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In through-the-wall radar imaging, multipath propagation can create ghost targets, which can adversely affect the image
reconstruction process. However, unlike genuine targets, ghost positions are aspect-dependent, which means their position
changes with the transceiver location. This paper proposes efficient ghost suppression methods exploiting aspect dependence
feature under compressive sensing framework. This paper proposes a generalized signal model that accommodates for the
reflections of the front-wall and target-to-target interactions, making the scheme more practical, yet the knowledge of the loca-
tion of reflecting geometry is not a requirement as in most of the recent literatures. In addition, the sensing matrix is greatly
reduced making the methods more attractive. Moreover, this paper investigates the influence of array configurations by exam-
ining two antenna array configurations: multimonostatic, and single-view bistatic configurations. Results based on synthe-
sized data and real experiment show that the proposed method can greatly suppress multipath ghosts and hence increase
signal-to-clutter ratio.
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I . I N T R O D U C T I O N

The objective of through-the-wall radar imaging (TWRI) is to
obtain high-resolution images of obscured areas using electro-
magnetic (EM) waves. TWRI is useful in determining interior
structures of buildings, in rescuing missions in fire and earth-
quakes, or in undergoing law enforcing [1–6]. This technology
has witnessed a tremendous growth and attracted the atten-
tion of many researchers lately.

When TWRI is used for imaging targets that are sur-
rounded by walls, two major challenges are encountered: the
effects of the front wall; and the multiple reflections from
the side walls. The front wall, which is the wall standing
between the targets and the radar, gives strong reflections,
which weaken the signal reaching the targets behind the
wall. Front wall causes multiple internal reflections, wall rever-
beration, leaving replicas of the wall and targets in the recon-
structed image known as ghosts. The ghosts populate the scene
and sometimes mask the targets especially those in the vicinity
of the wall, which deteriorates the reconstruction and detec-
tion processes. Further, the front wall may reduce the receiver

dynamic range and the risk of saturating and blocking the
receiver [7].

The second challenge of TWRI is multipath stemming
from multiple reflections of EM waves from the walls,
floors, and ceilings, which also generate ghost targets [8–12].
In such scenarios, accurate target localization and tracking
becomes difficult. In the literature, different techniques have
been presented to suppress multipath ghosts, but their per-
formance and/or practicability can be improved.

To obtain high-resolution images, we need wide bandwidth
and large aperture. Consequently, huge amount of data need
to be collected and processed [8]. Yoon and Amin [13]
tackled this problem by applying compressive sensing (CS)
techniques to TWRI assuming a sparse scene. As a result,
only a small fraction of data is used to reconstruct the
images with relatively good quality. Hence, multipath ghost
suppression under CS framework inevitably becomes the pre-
ferred solution for sparse scene scenarios.

Multipath ghosts are aspect-dependent (AD), i.e. the
location of the multipath ghost changes with the transceiver
location. This feature has been successfully exploited to identify
and suppress multipath ghosts from genuine targets [14–17].
To the best of our knowledge, no research on ghost suppression
has been presented employing AD under CS framework.
In [15], the authors proposed a multipath ghost suppression
method exploiting AD property of the ghost using full data
set. The authors modeled the ghost positions as hidden
Markov chain problem. However, their method shows some
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inherent challenges: it requires image decomposition into N
subaperture images using directional filters; and complex
advanced algorithms. In [16], the authors proposed a ghost
suppression method exploiting AD feature without CS. The
authors formed three images using back-projection method;
the first two using extreme opposite subapertures and the rest
using the whole aperture. The method involves tedious search-
ing of appropriate subapertures and shifting of antenna array in
two extreme ends of the room, which can mislaid the genuine
targets particularly when using directional antennas. The
authors in [18] proposed a suppression technique for ghosts
originated from target-to-target interactions. They suggested
different array configurations with image combining strategies
to combat the effect of the ghosts. However, the effect of side
walls was not addressed, which is unavoidable in TWRI. In
[19], the author developed multipath model, which uses AD
feature in conjunction with multipath exploitation. However,
the model is limited to first-order multipath from single
target only. Further it requires the knowledge of the reflecting
geometry. Authors in [20] proposed a new multipath ghost
suppression method, which cancels multipath components
from the raw data. Though the method has the capability of
preserving weak targets, it increases system complexity as the
method does not employ CS.

On the other hand, there are few contributions for ghost
suppressions based on CS but not employing AD feature [8,
21, 22]. The authors in [8] incorporated the wall reverberation
effect of the front wall, which makes their approach more
practical. They inverted multipath model assuming the
knowledge of the reflecting geometry, which is not always
available. Further, the effect of target-to-target interactions
was not addressed.

This paper proposes a new multipath ghost suppression
technique, which incorporates AD feature of the ghosts
under CS framework. Contrary to the conventional CS-
based TWRI, a fraction of J measurements is randomly
collected from a given aperture of N locations. In this work,
a pair of the same fraction is collected such that the AD
feature is maximized and then their corresponding images
are strategically combined to suppress the effect of the
ghosts. Exploiting AD feature allows to simplify the existing
image reconstruction problem significantly by reducing the
size of the sensing matrix and eliminating the constraint of
the knowledge of reflecting geometry. In this paper, we
propose a new multipath ghost suppression method in
TWRI, which exploit the AD feature under CS framework.
We also extend the current received signal model based on
point-target assumption to a more general model, which
best reflect the real TWRI scenario. The model takes into
account the front-wall reflections and reverberations, the side-
wall reflections and target-to-target interaction as well. In
CS-based approaches, the target-to-target interaction has
been ignored due to non-linear behavior. In this work, we
model the target-to-target interaction as a linear component
by imposing additional but justifiable assumptions.

