coefficient is assumed to be spatially uniform. The Planck equilibrium intensity
is given by

I◦
ν (T(r)) = 2hν3

c2
0

1

exp
(

hν
kBT(r)

)
− 1

, (2.6)

where h is the Planck constant, kB is the Boltzmann constant and c0 the speed of light in
vacuum. The radiative intensity field is obtained by solving the radiative transfer equation

Ω · ∇Iν(Ω, r) = κν
(
I◦
ν (T(r))− Iν(Ω, r)

)
. (2.7)

The associated boundary condition at boundary points rw for grey diffuse reflecting walls
writes as

Iν(Ω, rw) = εI◦
ν (T(r

w))+ 1 − ε

π

∫
Ω ′·n<0

Iν(Ω ′, rw)|Ω ′ · n| dΩ ′, (2.8)

for directions Ω such that Ω · n > 0, n being the wall normal directed towards the inside
of the domain.

It is worth noting that the flow equations are written and solved in dimensionless form,
while the radiative transfer equations are treated in dimensional form since we consider
an actual molecular radiating gas. A key parameter for radiation is the optical thickness
τν = κνL that varies over several orders of magnitude in our model. Considering a grey
fluid (wavelength-independent absorption) would facilitate a parametric study of radiation
effects but would fail to represent the behaviour of actual radiating gases.
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2.2. Numerical methods
The numerical methods used for solving the coupled system of (2.2)–(2.4) and (2.7) are
presented and validated in detail by Soucasse, Rivière & Soufiani (2016) and Soucasse
et al. (2020). We briefly mention here the main features of the coupled algorithm.

Navier–Stokes equations are solved using a Chebyshev collocation method (Xin & Le
Quéré 2002). Domain decomposition along the vertical direction is carried out by the
Schur complement method to make the computations parallel (Xin, Chergui & Le Quéré
2008). Time integration is performed through a second-order semi-implicit scheme. The
velocity divergence-free condition is enforced using a projection method. The radiative
transfer equation is solved using a ray-tracing algorithm, made parallel by distributing
the rays among the different processors. The 4π angular domain is uniformly discretised
using 900 rays from volume cell centres and 450 rays from boundary cell centres. The
Absorption distribution function (known as ADF) model (Pierrot et al. 1999) is used to
take into account the spectral variations of the absorption coefficient of the air–H2O–CO2
mixture: it consists in substituting the integration over the frequency with an integration
over the values of the absorption coefficient, for which a coarse logarithmic discretisation
is sufficient. In the present study, the values of the absorption coefficient have been
logarithmically discretised in 16 classes and the accuracy of the model has been shown
to be better than 1 % (Soucasse et al. 2012). Model parameters and computational details
for the considered mixture are given by Soucasse (2013) and Soucasse et al. (2012).

Direct numerical simulations have been performed, considering the air–H2O–CO2
mixture as radiating (coupled case) or transparent (uncoupled case, XH2O = 0, XCO2 = 0
and thus Prad = 0). Simulation parameters are given in table 1. Five different Rayleigh
numbers have been considered: Ra = {106; 3 × 106; 107; 3 × 107; 108}. The convection
mesh is built from Chebyshev collocation points. We have checked that the number of
points in the boundary layers is sufficient regarding the criterion proposed by Shishkina
et al. (2010). Up to Ra = 107, the radiation mesh is built from the convection mesh,
coarsened by a factor of two in each direction of space. For Ra = 3 × 107 and Ra = 108,
the radiation mesh is coarsened by a factor of four in each direction of space compared with
the convection mesh and we use a radiation subgrid model (Soucasse, Rivière & Soufiani
2014b) to account for the radiation of small spatial scales. This subgrid model has been
validated in various configurations and its accuracy is approximately a few per cent on
radiative power and wall fluxes. It has been used for the simulation of coupled natural
convection and radiation in a differentially heated cavity at Ra = 3 × 109 (Soucasse et al.
2016). Finally, an explicit coupling is carried out between flow and radiation calculations
and the radiation source term is updated every 10 convection time steps δt (the flow time
step is imposed by numerical stability constraints and does not correspond to significant
variations of the temperature field). Time integration is carried out over a period �t once
the asymptotic regime (statistically steady) is reached.

It should be mentioned here that radiation calculations are much more computationally
expensive than convection calculations (the CPU time is approximately 30 times greater
in the coupled case).

2.3. Radiative transfer effects
Radiative transfer effects on RBC at Ra = 107 have been discussed in a previous work
(Soucasse et al. 2020). When the fluid emits and absorbs radiation, heat transfer is no
longer restricted to the boundary layer region. An energy exchange between convection
and radiation in the core of the cavity leads to a significant increase of the convective
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Ra Convection mesh Radiation mesh δt × 103 �t

106 81 × 81 × (4 × 21) 40 × 40 × 40 5 10 000
3 × 106 81 × 81 × (4 × 21) 40 × 40 × 40 2.5 10 000
107 81 × 81 × (4 × 21) 40 × 40 × 40 2.5 10 000
3 × 107 121 × 121 × (6 × 21) 30 × 30 × 30 a 2/1.5b 5000
108 161 × 161 × (8 × 21) 40 × 40 × 40 a 1 5000

Table 1. Simulation parameters: convection mesh, radiation mesh, convection time step δt and integration time
interval �t in the asymptotic regime. For the convection mesh, numbers in parenthesis indicate the number of
spatial domains times the number of collocation points in the vertical in each domain.
aRadiation subgrid model is used; bδt is 2 × 10−3 in the uncoupled simulation and 1.5 × 10−3 in the coupled

simulation.

flux compared with the uncoupled case. The LSC is strengthened and both mean and
turbulent kinetic energies increase. Temperature fluctuations also increase but to a lesser
extent because of radiative damping.

The same effects are observed at other Rayleigh numbers. The total kinetic energy
ek = ∫

0.5 〈u · u〉 dr, the total thermal energy eθ = ∫
0.5 〈θθ〉 dr, the conductive flux at

the walls qcond = ∫ 〈∂θ/∂z〉 dx dy and the convective flux in the core (z = 0.5) qconv =√
Ra

∫ 〈wθ〉 dx dy are displayed in figure 1 as a function of the Rayleigh number (where
〈·〉 denotes the time average). It can be noticed that the kinetic energy and the convective
flux significantly increase in the presence of radiation while the thermal energy and
the conductive flux are not much affected. However, radiation effects diminish with
the Rayleigh number. This can be explained by the following scaling analysis. If the
temperature dependence of the Planck equilibrium intensity is linearised around the mean
temperature T0, an order of magnitude for the dimensional radiative power is 16κPσT3

0�T ,
where κP = ∫

ν
κνI◦

ν (T0) dν × (π/σT4
0 ) is the Planck mean absorption coefficient of the

mixture, σ is the Stefan–Boltzmann constant. Therefore, the radiative source term in the
energy balance (2.4) roughly scales as

Prad
√

Ra
∼ O

(
1√
Ra

16κPσT3
0 L2

λ

)
, (2.9)

and decreases in Ra−1/2 while the order of magnitude of the convective term u · ∇θ
remains constant.

The unsteady dynamics of RBC in a cubic container is characterised by low-frequency
reorientations of the LSC (Bai et al. 2016; Foroozani et al. 2017), that can be monitored
using the time evolution of the x and y components of the angular momentum with respect
to the cavity centre r0:

L =
∫
(r − r0)× u dr. (2.10)

Figure 2 shows the time evolution of components Lx and Ly at the different Rayleigh
numbers for the coupled and uncoupled cases. Note that time integration is shorter for the
two highest Rayleigh numbers.

The uncoupled case is characterised at each Rayleigh number by quasi-stable diagonal
states, with abrupt reorientations between these states. A diagonal state means that
the LSC lies in one of the two diagonal planes x = y or x = 1 − y, with clockwise
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Figure 1. Total kinetic energy ek, total thermal energy eθ , conductive flux at the wall qcond and convective flux
in the core qconv as a function of the Rayleigh number for coupled (red squares) and uncoupled (black triangles)
cases.
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Figure 2. Time evolution of x and y components of angular momentum Lx (blue lines) and Ly (red line).

or anticlockwise motion (four diagonal states are available), and is characterised by
a non-zero equilibrium value for both Lx and Ly components. Sudden reorientations
between two diagonal states occur when either Lx or Ly changes sign, which corresponds
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z

yx

z

yx
(a) (b)

Figure 3. Instantaneous flow field at Ra = 106 and t = 5000 for uncoupled (a) and coupled (b) cases.
Streamlines and isotherms θ = {0;±0.05;±0.1}. In the uncoupled case (panel (a)) a diagonal state is observed
(Lx > 0, Ly > 0) while in the coupled case (panel (b)) a planar state is observed (Lx 
 0, Ly < 0).

to a rotation of π/2 of the LSC around the vertical axis. A detailed description of
the reorientation process in the cubic cell and associated flow patterns is provided by
Foroozani et al. (2017) and Vasiliev et al. (2019). Although the overall dynamics is
similar over the Rayleigh number range, it can be noticed that the stability of the diagonal
states increases with the Rayleigh number: the flow spends less time around zero angular
momentum and reorientations are less frequent when the Rayleigh number increases. At
Ra = 106, the dynamics is more chaotic with quick passing around zero of either Lx or Ly
components. At Ra = 108, the oscillation amplitude of Lx and Ly around the equilibrium
value is weaker and only one reorientation event is observed during the sequence (only
two of the four diagonal states are visited in this case).

