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Abstract. Several perturbation tools are established in the volume-preserving setting
allowing for the pasting, extension, localized smoothing and local linearization of vector
fields. The pasting and the local linearization hold in all classes of regularity ranging from
C1 to C∞ (Hölder included). For diffeomorphisms, a conservative linearized version of
Franks’ lemma is proved in the Cr,α (r ∈ Z+, 0< α < 1) and C∞ settings, the resulting
diffeomorphism having the same regularity as the original one.

Key words: divergence-free vector field, localized smoothing, local linearization, volume-
preserving diffeomorphisms, Franks’ lemma
2010 Mathematics Subject Classification: 37C10, 58G20 (Primary)

1. Introduction
1.1. Continuous-time dynamics. One of the basic problems in conservative continuous-
time dynamics is the following.

How may a local Cr -perturbation of a divergence-free vector field be extended to a
global one?

More precisely (and always in the conservative setting), given a Cr vector field X on a
closed connected manifold M and a Cr -perturbation Y of the restriction of X to an open
set U , is it possible to find a Cr -perturbation Z of X that still coincides with Y in a slightly
smaller set, say, in any chosen compact set K ⊂U? In the non-conservative context, the
solution is trivial; Y can be glued with X using a suitable partition of unity, i.e. we let
Ẑ = ξY + (1− ξ)X in U and Ẑ = X in U c, where the smooth function ξ equals one in a
neighbourhood of K and zero in neighbourhood of U c. Clearly, Ẑ is Cr -close to X if Y is
Cr -close to X in U , and the problem is solved.

In the conservative setting, the situation is more delicate, as Ẑ constructed as above
fails, in general, to be divergence-free in the transition ‘annulus’ Ω , i.e., in the set where
0< ξ < 1. One obvious way to tackle this difficulty is by trying to find a Cr vector field
v supported in Ω whose divergence equals that of Ẑ and then set Z = Ẑ − v, which thus
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cancels the divergence. Provided v can be found Cr -small if Y − X |U is Cr -small, the
question is solved.

The problem is that, in the conservative setting, an obstruction of topological nature may
hinder the above procedure: the interplay between the divergence theorem and connected
cobordism. To simplify the explanation, all manifolds referred to below are assumed to
be compact, connected, orientable and smooth (besides second countable and Hausdorff).
Let M , U and K be as above. We start by observing that K may contain a closed (n − 1)-
submanifold γ which is the boundary of no n-submanifold contained in U . In this case,
the perturbation Y of the restriction of X to U may change the original flux across γ
(see Example 1 below). But, simultaneously, there might exist another closed (n − 1)-
submanifold γ ′, now contained in U c, that together with γ constitutes the boundary of an
n-submanifold W . Note that the divergence-cancelling procedure described above ensures
that Z = X in U c, and thus the original flux of X across γ ′ is kept unchanged in Z . As
a consequence, the flux of Z across the cobordant manifolds γ and γ ′ will be distinct,
which implies (by the divergence theorem) that the divergence of Z cannot identically
vanish inside the manifold W bounded by γ and γ ′. Therefore, there is no possibility of
extending Y |K in a divergence-free way to the whole M so that the resulting vector field
still coincides with X in U c. At first glance, one may think that the above obstruction might
be overcome if one can find an alternative method for the construction of the extension Z
of Y |K that renounces to obtain Z = X in U c.

Even so, the answer may still be negative. Indeed, the desired divergence-free extension
of Y |K might simply not exist at all (see Example 2 below). Note that while, by hypothesis,
γ is the boundary of no n-submanifold contained in U , it may still be the boundary of an
n-submanifold W not contained in U (i.e., γ may be null-cobordant in M). Now, by
the divergence theorem, the flux of the original vector field X across γ is zero, but the
divergence-free Cr -perturbation Y of the restriction of X to U may change this flux to a
non-zero value. But then, no C1 extension of Y |K to the whole M can have a divergence
that identically vanishes inside W .

These obstructions can be removed at once if we make a simple and natural topological
assumption, namely, that U\K is connected. This implies the existence of a compact
n-submanifold P with smooth connected boundary such that K ⊂ int P and P ⊂U
(Lemma A.1), which is the key to the construction of the pasting of Y and X by the
procedure described above. This pasting result (Theorem 1), which can also be formulated
in the Hölder setting (Theorem 3), is then briefly the following.

THEOREM (Conservative Cr pasting lemma) Let M be a closed connected manifold, let
U ( M be an open neighbourhood of a compact set K such that U\K is connected and
let r ∈ Z+. In the conservative setting, given any Cr vector field X on M and any Cr -
perturbation Y of the restriction of X to U, there exists a Cr -perturbation Z of X that
coincides with Y in a neighbourhood of K and with X in U c.

Theorem 1 also shows that vector field Z can be obtained so that the Cr norm of Z − X
is linearly bounded by that of Y − X |U , for some fixed constant C > 1 depending only on
r , K and U (and, of course, on the manifold’s atlas, which is assumed to be fixed).

The proof is constructive, elementary and self contained. It essentially relies on a
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simple but ingenious global-to-local reduction procedure originally due to Moser [MO].
Besides its simplicity, the main advantage of Moser’s direct approach is the guarantee
that the auxiliary divergence-cancelling vector field v satisfying div v = div Ẑ will be
(compactly) supported inside the open ‘transition annulus’ Ω ⊂U\K (the set where the
transition from vector field Y to X is set to take place; in practice, it will correspond to
a small neighbourhood of the closure of {x ∈ M : 0< ξ(x) < 1}), and thus extends by
zero to the whole M (in the Cr class). This is needed to guarantee that the divergence
cancelling operation Ẑ − v producing Z does not change Ẑ outside Ω , so that Z
still coincides with Y and X in K and U c, respectively. Due to the linearity of the
divergence operator, the use of optimal regularity tools of Dacorogna–Moser type [DM,
Theorem 2] (which are crucial in the discrete-time case; see §§1.2 and 4) can be entirely
avoided, as there is no regularity loss in the divergence of the initial (non-conservative)
pasting perturbation: if X and Y are divergence-free Cr vector fields and Ẑ is a vector
field defined as above, then div Ẑ is still of class Cr and Cr small if Y is Cr close
to X .

This conservative pasting lemma permits us to establish several perturbation tools of
which three illustrative examples are singled out.

(1) Localized smoothing (Theorem 5): at least for certain useful open sets Ω ⊂ M (see
Footnote † on page 10), one may conservatively Cr perturb a divergence-free vector
field X in order to make it smooth inside Ω , while keeping X unchanged on the
complement of Ω .

(2) Perturbative extension with increased regularity (Corollary 1): if a Cr -perturbation
Y of the restriction of X to U is of class Cs , s > r , Cr being the regularity of X, then
Y |K can be (conservatively) extended to a Cr -perturbation of X that is of class Cs

on the whole M.
(3) Local linearization of ‘Franks’ lemma type’ (Theorem 6): one may conservatively

C1-perturb a vector field v near a point x (keeping v(x) unaltered), in order to
change its derivative at x and make v affine linear near this point, the allowed
variation δ of the derivative depending linearly on the required C1-closeness ε of
the resulting vector field to v (this result requires the use of an additional homothety
trick).

Other examples could be given. However, the primary intention of this work is to present a
few solid basic techniques that might serve as a starting point for the development of more
sophisticated conservative tools. Special care has been taken to ensure the following.

(a) The results obtained are the best possible both in terms of the regularity of the
resulting vector field or diffeomorphism in terms of the regularity of the closeness
of the resulting system to the original one. In the case of volume-preserving
diffeomorphisms (see §§1.2 and 4), this endeavour is restricted by the limits of the
present knowledge concerning the existence of optimal regularity solutions to the
prescribed Jacobian partial differential equation (PDE) (which is an open problem in
the Cr case, r ∈ Z+ [CDK, p. 192]).

https://doi.org/10.1017/etds.2018.81 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2018.81


On the conservative pasting lemma 1405

(b) The linear dependence of δ on ε is established in all perturbation results (with
the exception of Theorems 4 and 5 where this is meaningless). Obtaining this
dependence is often crucial in applications.

(c) The proofs presented are constructive whenever possible and complete or at least
easily completable following the indications in the text.

The pasting technique for divergence-free vector fields was introduced by Arbieto and
Matheus in [AM]. It is known, however, that the statements and proofs of the main tools
[AM, §3.1] are not quite correct (concerning the statements, see Warnings 1 and 2 below).
Some of the problems have been identified in [AM2], but we are unaware of any reference
correctly stating this kind of results and providing sound proofs. The writing of the present
work was partially stimulated by the author’s encounter with that paper.

1.2. Discrete-time dynamics. We now turn to the case of volume-preserving
diffeomorphisms. To establish in this setting a Cr -perturbation pasting lemma analogous
to Theorem 1 seems beyond the techniques presently available (see (a) above and
§4), the main difficulty being that the volume-correcting Cr diffeomorphism (playing
the analogous role to the divergence-cancelling vector field v in §1.1) must now be
reconstructed from a determinant which is only of class Cr−1 and Cr−1-close to one.
Nevertheless, using optimal regularity tools with control of support, such a result can
actually be established in the Hölder setting, but special care must be taken due to the
pathological continuity behaviour of the composition and inversion operators in these
functional spaces. This result will be presented in a separate note [TE2]. Here, we
shall restrict our work to establishing a quite general conservative linearized version of
Franks’ lemma, an important feature being that the resulting diffeomorphism will have
the same Cr,α regularity as the original one (r ∈ Z+, 0< α < 1). As is well known, to
achieve the local affine linearization (and not merely the perturbation of the derivative) it
is often essential to guarantee the control of the dynamics near the perturbed fixed point or
periodic orbit, especially when the perturbed derivative is non-hyperbolic, as was already
evident in the original paper [FR]. Another important aspect as far as applications are
concerned is to establish the linear dependence of the permitted variation δ of the derivative
in terms of the required C1-closeness ε to the original diffeomorphism. As in [FR], this
linear dependence is also established in Theorem 8. It is interesting to compare the later
result both with (a) the original Franks’ lemma and with (b) the corresponding result for
vector fields (Theorem 6). In all three results, the resulting diffeomorphism or vector
field has the same regularity as the original one and the linear dependence of δ on ε is
established, but while (a) and (b) are quite elementary, the Hölder case of Theorem 8
requires the use of optimal regularity tools with control of support and has much deeper
roots, ultimately relying on the elliptical regularity solutions to the Poisson problem with
Neumann boundary condition and the corresponding Schauder estimates (see [DM]). The
solution in the C∞ case is simpler, relying on Moser’s elegant yet powerful flow method.
In both cases, the starting point is a homothety trick that proved crucial in establishing
Avila’s regularization [AV]. Note, however, that the results in [DM] cannot be directly
applied in the present context, due to their lack of control of support (see (ii) below).
We use instead their counterparts in [TE], where this control is achieved (the proofs of
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the later results follow closely the original ones in [DM]). In the dynamical systems
literature, Dacorogna–Moser’s powerful theorems have been often misinterpreted and
naively applied in several ways. As these flaws are somewhat recurrent, it is perhaps
not out of place to draw attention to them here.
(i) In [DM], it is necessary to assume that the domainΩ is connected (besides bounded).