Further, the concept of synthetic aperture radar (SAR) is
used to form large aperture, which can be achieved via mech-
anical scanning, or phased arrays. In the former, an antenna is
physically moved over the desired aperture, while in the later,
several antennas are physically stacked together with phase-
shifted with respect to each other [23]. For simplicity of
design, we adapt the former approach in all our simulations
and experiments. The paper investigates the influence of

antenna configurations toward getting unambiguous images.
In this regard, two array configurations were examined: multi-
monostatic and single-view bistatic configurations.

The effectiveness of the proposed method is shown using
synthesized and experimental data.

The remainder of the paper is organized as follows: Section
2 introduces the TWRI signal and scene models. The effect of
the front wall in the scene reconstruction and their commonly
used mitigation techniques are highlighted. Proposed method
is presented in Section 3 with sensing matrix design and its
evaluation. Section 4 presents the results and discussion
based on both synthesized and experimental data.
Comparison with the recent work is tabulated herein, and
Section 5 contains concluding remarks.

I I . T W R I S I G N A L M O D E L

Suppose there are N radar locations for the scene interrogation
as in Fig. 1. At each location, M equally spaced monochro-
matic waves to realize an ultra-wideband (UWB) signal are
transmitted and received. Similar signal was used by [21, 24,
25] in their analysis. The scene is divided into Nx pixels in
cross-range by Ny pixels in downrange. The target reflectivity
on a pth grid point is represented by sp, with p ¼ 0, 1, . . ., Nx

Ny 2 1 and the wall grid point reflectivity by sw. If R target
returns and Rw wall returns are considered, the received
signal, y[m, n], at the nth radar location when the mth

frequency, fm, is transmitted is comprised of four main contri-
butions: reflection from the front wall, target-to-side wall
reflection, target-to-target reflection, and ambient noise,
given by:

y[m, n] =
∑R−1

r=0

∑NxNy−1

p=0

s(r)
p exp −j2pfmt(r)pn

( )

+
∑Rw−1

rw=0

s(rw)
w exp −j2pfmt(rw)

w

( )
+

∑R−1

r=0

∑NxNy−1

p, q=0
p=q

s(r)
pq exp −j2pfmt(r)pqn

( )
+ v(m, n),

(1)

where t(r)pn represents the round-trip delay between the pth

target and the nth receiver due to the rth return, t(r)pnq is the

Fig. 1. TWR multipath scenario with first-order returns.
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round-trip delay between pth and qth targets with nth trans-
ceiver, and t(rw)

w is the time delay of the rth
w front-wall return.

While s(r)
p and srw

w are the target and wall pixel reflectivity,
respectively, with respect to the rth return and v(m, n) is the
noise sample.

Since the contribution from target interactions in (1) is
non-linear, we can assume that the overall signal reflectivity
due to the target interactions, s(r)

pq , is dictated by the second
target and first target is taken as perfect reflector. Then we
can replace the term s(r)

pq in (1) by b(r)
p .

Its corresponding matrix representation will be:

y =
∑R−1

r=0

F(r)s(r) +
∑Rw−1

rw=0

F(r)
w s(r)w +

∑R−1

r=0

∑NxNy−1

p,q=0
p=q

C(r)
q s(r)q + v, (2)

where s(r), s(r)q , and s(rw)
w [ CNxNy×1, with r ¼ 0, 1, . . . R 2 1

and rw ¼ 0, 1, . . . Rw 2 1 represents the vectors of reflectiv-
ities, s(r)

p ,b(r)
q , and srw

w , respectively. The entries of the matri-

ces F(r), F(r)
w , and C(r)

q [ CMN×NxNy are defined as:

F(r)[ ]
ip = exp −j2pfmt(r)pn

( )
, C(r)

q

[ ]
ip

= exp −j2pfmt(r)pnq

( )
, F(r)

w

[ ]
ip

= exp −j2pfmt(r)w

( ) (3)

m = i mod M, n = i
M

, i = 0, 1, 2 ...MN − 1.

In TWRI, only first-order returns (involving single reflec-
tion) have significant effects. Returns involving multiple
reflections will either be very weak due to strong attenuation
when interacting with walls or their corresponding ghosts
will reside outside the area of interest due to elongated time
delays [26]. Therefore, they are not considered in this work.

To correctly localize the targets during image reconstruc-
tion process, time delay caused by the front-wall reverberation
needs to be properly taken into account, otherwise the target
will be erroneously reconstructed.

A) Front-wall reverberation model
As the signal propagates through the front wall, part of it tra-
verse and undergoes wall ringing or reverberation [8, 27]. As a

result, multipath ghosts are generated in the reconstructed
image that are equally spaced in the radial direction from
the array with exponentially reducing intensity [8]. The wall
reflections on the other hand, can be dealt with using available
wall mitigation techniques [28–30].

The distance between the target and the array element in
cross-range direction, Dx, in Fig. 2 can be expressed as:

Dx = (Dy − d) tan uair + d(1 + 2k) tan uwall, (4)

where Dy is the distance between the target and the array
element in downrange direction, uair and uwall, respectively,
stand for the angles in the air and in the wall medium, df is
the standoff distance, d represents the thickness of the front
wall and integer k is the number of wall reverberations. The
two angles are related by famous Snell’s law.