In the coupled case, a significant change in dynamics compared with the uncoupled case
is noticeable at Ra = 106, where quasi-stable planar states are observed. A planar state
means that the LSC lies either in x planes or y planes, with clockwise or anticlockwise
motion (four planar states are available), and is characterised by a zero equilibrium value
for one of the two components Lx or Ly. Figure 3 shows a snapshot of temperature and
velocity fields at Ra = 106. In the uncoupled case (figure 3a) a diagonal state is observed
as the LSC lies in the diagonal plane x = 1 − y with Lx > 0, Ly > 0. The fluid flows up
along the right vertical edge (x; y) = (0; 1) and flows down along the left vertical edge
(x; y) = (1; 0). This main diagonal roll is slightly tilted and small counter-rotating rolls
are noticeable in the top right corner (x; y; z) = (0; 1; 1) and in the bottom left corner
(x; y; z) = (1; 0; 0). In the coupled case (figure 3b) a planar state is observed as the LSC
lies in y planes with Lx 
 0, Ly < 0. The fluid flows up along the front plane x = 1 and
flows down along the rear plane x = 0. Counter-rotating structures are noticeable near
the top horizontal edge (x; z) = (1; 1) and the bottom horizontal edge (x; z) = (0; 0). For
Ra ≥ 3 × 107, quasi-stable diagonal states are observed with radiation. However, for a
given Rayleigh number, the dynamics is more chaotic and reorientations seem to be more
frequent when the flow is coupled with radiation. It is worth noticing here that, although
stable planar states are not observed in the uncoupled case, they have been reported at low
Rayleigh numbers (Puigjaner et al. 2004).

In order to quantify radiative transfer effects on the temporal dynamics we have
computed two characteristic frequency scales: the circulation frequency fc (or circulation
time τc = 1/fc) and the reorientation frequency fr (or reorientation time τr = 1/fr).
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fc × 102 fr × 103

Ra Uncoupled Coupled Uncoupled Coupled

106 2.12 2.86 1.3 ± 0.3 N/A
3 × 106 2.06 2.47 2.2 ± 0.4 N/A
107 2.05 2.33 1.4 ± 0.4 1.7 ± 0.4
3 × 107 2.03 2.27 0.4 ± 0.3 1.3 ± 0.5
108 2.03 2.19 N/A 1.1 ± 0.5

Table 2. Circulation frequency fc and reorientation frequency fr for the uncoupled and coupled cases at
different Rayleigh numbers. The value N/A is indicated when it was not possible to obtain a value (less than
two switches observed at Ra = 108 – uncoupled case, many rapid switches at Ra = 3 × 106 – coupled case) or
when planar flow states are observed at Ra = 106 – coupled case.

The circulation frequency is a high frequency associated with the rotation frequency of
the LSC roll. Frequencies are reported in table 2. The circulation frequency is estimated
using a reference ellipsoid path length in the diagonal plane and a reference velocity. In the
uncoupled case, the circulation frequency is nearly constant with the Rayleigh number as
convective time units are used. In the coupled case, the increase of the kinetic energy leads
to an increase of the circulation frequency. This increase compared with the uncoupled
case diminishes with the Rayleigh number. The reorientation frequency is estimated by
tracking the zeros of the filtered time evolution of Lx and Ly to avoid small-scale noise.
Data in table 2 confirm the observations of figure 2: the reorientation frequency seems to
decrease with the Rayleigh number and, at a given Rayleigh number, seems to be higher
when radiation is taken into account.

It should be noted here that the uncertainty associated with reorientation frequencies
is significant, owing to the few reorientations. If we assume a Poisson distribution of
reorientation events (as it has been observed for reversals in cylindrical cells Sreenivasan
et al. (2002)), the uncertainty on the number of reorientations Nr would be ±√

Nr, and
the uncertainty on the reorientation frequency fr would be ±√

( fr/�t), �t being the
integration time. Uncertainties on reorientation frequencies are given in table 2. Relative
uncertainties range from 20 % (Ra = 3 × 106, uncoupled case) to 70 % (Ra = 3 × 107,
uncoupled case). These uncertainties moderate the conclusions on radiative transfer
effects on the reorientation frequency, especially at Ra = 107 where the increase of the
reorientation frequency with radiation is not statistically significant. However, the decrease
of the reorientation frequency with the Rayleigh number in the uncoupled case seems to
be statistically significant in the range 3 × 106 ≤ Ra ≤ 108 and has been reported in other
works (Sugiyama et al. 2010).

3. POD

3.1. Methodology
The POD in fluid mechanics aims at finding an optimal basis of spatial eigenfunctions
φn(r) to represent an unsteady flow variable vector U(r, t) of size M on a low-dimensional
subspace. The POD eigenfunctions or POD modes φn(r) are solutions of the following
eigenvalue problem (Berkooz, Holmes & Lumley 1993):

∫ M∑
k=1

〈
Um(r, t)Uk(r′, t)

〉
φk

n(r
′) dr′ = λnφ

m
n (r), (3.1)
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where 〈·〉 denotes the time average. They form an orthonormal basis allowing the
decomposition

U(r, t) =
∞∑

n=1

an(t)φn(r), (3.2)

where the projection coefficients an(t) are statistically uncorrelated and their energy
is equal to the eigenvalue such that 〈an(t)am(t)〉 = δnmλn, where δnm is the Kronecker
symbol. The eigenvalue associated with a POD mode is thus a measure of its energy
content and the objective is to restrict the decomposition (3.2) to a few modes with the
largest eigenvalues so that the associated low-order subspace captures most of the energy
of the field U(r, t). To take into account the coupling between velocity and temperature
fields in thermal convection, we define the flow variable vector as U = {u, γ θ} (M = 4),
where γ is a rescaling factor

γ =
√〈∫

u(r, t) · u(r, t) dr∫
θ2(r, t) dr

〉
, (3.3)

such that velocity and temperature fields have the same energy (Podvin & Le Quéré 2001).
The POD modes thus combine velocity and temperature: φn = {φu

n, γ φ
θ
n }.

Equation (3.1) is solved in practice using the method of snapshots (Sirovich 1987).
A snapshot set of 1000 samples U(r, ti) is extracted from each simulation at discrete
times ti with a fixed sampling period of 10 dimensionless time units for 106 ≤ Ra ≤ 107

and a fixed sampling period of five dimensionless time units for 3 × 107 ≤ Ra ≤ 108.
This sampling period might seem large compared with the transition time between two
states and the few reorientations, but according to Podvin & Sergent (2017), precursor
events for reorientations are associated with large-scale interactions during relatively large
time scales (of the order of the reorientation period). However, we have seen in the
time evolution of the angular momentum components in figure 2 that the four possible
quasi-stable flow states (planar or diagonal) were not necessarily visited or not equally
represented during the time sequence, although there is no physical evidence suggesting
that these states are not equiprobable. This is an artefact owing to the relatively short
simulation time compared with the time scale separating two reorientations, especially at
high Rayleigh number. In order to enforce an equal statistical weight for each flow state
and to improve the convergence of the POD method, we have built enlarged snapshot sets,
obtained by the action of the symmetry group of the problem on the original snapshot
sets. The use of statistical symmetries of the flow in POD is discussed at length by Moin
& Moser (1989) and Holmes, Lumley & Berkooz (1996).

In the uncoupled case, the problem satisfies four independent reflection symmetries Sx,
Sy, Sz and Sd with respect to the planes x = 0.5, y = 0.5, z = 0.5 and x = y (Puigjaner
et al. 2008). In the coupled case, radiative transfer should break the Sz symmetry (radiative
emission being proportional to T4), but owing to the weak temperature gradients, nonlinear
effects are negligible so that we can consider that the Sz symmetry is still satisfied.
These four elementary symmetries generate a symmetry group of 16 elements. This
allows us to multiply the number of snapshot by a factor of 16. In conclusion, for each
simulation (coupled, uncoupled, 106 ≤ Ra ≤ 108), we work on an enlarged snapshot set
made of 16 000 samples (1000 original snapshots multiplied by 16 after applying all the
symmetries).
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Figure 4. The POD eigenspectrum obtained from uncoupled simulations, normalised such that
∑

n λn = 1
(a) and POD eigenspectrum ratio between coupled and uncoupled results (b).