This was omitted by lapse in the statements of the propositions, but it is explicitly
assumed at the beginning of page 2.

(ii) In [DM, Theorem 1’], the solution diffeomorphism ϕ, in general, does not extend by
the identity to the whole Rn in the Ck+1,α class, not even when the determinant
f equals one in a neighbourhood of ∂Ω . For instance, in order to guarantee
that a volume-correcting diffeomorphism acts only inside the region Ω where the
volume distortion takes place (i.e., that supp(ϕ − Id)⊂Ω), one needs instead the
corresponding results with control of support as in [TE]. An analogous observation
holds for the linearized problem div u = h.

(iii) The optimal regularity statements in [DM] and [TE] with Ck,α replaced by Ck , k ∈
Z+, have not been established in dimension higher than one (being false for k =
0 [CDK, pp. 192 and 180]).

(iv) Concerning the regularity of the solution diffeomorphism ϕ in [DM, Theorems 1’]
when the determinant f is C∞, see part (B) in the proof of Lemma 2 below.

2. Conservative pasting, extension, localized smoothing and local linearization of vector
fields

Convention. Throughout this paper, M is a (second countable, Hausdorff) connected
orientable closed C∞ manifold of dimension n ≥ 2, equipped with a finite atlas
(Vi , φi )i≤m and a C∞ volume form ω. By [MO] †, we can assume that the atlas is
conservative, i.e., on each local chart, ω pushes forward to the canonical volume form
on Rn and φi (Vi )= λBn , for some constant λ > 0; µ is the Lebesgue measure induced
by ω on M . We may further assume that the atlas is regular in the sense that there is a
‘larger’ conservative atlas (Wi , Φi )i≤m such that Vi ⊂Wi and Φi |Vi = φi . As usual, Bn is
the (open unit) n-ball in Euclidean space and Dn

= Bn is the n-disk.

Given an open set U ⊂ M , denote by Xs(U ), s ∈ Z+ ∪ {∞}, the space of vector fields
of class Cs defined on U and by Xs

µ(U ) the subspace of those that are divergence-free in
relation to ω or, equivalently, whose flows preserve µ. As mentioned in the Introduction,
in Theorem 1 we consider vector fields Y defined on open sets U ⊂ M , which are Cr -
perturbations of X |U , where X is a vector field in Xs

µ(M). To guarantee that the Cr norms
of these Y remain finite, we introduce the following definition.

Definition 1. (Cr -bounded) Let r, s ∈ Z+ ∪ {∞}, r ≤ s. Y ∈ Xs(U ) is Cr -bounded if Y
and all its derivatives up to order r are bounded on U . ‖ · ‖Cr ;U is Whitney Cr norm
(N0 3 r ≤ s) on Xs(U ) (§A.1). When U = M , we simply write ‖ · ‖Cr .

† As remarked in [DM, pp. 4 and 23], the proof given in [MO, Lemma 2] is actually for that proposition with
both the hypothesis supp(g − h)⊂ Q and the conclusion supp(u − Id)⊂ Q removed (if g, h are the restrictions
to the open n-cube Q of two smooth volume forms defined on Q and having the same total volume, the proof
produces a smooth diffeomorphism u realizing a pullback between them).
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We recall the informal description of Theorem 1. In the volume-preserving setting,
let X be a vector field of class Cr on a closed manifold M and let U ( M be an open
neighbourhood of a compact set K . Given a Cr perturbation Y of the restriction of X
to U , it is possible (provided U\K is connected), to Cr -perturb X inside U only, so
that the resulting vector field on M still coincides with Y in some neighbourhood of K .
One interesting point is that the perturbation can be made C∞ in the open set where the
control over the dynamics is necessarily lost, i.e., on the ‘transition annulus’ where the
conservative ‘harmonization’ of the two original vector fields takes place (this being the
unavoidable cost of bringing together in the same vector field two more or less ‘conflicting’
dynamics).

THEOREM 1. (Cs conservative pasting with Cr -closeness) Let M be a manifold as above.
Suppose that K is a compact subset with an open neighbourhood U ( M such that U\K
is connected. Then, given s ∈ Z+ ∪ {∞} and an integer 1≤ r ≤ s, there is an open set
K ⊂ V ⊂U and a constant C = C(r, K ,U ) > 1 such that, given X ∈ Xs

µ(M) and a Cr -
bounded Y ∈ Xs

µ(U ), there exists Z ∈ Xs
µ(M) satisfying:

(1) Z = Y in V ;
(2) Z = X in a neighbourhood of U c; and
(3) ‖Z − X‖Cr ≤ C‖Y − X‖Cr ;U .
Moreover, V depends only on K and U and not on r, s and one may further require Z to
be C∞ at every point where it neither coincides with X nor with Y .

Actually the proof establishes a considerably more precise result (as usual, Y 6≡ X |U
means that Y (x) 6= X (x) for some point x ∈U ).

THEOREM 2. Let M, K , U, r and s be as above. Then, there is a constant C =
C(r, K ,U ) > 1 and there are two disjoint compact n-submanifolds Q and S with smoothly
diffeomorphic connected boundaries for which K ⊂ int Q and U c

⊂ int S and such that,
given X ∈ Xs

µ(M) and a Cr -bounded Y ∈ Xs
µ(U ) such that Y 6≡ X |U , there exists Z ∈

Xs
µ(M) satisfying:

(1) Z = Y in Q;
(2) Z = X in S;
(3) Z is C∞ in Ω = (Q ∪ S)c, Ω being C∞ diffeomorphic to ∂Q× ]0, 1[; and
(4) ‖Z − X‖Cr ≤ C‖Y − X‖Cr ;U .
Moreover, Q and S depend only on K and U and not on r, s.

(Note that if Y ≡ X |U , then inequality (4) implies that Z ≡ X on the whole M , and thus
one cannot, in general, guarantee the conclusion (3) in this case.)

Remark 1. (Hölder setting) Theorem 1 is still valid in the Hölder setting (i.e., for
divergence-free vector fields of class Cs,β endowed with a possibly lower Cr,α norm),
the unique exception being that one may require Z to be C∞ in the set of points where
Z neither coincides with X nor with Y essentially only when r + α < s + β (smooth
maps being, in general, only Cr,ρ-dense in the class of Cr,α maps, 0< ρ < α ≤ 1; see
Theorem 3 below for the notation). We observe that while the previous density remark
implies that the analogue of conclusion (3) in Theorem 2 is impossible to obtain when
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r = s and 0< α = β ≤ 1†, the remaining relevant Hölder case r + α < s + β is actually
free from these constraints. In particular, using the above mentioned (Euclidean space)
Hölder density result in place of the Cr -density of C∞ in Cr , the proof of Theorem 4
immediately yields that X∞µ (M) is Cr,α-dense in X

s,β
µ (M) when r + α < s + β. Note,

however, that, a priori, this is not enough to obtain the corresponding Hölder version of
Theorem 5 (which, in turn, is used to obtain conclusion (3) in Theorem 2 above), as the
resulting vector field Z would still be obtained as the limit of a sequence of Cs,β vector
fields, and this sequence is Cauchy only in relation to the lower Cr,α-norm, which is not
enough to ensure that Z belongs to the higher class Cs,β , as required. Nevertheless, this
problem can be overcome by a simple lower semicontinuity reasoning: using [GT, (7.14),
p. 148 and Lemma 7.3, p. 150] one sees that modifying the proof of Theorem 4 as explained
above, the sequence Zk of smooth, divergence-free vector fields Cr,α-converging to X has
Cs,β norm uniformly bounded by that of X times a constant. Now, carrying on the proof
of Theorem 5 using these smooth approximations to X , it is immediate to check that an
analogous uniform boundedness of the Cs,β norms also holds for all the auxiliary functions
and vector fields involved in the construction of the Cauchy sequence Zk (the universality
of the operatorΦ in Lemma 1 being essential here). This finally yields that the Cs,β norms
of the vector fields in this sequence are still uniformly bounded by the Cs,β norm of X
times a constant (which is independent of X ). This guarantees that the limit vector field Z
actually belongs to the Cs,β class by lower semicontinuity (see, e.g., [CDK, p. 358]). We
finally observe that the existence of manifolds Q and S satisfying (1)–(3) as in Theorem 2
also holds for Theorem 3, except that (as explained above) one cannot guarantee Z to be
C∞ in Ω when r = s and 0< α = β ≤ 1.

In §3.2 we briefly outline the few changes needed in the proof of Theorem 1 to obtain
Theorem 3. There, it is also explained why constant C actually does not depend on the
Hölder exponent α, but only on r , K and U .

Given an open set U ⊂ M , s ∈ Z+ and 0< β ≤ 1, Xs,β(U ) is the subspace of Xs(U )
consisting of vector fields Y such that, on local charts, each partial derivative of Y of order
s is β-Hölder continuous (these derivatives being functions from φ j (V j ∩U ) into Rn).
One sets Cs,0

:= Cs and C∞,β := C∞.

THEOREM 3. (Cs,β conservative pasting with Cr,α-closeness) Let M be a manifold
as above. Suppose that K is a compact subset with an open neighbourhood U ( M
such that U\K is connected. Then, given s ∈ Z+ ∪ {∞}, 0≤ α, β ≤ 1, and an integer
1≤ r ≤ s such that r + α ≤ s + β, there is an open set K ⊂ V ⊂U and a constant
C = C(r, K ,U ) > 1 such that, given X ∈ Xs,β

µ (M) and a Cr -bounded Y ∈ Xs,β
µ (U ), there

exists Z ∈ Xs,β
µ (M) satisfying:

(1) Z = Y in V ;
(2) Z = X in a neighbourhood of U c; and
(3) ‖Z − X‖Cr,α ≤ C‖Y − X‖Cr,α;U .

† The case r + α = s + β splits into three subcases: (a) the one just mentioned; (b) r = s, α = β = 0, which is
the Cr case (Theorem 1); and (c) s = r + 1, α = 1, β = 0, which again reduces to Theorem 1, the norms Cr,1

and Cr+1 being equivalent [CDK, p. 342]. Thus, only (a) is ‘Hölder relevant’.
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Moreover, V depends only on K and U and, with the exception of the case r = s and 0<
α = β ≤ 1, one may further require Z to be C∞ at every point where it neither coincides
with X nor with Y .

Warning 1. It should be stressed that if U\K is not connected, then cobordism constraints
might occur making (in general) impossible the conservative pasting of vector fields X and
Y as stated in Theorems 1, 2 and 3 (by any method and under any regularity assumptions;
see Example 1). If U\K fails to be connected, a conservative Cr perturbation Y of the
restriction of X to U may actually fail to have a divergence-free extension to the whole M ,
even if the Cr closeness condition is dropped (Example 2).

Example 1. Represent the flat 2-torus as M = S1
× (R/Z) with coordinates (s, z) and

endow it with the standard volume form. Let X be the vertical vector field ∂/∂z and
consider its ε-C∞ perturbation Y = (1+ ε)(∂/∂z), ε > 0. Then, there is no Z ∈ X1

µ(M)
such that (a) Z = Y in K = S1

× 1/2 and (b) Z = X in γ = S1
× 1. The vector fields X

and Y have a different flux across the cobordant circles S1
× z, and thus the divergence of

Z cannot identically vanish inside either of the two annuli bounded by K and γ .