The one-way time delay that a given return will undergo
due to k wall reverberations will be [31]:

t (Dx, Dy, k) = (Dy − d)
c cos uair

+ d
���
1r

√ (1 + 2k)
c cos uwall

, (5)

where c is the speed of EM wave in free space and 1r represents
the relative permittivity of the front wall. As the signal gets
attenuated when it reflects within the wall, only few reverbera-
tions will be noticeable.

B) Front-wall mitigation under CS framework
Without an effective removal of the front-wall clutter, the
targets hardly will be detected. For moving targets scenario,
the wall effect can be alleviated by subtracting data acquired
at different times. Though, this is not possible for stationary
targets in which the front-wall reflections should be properly
attenuated before image formation. Recently, the well-known
wall mitigation techniques applicable under CS framework
are spatial filtering and single-value decomposition-based
approaches [30, 32].

In spatial filtering, the zero spatial frequency of the wall
contribution is used as peculiar characteristic to distinguish
it from the target returns. Therefore, separating wall reflection
from the target returns amounts to basically separating a zero-
frequency signal from non-zero frequency-valued signals
across antennas, which can be easily achieved using a
proper spatial filter [28, 30]. Mathematically, the spatial
filter that notches out the constant component can be realized
as the subtraction of the average value of the return across the

Fig. 2. Wall reverberation phenomenon.
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antennas leaving the data free from front-wall clutters. The
filtered signal ỹ[m, n] is therefore given by [30]:

ỹ[m, n] = y[m, n] − 1
N

∑N−1

n=0

y[m, n]. (6)

In [30], it was shown that both spatial filtering and subspace
projection methods give better results when applied under CS
framework. In this work, the former technique has been adopted.

I I I . P R O P O S E D G H O S T
S U P P R E S S I O N M E T H O D S

To address the challenges on the existing ghost suppression
methods, we propose multipath ghost suppression technique,
which incorporates AD feature of the multipath ghosts under
CS framework. The introduction of AD feature simplifies the
problem in terms of complexity and relaxes the requirement
of knowing the reflecting geometry. In this case, we can recon-
struct the scene without the complete knowledge of the loca-
tion of the reflecting geometry.

In the reconstruction process, consider (2) as a perfect
reverse model. Factorizing in (2) with respect to F(0) gives (7).

y = F(0) s(0) +F(0)−1
∑R−1

r=1

F(r)s(r) +F(0)−1

[
∑R−1

rw=0

F(rw)
w s(rw)

w +F(0)−1
∑NxNy−1

p, q=0
p=q

sqC
(0)
q s(0)q

+ . . .+F(0)−1
∑NxNy−1

p,q=0
p=q

sqC
(R−1)
q s(R−1)

q

⎤⎦+ v.

(7)

If we define a residual column vector, w, which contains
information from other subimages as:

w = F(0)−1
∑R−1

r=1

F(r)s(r) +
∑R−1

rw=0

F(rw)
w s(rw)

w +
∑NxNy−1

p, q=0
p=q

sqC
(0)
q s(0)q

⎡⎢⎣

+ . . .+
∑NxNy−1

p, q=0
p=q

sqC
(R−1)
q s(R−1)

q

⎤⎥⎦. (8)

Then (8) can be rewritten as:

y = F(0)(s(0) + w) + v. (9)

Defining the transformed subimage, š(0) = s(0) + w, then
(9) becomes:

y = F(0) š(0) + v. (10)

Now, only direct path information, F(0), is used to recon-
struct the modified scene. Since the reconstructed scene con-
tains some contributions from other multipath returns, then it
is populated by ghosts. We hypothesize that by properly shift-
ing the array, the ghost locations can exhibit significant shifts
enough to identify them from genuine targets.

By making independent sets of measurements using under-
sampling matrices Di [ {0, 1}J×MN with J ≪ M. The matrix Di

is known to obey restricted isometry property [25, 33]. The
optimum length of the subaperture, lN, for a given com-
pressed frequency set is a function of the number of targets,
P and surrounding scatters, where l is the ratio of the selected
radar locations. In TWRI applications, this number is
unknown beforehand. However, it can be estimated prior to
running the actual measurement [34].

J ≥ CPR log
NxNy

PR

( )
, (11)

where C is a positive constant defined in CS literature.
Downsampling (10) gives:

�yi = DiF
(0) š(0)i + �vi, (12)

where �vi is the resulting noise vector. The compressed mea-
surements, �yi, are taken such that the corresponding subi-
mages exhibit significant AD feature.

To exploit the AD feature, the given array is divided into
subapertures. The images corresponding to these subapertures
are sparsely reconstructed and then strategically combined to
get a final image. A careful increase in the number of subar-
rays may increases the quality of the final image with the
expense of computational cost. To overcome the challenge,
we suggest duo-subaperture imaging with careful image
fusion strategies to ameliorate the efficacy of the proposed
method. Two random sets of locations, Si, i ¼ 1, 2, are
chosen from a linear array of N locations with interelement
spacing of d units as shown in Fig. 3.

S1 = x : 1 ≤ x ≤ N
2

{ }
, S2 = x :

N
2
≤ x ≤ N

{ }
,

S1| | = S2| | = lN.

(13)

|Si| is the number of locations in the ith subarray and l denotes
the ratio of the selected radar locations.

Fig. 3. Subarrays selection.
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The selected subapertures (colored in blue) are then used to
design the sensing matrices for image sensing and reconstruction.