3.2. Energy spectra
The POD spectra obtained in the uncoupled case at different Rayleigh numbers are shown
in figure 4(a). Each spectrum is normalised such that

∑
n λn = 1 but since the total POD

energy is nearly constant with the Rayleigh number in the uncoupled case, it is relevant to
compare the spectra between them. The mode ordering roughly corresponds to a ranking of
the eigenfunctions in terms of a characteristic spatial scale, and we can therefore associate
the low-order modes with the largest spatial scales and the high-order modes with the
smallest spatial scales. Examination of figure 4 suggests that the POD spectra can be split
into three parts: (i) the large scales for n � 10 which will correspond to the modes retain
in the models in § 4; (ii) the intermediate scales for 10 � n � N, with N such that the N
first POD modes capture 95 % of the total energy (N increases with the Rayleigh number,
it goes from 250 at Ra = 106 to approximately 5000 at Ra = 108); (iii) the small scales for
n � N. At high Rayleigh number (Ra = 3 × 107, Ra = 108), there is a different behaviour
of large scales and intermediate scales, with a very fast decay of the low-order modes
followed by a very slow decay in the rest of the spectrum owing to the turbulent nature of
the flow. On the contrary, at low Rayleigh number (Ra = 106, Ra = 3 × 106), the energy
contained in the intermediate scales is proportionately more important and a fast decay
of the energy of the small scales is observed. Interestingly, the spectrum decay is roughly
log–linear in the intermediate range and this will be used in § 6 to model the variations of
the POD spectrum with the Rayleigh number.

Figure 4(b) shows the ratio between the coupled POD spectrum and the uncoupled
POD spectrum at each Rayleigh number. This ratio is always greater than one (except
for one mode at Ra = 106) which confirms that the coupled POD spectrum captures the
energy increase associated with radiation effects. However, this energy increase depends
on the Rayleigh number and on the part of the spectrum. At low Rayleigh number, the
energy increase is proportionately higher in the large-scale range, while at high Rayleigh
number, the energy increase is proportionately higher in the intermediate scale range. In
the small-scale range, the spectrum ratio is nearly constant and remains greater than one.
As expected from the discussion in § 2.3, the ratio between coupled and uncoupled total
POD energies decreases with the Rayleigh number as radiation effects weaken: it is equal
to 1.59 at Ra = 106 and equal to 1.19 at Ra = 108.

A last parameter characterising the POD spectra is the factor γ , the values of which are
reported in table 3. This factor γ (corresponding to the ratio between mechanical energy
and thermal energy, see (3.3)) increases with the Rayleigh number and is always greater
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Ra 106 3 × 106 107 3 × 107 108

Uncoupled 0.95 1.10 1.30 1.50 1.75
Coupled 1.17 1.24 1.42 1.62 1.85

Table 3. The γ factor for uncoupled and coupled cases at different Rayleigh numbers.

in the coupled case at a given Rayleigh number, which is consistent with the observations
of figure 1.

3.3. Spatial eigenfunctions

3.3.1. Uncoupled case, Ra = 106

Figure 5 shows the first 12 POD eigenfunctions at Ra = 106 in the uncoupled case,
which correspond to nine spatial structures (three of the modes are doubly degenerated).
The figure displays the contribution of each structure to the mean convective heat flux
in the vertical direction which can be written as

√
Ra

∑
n λnφ

θ
nφ

w
n owing to the POD

decomposition. Five spatial structures have been already highlighted in previous works
(Soucasse et al. 2019, 2020) and correspond to the first seven POD modes at Ra = 107.
They are labelled M, Lx/y, D, BLx/y and C. We briefly mention their properties and physical
meaning.

(i) The M mode corresponds to the mean flow: it is made of two counter rotating torus
and it is thermally stratified.

(ii) The Lx and Ly modes form a pair of degenerate modes (only the Lx mode is shown
in figure 5, the Ly mode is its image by a rotation of π/2 around the vertical axis).
They correspond to a single large-scale roll lying in either x planes or y planes. When
combined, the Lx and Ly modes from a single large-scale diagonal roll.

(iii) The D mode is an 8-roll mode that transports fluid from one corner to the other and
strengthens the circulation along the diagonal.

(iv) The BLx and BLy modes (pair of degenerate modes) are constituted of two
longitudinal corotating structures around the x axis or the y axis. They connect the
core of the cell with the horizontal boundary layers.

(v) The C mode is a corner-roll mode which favours planar flow states and was found to
promote reorientations between diagonal flow states.

In addition, four other spatial structures are noticeable in figure 5. They are labelled D∗,
C∗, BL∗

x/y and M∗ because they share common features with modes D, C, BLx/y and M.

(i) The D∗ mode is a 4-roll mode that shares some similarities with the D mode, as
it transports fluid from one corner to the other. However, the rolls of the D∗ mode
extend from bottom to top, while the rolls of the D mode are confined in either the
upper half or the lower half of the cell.

(ii) The C∗ mode is another corner-roll mode. Unlike the C-mode these corner rolls
extend from top to bottom and are not confined in a half-cell.

(iii) The BL∗
x and BL∗

y modes (pair of degenerate modes) are made of two longitudinal
counter-rotating structures around the x or the y axis. A two-dimensional version of
these POD modes has been highlighted by Podvin & Sergent (2017) in the square
cell (symmetry-breaking mode labelled S).
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Figure 5. First 12 modes at Ra = 106 (uncoupled case). Streamlines and isosurfaces of the contribution to
the mean convective heat flux φθφw = 0.25, coloured by mode temperature. For degenerate modes, only the
x-oriented one is displayed. Colour map for mode temperature ranges from −0.5 (blue) to 0.5 (red).
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Figure 6. First 12 modes at Ra = 108 (uncoupled case). Streamlines and isosurfaces of the contribution to the
mean convective heat flux φθφw = 0.25 (0.025 for the Lz mode), coloured by mode temperature. For degenerate
modes, only the x-oriented one is displayed. Colour map for mode temperature ranges from −0.5 (blue) to 0.5
(red).

(iv) The M∗ mode is a single toroidal structure linking the top and bottom walls. The
fluid flows up along the adiabatic vertical walls and flows down in the centre of the
cell.

3.3.2. Uncoupled case, Ra = 108

Figure 6 shows the first 12 POD eigenfunctions at Ra = 108 in the uncoupled case. Despite
the large difference in Rayleigh number, most of the modes observed at Ra = 106 are
retrieved. One can identify again modes M, Lx/y, D, BLx/y, C, as well as modes D∗, C∗ and
BL∗

x/y. However, the mode ordering is not exactly the same. In addition, streamlines and
isosurfaces of convective heat flux in figure 6 are closer to the walls than those in figure 5,
as boundary layers are thinner when the Rayleigh number increases. The M∗ mode is no
longer observed, but a new mode, the Lz mode, appears. This mode is constituted of a
single roll lying in z plane. This is a pure mechanical mode (‖φu‖ 
 1) and one can note
that the convective heat flux associated with the Lz mode is much weaker than that of the
other modes.
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3.3.3. Other coupled and uncoupled cases, similarities
For the other cases studied (other Rayleigh numbers, coupled with radiation), the first 12
POD modes belong to the set of the thirteen POD modes described above: M, Lx/y, D,
BLx/y, C, D∗, C∗, BL∗

x/y, M∗ and Lz. The list of the modes, ordered according to their
eigenvalue, is given in table 4. A remarkable feature is that the eigenfunctions are globally
preserved when radiation is taken into account, although the associated eigenvalues are
higher than in the uncoupled case. In the range 107 ≤ Ra ≤ 108, there are very few
differences in the mode ordering, whatever the coupling conditions. It can be noted than
the Lz mode becomes more important when the Rayleigh number increases and when
radiation is considered. In the range 106 ≤ Ra ≤ 3 × 106, the mode ordering is less stable.
Indeed, the eigenvalues of the modes are closer to each other, given the slower decay of
the POD spectrum at low Rayleigh number. The ordering observed in the coupled case at
Ra = 106 is the most different from the others: the D mode is no longer in fourth position,
the BLx/y modes are also downshift far from the first modes and both M∗ and Lz modes
are present. This is not surprising as this case is the only one associated with quasi-stable
planar flow states.