Example 2. Extend the annulus U = S1
× ] − 1, 1[ ⊂ R3 to a smoothly embedded 2-

sphere S that is invariant under rotation about the z-axis and endowed with the canonical
volume form inherited from R3. Endow S with the rotation vector field X : (x, y, z) 7→
(−y, x, 0) and consider the ε-C∞ perturbation of the restriction of X to U given by
Y = (−y, x, ε), ε > 0. Both X and Y are divergence-free but there is no C1 divergence-
free extension of Y to the whole S, as the flux of Y across the boundary circle γ = S1

× 0
is not zero, the divergence being necessarily positive around some point of the southern
hemisphere.

Warning 2. The dependence of constant C on r , K and U is obviously unavoidable,
whatever the method employed to achieve the pasting of the vector fields. For instance,
given a point p ∈ M , in some local chart set K = {p} and U = Bd(p), a small open ball
whose closure is contained in the chart. Since d = dist(K , U c), the mean value theorem
then implies that C = C(r, K ,U ) > d−r . In general, and by the same reason, for K and
U as in Theorem 1, a ‘thin’ U\K implies a quite large C . More precisely, assume for
the moment that M is endowed with a Riemannian structure inducing an intrinsic metric
(this structure is actually unnecessary for the results obtained here). Suppose that, for each
ε > 0, Uε is an open neighbourhood of K contained in Bε(K )with Uε\K connected. Then
C(r, K ,Uε)→∞ as ε→ 0. To get an idea of how the ‘geometry’ of U\K tends to have
an impact on the size of C , and in the specific context of the method employed here to
solve equation div v = h, observe that, roughly speaking, the ‘thinner’ and possibly more
‘convoluted’ the image of Uε\K on the atlas as ε tends to zero, the larger the number
N + 1 of small cubes U j needed to achieve the covering

Ω1 ⊂

N⋃
j=0

U j ⊂Ω ⊂Uε\K

(see the proof of Theorem 1), and a large number of small cubes contributes to C with a
very large multiplicative factor (the smaller the cubes the larger this factor becomes; see,
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in particular, §3(c) and Footnote † on page 20). Together, this and the previous warning
impose double caution on the use of the pasting lemma to attempt general perturbations of
divergence-free vector fields with a priori unspecified support (however, see Theorem 6).
As stated, with δ independent of K and U , Theorem 3.1 in [AM] contradicts the mean
value theorem, assuming, as implicit, that W c is non-empty (in the paper’s notation).

2.1. Conservative localized smoothing and extension. The proof of the next result
corrects and generalizes that of [AM, Theorem 2.2]. It provides a short alternative way to
establish Zuppa’s regularization theorem [ZU] without the need to introduce a Riemannian
structure on the manifold.

THEOREM 4. Let M be a manifold as above and let r ∈ Z+. Then

X∞µ (M) is Cr -dense in Xr
µ(M).

Proof. Let (Vi , φi )i≤m be the atlas of M . There is no difficulty in finding a partition of
unity ξi≤m subordinate to Vi≤m with ξ1 = 1 in φ−1

1 ((2λ/3)Dn) (see the convention above).
Let X i = (X1

i , . . . , Xn
i ), i ≤ m, be the expressions of X ∈ Xr

µ(M) in the local charts.
Since the atlas is regular (see the convention in §2), using convolutions one can find, for
each i , a sequence X ik of smooth vector fields on φi (Vi )= λBn Cr -converging to X i .
Observe that, as X i , each X ik is divergence-free (in relation to the standard volume form
on Rn), since the convolution operator ∗ is bilinear and satisfies ∂ j (ρ ∗ X j

i )= ρ ∗ ∂ j X j
i .

To simplify the notation, one still denotes by X ik the pullback φ∗i (X ik). Define the smooth
vector field on M ,

Yk =
∑
i≤m

ξi X ik,

setting ξi X ik := 0 in V c
i . Since

∑
i≤m ξi = 1, the estimate for the | · |r norm of the product

(end of §A.1) gives

|Yk − X |r =
∣∣∣∣∑
i≤m

ξi (X ik − X)
∣∣∣∣
r
≤ m2r max

i≤m
|ξi |r max

i≤m
|X ik − X |Vi |r . (2.1)

Since X and the X ik are divergence-free in M and Vi , respectively, and ξi is compactly
supported inside Vi ,

div Yk = div Yk − div X = div(Yk − X)=
∑

i≤m; j≤n

(∂ jξi )(X
j
ik − X j )

and
|div Yk |r ≤ mn2r max

i≤m
|ξi |r+1 max

i≤m
|X ik − X |Vi |r . (2.2)

Since the norms | · |r and ‖ · ‖Cr are equivalent, (§A.1) we work with the former.
From (2.1) and (2.2), it follows that

|Yk − X |r , |div Yk |r −−−→
k→∞

0 since X ik
Cr
−−−→
k→∞

X |Vi . (2.3)

Now, div Yk = 0 in D = φ−1
1 ((2λ/3)Dn), since, ξ1|D = 1 and thus Yk = X1k in this

set. Let Ω = M\φ−1
1 ((λ/3)Dn) and Ω1 = M\φ−1

1 ((λ/2)Dn). Let hk = div Yk . Clearly,
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Ω1 ⊂Ω and supp hk ⊂Ω1. Observe thatΩ is connected since M and ∂Ω (diffeomorphic
to Sn−1) are both connected, and the same holds for Ω1. Moreover,

∫
Ω

hkω = 0 (ω being
the volume form on M), since, by the divergence theorem,∫

Ω

(div Yk)ω =

∫
∂Ω

Yky ω =−
∫
∂B

X1ky ω =−
∫
B

(div X1k)ω = 0,

where B = φ−1
1 ((λ1/3)Bn). Now, by Lemma 1 (below), there is a constant C =

C(r, Ω1, Ω) > 0 and vk ∈ X
∞(M) such that

div vk = hk,

supp vk ⊂Ω,

|vk |r ≤ C |hk |r .

(2.4)

Let Zk = Yk − vk . Then, Zk ∈ X
∞
µ (M) and, finally, by (2.3) and (2.4),

|Zk − X |r ≤ |Yk − X |r + |vk |r −−−→
k→∞

0. �

At least for certain open sets Ω ⊂ M†, which turn out to be useful in many important
situations, one may conservatively Cr -perturb a divergence-free vector field X in order to
make it smooth insideΩ , while keeping X unchanged on the complement ofΩ . This result
has the advantage of avoiding the occurrence of a ‘transition annulus’, where typically Z is
neither smooth nor coincides with X. If, for instance, one needs to perform a preliminary
conservative Cr perturbation of a vector field X in order to increase its regularity, it may
be actually be possible to smooth it just where this is really needed for the construction
of the subsequent perturbations (e.g., on small open neighbourhoods of certain periodic
orbits in dimension n ≥ 3), while keeping X unchanged on the complement of that set.
The advantages in terms of dynamical control are evident.

Given a compact n-submanifold N ⊂ M (n = dim M) with Cr≥2 boundary, one may
construct a Cr−1 vector field transverse to ∂N and pointing inward, which, in turn, defines
a Cr−1 collar embedding ζ : ∂N × [0,∞[ ↪→ N , ζ(x, 0)= x . For each ε > 0, ζ(∂N ×
[0, ε]) is a (compact Cr−1) collar of ∂N .

THEOREM 5. (Conservative localized smoothing—special case) Let M be a manifold as
above and let N ⊂ M be a compact n-submanifold with connected C3 boundary. LetΩ be
either the interior of N or the interior of a (compact C2) collar of ∂N. Given X ∈ Xr

µ(M),
r ∈ Z+, there exists Z ∈ Xr

µ(M) as Cr -close to X, as desired, satisfying:
(1) Z is C∞ in Ω; and
(2) Z = X in Ωc.

Proof. Case Ω = int N . Since the norms | · |r and ‖ · ‖Cr are equivalent, we work with
the former. Fix a C2 collar embedding

ζ : ∂N × [0,∞[ ↪→ N .

† In the preprint arXiv:1611.01694v3 to this paper, it was stated without proof (unnumbered theorem on p. 8)
that Theorem 5 below still holds for arbitrary open sets Ω ⊂ M . It turned out that the proof known to the author
contained an error. Therefore, and to the best of our knowledge, the general case remains, so far, conjectural.
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Consider the open covering of Ω = int N by overlapping ‘annuli’ given byΛ0 =Ω\ζ(∂N×]0, 1
3 ]),

Λk = ζ

(
∂N ×

]
1

2k + 3
,

1
2k

[)
, k ≥ 1,

and fix a smooth partition of unity ξk≥0 ofΩ subordinate to it (Λ0 is actually a C2-isotopic
copy of Ω). Let

Ωk =Λk ∩Λk+1.

Note that ξk + ξk+1 = 1 in Ωk by subordination to the covering (we suggest to the reader
the drawing of a figure). Given X ∈ Xr

µ(M) and ε > 0, we shall construct a sequence
Zk≥0 ∈ X

r
µ(M) such that, for k ≥ 0:

(1) Zk+1 = Zk in Λc
k+1;

(2) Zk is C∞ in (Λ0 ∪ · · · ∪Λk)\Ωk ;
(3) Zk = X in (Λ0 ∪ · · · ∪Λk)

c; and
(4) |Z0 − X |r < ε/2 and |Zk+1 − Zk |r < ε/2k+2.
It follows that Zk is a Cauchy sequence converging to Z ∈ Xr

µ(M) in the Banach space
Xr
µ(M), satisfying:
• Z is C∞ in Ω =

⋃
∞
Λk ;

• Z = X in Ωc
=
⋂
∞
(Λ0 ∪ · · · ∪Λk)

c; and
• |Z − X |r < ε.

(A) Construction of Z0. Let Ẑ0 = ξ̂1 X + ξ0 X0 ∈ X
r (M), where ξ̂1 = ξ1 in Λ0 and

ξ̂1 = 1 elsewhere. Here X0 ∈ X
∞
µ (M) is a vector field whose Cr -closeness to X will be

determined below. Note that Ẑ0 is divergence-free in Ωc
0 . Actually, by subordination of

the partition to the covering, there is an open set

Ω∗0 = ζ(∂N×] 13 + δ0,
1
2 − δ0[),

where 0< δ0 < 1/12, such that Ω∗0 ⊂Ω0 and supp h0 ⊂Ω
∗

0 for h0 := divẐ0. Observe
that Ω0 and Ω∗0 are connected (∂N being connected) with C2 boundary, and thus, by the
divergence theorem [LA, p. 203],∫

Ω0

h0ω =

∫
∂Ω0

Ẑ0y ω=−
∫
∂N0

X0y ω +
∫
∂N∗0

Xy ω

=−

∫
int N0

(div X0)ω +

∫
int N∗0

(div X)ω

=−0+ 0= 0

since ∂Ω0 = ∂N0 t ∂N∗0 , where for k ≥ 0,

Nk =Ω\ζ

(
∂N ×

]
0,

1
2k + 2

[)
and N∗k =Ω\ζ

(
∂N ×

]
0,

1
2k + 3

[)
are manifolds that are C2-isotopic to N . By Lemma 1 (below), there is a constant C =
C(r, Ω∗0 , Ω0) > 0 and v0 =Φ(h0) ∈ X

r (M) such that
div v0 = h0,

supp v0 ⊂Ω0,

|v0|r ≤ C |h0|r .
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Then
Z0 = Ẑ0 − v0 = Ẑ0 −Φ(div Ẑ0) ∈ X

r
µ(M)

is C∞ in Λ0\Ω0 and Z0 = X in Λc
0. Moreover, it is easily seen that if |X0 − X |r is small,

then |Ẑ0 − X |r , |h0|r and, consequently, |v0|r are all small (see §2.3 below), and hence
for X0 sufficiently Cr -close to X ,

|Z0 − X |r = |Ẑ0 − v0 − X |r ≤ |Ẑ0 − X |r + |v0|r < ε/2.