A) Rationale of subarrays selection
The given array is subdivided into two halves making two sub-
arrays with their centers separated by around N/2. It is desired
to optimally decide the subarray separation to ensure
maximum ghost suppression. To satisfy the desire, we
perform correlation analysis of the received signals.
Consider two observation vectors, yn and yn+k, when the sub-
arrays are separated by kd units. It is hypothesized that the
observed scenes will be different due to AD feature of the mul-
tipath contribution. From (12) we have:

�yn = An š(0)n + �vn

�yn+k = An+k š(0)n+k + �vn+k.
(14)

The correlation of the received signals, Rn,n+k is given by
Rn,n+k = E �yn,�y

H
n+k

{ }
= AnRsnsn+k AH

n+k + Rv;Rsnsn+k = E š(0)n ,
{

š(0)Hn+k }. We need the value of k that minimizes the number of
non-zero elements in Rsnsn+k . However, the matrix Ai ¼

DiF
(0) is a function of the time delay, which also depends

on the target location and it is unknown in priori. Hence,
developing a closed form expression for the aperture separ-
ation is not feasible.

To overcome that challenge, a fairly exhaustive search of
the acceptable subarray separation was conducted for
random target locations placed in a room of 5 × 5 m2.
Array of 2 m long and 77 locations, which conforms to
most TWRI applications, was deployed. In each run, a differ-
ent target location was assumed and their corresponding
images were captured. The subarray was then linearly
shifted along the cross-range direction and determine the
cross-correlation between the current image vector, sk and
the initial image, s0. The normalized correlation value is
given by:

Rk =
sH

k s0

sk| | s0| | . (15)

The effective separation is determined when there is no sig-
nificant change on the cross-correlation of the two images. The
sample representation of the results for different target loca-
tions is shown in Fig. 4 where only five are displayed for clarity.

It can be concluded from Fig. 4 that the AD effect is more
pronounced when the target is closer to the radar as the nor-
malized correlation converges to a constant value after fewer
subarray shifts. It is evident from Fig. 4(b) that the separation
of N/2 may suffice. In other words, for all randomly selected
target locations, the value of the correlation converges
nearly to the same value after N/2, where N signifies the
number of radar locations. We repeated the experiment
using different room dimensions and we arrived at similar
conclusions. The selected subarrays are then used to design
the sensing matrices for image sensing and reconstruction.

B) Sensing matrix design and analysis
In TWRI, the sensing matrix can be viewed as the product of
two matrices. The first is a predefined matrix describing the
signal propagation model in (2), which is a function of
the radar parameters and reflecting geometry. The second
matrix is downsampling matrix, D, which compresses the
data based on CS theories. Therefore, designing the sensing
matrix in TWRI basically is designing the matrix D. The
matrix D in this work consists of randomly chosen rows from
an identity matrix as in [3, 4, 35]. In stepped frequency radar,
the downsampling occurs in the frequency and radar locations.

In CS theory, the sensing matrix plays an important role in
the signal reconstruction process. To ensure the recoverability
of the signal, the columns of the sensing matrix, Ai ¼ DiF

(0),
should have low correlation.

To analyze the recoverability of the sensing matrices, we
evaluate the mutual coherence of the sensing matrix. The
mutual coherence of the two columns is the normalized
inner product between them, while the coherence of the
matrix is the maximum absolute value of this inner product
among all pairs of elements in the matrix [34, 36]:

m(A) = max
i=j

aH
i aj

∣∣ ∣∣
aiaj

. (16)

Fig. 4. (a) Scene with 10 random targets, (b) normalized correlation for five targets.
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When this metric returns a small value, it serves as suffi-
cient condition to ensure sparse reconstruction. In classical
algorithms, it may also provide useful information on the per-
formance of the array including resolution, noise, and other
interference robustness and ambiguity [37].

The mutual coherence of the sensing matrix for various
undersampling ratios and two image resolutions, averaged
over 100 Monte-Carlo runs, are summarized in Table 1. The
duo-subarray-based sensing matrix is compared with
normal array sensing matrix. It is observed that the coherence
increases with the image resolution. For subarray configur-
ation discussed, the mutual coherence shows no significant
change with data volume.

Though, the coherence of the matrix is relatively high, but
the mutual coherence is only a sufficient but not necessary
condition to ensure perfect reconstruction. Using simulated
and experimental data, we attained a very good image
quality with similar measurement matrices.

Figure 5(a) shows a normalized correlation of the represen-
tative column for image resolution of 32 × 32 pixels, and
Fig. 5(b) shows a correlation of a representative column for
image resolution of 64 × 64 pixels when the undersampling
ratio is 6%. The selected columns are column 500 for the
case of 32 × 32 pixels and 2000 for the case of 64 × 64 pixels.

C) Subimages sparse reconstruction
The modified subimage, š(0)i , in (12) can be reconstructed
sequentially using conventional CS approach [38, 39] or con-
currently to speed up the reconstruction process.

The reconstructed vectors, š(0)i , are obtained by solving
optimization problem [38, 39]:

˜̌s(0)i = argmin
š(0)i

‖š(0)i ‖1

s.t. ‖�yi − DiF
(0) š(0)i ‖2 , 1.

(17)

The choice of 1 is a function of noise power [40]. To elimin-
ate the effect of the ghosts exploiting AD feature, the
reconstructed subimages are strategically fused to yield a final
image.

D) Image fusion strategies
When multiple and distinct compressed subapertures are
considered as in Fig. 3, then the resulting ghosts in the
respective subimages will be positioned differently following
ghost AD feature. However, the true targets maintain the
same location in all images. Therefore, a strategic fusion of
the subimages is needed to suppress the effect of multipath
ghosts.

The overall image is obtained by masking which involves
pixel-wise multiplication of the individual subimages [16, 18, 26].