The question arising is: How close are two eigenfunctions of the same nature but
belonging to different POD bases (for instance the D mode in the uncoupled case at
Ra = 106 and the D mode in the coupled case at Ra = 3 × 107)? To answer this, we
have taken the POD basis of the uncoupled case at Ra = 107 as a reference and we have
computed, for a given POD basis B, the differences compared with this reference using
the following error measure:

eB =
√√√√ 12∑

n=1

1
12

(
1 −

∣∣∣∣
∫

φB
n (r) · φ

ref
n (r)

∣∣∣∣ dr
)
, (3.4)

where φ
ref
n are the eigenfunctions of the reference POD basis and φB

n are the eigenfunctions
of the POD basis B, reordered according to the mode ranking of the reference case. For
the Lz mode, which is not contained in the reference basis, we have taken the Lz mode
obtained at Ra = 107 in the coupled case as the reference. Values of indicator eB are
reported in table 4. The differences compared with the reference basis are rather small and
are approximately 1 % or less, except for the coupled case at Ra = 106. This result will
be key for the development of a POD model across the Rayleigh range (see § 6) and for
predicting radiative transfer effects.

A last comment on the 13 identified modes can be made regarding their contribution
to the global angular momentum and their symmetry properties, given in table 5. The
symmetry analysis sheds light on mode interactions in the low-order models and the
angular momentum is used to monitor the flow reorientations. The modes contributing
to the x and y components of the angular momentum are of course the LSC modes Lx and
Ly but also, in a lesser extent the boundary layer modes BLx and BLy. Furthermore, the
Lx and the BLx modes have the same symmetry properties, as well as the Ly and the BLy
modes. It denotes strong interactions between these two pairs of modes, corresponding to
the connection between the LSC and the boundary layers. Interestingly, all the degenerate
modes break the Sd symmetry and each pair possesses opposite symmetry properties in
Sx and Sy. In addition, one can note that D∗, C∗, BL∗

x/y and M∗ modes have the same
symmetry properties in Sx, Sy and Sd as their companion mode D, C, BLx/y and M, but
have opposite symmetry properties in Sz.
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106 3 × 106 107 3 × 107 108

Uncoupled Coupled Uncoupled Coupled Uncoupled Coupled Uncoupled Coupled Uncoupled Coupled

M M M M M M M M M M
Lx/y Lx/y Lx/y Lx/y Lx/y Lx/y Lx/y Lx/y Lx/y Lx/y
D C∗ D D D D D D D D
D∗ M∗ D∗ C∗ BLx/y BLx/y BLx/y BLx/y BLx/y Lz

BLx/y C C∗ BLx/y C C C Lz Lz BLx/y
C∗ D BLx/y C C∗ Lz Lz C C C

BL∗
x/y Lz C M∗ D∗ C∗ C∗ C∗ C∗ C∗

C BL∗
x/y BL∗

x/y D∗ BL∗
x/y D∗ D∗ D∗ BL∗

x/y BL∗
x/y

M∗ BLx/y M∗ BL∗
x/y M∗ BL∗

x/y BL∗
x/y BL∗

x/y D∗ D∗

1.14 5.60 0.516 0.974 N/A 0.406 0.526 0.735 1.23 1.37

Table 4. List of the first 12 POD modes for each case studied, ordered from top to bottom. The last line of the table gives the error measure eB in percentage between the
POD basis and the reference POD basis (Ra = 107, uncoupled) as defined in (3.4).
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Mode name Lx Ly Lz Symmetries

M — — — Sx Sy Sz Sd
Lx X — — Sx ASy ASz —
Ly — X — ASx Sy ASz —
D — — — ASx ASy Sz Sd
BLx X — — Sx ASy ASz —
BLy — X — ASx Sy ASz —
C — — — Sx Sy Sz ASd
D∗ — — — ASx ASy ASz Sd
BL∗

x — — — Sx ASy Sz —
BL∗

y — — — ASx Sy Sz —
C∗ — — — Sx Sy ASz ASd
M∗ — — — Sx Sy ASz Sd
Lz — — X ASx ASy Sz ASd

Table 5. Name, angular momentum and symmetry properties of the 13 identified modes. An X indicates
a non-zero angular momentum. Here Sx/y/z/d and ASx/y/z/d denote, respectively, a symmetry and an
antisymmetry with respect to the planes x = 0.5, y = 0.5, z = 0.5 and x = y.

4. Uncoupled models

In this section we derive low-order models for the uncoupled case from uncoupled DNS
data. We consider two different truncations: a 6-D truncation, with modes Lx/y, D, BLx/y
and C, and a 11-D truncation, with in addition modes D∗, C∗, BL∗

x/y, M∗ or Lz modes. The
mode M, corresponding to the mean flow, is always taken as constant.

4.1. Construction
Proper orthogonal decomposition low-order models are derived from Galerkin projection
of Navier–Stokes equations ((2.3)–(2.4)) onto a POD basis set. Using the decomposition
(3.2), this yields a system of ordinary differential equations for the mode amplitudes an(t)
of the form

dan(t)
dt

= (LB
nm + LD

nm)am(t)+ Qnmpam(t)ap(t)+ Tn(t), (4.1)

where LB
nm and LD

nm are linear coefficients associated with buoyancy and diffusion and
Qnmp are quadratic coefficients associated with advection. They are directly determined
from spatial modes φn, see Appendix A. Here Tn(t) is a closure term, which models
the effect of the truncation and corresponds to an equivalent dissipation term. Following
Podvin & Sergent (2015), the closure term is expressed as a combination of linear and
cubic terms, and by the addition of noise such that

Tn(t) = LA
nm

⎛
⎝1 + 1

〈k〉
∑
p≥2

|ap(t)|2
⎞
⎠ am(t)+ σεn(t), (4.2)

where LA
nm are adjustable linear parameters, 〈k〉 is the time average of the energy of the

fluctuating modes in the truncation and εn(t) is a random noise perturbation of amplitude
one.

The adjustable coefficients LA
nm were determined for equilibria an(t) = aeq

n
corresponding to diagonal states from the DNS (daeq

n /dt = 0). We retain the following
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equilibrium: aeq
M = √

λM; aeq
Lx/y

= √
λLx/y ; aeq

D = √
λD; aeq

BLx/y
= −ηBL

√
λBLx/y and aeq

n = 0
for the other modes. Note that boundary layer modes BLx/y are negatively correlated with
LSC modes Lx/y and their equilibrium value in absolute value |aeq

BLx/y
| is smaller than the

standard deviation of their fluctuations (ηBL < 1). The coefficient ηBL is approximately
0.15–0.2 except at Ra = 108 where it is much weaker (ηBL = 0.05). A large value of η
represents a strong connection between the boundary layers and the LSC in the diagonal
state. The coefficients LA

nm can only be determined unambiguously for modes M, Lx,y, D
and BLx,y, which are non-zero at equilibrium. For modes which are zero at equilibrium, the
sum of linear contributions was adjusted to balance quadratic interactions with the mean
mode, in order to avoid excessive energy. We checked that the model behaviour did not
change when small changes were made in the adjustable parameters.

The noise level was estimated as follows:

σ = C
∑2000

8 λn√∑7
2 λn

, (4.3)

where C = 0.016 is a constant, determined at Ra = 107 from a scaling analysis (Soucasse
et al. 2019). The ratio in (4.3) gives a rough estimate of the energy transferred from the
low-order truncation to the next higher-order scales. This ratio reaches a maximum at
Ra = 3 × 106 and is lowest for the highest Rayleigh numbers. The noise level is indicated
in Appendix A.

4.2. Time integration
The dynamics of modes Lx/y,D, C and BLx/y have already been discussed in previous
work for the case Ra = 107 (Soucasse et al. 2019). We checked that the general features of
the phase portraits held over the range of Rayleigh numbers considered. In particular, the
following points were established.

(i) Quasi-steady states constituting the LSC are characterised by roll Lx/y and boundary
layer modes BLx/y connecting the boundary layer and the core region.

(ii) The mode D indicates along which diagonal the LSC takes place and tends to
stabilise the LSC.

(iii) The corner mode C is essential to reproduce reorientations in the model. The
frequency of reorientations also depends on the coupling between the boundary
layer modes and the roll modes, as well as on the noise level. A higher intensity
of the boundary layer mode makes the LSC less likely to become unstable.

Figure 7 shows histograms of modes Lx and Ly at different Rayleigh numbers obtained
with the 11-D model and with the DNS. They have been computed from time series of
mode amplitudes aLx and aLy and represent the probability density function of the flow in
the phase space Lx–Ly. It can be seen that the model captures the change in dynamics with
the Rayleigh number: the planar states are more frequently visited at low Rayleigh number
and the stability of the diagonal states increases at high Rayleigh number.