(B) Construction of Z1. Let

Ẑ1 = ξ̂2 X + ξ1 X1 + ξ0 X0 ∈ X
r (M),

where ξ̂2 = ξ2 in Λ0 ∪Λ1 and ξ̂2 = 1 elsewhere. Again, X1 ∈ X
∞
µ (M) is a vector field

whose Cr -closeness to X is to be specified. Now:
(a) Ẑ1 is divergence-free in (Ω0 ∪Ω1)

c;
(b) Ẑ1 = Z0 in Λc

1;
(c) Ẑ1 is C∞ in (Λ0 ∪Λ1)\Ω1; and
(d) Ẑ1 = X in (Λ0 ∪Λ1)

c.
Using Lemma 1, we proceed exactly as in (A) to eliminate the divergence of Ẑ1 inside

Ω0 and Ω1, while keeping this vector field unchanged in (Ω0 ∪Ω1)
c, and thus obtaining

Z1 ∈ X
r
µ(M) as Cr -close to Z0 as desired and still satisfying (b)–(d) above (to establish∫

Ω1
h1ω = 0, where h1 = div Ẑ1|Ω1 , we now use ∂Ω1 = ∂N1 t ∂N∗1 in order to apply the

divergence theorem).
As Ẑ1 = Z0 in Λc

1 and Ẑ1 = X1 and Z0 = X in Λ1\(Ω0 ∪Ω1), and since we can take
X1 as Cr -close to X as desired, we need only to guarantee that Z1 is as Cr -close to Z0

as wished in Ω0 ∪Ω1. With Ω1 there is no concern, the situation being exactly the same
as in (A). To see that for X1 Cr -close to X one has Z1 Cr -close to Z0 in Ω0, we use the
linearity of the operator Φ : h 7→ v in Lemma 1. First, note that since X0 and X1 are both
smooth and in Ω0, we have Ẑ1 = ξ1 X1 + ξ0 X0, and then, in Ω0,

Z1 = Ẑ1 −Φ(div Ẑ1)= ξ1 X1 + ξ0 X0 −Φ(div(ξ1 X1 + ξ0 X0))

is also smooth. On the other hand, using the linearity of the divergence and that of the
operator Φ, writing X1 = X + (X1 − X), we have, in Ω0,

Z1 = A + B,

where
A = ξ1 X + ξ0 X0 −Φ(div(ξ1 X + ξ0 X0))

and
B = ξ1(X1 − X)−Φ(div(ξ1(X1 − X))).

Now, since ξ̂1 = ξ1 in Ω0, one has

A = Ẑ0 −Φ(div Ẑ0)= Z0,

while (on local charts)

B = ξ1(X1 − X)−Φ
(∑

i≤n

∂iξ1(X i
1 − X i )

)
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1414 P. Teixeira

is Cr -small if |X1 − X |r is small. Therefore, (Z1 − Z0)|Ω0 is as Cr -small as wished
provided |X1 − X |r is small enough.

(C). Construction of Zk , k ≥ 2. Proceeding exactly in the same way as in (B), we let

Ẑk = ξ̂k+1 X + ξk Xk + · · · + ξ0 X0 ∈ X
r (M),

where Xk ∈ X
∞
µ (M) is as Cr -close to X as needed below and

ξ̂k+1 =

{
ξk+1 in Λ0 ∪ · · · ∪Λk,

1 elsewhere,

and then cancel the divergence inside Ωk and Ωk−1 using Lemma 1. Reasoning as in (B),
we need only to guarantee that Zk is as Cr -close to Zk−1 as wished in Ωk−1. Again, the
fact that ξ̂k and ξk coincide in Ωk−1 guarantees that, in this set,

Zk = Ẑk −Φ(div Ẑk)= Zk−1 + B,

where B is Cr -small if |Xk − X |r is small, and, consequently, as in (B), |Zk − Zk−1|r;Ωk−1

is as small as desired and it straightforward to verify that Zk satisfies (1)–(4) above.

Case Ω = interior of a collar. The proof is the one given above, modulo the following
simple change: we fix a C2 compact collar embedding ζ : ∂N × [0, ε] ↪→ N and define,
as in the previous case, a sequence Λk of overlapping ‘annuli’ now indexed by Z, forming
an open cover ofΩ = ζ(∂N× ]0, ε[), withΛk approaching ∂N and ζ(∂N × ε) as k tends
to ∞ and −∞, respectively. The construction is then essentially the same, noting that
the hypersurfaces ζ(∂N × δ), δ ∈]0, 1[, are of class C2, and thus the divergence theorem
applies when needed. �

The next result shows that if in Theorem 3 we want to have Z satisfying (1) and (3) but
are not particularly interested in having (2) Z = X in U c, then the regularity of Z can be
increased to that of Y and it can actually be made C∞ in U c.

COROLLARY 1. (Cs,β conservative extension with Cr -closeness) Let M be a manifold as
above. Suppose that K is a compact subset with an open neighbourhood U ( M such that
U\K is connected. Then, given s ∈ Z+ ∪ {∞}, 0≤ β ≤ 1, and an integer 1≤ r ≤ s, there
is an open set K ⊂ V ⊂U and a constant C = C(r, K ,U ) > 1 (that of Theorem 3) such
that, given X ∈ Xr

µ(M) and a Cr -bounded Y ∈ Xs,β
µ (U ) such that Y 6≡ X |U , there exists

Z ∈ Xs,β
µ (M) satisfying:

(1) Z = Y in V ;
(2) Z is C∞ in a neighbourhood of U c; and
(3) ‖Z − X‖Cr ≤ C‖Y − X‖Cr ;U .
Furthermore, if β = 0, then Z is C∞ in V

c
.

Proof. Fix X̂ ∈ X∞µ (M) such that

‖X̂ − X‖Cr ≤
1

2C
‖Y − X‖Cr ;U , (2.5)

where C = C(r, K ,U ) > 1 is the constant given in Theorem 3. By the observation
preceding that result, there is a compact n-submanifold Q ⊂U with smooth connected
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boundary such that K ⊂ int Q and a vector field Z0 ∈ X
s,β
µ (M) such that Z0 = Y in Q,

Z0 = X̂ in a neighbourhood of U c and

‖Z0 − X̂‖Cr ≤ C‖Y − X̂‖Cr ;U .

By Remark 4 (§3.1), we may replace constant C by C − 1 in the inequality above and get

‖Z0 − X̂‖Cr ≤ (C − 1)‖Y − X̂‖Cr ;U ≤ (C − 1)(‖Y − X‖Cr ;U + ‖X − X̂‖Cr ).

Combining with (2.5),

‖Z0 − X‖Cr ≤ ‖Z0 − X̂‖Cr + ‖X̂ − X‖Cr

≤ (C − 1/2)‖Y − X‖Cr ;U .

Let V = int Q. If β > 0, then Z = Z0 is the desired vector field. If β = 0, we get Z as
wished by applying Theorem 5 to Z0 ∈ X

s
µ(M) and Ω = V

c
, the interior of N = V c, a

compact n-submanifold with smooth connected boundary ∂N = ∂Q. �

2.2. Conservative local linearization. Theorem 3 can be also used to prove that a
divergence-free vector field can be conservatively C1-perturbed to become linearized near
x ∈ M , the perturbation support being a neighbourhood of x as small as desired. Although
the main application occurs when the points of Σ are singularities of v, we formulate
it in the general case. Special care has been taken to find a δ that directly estimates the
permitted variation of the derivative on all local charts. Observe that, given ε > 0, the same
δ (depending linearly on ε) works simultaneously for all divergence-free vector fields on
M in all classes of regularity (cf. Theorem 7 below).

THEOREM 6. (Cs,β conservative local linearization—‘Franks’ lemma type’) Let M be a
manifold as above. Then there is a constant χ > 0 (depending only on the atlas of M) such
that, given:
• any ε > 0;
• any v ∈ Xs,β

µ (M), s ∈ Z+ ∪ {∞}, 0≤ β ≤ 1;
• any finite set Σ ⊂ M;
• any neighbourhood U of Σ; and
• any traceless linear maps Ax ∈ L(n, R), x ∈Σ , satisfying

‖Ax − Dv(x)‖< χε,

where Dv(x) is taken in some (reindexed) local chart (Vx , φx ) around x, there exists
Z ∈ Xs,β

µ (M) satisfying:
(1) for each x ∈Σ , on local chart (Vx , φx ), Z(y)= v(x)+ Ax (y − x) near x;
(2) Z = v in U c; and
(3) ‖Z − v‖C1 < ε.

Remark 2. (1) Implies, for each x ∈Σ , that Z(x)= v(x), and on local chart (Vx , φx ),
DZ(x)= Ax and Z is affine linear near x .

Preview of proof. The attentive reader will notice that Theorem 6 is not a particular case
of Theorem 3. The result easily reduces to the case when Σ consists of a single point.
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The problem is obviously a local one, the construction being carried out on some chosen
local chart (performing a translation, we may assume that x = 0). Instead of trying to prove
directly that, for any traceless A ∈ L(n, R) sufficiently close to Dv(0), pasting adequately
Y (y)= v(0)+ A(y) to v on a sufficiently small neighbourhood U of x (using Theorem 3)
we can get a divergence-free vector field C1 close to v, with the inherent problem of
controlling the growth of constant C = C(1, K ,U ) as U ‘blows down’ to x, we proceed
differently and rescale to the open unit ball Bn , the restrictions of vector fields Y and v to
arbitrarily small balls λBn (under the action of homotheties Φλ = λ−1Id). Observing that
the C1 norm of the vector field

Yλ − vλ =Φλ∗(Y − v) ∈ X
s,β
µ (Bn)

tends to ‖A − Dv(0)‖ as λ→ 0, we perform the pasting on this constant scale, with fixed
K , U and C = C(1, K ,U ) and then pull back (scale down) the resulting vector field to
the original real scale, i.e., to a sufficiently small ball λBn , finally extending it by v to the
whole M , the non-increasing behaviour of the C1 norm under the action of homothetic
contractions guaranteeing the desired conclusion.