Suppose there are L subimages, with slp defines the image
value at the pth pixel corresponding to the lth subimage, the
overall image is obtained as:

s(p) =
∏L

l=1

š(0)lp (18)

Masking sometimes tends to suppress the genuine targets or
enhances the residual clutters [19]. In this work, we propose
strategic image fusions, additive–multiplicative fusions, which
can reduce this effect. In additive–multiplicative fusion, an
intermediate image is first obtained as the strategic summation
of the individual subimages. The summation is taken such that
the magnitude of the true targets is preserved while minimizing
the clutters. This helps to reduce the effect of the ghost and
other clutters and hence increase target relative clutter peak
(TRCP) at target locations. The intermediate image is then
masked with the subimages to obtain the final image. We
propose two subimage fusion strategies to enhance the image
quality.

Table 1. Mutual coherence for full and subarray sensing matrices for two
image resolutions.

Full array Subarray

Measurement (%) 32 × 32 64 × 64 32 × 32 64 × 64
6 0.469 0.812 0.783 0.941
12 0.432 0.802 0.786 0.945
25 0.418 0.795 0.782 0.941

Fig. 5. Sample of normalized correlation of the proposed sensing matrix: (a) 500th column for 32 × 32 pixels, (b) 2000th column for 64 × 64 pixels.
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1) weighted sum-based

additive–multiplicative fusion (wsam)

In this case, the intermediate image is the weighted sum,
which minimizes the l2 norm while maintaining the magni-
tudes of the true targets. Consider L subimages,
š(0)1 , š(0)2 . . . š(0)L , reconstructed from L compressed apertures.
Their weighted mean is given by:

sW(p) =
∑L

l

al š
(0)
l (p), (19)

where al [ R : 0 ≤ al ≤ 1. The values of al, which result in a
minimum norm, are obtained using:

min ‖a1 š(0)1 + . . .+ aL š(0)L ‖ subject to
∑L

l=1

al = 1. (20)

2) harmonic mean-based

additive–multiplicative fusion (hmam)

The fact that harmonic mean of a list of non-negative
numbers leans towards the least elements of the list while
maintain the same value for equal elements can be utilized
to suppress large clutters in TWRI while it maintains the
true targets. For L subimages, š(0)1 , š(0)2 . . . š(0)L , reconstructed
from L compressed subaperture, the intermediate image, sH,
is defined as the harmonic mean of the corresponding subi-
mages and is given by:

sH(p) =
L∑L

l=1(1/š(0)l (p))
. (21)

The overall image is obtained by masking the intermediate
image with subimages.

For comparison, conventional delay and sum beamforming
(DSBF) is used for image reconstruction. Given a set of mea-
surements collected from N different transceiver locations
with M monochromatic frequencies transmitted at every
radar position. The complex image I(xp, yp) of the pth grid
point (xp, yp) is obtained by summing phase-shifted copies
of the available signals [8, 24]:

I(xp, yp) =
1

MN

∑N−1

n=0

∑M−1

m=0

y[m, n] exp(j2pfmtpn), (22)

where tpn is the focusing delay for the nth transceiver and the
pth grid point.

I V . R E S U L T S A N D D I S C U S S I O N

A) Simulation results
A TWRI system was simulated using MATLABw. For compari-
son, we adopt simulation parameters and setup as in [8]. The
left- and right-side walls of the room are at cross-range of 2

1.8 m and 4 m, respectively, while the back wall resides at
6.37 m downrange. A SAR, which simulates a uniform linear
monostatic array composed of 77 elements spaced out by
1.9 cm is used to capture the image. The center of the array is

taken to be the origin of the system. The front wall parallel to
the array is at 2.44 m downrange with thickness d ¼ 20 cm
and relative permittivity 1r ¼ 7.67. A series of 201 monochro-
matic waves to realize a UWB signal occupying a spectrum
between 1 and 3 GHz is employed for the scene interrogation.

The image of the scene was reconstructed with and without
the front-wall mitigation. In this work, we define a path from the
radar to the target or vice versa as partial path. A total of six mul-
tipath returns were considered in this work, where one partial
path is always the direct path and the second partial path corre-
sponds to: direct, back-wall multipath, left-side, right-side wall,
and the wall reverberation multipath. A return due to the target
interaction was also taken into account. We assume all side walls
as perfect reflectors. When they are not perfect reflectors, then
ghost targets will have less power, and hence, becomes relatively
easy to be suppressed. During simulation, targets located at
(0.31, 3.6) and (20.62, 5.2) m were considered. White noise
of 0 dB SNR was added to the simulated measurements. The
DSBF image utilizing full available measurement is obtained
for comparison. For the CS reconstructions, we use only 10%
of the total measurement to reconstruct the corresponding
images using Yall1 algorithm [41].

The given array is divided into two halves, duo-subarray, to
realize the AD effect of the resulting ghosts and then a fraction
of the radar positions and frequency bins are selected from the
two subarrays for sparse image reconstruction. We examine
four different scenarios to evaluate the effectiveness of the pro-
posed method under different data collocation modalities.

1) scenario 1: whole subarrays

In this case, we used only one-fifth of the frequency randomly
selected and the same set is transmitted at each location of the
given subarray. The radar locations represent one-half of the
total available locations, which makes the compressed meas-
urement 10% of the total data volume. The scene’s layout
and setup of this scenario is shown in Fig. 6.

The subarray images are depicted in Fig. 7. The image
quality using CS reconstruction is better than DSBF in spite
of using entire measurement set. To obtain the final images,

Fig. 6. Scene’s layout for scenario 1.
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the two subimages were combined using proposed image
combining techniques: WSAM fusion and HMAM fusion
and are shown in Figs 7(d)–(f). Figure 7(d) is the final
image using conventional masking for performance compari-
son. It is evident from Fig. 7 that the proposed fusion strat-
egies perform better than conventional masking.