This is further confirmed by the values of reorientation frequencies. Frequencies of
zero crossings for modes Lx, Ly and D, for the uncoupled DNS and model are reported
in table 6. Frequency fD corresponds to the reorientation frequency fr defined in § 2.3,
as the D mode changes sign at each reorientation. Values for the model reported in the
table were obtained for an integration time of 40 000 time units. Uncertainties on model
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Figure 7. Histograms of modes Lx and Ly: DNS (a,c,e,g,i) and model (b,d, f,h,j). Uncoupled case with
integration time for the model equal to �t (DNS). Rayleigh numbers are: (a,b) Ra = 106; (c,d) Ra = 3 × 106;
(e, f ) Ra = 107; (g,h) Ra = 3 × 107; (i,j) Ra = 108.
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Uncoupled model

Ra fLx × 103 fLy × 103 fD × 103

DNS model DNS model DNS model
106 0.8 1.1 0.9 1.1 1.3 1.7
3 × 106 1.4 1.4 1.0 1.1 2.2 1.7
107 0.8 0.8 0.7 1.0 1.4 1.3
3 × 107 N/A 0.4 N/A 0.3 0.4 0.8
108 N/A N/A N/A 0.05 N/A 0.14

Table 6. Average frequencies fn = 1/τn in the uncoupled DNS and in the uncoupled model where τn is the
average time between zeros of an (restricted to times larger than 5τc ). The value N/A is indicated when it was
not possible to obtain a value (less than two switches observed at higher Rayleigh numbers). Integration time
for the model is 40 000 time units.

10–4 10–3 10–2 10–1

f
10–2

10–1

100

101

102

Lx

DNS
model

10–4 10–3 10–2 10–1

f

10–2

10–1

100

D*

(a) (b)

Figure 8. The DNS and model spectra at Ra = 3 × 106 for mode Lx (a) and mode D∗ (b).

frequencies are approximately four to eight times smaller than uncertainties on DNS
frequencies, according to the respective integration times. It can be noted in table 6 that
the model captures the decrease of reorientation frequencies with the Rayleigh number and
fairly reproduces the frequencies observed in the DNS. Discrepancies between DNS and
model results are of the order of the uncertainty on DNS frequencies (see table 2). At the
higher Rayleigh numbers, we found that it is not always possible to determine reorientation
frequencies in the DNS as the available simulation time is relatively small compared with
the characteristic time between reorientations. However, it was possible to obtain values
for the model since the integration time could be easily extended.

Time spectra of roll mode Lx and higher-order mode D∗ are represented in figure 8 and
compared with the DNS at Ra = 3 × 106. A good agreement is observed for frequencies
up to 10−2. However, the model is not able to predict the local increase of the circulation
frequency fc ∼ 2 × 10−2 and the energetic content at higher frequencies is underpredicted,
which is not surprising given the small size of the truncation.

4.3. Effects of the additional modes
We study in this section the effects of the additional modes included in the 11-D
truncation: modes D∗, C∗, BL∗

x/y, M∗ (for Ra ≤ 107) and Lz (for Ra ≥ 3 × 107). Modes
Lz and M∗, respectively, correspond to a toroidal and poloidal circulation in the cube.
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Figure 9. (a,b) Phase portrait of M∗ and CC∗ in the DNS (a) and in the model (b) at Ra = 107; (c,d) the
phase portrait of C and DLz in the DNS (c) and in the model (d) at Ra = 108.

These differences correspond to different interactions with other modes: the evolution of
mode Lx,y is determined by the interaction of M∗ with mode BL∗

x,y, as well as mode Lz with
mode BLx,y. Moreover, the dynamics of M∗ depends on interactions between modes L and
BL, modes BL and BL∗ with the same orientation (x or y), as well as interactions of mode
C and C∗, and D and D∗. In contrast, the evolution of Lz depends on cross-interactions of
modes C and D, as well as C∗ and D∗, and modes L and BL corresponding to different
directions (x and y). Phase portraits in figure 9 show that the correlations observed in the
DNS are reproduced by the model. More quantitatively, the correlation coefficient between
modes C and product DLz at Ra = 108 is equal to 0.66 in both the model and the DNS. At
Ra = 107, the correlation coefficient between modes M∗ and product CC∗ is equal to 0.5
in the model and 0.3 in the DNS.

To get further insights on the effects of the additional modes, we have compared the
dynamics of the model using either the 11-D truncation or the 6-D truncation. Generally
speaking, the results obtained with the 6-D truncation are very similar to those obtained
with the 11-D truncation, which means the additional modes do not alter the general
dynamics of the reorientations. Reorientation frequencies given in table 6 are retrieved
with the 6-D model within the same accuracy. This small influence of the additional modes
is further confirmed by a linear stability analysis performed around diagonal equilibria for
both truncations at each Rayleigh number. The resulting eigenvalue spectra are given in
figure 10. First, it can be noted that the shape of the spectrum is globally preserved with
the Rayleigh number. Comparison of the 6-D and the 11-D truncations shows that the 6-D
reproduces the essential features of the 11-D truncation, that is: (i) a pair of very stable
eigenvalues associated with an eigenvector with a strong component along the D mode;
(ii) two real eigenvalues associated with eigenvectors coupling Lx/y and BLx/y modes;
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Figure 10. Linear stability analysis spectrum around the (Lx,Ly) equilibria. Comparison between the 6-D and
11-D truncations of the uncoupled model. Rayleigh numbers are (a) Ra = 106; (b) Ra = 3 × 106; (c) Ra = 107;
(d) Ra = 3 × 107; (e) Ra = 108.

(iii) a pair of eigenvalues close to the stability limit associated with an eigenvector with a
strong C component. This last point confirms the key role of the corner flows associated
with the C mode in the reorientation process, even at low Rayleigh number where the
energy of this mode is proportionately weaker. In addition, the 11-D spectrum contains
one real eigenvalue, associated with either Lz or M∗, and two additional pairs of complex
eigenvalues associated with modes C∗ and BL∗

x/y, and D∗ and BL∗
x/y. These two pairs

of eigenvalues are close to each other, except at Ra = 106, where the real part of the
eigenvalues associated with D∗ and modes BL∗

x/y is much more stable than at all other
Rayleigh numbers.

5. Predicted coupled models

We derive in this section low-order models that include radiation effects. These models
are referred to as predicted coupled models because they only rely on uncoupled DNS
data and correspond to an a priori attempt to model radiation effects.

5.1. Construction
In the framework of the Boussinesq approximation (weak temperature differences), the
temperature dependence of the radiation field can be assumed to be linear. We are therefore
able to define a modal-radiative power Prad

n (r), corresponding to the radiative response to
a temperature eigenfunction φθn (r) and such that Prad(r, t) = ∑

n an(t)Prad
n (r). Using this

decomposition in the energy balance and applying Galerkin projection, a linear radiation
term is obtained and the coupled POD model takes the general form

dan(t)
dt

= (LB
nm + LD

nm + LR
nm)am(t)+ Qnmpam(t)ap(t)+ Tn(t), (5.1)

where LR
nm are linear radiation coefficients. Definition and computation details for

coefficients LR
nm and for the modal radiative power Prad

n (r) are given in Appendix B and
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can be also found in Soucasse et al. (2020). We will assume that the form of the closure
law (see (4.2)) remains valid in the presence of radiation.

Our goal is to build an a priori model of radiative transfer effects based on
uncoupled DNS data and uncoupled POD eigenfunctions. Therefore, model coefficients
are determined as follows:

(i) Coefficients LB
nm, LD

nm and Qnmp are taken from the uncoupled model.
(ii) Coefficients LR

nm are added and computed from uncoupled temperature
eigenfunctions φθn and uncoupled factor γ .

(iii) Adjustable coefficients LA
nm are taken from the uncoupled model. This means we

assume that the energy transfer from the large scales to the small scales is unchanged.

However, equilibrium values of mode amplitude aeq,rad
n are required in the coupled

model to estimate the contribution of the mean mode M, to estimate the fluctuating energy
〈k〉 in (4.2) and to estimate the noise level. They are not known a priori and need to be
predicted. To do so, we use equilibrium relations (daeq,rad

n /dt = 0) for diagonal states,
with the additional radiation terms, the adjustable coefficients being known. Predicted
equilibria ãeq,rad

n for modes M, Lx/y, D and BLx/y are given in table 7 (aeq,rad
n = 0 for the

other modes) and compared with actual coupled equilibria aeq,rad
n and uncoupled equilibria

aeq
n extracted from the DNS. We can see that the effect of radiative coupling is to increase

the energy of the equilibria, by lesser amounts as the Rayleigh number increases. Finally,
the noise level in the coupled model σ rad is determined from the energy increase of the
large-scale modes compared with the uncoupled case

σ rad

σ
=

√√√√√∑
n

(
ãeq,rad

n

)2

∑
n
(
aeq

n
)2 . (5.2)

Noise level values are reported in Appendix A. As expected, the noise level with radiation
σ rad is always greater than the noise level without radiation due to the energy increase.