Remark 3. In the proof of Theorem 6, we will need to apply Theorem 3 with M being an
open ball ηBn

⊂ Rn . Obviously, Theorem 3 remains valid if the manifold M is instead
a connected open subset of Rn equipped with the trivial one chart atlas (M, Id) and both
X, Y ∈ Xs,β

µ (M) are Cr -bounded (see Definition 1), where µ is the Lebesgue measure
induced by the the canonical volume on Rn .

Proof of Theorem 6. Choose a local chart around each x ∈Σ and fix on it a small closed
ball Bx centred at x (we identify x with its image on the chart), so that these balls have
disjoint preimages on M and are contained in U . Changing U by the union of the interiors
of these #Σ balls, it is immediate that the proof reduces to the case of Σ consisting
of a single point x . Let d = d(1,maxi, j≤m‖φ j i‖C2)≥ 1 be the constant controlling the
potential magnification of the local C1 norm of a vector field under the chart transitions
of the atlas (see §3.1(c)). Get constant C = C(1, 1

3D
n, 2

3B
n) given by Theorem 3 for

M = Bn , taking Remark 3 into consideration, and let χ = 1/(Cd). Take a local chart
(W, φ) around x . Performing a translation, we may assume that φ(x)= 0 ∈ Rn . Take
η > 0 such that ηDn

⊂ φ(W ) and φ−1(ηDn)⊂U . To simplify the notation we still
denote by v the vector field φ∗v|W ∈ X

s,β
µ (φ(W )) (recall that the atlas is regular (see the

convention in §2), and hence this local chart expression of v is C1-bounded; µ is now the
Lebesgue measure on Rn). Fix any traceless A ∈ L(n, R) such that

‖A − Dv(0)‖< χε

(recall that φ(x)= 0 and Dv(0) is taken on local chart (W, φ)). Define, on ηBn ,

Y (y)= v(0)+ A(y)− v(y).

HOMOTHETY TRICK (Step 1). Rescaling to the unit scale. For each 0< λ <min(1, η),
rescale Y |λBn to the unit ball Bn

Yλ = (λ−1Id)∗Y |λBn ∈ Xs,β
µ (Bn).
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Claim. ‖Yλ‖C1;Bn −−−→
λ→0

‖A − Dv(0)‖.

Recall that ‖Yλ‖C1;Bn =max(‖Yλ‖C0;Bn , supx∈Bn‖DYλ‖).
(a) The derivative is unchanged by the action of the homothety,

DYλ(y)= DY (λy)= A − Dv(λx) for all y ∈ Bn

and therefore, since v is C1,

sup
y∈Bn
‖DYλ‖ = sup

y∈λBn
‖DY‖ −−−→

λ→0
‖A − Dv(0)‖.

(b) As for the C0 norm,

‖Yλ‖C0;Bn = λ
−1
‖Y‖C0;λBn −−−→

λ→0
‖A − Dv(0)‖

since

λ−1
‖Y‖C0;λBn = sup

y∈λBn
λ−1
|v(0)+ A(y)− v(y)|

= sup
y∈λBn

∣∣∣∣v(0)+ Dv(0; y)− v(y)
λ

+
A(y)− Dv(0; y)

λ

∣∣∣∣−−−→
λ→0

‖A − Dv(0)‖

as is immediate to verify: the fraction on the left converges to 0 ∈ Rn as λ→ 0, while

sup
y∈λBn

|A(y)− Dv(0; y)|
λ

= sup
y∈Bn
|A(y)− Dv(0; y)| = ‖A − Dv(0)‖.

Therefore, for 0< λ < η small enough,

‖Yλ‖C1;Bn < χε.

(Step 2). Performing the pasting. Letting X ≡ 0 on Bn , by Theorem 3 (and Remark 3),
there is Z1 ∈ X

s,β
µ (Bn) such that

Z1 = Yλ in 1
3B

n,

Z1 = 0 in Bn
\

2
3B

n,

‖Z1‖C1;Bn ≤ C‖Yλ‖C1;Bn < Cχε = ε/d.

(Step 3). Scaling down to the real scale. Pullback Z1 to the ‘real scale’ defining

Z0 = (λ
−1Id)∗Z1 ∈ X

s,β
µ (λBn)

compactly supported in λBn . Extend Z0 by zero to the whole ηBn and define, on this set,
Z = Z0 + v. Then Z = v(0)+ A in (λ/3)Bn and Z = v in ηBn

\(2λ/3)Bn . Since λ < 1,
Z1 7→ Z0 is a homothetic contraction, and thus the C1 norm does not increase and

‖Z − v‖C1;ηBn = ‖Z0‖C1;λBn ≤ ‖Z1‖C1;Bn < ε/d.

We finally get the desired Z ∈ Xs,β
µ (M) extending the pullback φ∗(Z) by v to the whole

M . Note that Z − v ∈ Xs,β
µ (M) is compactly supported inside φ−1(ηBn), and thus the

global C1 norm of Z − v satisfies

(3) ‖Z − v‖C1 ≤ d‖Z0‖C1;λBn < ε,

and it is immediate to verify that (1) and (2) are also satisfied. �
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2.3. Conservative pasting—proof of Theorem 1.

Preview. Using Lemma A.1 (§A.3) and the existence of collars for manifolds with
boundary, fix W0 and W1, two compact n-submanifolds with C∞ boundary such that

K ⊂ int W0, W0 ⊂ int W1, W1 ⊂U, Ω := (int W1)\W0 is connected.

The transition from Y to X will take place inside the open set Ω . Fix ξ ∈ C∞(M; [0, 1])
such that ξ = 1 in a small neighbourhood of W0 and ξ = 0 in a small neighbourhood of
(int W1)

c. Now, given any X, Y as in the statement, let{
w = ξY + (1− ξ)X in U,

w = X in U c.

Note that w ∈ Xs(M) since ξ = 0 in a neighbourhood of U c and Y is defined and of class
Cs on U . Since both X ∈ Xs

µ(M) and Y ∈ Xs
µ(U ) are divergence-free,

h := div w ∈ Cs(M) and h is Cr -small if Y − X |U is Cr -small

as h = div X = 0 in a neighbourhood of U c and (on local charts)

h =
n∑

i=1

(∂iξ)(Y i
− X i ) in U. (2.6)

Clearly, h is (compactly) supported inside Ω . In order to get Z0 ∈ X
s
µ(M) satisfying (1)

and (2), it is enough to find v ∈ Xs(M) supported inside Ω such that

div v = h = div w

and then let Z0 = w − v, which cancels the divergence ofw inside the ‘transition annulus’
Ω , while keeping w unaltered outside that open set (in particular, Z0 = w = Y in a
neighbourhood of W0 and Z0 = w = X in a neighbourhood of (int W1)

c
⊃U c). Since

the smooth scalar function ξ is fixed, by (2.6) the Cr norm of h is linearly bounded by that
of Y − X |U ,

|h|r ≤ n2r
|ξ |r+1|Y − X |r;U , (2.7)

and it can be shown that (3) holds (see §3). The crucial facts that guarantee the existence of
cancelling vector field v are: (a) the connectedness ofΩ , (b) supp h ⊂Ω and (c)

∫
Ω

hω =
0, this equality following readily from the divergence theorem. Since X, Y are divergence-
free vector fields, w coincides with Y and X in ∂W0 and ∂W1 (respectively) and ∂Ω =
∂W0 t ∂W1, and thus∫

Ω

hω =
∫
∂Ω

wy ω=−
∫
∂W0

Yy ω +
∫
∂W1

Xy ω

=−

∫
W0

(div Y )ω +
∫

W1

(div X)ω =−0+ 0= 0.

The actual construction of v uses the global-to-local reduction technique originally
devised by Moser in [MO], essentially aiming to solve, under condition (c), equation
det D f = 1+ h on closed manifolds. We shall follow a complete presentation of the
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transposition of this technique to the solution of div u = h on Ω ⊂ Rn (under specific
support premises) given by Csató, Dacorogna and Kneuss [CDK, pp. 184–188]. The
smoothing of Z0 inside the transition annulus Ω is the last step of the construction.

As a byproduct of the proof below together with the estimates in §§3.1 and 3.2, we
obtain the following useful result on the solutions to the equation div v = h, with control
of support (this is applied in the proofs of Theorems 4 and 5). The linearity of the operator
Φ : h 7→ v is immediate to check from its construction (cf. [CDK, pp. 184–188]). Another
important aspect is that the operator is universal, i.e., v has always the same regularity as
h (the construction being independent of r and α) and its Cr,α norm can be estimated in
terms of that of h times a constant, i.e., the restriction of linear operator Φ to the subspace
of A consisting of those functions h that are of class Cr,α is bounded for the ‖ · ‖Cr,α norm.

LEMMA 1. Let M be a manifold as above. Suppose that Ω1, Ω are two connected open
subsets with Ω1 ⊂Ω . Then there exists a linear operator Φ :A→ B : h 7→ v, satisfying
div v = h, where

A=
{

h ∈ C1(M) :
∫
Ω

h ω = 0 and supp h ⊂Ω1

}
,

B= {v ∈ X1(M) : supp v ⊂Ω}.

Furthermore, if h is of class Cr,α , r ∈ Z+, 0≤ α ≤ 1, then v is Cr,α and there is a constant
C = C(r, Ω1, Ω)≥ 1 such that

‖v‖Cr,α ≤ C‖h‖Cr,α .

Proof of Theorem 1. According to the Preview, it remains to defineΩ and ξ precisely and
then solve

div v = h, v ∈ Xs(M) supported inside Ω.

The existence of constant C = C(r, K ,U ) satisfying (3) is proved in §3. We start by
carefully constructing Ω and an auxiliary domain Ω1, which is needed in our approach.

(A) Construction of Ω , Ω1, V and w. Using Lemma A.1 (§A.3), fix a compact
n-submanifold P with connected C∞ boundary such that K ⊂ int P and P ⊂U . By
the existence of collars for ∂P [HI, p. 113], there are four smoothly isotopic (nested)
manifolds Pi≤4 satisfying

K ⊂ int P1, Pi ⊂ int Pi+1 (i ≤ 3), P4 = P

and such that
Ω := (int P4)\P1 and Ω1 := (int P3)\P2

are both diffeomorphic to ∂P×]0, 1[, and hence are connected open sets. Exactly as
described in the Preview, fix a scalar function ξ for W0 = P2 and W1 = P3 (the same for
all X and Y ) and define w and h accordingly. Clearly, h ∈ Cs(M) is supported inside Ω1,
Ω1 ⊂Ω and

∫
Ω

hω = 0. We set V = int P1.
(B) Finding a divergence-cancelling vector field v. In order to find v ∈ Xs(M)

supported inside Ω and satisfying div v = h, we may now apply the procedure in [CDK,
pp. 184–188], which reduces this problem to the solution of finitely many local equations

div v j = h j , v j ∈ X
s(Q j ) (2.8)
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with v j compactly supported inside the open cube Q j ⊂ Rn . The construction in [CDK]
carries almost verbatim to our closed manifold M , as the integrals involved in the definition
of the auxiliary functions h j are invariant under chart transition (see below).