In the case of WSAM fusion, the intermediate image takes
54 and 46% of the intensity of first and second subimage,
respectively, to minimize the clutter norm while maintaining
the intensities of the true targets. The proposed image fusion
techniques seem to have comparable performance and since
the WSAM ensures the minimum clutter norm compared
with HMAM, it is therefore preferred in practice and will
be used to evaluate the final images in the coming scenarios.

To analyze the power of sparse reconstruction over DSBF
algorithm, we generated DSBF images with the same reduced
data volume as shown in Figs 7(g)–(i). Apparently from
Fig. 7(i), DSBF showed inability to incorporate the AD
feature for ghost suppression under reduced measurement
scenario owing to its lower resolution caused by point spread
function. Further, it suffers from increased level of unwanted

clutters due to the violation on the required antenna spacing,
and therefore, will not be compared in the proceeding results.

Using quantitative measures, we evaluated target signal-to-
clutter ratio (TSCR) and TRCP and are summarized in Table 2.

From Table 2 and Fig. 11(a), the method can dramatically
attenuate the effect of the multipath ghosts. Only a threshold
value of around 30% of the maximum can be used to isolate
true targets from the surrounding clutters.

For target detection capability, the precisions of this scen-
ario are demonstrated in Fig. 11(a). The precision metric used
is defined as the ratio of the true positives “genuine targets” to
the sum of the true positives and the false positives “false
alarms”, where the false positives are the ghosts. Precision
can be expressed by

Precision = TP
TP + FP

. (23)

If there is no ghost for a given threshold value, the value of
precision becomes unity. The metric will continue working
even for extended targets.

Fig. 7. Images with random frequency: (a) DSBF with full data, (b) subarray 1, (c) subarray 2, (d) final with masking, (e) final with WSAM 54% by 46%, (f) final
with HMAM, (g) subarray 1 DSBF, (h) subarray 2 DSBF, and (i) final DSBF.
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2) scenario 2: compressed subapertures

One-half of the frequency bins were randomly chosen and the
same set is transmitted at each selected location for design
simplicity, and one-fifth of the radar locations were randomly
selected from the given subarrays. The subaperture images are
depicted in Figs 8(a) and 8(b), and their corresponding final
image generated with WSAM fusion is depicted in Fig. 8(c).
In WSAM, the fusion assumes 58% of the first subimage
and 42% of the first second to effectively suppress the
ghosts. In Fig. 8, the final image suppresses the multipath
ghosts significantly and genuine targets can be detected.
This observation is supported by numerical analysis using
TSCR and TRCP, which show relatively good values enough
to detect the targets as summarized in Table 3.

The precision curves, which dictate the probability
of correct detection, are plotted against the threshold values
are shown in Fig. 11(b). The threshold of around 35% can cor-
rectly eradicate the surrounding clutters including ghosts.

3) scenario 3: compressed subapertures with

single-view bistatic configuration

In the above setups, we considered monostatic radar system:
transmitter and receiver are collocated. In this setup, we

investigate the effect of bistatic radar configuration. The trans-
mitter’s location is fixed at the center of the array, then two
receiver locations are selected randomly. The corresponding
subimages are shown in Figs 9(a) and 9(b), and the corre-
sponding final image with WSAM is depicted in Fig. 9(c)
with its quality metrics summarized in Table 3.

The precision curves, which compare the number of true
targets and the total number of available targets, are shown in
Fig. 11(c). It is noted in Fig. 11(c) that the threshold of 15% suf-
fices as detection threshold. This scenario shows a noticeable
increase in the image quality compared with 35% threshold of
its corresponding multi-view monostatic counterpart.

4) scenario 4: single-view bistatic with

front wall

Using duo-subaperture, we can reconstruct the image without
the need to mitigate the front wall. Applying the discussed
fusion strategies, we can suppress the effect of the front wall,
provided the measurement volume is adequate as recom-
mended by the CS algorithms. The final image restores the

Table 2. TSCR and TRCP for whole subarrays.

TSCR TRCP

Initial image 57.4 0.8
Masking 72.3 6.7
WSAM 76.5 9.7
HMAM 78.0 10.5

Fig. 8. Images: (a) subarray 1, (b) subarray 2, and (c) final with WSAM 58% by 42%.

Table 3. TSCR and TRCP for different scenarios.

Scenario 2 Scenario 3 Real data

TSCR TSCR TSCR TSCR TSCR TSCR

Initial image 57.7 1.0 62.7 2.0 57.5 2.6
Masking 72.4 6.7 89.5 16.9 77.6 10.9
WSAM 76.7 10.1 97.3 23.7 88.0 20.2

Fig. 9. Images for single-view bistatic: (a) subarray 1, (b) subarray 2, and (c) final with WSAM 44% by 56%.
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intensities of the true targets and the wall is masked out as
shown in Fig. 10.

The precision in Fig. 11(d) demonstrates the effectiveness of
the method even with front wall at the expense of increasing
measurement volume as the scene becomes less sparse. With
WSAM fusion, no postprocessing is needed to identify the
true target as the ghosts are highly attenuated.

It should be pointed out that the target size will affect
the aspect dependency and hence the suppression
accuracy.