5.2. Mode energies
The predicted coupled model was then integrated in time, using an 11-D truncation,
leading to predicted amplitudes arad

i . The predicted energy (or predicted eigenvalue) of
the modes with radiative coupling λ̃rad was then determined using:

(a) the ratio ηn determined above for the non-zero equilibrium values ηn =
(ãeq,rad

n /aeq
n )

2 (with n corresponding to modes M, Lx,y,D,BLx,y);
(b) the ratio η̃n predicted from the model η̃n = 〈

(arad
n )2

〉
/
〈
a2

n
〉

for modes which are zero
at equilibria (with n corresponding to modes D∗,C,C∗,BL∗

x,y, Lz or Mz).

Figure 11 compares for each mode and each Rayleigh number the predicted energy λ̃rad
n

with the eigenvalues λn and λrad
n found in the uncoupled and coupled DNS. In addition,

the values of the total energy contained in the first 12 modes are reported in table 8.
Except for the lowest Rayleigh number, corresponding to a large radiative increase which
is overpredicted by the model, the total energy increase is correctly predicted by the
model (within approximately 10 % maximum). Overall, the model tends to overpredict the
amplitude of the BLx/y modes (which are associated with the largest relative increase) and
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Ra M Lx/y D BLx/y

106 aeq
n 0.131 0.071 0.033 −0.0033

aeq,rad
n 0.157 (1.2) 0.111 (1.5) 0.024 (0.7) −0.0027 (0.8)

ãeq,rad
n 0.262 (2.0) 0.089 (1.3) 0.052 (1.6) −0.0069 (2.1)

3 × 106 aeq
n 0.130 0.062 0.025 −0.0026

aeq,rad
n 0.149 (1.15) 0.087 (1.4) 0.030 (1.2) −0.0033 (1.3)

ãeq,rad
n 0.163 (1.25) 0.067 (1.1) 0.030 (1.2) −0.0042 (1.6)

3 × 107 aeq
n 0.122 0.073 0.024 −0.0020

aeq,rad
n 0.134 (1.1) 0.085 (1.2) 0.027 (1.1) −0.0026 (1.3)

ãeq,rad
n 0.130 (1.1) 0.075 (1.0) 0.026 (1.1) −0.0022 (1.1)

108 aeq
n 0.116 0.076 0.024 −0.0008

aeq,rad
n 0.125 (1.1) 0.084 (1.1) 0.025 (1.0) −0.0009 (1.1)

ãeq,rad
n 0.131 (1.1) 0.08 (1.05) 0.026 (1.1) −0.0011 (1.2)

Table 7. Non-zero equilibrium values in the uncoupled (aeq
n ) and coupled (aeq,rad

n ) cases (extracted from the
DNS) and predicted equilibrium values (∼) with the predicted coupled model. Relative ratios compared with
the uncoupled case are indicated in parentheses.

0 2 4 6 8 10 12

n
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10–2

0 2 4 6 8 10 12

n
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10–2
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(a) (b)

(d) (e)

(c)

Figure 11. Predicted energies compared with POD eigenvalues in the uncoupled and coupled DNS. Energies
are ranked according to the mode ordering in the uncoupled simulation. Rayleigh numbers are (a) Ra = 106;
(b) Ra = 3 × 106; (c) Ra = 107; (d) Ra = 3 × 107; (e) Ra = 108.

underpredict that of the Lx/y modes. However, the agreement is generally good, although
the ordering of the modes observed in the coupled DNS is not always captured.

Figure 12 shows histograms of modes Lx and Ly at different Rayleigh numbers obtained
with the coupled predicted model and the coupled DNS. At Ra = 106, the radiative
coupling makes diagonal states unstable, and the LSC in the simulation tends to become
parallel to the cavity sides. This change in dynamics is qualitatively predicted by the
model: it can be seen in the histograms of figure 12 that the system spends considerable
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Ra 106 3 × 106 107 3 × 107 108

∑12
n=1 λn 0.0320 0.0281 0.0277 0.0275 0.0267∑12
n=1 λ

rad
n 0.0548 (1.71) 0.0425 (1.51) 0.0401 (1.44) 0.0353 (1.28) 0.0323 (1.21)∑12

n=1 λ̃
rad
n 0.0986 (3.08) 0.0405 (1.44) 0.0380 (1.37) 0.0388 (1.41) 0.0320 (1.20)

Table 8. Predicted energy (∼) of the first 12 modes compared with eigenvalues in the uncoupled simulation
λn and in the coupled simulation λrad

n . Relative ratios compared with the uncoupled case are indicated in
parentheses.

time near the roll states (Lx = 0 or Ly = 0). This will be further confirmed by the linear
stability analysis in § 5.4. At Ra = 3 × 106, the coupled system seems to spend more time
near the roll states although the diagonal states are still dominant. This is also correctly
captured by the predicted model. Changes due to radiative coupling are less important at
Ra ≥ 107 in both the model and the DNS. At Ra ≥ 3 × 107, very few reorientations are
observed and the amplitude of the oscillations about the equilibrium states decrease.

5.3. Reorientation frequencies
Table 9 compares frequencies of zero crossings for modes Lx, Ly and D, for the coupled
DNS and the predicted coupled model. Generally speaking, a good agreement is observed
between the predicted model and the coupled DNS (discrepancies of 10 %–30 %, of the
order of the uncertainty on DNS frequencies), except at Ra = 108 where the reorientation
frequency is underestimated. We note that results are not given for the coupled case at
Ra = 106 since the diagonal states are no longer observed. We note that at Ra = 3 × 106

large and fast oscillations in the D mode do not make it possible to determine a frequency
in both the coupled simulation and the model. As in § 4.2, values for the model reported
in the table were obtained for an integration time of 40 000 time units.

5.4. Model stability at Ra = 106

A remarkable feature of the predicted coupled model is its ability to predict the loss
of stability of the diagonal rolls for the benefit of the planar rolls at Ra = 106. In fact,
linear stability analysis of the diagonal equilibria for both 6-D and 11-D truncations (see
figure 13) shows that the least stable pair of eigenvalues associated with mode C becomes
markedly unstable with radiative coupling. Integration of the models without noise shows
that in the presence of radiation the now unstable fixed point destabilises towards another
fixed point in the Lx = 0 or Ly = 0 space (also in figure 13) corresponding to roll modes.
We emphasise that both 6-D and 11-D truncations provide very similar results, indicating
that the essential dynamics are captured by the 6-D truncation.

At other Rayleigh numbers, we found that for both 6-D and 11-D truncations the pair
of eigenvectors associated with the corner mode C became less stable when radiation was
taken into account, but their eigenvalue remained negative.

6. Generalised models over the Rayleigh number range

In this section, we develop a generalised model, for both uncoupled and coupled cases,
that infers the dynamics over the Rayleigh number range from uncoupled DNS data at
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Figure 12. Histograms of modes Lx and Ly: DNS (a,c,e,g,i) and model (b,d, f,h,j). Coupled case with
integration time for the model equal to �t (DNS). Rayleigh numbers are (a,b) Ra = 106; (c,d) Ra = 3 × 106;
(e, f ) Ra = 107; (g,h) Ra = 3 × 107; (i,j) Ra = 108.
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Coupled predicted model

Ra fLx × 103 fLy × 103 fD × 103

DNS model DNS model DNS model
3 × 106 1.6 1.5 1.2 1.4 N/A N/A
107 0.9 1.2 0.7 1.0 1.7 1.7
3 × 107 0.4 0.5 0.4 0.5 1.3 0.9
108 1.1 N/A N/A 0.1 1.1 0.2

Table 9. Average frequencies fn = 1/τn in the coupled DNS and in the coupled model where τn is the average
time between zeros of an (restricted to times larger than 5τc). The value N/A is indicated when it was not
possible to obtain a value (less than two switches observed at higher Rayleigh numbers, many rapid switches
at Ra = 3 × 106). Integration time for the model is 40 000 time units.