Briefly, since Ω1 ⊂Ω is compact, it can be covered by finitely many small open sets
U j ⊂Ω , 0≤ j ≤ N , N ≥ 3, each of them intersectingΩ1, such that the image of each U j

on some (reindexed) local chart (V j , φ j ) is an open cube Q j ⊂ φ j (V j )⊂ Rn of volume
≤ 1†. Clearly, N depends only on Ω1 and Ω and thus ultimately only on K and U .
Auxiliary functions h j ∈ Cs(M) are now constructed exactly as in [CDK, p. 185, Lemma
9.9]. These are well defined since the atlas is volume preserving, which thus implies that
all integrals of scalar functions involved [CDK, p. 187] are invariant under chart transition
(these appear in the constants λk , see §3.1(b). The scalar functions h j satisfy [CDK,
Lemma 9.9]

h =
N∑

j=0

h j , supp h j ⊂U j ⊂Ω,

∫
U j

h jω = 0.

On local chart (V j , φ j ), ∫
Q j

h j = 0, supp h j ⊂ Q j ⊂ Rn .

Each local equation (2.8) is now solved by [CDK, p. 185, Lemma 9.8] (which is valid
for arbitrary open cubes; see Footnote † on page 20) and the pullback φ∗j v j , still denoted

by v j , is extended by zero to the whole M . As h =
∑N

j=0 div v j = div(
∑N

j=0 v j ) and

supp v j ⊂Ω , v =
∑N

j=0 v j is the desired vector field. Observe that, by construction, h j ,
v j and finally v are Cs if h is Cs (i.e., if X, Y are Cs ; see §3). We now have Z0 =

w − v ∈ Xs
µ(M) satisfying (1) and (2). Observe that the above procedure actually gives a

construction of the operator Φ in Lemma 1, i.e., v =Φ(div w). Still, by construction, if
Y = X |U , then Z0 = X (see Lemma 1 above) and hence Z = X . Otherwise, by Remark 4
(§3.1), the estimate ‖Z0 − X‖Cr ≤ C‖Y − X‖Cr ;U is still valid with constant C replaced
by C − 1 and we finally get Z still satisfying (1)–(3) and smooth in

1= {x ∈ M : Z(x) 6= X (x), Y (x)}

by applying Theorem 5 to Z0 and Ω (this set being the interior of a compact collar
of ∂P). �

3. Linear bound on Cr,α norms
3.1. The Cr case. Instead of the standard Whitney Cr norm ‖ · ‖Cr , we adopt the
equivalent but more convenient norm | · |r defined in §A.1. Then estimate (3) in Theorem 1
is proved letting C = n(r+1)/2C ′ + 1 and finding a constant C ′ = C ′(r, K ,U ) for which

|Z0 − X |r ≤ C ′|Y − X |r;U (3.1)

(clearly, C = C(r, K ,U ) since n = dim M is fixed).

† This fact will be used in §3.1(c).
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Remark 4. Note that estimate (3) in Theorem 1 will still be valid if one replaces C by
C − 1 (as a consequence of adding +1 in the definition of C). This is used at the end of
the proof of Theorem 1 (in the smoothing step). The same observation holds for Theorem 3
(used in Corollary 1).

As

|Z0 − X |r = |w − v − X |r ≤ |w − X |r + |v|r ,

|w − X |r = |ξ(Y − X)|r;U ≤ 2r
|ξ |r |Y − X |r;U ,

it is enough to find a constant C0 = C0(r, K ,U ) > 0 such that |v|r ≤ C0|Y − X |r;U and
let C ′ = 2r

|ξ |r + C0 (as |ξ |r depends only on r and Ω and thus ultimately only on r , K
and U ).

We will obtain a finite chain of linear bounds with constants C1, C2, C3 depending only
on r , K and U , which finally leads to the desired inequality.

(a) |h|r ≤ C1|Y − X |r;U . From the local chart expression of h (see (2.6) and (2.7) in
the Preview, §2.3), it follows that this inequality holds for C1 = n2r

|ξ |r+1. Thus, |ξ |r+1

depends only on r , K and U , and so does C1.
(b) |h j |r ≤ C2|h|r . Following the reasoning in [CDK, §9.3, pp. 184–188] transposed

to M , fix ψ j , ηk ∈ C∞(M; [0, 1]) as in Lemma 9.9. Note that ψ j , ηk depend ultimately
only on K and U . Let

d1 = max
0≤ j≤N

|ψ j |r , d2 = max
1≤k≤N

|ηk |r .

By definition, h j = hψ j +
∑N

k=1 λk A j
kηk (see the proof of Lemma 9.9 in [CDK, pp. 185–

188]), where each A j
k (depending on the sequence U0, . . . ,UN ) is either −1, 0 or 1 and

the λk are the constants solving
∑N

k=1 λk A j
k =

∫
Ω

hψ j , 0≤ j ≤ N . In order to find the λk ,
we solve the N simultaneous equations corresponding to 1≤ j ≤ N , as matrix E obtained
from (N + 1)× N matrix A = (A j

k ) by truncating its first line is actually invertible and the
solutions thus obtained automatically satisfy the equation corresponding to j = 0. Finding
λk by Cramer rule, λk = |B|/|E |, and expanding determinant |B| along the kth column
(knowing that Ak

k = 1, A j
k =−1 or 0 if j < k, A j

k = 0 if j > k and each column of E
contains, at most, two non-zero entries), we immediately get, on the chart containing the
cube U j (recalling that N ≥ 3),

|λk | ≤ N2N−3 max
0≤ j≤N

∣∣∣∣∫
Ω

hψ j

∣∣∣∣≤ N2N−3measΩ|h|r ,

|h j |r ≤ |hψ j |r + N max
0≤ j≤N

|λk A j
kηk |r ≤ C2|h|r ,

where C2 = C2(r, K ,U )= 2r d1 + N 22N−3d2measΩ .
(c) |v j |r ≤ C3|h j |r . Recall that v j is found on local chart (V j , φ j ) as the solution

of (2.8) given by [CDK, Lemma 9.8, p. 185] and then extending its pullback by zero to the
whole M . Clearly, Lemma 9.8 [CDK] holds for each cube Q j ⊂ Rn†. Since vol Q j ≤ 1,

† The proof of Lemma 9.8 in [CDK, p. 185] becomes valid for Q j by performing the obvious translation of the

cube and replacing ξ by ξ̂ j ∈ C∞0 (]0, ρ j [), ρ j = (vol Q j )
1/n
≤ 1, satisfying

∫ ρ j
0 ξ̂ j = 1. Each ξ̂ j is fixed and

depends only on vol Q j , and hence ultimately only on K and U .
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a simple induction argument over the dimension n (carried out on the modified proof
of [CDK, Lemma 9.8]; see Footnote † on page 20) shows that, on local chart (V j , φ j ),

|v j |r ≤ (2r
|̂ξ j |r )

n
|h j |r .

Now, in order to get the global Cr norm of v j , we need to take into account the potential
magnification of these local norms under chart transitions (φ j i )i, j≤m . Since the transitions
between the chart expressions of a vector field are of the form

X j |φ j (Vi∩V j ) = φ j i∗X i |φi (Vi∩V j ),

it is easily seen that there is a constant

d = d(r,maxi, j≤m |φ j i |r+1)≥ 1

such that
|X j |φ j (Vi∩V j )|r ≤ d|X |φi (Vi∩V j )|r

for any i, j ≤ m. The global Cr norm of v j can then be estimated by

|v j |r ≤ C3|h j |r where C3 = d(2r d0)
n, d0 = max

0≤ j≤N
|̂ξ j |r .

As the atlas is fixed, we actually have C3 = C3(r, K ,U ).
(d) Finally, v =

∑N
j=0 v j , and hence |v|r ≤ (N + 1)max0≤ j≤N |v j |r , and therefore,

|v|r ≤ (N + 1)C1C2C3|Y − X |r;U .

As N + 1, C1, C2 and C3 depend only on r, K and U , the desired constant is C0 = (N +
1)C1C2C3.

3.2. The Cr,α case, 0< α ≤ 1. First, note that a direct inspection of the construction
given in the proof of Theorem 1 of the operator Φ in Lemma 1 reveals that the resulting
vector field Z = w −Φ(div w) is of class Cs,β if X and Y are Cs,β , s ∈ Z+, 0≤ β ≤ 1.
The proof of Theorem 3 is that of Theorem 1 modulo a few changes needed to get estimate
(3) that we now indicate. To simplify the estimates, it is preferable to work exclusively
with the following Cr,α norm, which is equivalent to the usual Whitney–Hölder Cr+α

norm ‖ · ‖Cr,α (see §A.1 for the notation),

|X |r,α;U = max
i, j;|σ |=r

(|X |r;U , [∂σ X i
j ]α;φ j (V j∩U )),

the α-Hölder seminorm [h]α;D of a scalar function h on a domain D (with at least two
points) being defined in the usual way. On local charts, this is also equivalent to the Cr,α

norm adopted in [CDK, p. 336], which serves as a reference for the estimates invoked
below. We will need reasonable estimates for the Hölder norms of the product and
composition of functions defined on open subsets A ⊂ M , and these exist provided that:
(i) on every local chart, the domain φi (Vi ∩ A) of each function involved is a Lipschitz
set (see, e.g., [CDK, pp. 338, 366, 369]) and (ii) these functions and their derivatives up
to order r extend continuously to the boundaries of these domains (we generically denote
the space of Cr,α functions on A satisfying (ii) by Cr,α(A)). With these two conditions,
we also guarantee the respective inclusion of Hölder spaces: if r + α ≤ s + β, where
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0≤ r ≤ s are integers and 0≤ α, β ≤ 1, then Cs,β(A)⊂ Cr,α(A) and there is a constant
C = C(s, A) > 0 such that | · |r,α;A ≤ C | · |s,β;A [CDK, p. 342].

Instead of the estimate at the end of §A.1, we now use for the norm of the product of
functions in Cr,α(A) (see, e.g., [CDK, p. 366]),

|h X |r,α;A ≤ C(r, A)|h|r,α;A|X |r,α;A (3.2)

provided each open set φ j (V j ∩ A) is Lipschitz. At first sight, this may seem problematic
for the estimates involving the vector field Y , whose domain U may not intersect the local
charts in Lipschitz sets (also, while Cr -bounded, Y may fail to satisfy condition (ii)). This
difficulty is circumvented by the following simple observation (replacing steps (a)–(c)
in §3.1).

(a′) Following the proof of Theorem 1, w = X in a neighbourhood of (int P)c, and thus

|w − X |r,α = |w − X |r,α;int P = |ξ(Y − X)|r,α;int P .

Now, P is a smooth compact n-submanifold with boundary and since the atlas is regular
so are the closures Vi of the chart domains (these are embedded Dn). Thus each open set
φi (Vi ∩ int P) is Lipschitz and so are the domains φi (Vi ∩ V j ) of the transition maps φ j i .
Therefore (as P and ξ depend only on K and U ),

|w − X |r,α ≤ C(r, K ,U )|ξ |r,α|Y − X |r,α;int P

=C(r, α, K ,U )|Y − X |r,α;int P

and

|h|r,α = |h|r,α;int P

≤ C(r, K ,U )|ξ |r+1,α|Y − X |r,α;int P

=C(r, α, K ,U )|Y − X |r,α;int P .

From now on, we need not concern ourselves with condition (ii) any more, as it is
immediate to verify that all functions involved satisfy it.