B) Experimental results
A wideband SAR system was set up in a semicontrolled room
at KFUPM-EE department for multipath analysis to validate
the proposed ghost suppression method; a schematic sketch
of the room as shown in Fig. 12. The SAR was deployed to
cover 67 equally spaced locations with an interelement
spacing of 2.5 cm along the X-axis. A stepped frequency
signal occupying a spectrum between 1 and 3 GHz with 801
frequency points was used for scene interrogation. The

Fig. 10. Image reconstruction with front wall: (a) subaperture 1, (b) subaperture 2, and (c) final with WSAM.

Fig. 11. Precision curves: (a) scenario 1, (b) scenario 2, (c) scenario 3, and (d) scenario 4.
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background information was first captured for clutter sup-
pression. Two metallic cylinders were placed at (20.75, 2)
and (0.5, 3) m as shown in the setup and room layout
given by Fig. 12 with the origin taken at the center of the aper-
ture. The room has two protruding corners of reinforced con-
crete pillars near the back side. The imaged region is chosen to
be 4 × 5 m2.

To identify and suppress multipath ghosts, duo-
subaperture with one-third of the radar locations are ran-
domly selected and only one-eighth of the frequency bins
were transmitted. Figures 12(a) and 12(b) show the images
of selection of the duo-subaperture. The final image is
obtained using WSAM fusion, which shows significant ghost
reduction with all true targets correctly reconstructed
despite the directivity challenge of the horn antenna as
shown in Figs 13(a) and 13(b). This observation alludes that
in real application, the subaperture need to be carefully
chosen; otherwise, some real targets might be invisible by
the radar system.

Quantitative performance measures, TSCR and TRCP
defined in [1] summarized in Table 3, indicate the effective-
ness of the suppression method.

The variation of the precision value with the possible
threshold is given in the precision curves in Fig. 14, which
indicates that the targets can be correctly detected without
additional postprocessing.

Comparison with related works
Comparing with recent works, our method shows satisfactory
tradeoff between image quality improvement and complexity
reduction. In [18], the authors achieved optimal tradeoff
between improvement factor (IF) of 24.29 dB and target
improvement factor (TIF) of 0.29 dB when using single-view
multistatic radar with multiplicative–additive fusion of seven

Fig. 12. (a) The setup and room layout, (b) photograph of the scene setup.

Fig. 13. Images: (a) subaperture 1, (b) subaperture 2, and (c) final with WSAM.

Fig. 14. Precision curves under real data.
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subarray images. The limited performance is due to point
spread function in DSBF algorithm, which significantly
lowers its resolution. In addition, the DSBF images suffer
from increased level of unwanted clutters. In this work, we
employed compressed duo-subaperture under CS framework
and achieved 34.6 dB of IF and 21.7 dB of the TIF.
Moreover, unlike in [18] where the authors tackled only mul-
tipath ghosts due to target interactions, this work considered
multipath due to side-wall and front-wall reverberation as
well.

In [8], the presented method achieved the best suppression
when using non-overlapping group sparse approach. It
returned TSCR of 95 dB and TRCP of 25 dB with around
3% of the total measurement. Using nearly equal volume,
the proposed method achieves TSCR of 97.3 dB and TRCP
of 23.7 dB with WSAM image fusion strategy. In addition to
front-wall and side-wall reflection considered in [8], the
work incorporated target-to-target interaction as well, which
gives additional credit.

V . C O N C L U S I O N S

This paper proposed efficient multipath ghost suppression
technique in TWRI exploiting the AD characteristic of the
multipath ghosts under CS framework without the knowledge
of the scene geometry. The method was scrutinized for differ-
ent data collection modalities to evaluate its efficacy. New sub-
images combining strategies were proposed, which improves
the TSCR at target locations. Further, two antenna deploy-
ments were studied using multiview monostatic and single-
view bistatic configurations. The latter showed better results
in both TSCR and TRCP, which increases the probability of
correct detection.

As the extension of this work, the optimum subarrays sep-
aration can be investigated to ensure sufficient ghost suppres-
sion. Further, the proposed method is effective for pixel-sized
targets; more analysis is required for extended targets scen-
arios (target occupying more than one pixel).
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techniques for indoor sensing within the compressive sensing frame-
work. IEEE Trans. Geosci. Remote Sens., 51 (2) (2013), 891–906.

[31] Leigsnering, M.; Amin, M.G.; Ahmad, F.; Zoubir, A.M.: Multipath
exploitation and suppression for SAR imaging of building interiors
[an overview of recent advances]. IEEE Signal Process. Mag., 31 (4)
(2014), 110–119.

[32] Tivive, F.; Bouzerdoum, A.; Moeness, A.: A subspace projection
approach for wall clutter mitigation in through-the-wall radar
Imaging. IEEE Trans. Geosci. Remote Sens., 53 (4) (2015), 2108–
2122.

[33] Amin, M.; Ahmad, F.; Zhang, W.: A compressive sensing approach
to moving target indication for urban sensing, in 2011 IEEE
RadarCon (RADAR), Ieee, 2011, 509–512.

[34] Donoho, D.L.; Tsaig, Y.; Drori, I.; Starck, J.L.: Sparse solution of
underdetermined systems of linear equations by stage wise orthog-
onal matching pursuit. IEEE Trans. Inf. Theory, 58 (2) (2012),
1094–1121.

[35] Leigsnering, M.: Sparsity-Based Multipath Exploitation for
Through-the-Wall Radar Imaging. Technische Universität,
Darmstadt, Ph.D. Thesis, 2015.

[36] Li, L.; Boufounos, P.; Liu, D.; Mansour, H.; Sahinoglu, S.: Sparse
MIMO architectures for through-the-wall imaging, in 2014 IEEE
8th Sensor Array and Multichannel Signal Processing Workshop
(SAM), A Coruna, 2014, 513–516.