–0.15 –0.1 –0.05 0 0.05

Re (ω)
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–0.1
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0.3

Im
 (
ω

)

11-D
6-D

–0.10 –0.05 0 0.05 0.10

Lx

–0.10

–0.05

0

0.05

0.10

Ly

Uncoupled 6-D
Uncoupled 11-D
Coupled 6-D
Coupled 11-D

(a) (b)

Figure 13. (a) Linear stability analysis spectrum around the (Lx,Ly) diagonal equilibria for the predicted
coupled model at Ra = 106. (b) Trajectory in the (Lx,Ly) space of the coupled predicted model without noise
from unstable diagonal equilibria: 6-D truncation (black dashed lines) and 11-D truncation (red dotted lines).
Symbols indicate stable fixed point for both coupled and uncoupled models.

Ra = 107 and energy scaling laws. We restrict the models to a 6-D truncation with modes
Lx/y, D, BLx/y and C.

6.1. Uncoupled case
The basic assumption in building the generalised model is that the variations of the
eigenfunctions can be neglected over the Rayleigh number range. The key ingredient is
thus to estimate correctly the distribution of the POD spectrum in order to determine
the equilibria, the adjustable coefficients and the noise level. The form of the uncoupled
generalised model is the same as that of the uncoupled model ((4.1) together with closure
law (4.2)). Model parameters are determined as follows.

(i) Linear and quadratic coefficients LB
nm, LD

nm and Qnmp are directly determined from
a set of POD eigenfunctions φn = {φu

n, γ φ
θ
n }. Here, φu

n and φθn are assumed to be
constant with the Rayleigh number and taken at Ra = 107. The coefficient γ 2 is
assumed to vary with the Rayleigh number according to the following law:

γ 2
∼ 0.032Ra1/4, (6.1)

which is consistent with the scaling of the turbulent fluctuations in the bulk θ∗
∼

Ra−0.14 (Castaing et al. 1989).
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Figure 14. Evolution of the energy λn of the large-scale modes given by the DNS and the large-scale fit (6.2).

(ii) The adjustable coefficients LA
nm are determined from equilibrium relations for a

diagonal state. Equilibrium values aeq
n strongly depend on the Rayleigh number and

are estimated using the following ansatz for the energy λn of the large-scale modes
n ∈ {M, Lx/y,D,BLx,y,C}:

λn = hn log(Ra)+ gn, (6.2)

which is a good approximation at all Rayleigh numbers except the lowest one (Ra =
106), as it can be seen in figure 14. The lowest Rayleigh number was therefore not
taken into account when fitting the coefficients hn and gn. Note that the ratio between
the equilibrium value of modes BLx/y and their amplitude was taken to be constant
and equal to ηBL = 0.2.

(iii) As in § 4, the noise level is determined using (4.3), from the energy of the large
scales and the energy of the intermediate scales. We have highlighted in § 3.2 that the
spectrum decay of the intermediate scales is log–linear and we adopt the following
modelling for their energy:

λn = C(Ra)nα(Ra) with

{
log(C(Ra)) = 1.9 − 0.5 log(Ra),

α(Ra) = −2.0 + 0.07 log(Ra).
(6.3)

The fit was determined from the variations of the spectrum λn with 8 ≤ n ≤ N/2,
with N such that the N first POD modes capture 95 % of the total energy. We have
checked that the asymptotic decay was correctly captured. It can also be noted in
figure 14 that the intermediate-scale fit provides a correct estimation of the energy
of mode C, with a discrepancy between the large-scale and the intermediate-scale
fit of 25 % maximum at the lowest Rayleigh number. Noise levels are reported in
Appendix A.

The uncoupled generalised model was integrated in time for the different Rayleigh
numbers. The measured reorientation frequencies are given in table 10. Overall, the
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uncoupled generalised model

Ra fLx × 103 fLy × 103 fD × 103

DNS model DNS model DNS model
106 0.8 1.7 0.9 1.6 1.3 N/A
3 × 106 1.4 1.4 1.0 1.2 2.2 2.0
107 0.8 0.6 0.7 0.6 1.4 1.1
3 × 107 N/A 0.2 N/A 0.2 0.4 0.4
108 N/A N/A N/A N/A N/A N/A

Table 10. Reorientation frequencies obtained with the uncoupled generalised model. Integration time for the
model is 40 000 time units.

coupled generalised model

Ra fLx × 103 fLy × 103 fD × 103

DNS model DNS model DNS model
3 × 106 1.6 1.6 1.2 1.4 N/A N/A
107 0.9 1.1 0.7 0.9 1.7 1.5
3 × 107 0.4 0.6 0.4 0.5 1.3 1.0
108 1.1 0.9 N/A 1.0 1.1 1.4

Table 11. Reorientation frequencies obtained with the coupled generalised model. Integration time for the
model is 40 000 time units.

model correctly captures the amplitude of the modes and the associated time scales,
except at Ra = 106. At this Rayleigh number, the energy of the large-scale modes is
underestimated by the large-scale fit, which leads to an overestimation of the noise level
and an overestimation of the reorientation frequency. At Ra = 108, no reorientation event
has been detected by the model despite a large integration time.

6.2. Coupled case
Following the procedure described in § 5.1, radiation effects are incorporated in the
generalised model. Model parameters for the coupled generalised model are thus
determined as follows.

(i) Coefficients LB
nm, LD

nm and Qnmp are taken from the uncoupled generalised model.
(ii) Coefficients LR

nm are added and computed from uncoupled temperature
eigenfunctions φθn at Ra = 107 and γ factor modelled by (6.1).

(iii) Adjustable coefficients LA
nm are taken from the uncoupled generalised model. This

allows us to estimate equilibrium values ãeq,rad
n and energies λ̃rad

n for the modes in
the truncation (except mode C which is zero at equilibrium).

(iv) The noise level is determined using (5.2).

Differences between all the models (uncoupled model, predicted coupled model,
uncoupled generalised model and coupled generalised model) are highlighted in
Appendix A.
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Figure 15. Total energy of the large-scale modes
∑7

n=1 as a function of the Rayleigh number – comparison
of the DNS, the coupled predicted model and the coupled generalised model.

The total energy of the large-scale modes
∑7

n=1 λ̃
rad
n predicted by the coupled

generalised model is represented in figure 15 and compared with values given by the
coupled DNS and the coupled predicted model. In addition, the energy increase for each
large-scale mode M, Lx,y,D,BLx,y is given in figure 16. In terms of total large-scale energy,
a very good agreement is observed for the generalised model (discrepancies approximately
5 %), even at Ra = 106. In this case, as figure 16 shows, it is due to the compensation of
estimation errors (M is overpredicted by 25 %, while modes L are underpredicted by 30 %).
At other Rayleigh numbers, the evolution of the energy of the different modes is relatively
well predicted (between 5 % and 20 %), except for an underprediction of modes L. Overall
a good agreement is observed between the different models.

The measured reorientation frequencies obtained with the coupled generalised model
are given in table 11 and compared with the coupled DNS. Generally speaking, the model
fairly reproduces the coupled DNS results (discrepancies of 10 %–30 %) and predicts the
increase of the reorientation frequency with radiation, which tends to subside with the
Rayleigh number. However, it should be pointed that the change in dynamics observed
at Ra = 106 (loss of stability of the diagonal rolls) is not predicted with the generalised
coupled model, which is consistent with the lack of validity of the modelling assumptions
at this Rayleigh number.

7. Conclusion

Direct numerical simulations of RBC in a cubic cell for a radiating air–H2O–CO2 mixture
have been performed in the Rayleigh number range Ra ∈ [106–108]. When radiative
transfer is ignored (uncoupled case), the flow dynamics is always characterised by four
quasi-stable diagonal states, with occasional brief reorientations between them. The
stability of the diagonal states increases and the reorientation frequency decreases with the
Rayleigh number in the range 3 × 106 ≤ Ra ≤ 108. When radiative transfer is taken into
account (coupled case), the kinetic energy of the flow and the temperature fluctuations
increase. At Ra = 106, quasi-stable planar states are observed while for Ra ≥ 3 × 106

diagonal states are retrieved. Radiation seems to increase the reorientation frequency.
A POD analysis of DNS results has been conducted and shows that the first 12

POD eigenfunctions are globally preserved over the whole Rayleigh number range,
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Figure 16. Relative increase of the amplitude of the large-scale modes due to radiation with the Rayleigh
number – comparison of the DNS, the coupled predicted model and the coupled generalised model.

whatever the coupling conditions. However, the POD eigenvalues are higher in the coupled
case at each Rayleigh number. The first seven modes identified in previous works at
Ra = 107 (Soucasse et al. 2019, 2020) are retrieved (modes M, Lx/y, D, BLx/y and C),
though not necessarily in the same order, depending on the Rayleigh number and the
coupling conditions. Additional modes have been highlighted: (i) modes C∗, D∗, BL∗

x/y that
share common features with the previous set; (ii) modes M∗ and Lz associated with toroidal
and poloidal circulations and present either at low or high Rayleigh number, respectively.