(b′) The finitely many auxiliary functions ξ , ψ j , η j are defined on the whole M , and
thus using (3.2) one gets the local estimate (on the chart containing the cube φ j (V j ))

|h j |r,α ≤ C(r, α, K ,U )|h|r,α.

(c′) The auxiliary functions involved in the construction of the compactly supported
solution to div v j = h j on the cube Q j = φ j (U j ) are all defined on (the closure of) this
Lipschitz set, and thus (3.2) applies. The deduction of the local estimate

|v j |r,α ≤ C(r, α, K ,U )|h j |r,α

is a bit more subtle than the corresponding Cr case (but still simple), and involves a
judicious application of differentiation under the integral sign. Then, as in the Cr case,
there is a constant

d = d(r, α)= d(r,maxi, j≤m |φ j i |r+1,α)≥ 1

permitting us to estimate the global Cr,α norm of v j in terms of that on the cube times
d. To get this constant, one uses (3.2) together with the estimate for the norm of the
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composition (still subject to conditions (i) and (ii) above; see, e.g., [CDK, p. 369]; here
g : A→ B = dom f ),

| f ◦ g|r,α;A ≤C(r, A, B)| f |r,α;B(1+ |g|r+αr,α;A)

≤C(r, A, B)| f |r,α;B(1+max(|g|rr,α;A, |g|
r+1
r,α;A)).

Finally, we observe that constant C in Theorem 3 actually does not depend on the
Hölder exponent α, as C ultimately depends only on r and on the Cr,α and Cr+1,α norms
of finitely many smooth functions depending only on K and U or even only on the atlas
(this is the case for the chart transition maps φ j i ). On local charts, the domains A of these
functions are always Lipschitz (see above), and thus, for each such function, all these
norms (with α in the range ]0, 1]) are uniformly estimated in terms of the respective Cr+2

norm times a constant C(r, A) [CDK, p. 342]. Taking the maximum of these constants
for the finitely many functions involved, we get a constant Ĉ = Ĉ(r, K ,U ), enabling the
simultaneous estimate of all these Cr,α and Cr+1,α norms (0< α ≤ 1) in terms of the
respective Cr+2 norms times Ĉ . Thus C depends only on r , K and U .

4. Linearized conservative Franks’ lemma
We now state the linearized volume-preserving version of Franks’ lemma. Since
perturbations of diffeomorphisms are usually carried out via chart representations, as with
Theorem 6, care has been taken to find a δ that directly estimates the permitted variation
of the derivative on all chart representations (see §A.2.3 for the terminology). We start
by stating a simpler topological version of this result. The full strength is achieved in
Theorem 8.

THEOREM 7. (Linearized conservative Franks’ lemma) Let M be a manifold as in §2. Fix
r ∈ Z+ and 0< α < 1 and let U be a C1 neighbourhood of f ∈ Diff r,α

µ (M) in Diff r,α
µ (M).

Then there is a smaller C1 neighbourhood U0 of f in Diff r,α
µ (M) and δ = δ(r, α, f, U) > 0

such that, given:
• any g ∈ U0;
• any finite set Σ ⊂ M;
• any neighbourhood U of Σ; and
• any linear maps Ax ∈ SL(n, R), x ∈Σ , satisfying

‖Ax − Dgx (x)‖< δ,

where gx is some chart representation of g around x, there exists g̃ ∈ U having, for each
x ∈Σ , a chart representation g̃x around x comparable with gx and such that:
(1) g̃x (y)= gx (x)+ Ax (y − x) near x; and
(2) supp(g̃ − g)⊂U.
Furthermore, if g is C∞, then so is g̃.

Remark 5. For each x ∈Σ , (1) implies that g̃(x)= g(x), Dg̃x (x)= Ax and g̃ is affine
linear near x in chart representation g̃x .

The proof actually establishes the stronger result stated below. Given a C1

diffeomorphism f of M onto itself, let supM‖D f ‖ denote the supremum of ‖D f (y)‖ for
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all y ∈ M , over all possible chart representations of f around y (see §A.2). As, in chart
representations, the derivatives of a conservative diffeomorphism belong to SL(n, R),
imposing a uniform upper bound supM‖D f ‖ ≤ d automatically guarantees uniform local
bounded distortion for all conservative diffeomorphisms satisfying this inequality: on chart
representations, for any x ∈ M , the image of Sn−1 under the derivative D f (x; ·) is an
ellipsoid with major radius ≤ d and minor radius ≥ d−n+1 (this is immediate looking at
the polar decomposition).

Also, as is shown below in part (C) of the proof of Lemma 2, δ can be made to depend
linearly on the required C1-closeness ε of the resulting diffeomorphism g̃ to g (provided
ε is small enough). With both observations in mind, Theorem 7 can be reformulated as
follows.

THEOREM 8. (Linearized conservative Franks’ lemma) Let M be a manifold as in §2.
Fix r ∈ Z+, 0< α < 1 and d ≥ 1. Then there is a constant χ = χ(r, α, d) > 0 such that,
given:
• any g ∈ Diff r,α

µ (M) with supM‖Dg‖ ≤ d;
• any 0< ε ≤ 1;
• any finite set Σ ⊂ M;
• any neighbourhood U of Σ; and
• any linear maps Ax ∈ SL(n, R), x ∈Σ , satisfying

‖Ax − Dgx (x)‖< χε,

where gx is some chart representation of g around x, then (adopting any local C1-
metrization of Diff r,α

µ (M) near g as in §A.2) there exists g̃ ∈ Diff r,α
µ (M) ε-C1-close to

g having, for each x ∈Σ , a chart representation g̃x around x comparable with gx and
such that:
(1) g̃x (y)= gx (x)+ Ax (y − x) near x; and
(2) supp(g̃ − g)⊂U.
Furthermore, if g is C∞, then so is g̃.

Remark 6. Avila’s localized smoothing [AV, Theorem 7] implies that Theorem 7 can be
stated for Diff1

µ(M) in place of Diff r,α
µ (M) (with χ = χ(d) > 0), the reduction of the C1

local linearization to the C∞ case being then achieved through Lemma 2 below. However,
if g is Ck , k ≥ 2 an integer, one should not be tempted to apply [AV, Theorem 7] in order
to smooth g near x (getting ĝ), and then apply the elementary perturbation lemma [BC,
Lemma A.4, p. 93] to correct ĝ(x) back to g(x) and finally apply Lemma 2 below to get
a C1 perturbation g̃, still of class Ck , which is affine linearized near x (in some chart
representation) and coincides with g at x and outside any given small neighbourhood of
this point. Indeed, [AV] does not guarantee the resulting map to be C2 at the boundary
points of the open setΩ where the smoothing takes place, the above reasoning being valid
only for k = 1.

Obviously, the C1-closeness of g̃ to g is the best possible and cannot be upgraded
to any of the higher C1+ topologies (even if the localized support is dropped and Σ is
reduced to a single point). In terms of regularity, Theorems 7 and 8 are also optimal, in the
sense that the resulting diffeomorphism g̃ is still Cr,α (respectively, C∞) as the original
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one. If one is particularly interested in the class of Ck diffeomorphisms, k ≥ 2 an integer,
it is natural to ask if g̃ can be found of class Ck as g and not merely of class Ck−1,α

for any chosen 0< α < 1 (a version of this statement appears without proof in [HHTU,
p. 217]). For k ≥ 2, a positive answer seems beyond the techniques presently available (if
possible at all). The case k = 1 is exceptional due to Avila’s theorem mentioned above,
but no analogous result is known for k ≥ 2. These difficulties are related to the fact that, in
dimension n ≥ 2, there are, in general, no known Cr+1 solutions to the prescribed Jacobian
PDE, det D f = h, when h is of class Cr , r ∈ Z+ (see, e.g., [CDK, p. 192], [RY, p. 324]).

In virtue of Lemma 2 below, the answer would be positive if g could be Ck+-
smoothened near 0, i.e., if one could answer affirmatively the following question.

QUESTION (Local Ck+-smoothing with C1-closeness) Given any volume-preserving Ck

map g : Bn
−→ Rn , k ≥ 2 an integer, is there arbitrarily C1-close to it another volume-

preserving Ck map ĝ : Bn
−→ Rn which is Ck,α near zero (for some 0< α < 1) and

satisfies supp(ĝ − g)⊂⊂ Bn ?

Proof of Theorem 7. We shall reduce the proof to that of Lemma 2 below. Fix a covering
system {Bl}l≤m̃ , i, j for f , here called Υ , as in §A.2, and 0< ε ≤ 1 such that Uε,Υ ( f )⊂
U . Let U0 =Uε/2,Υ ( f ). Recall that, by definition of Uε,Υ ( f ), the same covering system
works for any g ∈Uε,Υ ( f ). Let g ∈ U0. As one wishes, for each x ∈Σ , to be able
to choose freely any chart representation gx around x where we can perform the local
linearization (getting g̃x ), we will need to estimate supM‖Dg‖ for all such g, the supremum
of ‖Dg(y)‖ for all y ∈ M , over all possible chart representations of g around y (see
§A.2). As the transitions between chart representations of g around point x are of the
form g ĵ î,B = φ ĵ j ◦ g j i;B ◦ φî i (§A.2.2), one gets, as ε ≤ 1, for all g ∈ U0,

supM‖Dg‖< c := a2(supM‖D f ‖ + 1),

where
a = max

i, j≤m
sup

φi (Vi∩V j )

‖Dφ j i‖

and φ j i = φ j ◦ φ
−1
i are the chart transitions of the atlas (Vi , φi )i≤m . Note that we need

not be concerned with the C0 norm of g̃ − g since it becomes as small as wished if
supp(g̃ − g) is contained in the disjoint union of sufficiently small open balls (on local
charts) centred at the points of Σ . This also guarantees that (2) holds. Hence, only
the distance between the derivatives of g̃ and g is of concern. Performing adequate
translations in both domain and target of each chart representation gx around x , it is now
easily seen that the problem reduces to proving Lemma 2 below and finding through it
the constant χ = χ(r, α, c, n) and then letting δ = χε0, where ε0 = ε/2b. Here, b ≥ 1 is
a multiplicative constant (to be determined below) controlling the possible magnification
of the distance ‖Dg̃x (y)− Dgx (y)‖, y ∈ supp(gx − g̃x ), when passing from gx , g̃x to
any other pair ĝ, ̂̃g of comparable chart representations of g and g̃ around y. This will
guarantee, in particular, that, for g ∈ U0, ‖g̃ − g‖C1 < ε/2 in the local metric induced on
Uε,Υ ( f ), and therefore that one gets, as wished,

‖g̃ − f ‖C1 ≤ ‖g̃ − g‖C1 + ‖g − f ‖C1 < ε/2+ ε/2= ε.
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We now construct g̃ and proceed to determine the constant b mentioned above. Since this
is more subtle than it might seem at first sight, we do it with some detail. To simplify
the exposition, we identify a point x in M with its image φi (x) in a local chart. We first
select at will, for each x ∈Σ , a chart representation gx = g j i,D of g around x and fix a
small closed ball Bx centred at this point and contained in the (open) domain φi (D) of gx ,
such that the Bx are mutually disjoint (i.e., have mutually disjoint preimages in M). Using
Lemma 2 below, we find δ = χε0, where ε0 = ε/2b and

b = n2a
(

a + (c + 1)max
i, j≤m

sup
φi (Vi∩V j )