[37] Vaidyanathan, P.P.; Pal, P.: Sparse sensing with coprime arrays.
Conf. Rec. – Asilomar Conf. Signals Syst. Comput., 59 (2) (2010),
1405–1409.

[38] Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory, 52 (4)
(2006), 1289–1306.

[39] Candès, E.J.: Compressive sampling, in Proc. of the Int. Congress of
Mathematicians, Eur. Mathematical Society, Madrid, Spain (2006).

[40] Huang, Q.; Qu, L.; Wu, B.; Fang, G.: UWB through-wall imaging
based on compressive sensing. IEEE Trans. Geosci. Remote Sens.,
48 (2010), (3 PART2), 1408–1415.

[41] Yang, J.; Zhang, Y.: Alternating direction algorithms for L1-problems
in compressive sensing. SIAM J. Sci. Comput., 33 (1–2) (2011),
250–278.

Ali Hussein Muqaibel received the
B.Sc. and M.Sc. degrees from King
Fahd University of Petroleum and
Minerals (KFUPM), Dhahran, Saudi
Arabia, in 1996 and 1999, respectively,
and the Ph.D. degree from Virginia
Polytechnic Institute and State Univer-
sity (Virginia Tech), Blacksburg, in
2003. During his study at Virginia

Tech, he was with both the Time Domain and RF Measure-
ments Laboratory and the Mobile and Portable Radio Re-
search Group. He is currently the Director of the
Telecommunications Research Laboratory (TRL) and an As-
sociate Professor with the Electrical Engineering Department,
KFUPM. His main area of interest includes ultra-wideband
(UWB) signal processing for localization and communica-
tions. He was a Visiting Scholar at both Georgia Institute of
Technology, Georgia, USA and Villanova University, Villano-
va, Pennsylvania, USA. He is the author of two book chapters
and more than 90 articles. Dr. Muqaibel received many
awards in the excellence in teaching, advising, and instruc-
tional technology.

Abdi Talib Abdalla received the B.Sc.
degree in Electronic Science and Com-
munication and M.Sc. degree in Elec-
tronics Engineering and Information
Technology from the University of Dar
es Salaam, Tanzania, in 2006 and 2010,
respectively, and the Ph.D. degree from
King Fahd University of Petroleum
and Minerals (KFUPM), Saudi Arabia,

in 2016. Currently, he is a Lecturer at the Department of Elec-
tronics and Telecommunication Engineering of University of
Dar es Salaam, Tanzania. His research interests include target
localization, sparse arrays processing, through-the-wall radar
imaging, and application of compressive sensing to radar
signal processing.

Mohammad Tamim Alkhodary re-
ceived his B.S. degree in Communica-
tion Engineering from the University
of Science and Technology, Sana’a,
Yemen, in 2008. He received his M.S.
in Telecommunication Engineering in
2011 from KFUPM. He joined the Elec-
trical Engineering Department at
KFUPM as a Lecturer in 2012, and he

is now working toward his Ph.D. degree in the Department
of Electrical Engineering at the same institute. In 2015, he
joined KAUST for 1-year research internship. His research

aspect-dependent efficient multipath ghost suppression in twri with sparse reconstruction 1851

https://doi.org/10.1017/S1759078717000666 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078717000666


interests include signal processing, UWB communication,
compressive sensing theory and applications.

Suhail Al-Dharrab received his B.Sc.
degree in Electrical Engineering from
King Fahd University of Petroleum
and Minerals, Dhahran, Saudi Arabia
in 2005. He received the M.A.Sc. and
Ph.D. degrees in Electrical and Com-
puter Engineering from University of
Waterloo, Waterloo, Canada, in 2009
and 2013, respectively. From 2005 to

2007, he worked as a Graduate Assistant in the Electrical

Engineering Department at King Fahd University of Petrol-
eum and Minerals. In 2015, he was a Visiting Scholar in the
School of Electrical and Computer Engineering at the Georgia
Institute of Technology, Atlanta, USA. He is currently an As-
sistant Professor in the Electrical Engineering Department
and Assistant Director of the Center for Energy and Geo-
Processing at King Fahd University of Petroleum and Miner-
als, Dhahran, Saudi Arabia. His research interests span topics
in the areas of wireless communication systems, underwater
acoustic communication, digital signal processing, and infor-
mation theory.

1852 ali hussein muqaibel et al.

https://doi.org/10.1017/S1759078717000666 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078717000666

	Aspect-dependent efficient multipath ghost suppression in TWRI with sparse reconstruction
	INTRODUCTION
	TWRI SIGNAL MODEL
	Front-&?h 0,14;wall reverberation model
	Front-&?h 0,14;wall mitigation under CS framework

	PROPOSED GHOST SUPPRESSION METHODS
	Rationale of subarrays selection
	Sensing matrix design and analysis
	Subimages sparse reconstruction
	Image fusion strategies
	Weighted sum-&?h 0,14;based additive&ndash;multiplicative fusion (WSAM)
	Harmonic mean-&?h 0,14;based additive&ndash;multiplicative fusion (HMAM)


	RESULTS AND DISCUSSION
	Simulation results
	Scenario 1: whole subarrays
	Scenario 2: compressed subapertures
	Scenario 3: compressed subapertures with single-&?h 0,14;view bistatic configuration
	Scenario 4: single-&?h 0,14;view bistatic with front wall

	Experimental results
	Comparison with related works

	CONCLUSIONS
	ACKNOWLEDGEMENTS