Proper orthogonal decomposition-based low-order models have been derived for the
uncoupled case in an a posteriori fashion, from uncoupled DNS data at each Rayleigh
number. Truncations using either the first 12 modes or the set of key seven modes have
been considered. It is shown that the set of key seven modes is sufficient to model the
flow dynamics and reproduces correctly reorientation frequencies. For the coupled case,
low-order models including radiation have been derived in an a priori fashion, solely based
on uncoupled DNS data. Radiative transfer effects are linear in the model owing to the
weak temperature differences. A remarkable feature of this coupled predicted model is
its ability to predict the loss of stability of the diagonal states at Ra = 106. The coupled
predicted model also foresees the energy increase and reorientation frequency increase
associated with radiative transfer effects. Finally, a generalised model for both coupled and
uncoupled cases has been proposed in order to capture variations in Rayleigh number from
uncoupled DNS data at Ra = 107 and scaling laws of the uncoupled POD eigenspectrum.
This generalised approach yields satisfactory results but is not able to predict the change in
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dynamics at Ra = 106, even while it captures changes in energies. This shows the limit of
POD model predictions when extrapolating in the range of parameters far from the original
data.

In summary, this study shows that radiative transfer effects on the large-scale dynamics
of RBC can be predicted satisfactorily from uncoupled simulation data over a wide range
of Rayleigh number. The coupled predicted POD model derived in this paper is a valuable
tool for investigating radiative transfer effects, given the high computational cost of
radiation calculations. In addition, the evolution of the dynamics with the Rayleigh number
can be foreseen, at least in part, from the dynamics at Ra = 107 and using scaling laws of
the POD spectrum. Nevertheless, this study is restricted to the cubical geometry, given
that the cavity shape alters the POD eigenfunctions and the LSC dynamics. Extension of
these models to account for aspect-ratio dependencies will be the topic of future works.
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Appendix A. Model coefficients

The low-order models for the time evolution of the POD mode amplitude an(t), derived in
§§ 4–6, all take the general form

dan(t)
dt

= (LB
nm + LD

nm + LR
nm)am(t)+ Qnmpam(t)ap(t)

+ LA
nm

⎛
⎝1 + 1

〈k〉
∑
p≥2

|ap(t)|2
⎞
⎠ am(t)+ σεn(t), (A1)

with LR
nm = 0 when radiation effects are ignored. The way to determine the model

coefficients is summarised in table 12 for the uncoupled model (§ 4), the predicted coupled
model (§ 5) and the uncoupled and coupled generalised models (§ 6).

Coefficients LB
nm, LD

nm, LR
nm and Qnmp are, respectively, associated with buoyancy,

diffusion, radiation and advection and are defined as

LB
nm =

∫
Pr φθmφ

3
n dr, (A2)

LD
nm =

∫ [
Pr√
Ra

∂2φi
m

∂xj∂xj
φi

n + γ 2
√

Ra

∂2φθm
∂xj∂xj

φθn

]
dr, (A3)

LR
nm =

∫
γ 2

√
Ra

Prad
m φθn dr, (A4)

Qnmp =
∫ [

−φ j
p
∂φi

m

∂xj
φi

n − γ 2φ j
p
∂φθm

∂xj
φθn

]
dr, (A5)
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Uncoupled model Predicted coupled model Uncoupled generalised model Coupled generalised model

LB
nm, LD

nm, LR
nm, Qnmp computed from uncoupled

DNS data at each Rayleigh
number (LR

nm = 0)

computed from uncoupled
DNS data at each Rayleigh
number

computed from uncoupled
DNS data at Ra = 107 – (6.1)
for γ (LR

nm = 0)

computed from uncoupled
DNS data at Ra = 107 – (6.1)
for γ

LA
nm determined from equilibrium

relations (A6)
taken from the uncoupled
model

determined from equilibrium
relations (A6)p

taken from the uncoupled
generalised model

aeq determined from POD
spectrum

determined from equilibrium
relations (A6)

determined from POD
spectrum large-scale fit, (6.2)

determined from equilibrium
relations (A6)

σ computed from (4.3) using
DNS POD spectrum

computed from (5.2) using
equilibria aeq

computed from (4.3) using
fitted POD spectrum

computed from (5.2) using
equilibria aeq

Table 12. Model parameter determination.
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Ra 106 3 × 106 107 3 × 107 108

σ (uncoupled model) 1.2 1.4 1.2 1.0 0.8
σ (uncoupled generalised model) 1.5 1.5 1.3 1.1 0.9
σ rad (coupled predicted model) 1.9 1.5 1.2 1.0 0.8
σ rad (coupled generalised model) 2.6 1.9 1.4 1.1 0.9

Table 13. Noise level σ ×103 for the different models and Rayleigh numbers.

where Prad
m is a modal-radiative power associated with mode m, whose definition is given

in Appendix B. These coefficients can be fully computed from a set of POD eigenfunctions
{φu, γ φθ }.

The adjustable coefficients LA
nm can be determined from equilibria an(t) = aeq

n
corresponding to a diagonal state of the flow (daeq

n /dt = 0). Equilibrium relations write
as (

LB
nm + LD

nm + LR
nm + 2LA

nm

)
aeq

m + Qnmpaeq
m aeq

p = 0. (A6)

In the uncoupled case, equilibrium values aeq
n are taken from the POD spectrum

(uncoupled model) or from the large-scale fit of (6.2) (uncoupled generalised model):
aeq

M = √
λM; aeq

Lx/y
= √
λLx/y ; aeq

D = √
λD; aeq

BLx/y
= −ηBL

√
λBLx/y and aeq

n = 0 for the other

modes. Coefficients LA
nm are thus computed from (A6) with LR

nm = 0. In the coupled case,
equilibrium values are not known. However, we assume that radiation does not affect the
energy transfer from the large scales to the small scales and take the adjustable coefficients
from the uncoupled models. Equilibrium values with radiation can be thus predicted from
equilibrium relations (A6), the adjustable coefficients being known. More details on the
equilibrium value computation in the coupled case are given in Soucasse et al. (2020).

Finally the noise level σ is determined either from (4.3) using the POD spectrum (taken
from the DNS or estimated from the fit in the generalised uncoupled model) or from (5.2)
using equilibrium values in the coupled models. Noise level values are reported in table 13.

Appendix B. Computation of radiative terms

This appendix details the computation of the linear coefficients LR
nm (see (A4)) associated

with radiation effects in the low-order models.
Owing to the weak temperature gradients, the Planck function I◦

ν (T(r, t)) can be
linearised around the mean temperature T0 and the POD decomposition of the temperature
field can be introduced as follows:

I◦
ν (T(r, t)) 
 I◦

ν (T0)+ ∂I◦
ν (T)
∂T

∣∣∣∣
T0

�T
∑

n

an(t)φθn (r). (B1)

Because of the linearity of the radiative transfer equation (2.7), the radiative intensity field
Iν(Ω, r, t) can be decomposed similarly,

Iν(Ω, r, t) = I◦
ν (T0)+ ∂I◦

ν (T)
∂T

∣∣∣∣
T0

�T
∑

n

an(t)ψθν,n(Ω, r), (B2)
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where ψθν,n(Ω, r) is a modal-intensity field, associated with the POD temperature
eigenfunction φθn (r) and satisfying the following transport equation:

Ω · ∇ψθν,n(Ω, r) = κν
(
φθn (r)− ψθν,n(Ω, r)

)
(B3)

and boundary condition for Ω · n > 0,

ψθν,n(Ω, rw) = εφθn (r
w))+ 1 − ε

π

∫
Ω ′·n<0

ψθν,n(Ω
′, rw)|Ω ′ · n| dΩ ′. (B4)

Equations ((B3)–(B4)) are solved for each POD temperature eigenfunction φθn using the
parallel ray-tracing algorithm and the absorption distribution function model (see § 2.2 and
Soucasse et al. (2020)). Finally, the modal-radiative power Prad

n (r) in (A4) is computed
according to

Prad
n (r) = L2

λ

∫
ν

κν
∂I◦
ν (T)
∂T

∣∣∣∣
T0

(∫
4π

ψθν,n(Ω, r) dΩ − 4πφθn (r)
)

dν. (B5)

It can be noted that the total radiative power Prad(r, t) is the sum of all modal-radiative
powers, weighted by the associated POD coefficient,

Prad(r, t) =
∑

n

an(t)Prad
n (r). (B6)
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