(‖D2φ j i‖ + 1)
)

and then, for any given Ax ∈ SL(n, R), as in the statement of Theorem 7, we find a volume-
preserving Cr,α (respectively, C∞) diffeomorphism onto its image g̃x : φi (D)→ φ j (V j ),
which is affine linearized by Ax near x and satisfies g̃x (x)= gx (x), supp(g̃x − gx )⊂ Bx

and ‖g̃x − gx‖C1 < ε/2b. In this way, we have g̃ globally defined: g̃ = g̃x in Bx and g̃ = g
in (
⋃

x∈Σ Bx )
c (again, we simplify the notation identifying g̃x with the corresponding map

in M and Bx with its preimage in M). Now, let ĝ = ĝ ĵ î,E and ̂̃g = ̂̃g ĵ î,E be any other
pair of comparable chart representations of g and g̃ around the preimage ŷ = φ−1

i (y) in M
of y ∈ supp(g̃x − gx ). We claim that

‖D̂̃g(ŷ)− Dĝ(ŷ)‖< ε/2, (4.1)

as wished. From the expression giving the derivative under chart representation transition,

Dĝ(ŷ)= Dφ ĵ j (gx (y)) ◦ Dgx (y) ◦ Dφî i (ŷ), y = φî i (ŷ),

one gets that
‖D̂̃g(ŷ)− Dĝ(ŷ)‖

is less than or equal to

‖Dφ ĵ j (g̃x (y)) ◦ Dg̃x (y)− Dφ ĵ j (gx (y)) ◦ Dgx (y)‖ · ‖Dφî i (ŷ)‖. (4.2)

(i) If g̃x (y)= gx (y), then the norm on the left equals

‖Dφ ĵ j (gx (y))‖ · ‖Dg̃x (y)− Dgx (y)‖

and hence

‖D̂̃g(ŷ)− Dĝ(ŷ)‖ ≤ a2
‖g̃x − gx‖C1 < a2ε/2b < ε/2.

(ii) If g̃x (y) 6= gx (y), then, denoting by M(y)= [akl ] the n × n matrix in (4.2) inside
the norm on the left, we have, for the constant a defined above,

‖D̂̃g(ŷ)− Dĝ(ŷ)‖ ≤ a‖M(y)‖.

We estimate the absolute value of the entries akl and then use ‖M(y)‖ ≤ n max|akl |.
Denoting by φk the kth component of φ ĵ j and by {ei }i≤n the canonical base of Rn ,

|akl | =

∣∣∣∣ n∑
i=1

∂eiφ
k(g̃x (y)) · ∂el g̃x

i (y)− ∂eiφ
k(gx (y)) · ∂el g

i
x (y)

∣∣∣∣.
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Now, the key step is to write (using the mean value theorem)

∂eiφ
k(g̃x (y))= ∂eiφ

k(gx (y))+ ∂u∂eiφ
k(z) · |g̃x (y)− gx (y)|, (4.3)

where z is some point in the interior of segment [g̃x (y), gx (y)] and u is the direction
(g̃x (y)− gx (y))/|g̃x (y)− gx (y)|. Since

|∂el g̃x
i (y)| ≤ ‖g̃x‖C1 < ‖gx‖C1 + ε/2b < c + 1,

a simple calculation shows that

|akl | ≤ n
(

a + (c + 1)max
i, j≤m

sup
φi (Vi∩V j )

‖D2φ j i‖
)
‖g̃x − gx‖C1 (4.4)

and, since ‖g̃x − gx‖C1 < ε/2b, inequality (4.1) follows. The problem with the above
reasoning is that the segment [g̃x (y), gx (y)] might not be contained in the domain
φ j (V j ∩ V ĵ ) of φ ĵ j and reducing supp(g̃x − gx ) to an even smaller neighbourhood of x
will not help if g(x) ∈ V ĵ\V ĵ . To overcome this difficulty, we use the fact that the atlas
of M is contained in a larger atlas (see the convention in §2): there is a small % > 0 such
that, for every chart domain Vk , sup‖D2Φk j‖ evaluated in the %-neighbourhood ∆k j of
φ j (Vk ∩ V j ) is smaller than sup‖D2φk j‖ + 1 in φ j (Vk ∩ V j ). If necessary, we then reduce
the radius of the closed ball Bx even further so that gx (Bx )⊂ φ j (V j ) has diameter smaller
than %. As y ∈ supp(g̃x − gx )⊂ Bx , both gx (y) and g̃x (y) are contained in gx (Bx ), and
thus the segment [g̃x (y), gx (y)] is entirely contained in ∆ ĵ j . It is thus enough to replace
φ = φ ĵ j in (4.3) by its extension Φ ĵ j and replace ‖D2φ j i‖ by ‖D2φ j i‖ + 1 in (4.4), as is
done in the definition of b. We have therefore reduced the proof of Theorem 7 to that of
Lemma 2 below. �

From now on, we assume that Rn and all its subsets are endowed with the standard volume
form dx1 ∧ · · · ∧ dxn . We write A ⊂⊂ B for ‘A is compact and contained in B’.

LEMMA 2. (Uniform conservative local linearization) Given any n, r ∈ Z+, 0< α < 1
and c ≥ 1 there exists a constant χ = χ(r, α, c, n) > 0 such that, given any
(a) 0< ε0 ≤ 1;
(b) any volume-preserving Cr,α diffeomorphism onto its image

f : ηBn
−→ Rn, η > 0

such that f (0)= 0 and
‖D f (0)‖ ≤ c;

(c) any A ∈ SL(n, R) such that

‖A − D f (0)‖< χε0,

there exists a volume-preserving Cr,α diffeomorphism onto its image f A : ηBn
→ Rn

satisfying:
(1) f A = A near 0;
(2) supp( f A − f )⊂⊂ ηBn; and
(3) ‖ f A − f ‖C1 < ε0.

Furthermore, if f is C∞, then so is f A.
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Proof. We treat the cases (A) f ∈ Cr,α
\C∞ and (B) f ∈ C∞ separately. In order to make

the construction of f A more transparent, we start by establishing in case (A), through a
continuity reasoning, the existence for each ε0 > 0 of a δ = δ(r, α, c, n, ε0) > 0 such that
(1)–(3) hold if ‖A − D f (0)‖< δ and, analogously, δ = δ(c, n, ε0) > 0 is found in case
(B). Finally, the linear dependence of δ on ε0 for 0< ε0 ≤ 1 is established in each case
(see (C) and (D) below), getting δ = χε0 for some constant χ = χ(r, α, c, n) > 0 in case
(A) and for χ = χ(c, n) > 0 in case (B). We then take χ as the minimum of these two
values.

(A) Case f ∈ Cr,α
\C∞. The following auxiliary fact follows readily from the

compactness of
SLc := {D ∈ SL(n, R) : ‖D‖ ≤ c}, c ≥ 1

and the continuity of the the composition operator for matrices in relation to the standard
norm. Together with Fact 2 below, it will ultimately permit us to find, for given ε0 > 0 and
c ≥ 1, a single δ working simultaneously for all f satisfying (b). Proofs of both facts with
linear estimates are given in (C).

Fact 1. For any n ∈ Z+, ε > 0 and c ≥ 1, there is δ > 0 such that, given any A ∈ SL(n, R)
and D ∈ SLc,

‖A − D‖< δ H⇒ ‖A−1
◦ D − Id‖< ε.

The precise ε0 − δ chain establishing Lemma 2 can be easily reconstructed from the
following reasoning, which makes the structure of the proof more transparent. The
continuity of the addition and multiplication operators in relation to the Cr,α norm and that
of the composition and inversion operators in relation to the C1 norm will be systematically
used without mention.

While Lemma 2 is a C1-closeness result, we will need to work with the C1,α norm
until step (A.2) in order to guarantee that the volume-correcting diffeomorphism ϕ−1 is
of class Cr,α and C1-close to Id. Then we return to the standard Whitney C1 norm using
‖·‖C1 ≤ n |·|1 ≤ n |·|1,α (see §A.1).

For h ∈ Cr,α(Bn, Rn), r ∈ Z+, 0< α ≤ 1, we adopt the Cr,α norm corresponding to
that of §3.2 (for h ∈ Cr,α(Bn), the definition is the same but the component superscript i
disappears). This is equivalent to the standard Whitney–Hölder Cr+α norm ‖ · ‖Cr,α .

|h|r,α;Bn = max
i;|σ |=r

(|h|r;Bn , [∂σ hi
]α;Bn ).

(A.1) Reducing to the case of diffeomorphisms with domain Bn C1,α -close to Id and
A = Id. Let 0< λ <min(1, η). For each f of class Cr,α satisfying (b), rescale f |λBn to
the unit ball getting a volume-preserving Cr,α diffeomorphism onto its image

fλ :Bn
−→ Rn

z 7−→ λ−1 f (λz).

One has
| fλ − D f (0)|1,α;Bn −−−→

λ→0
0. (4.5)
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(Up to the C1 norm, the reasoning is the same as in the proof of Theorem 6. Let {e j } j≤n

be the canonical base of Rn . Writing ∂ j for ∂e j , one has, for the partial derivatives of the
components f i

λ of fλ,

sup
x,y∈Bn;x 6=y

|∂ j f i
λ(y)− ∂ j f i

λ(x)|
|y − x |α

= sup
x,y∈Bn;x 6=y

λα
|∂ j f i (λy)− ∂ j f i (λx)|

|λy − λx |α

≤ λα| f |1,α;λBn −−−→
λ→0

0,

which thus establishes (4.5).) For each A ∈ SL(n, R) let

h A,λ = A−1
◦ f λ.

By (4.5) (see, e.g., [CDK, p. 384]),

|h A,λ − A−1
◦ D f (0)|1,α;Bn −−−→

λ→0
0. (4.6)

Fix ξ ∈ C∞(Bn
; [0, 1]) (the same for all f and A) with ξ = 0 in 1

3D
n and ξ = 1 in Bn

\
2
3B

n

and define
gA,λ = Id+ ξ(h A,λ − Id).

Then, noting that, for L ∈ L(n, R), |L|1,α;Bn ≤ ‖L‖, by (4.6)

|h A,λ − Id|1,α;Bn −−−→
λ→0

|A−1
◦ D f (0)− Id|1,α;Bn ≤ ‖A−1

◦ D f (0)− Id‖ (4.7)

and, by Fact 1 above, as D f (0) ∈ SLc, for δ small the norm on the right is uniformly small
for all f satisfying (b) and all A satisfying (c), and hence, for λ small enough,

|gA,λ − Id|1,α;Bn is small (4.8)

and, in particular, gA,λ is a diffeomorphism of Bn onto its image.

(A.2) Correcting the volume distortion. Dropping the subscripts, for simplicity, let

θ = θA,λ = det DgA,λ.

Then by (4.8), it follows that (i)

|θ − 1|0,α;Bn is small, (4.9)

(ii)
∫
Bn θ =meas gA,λ(Bn)=measBn and (iii) θ = 1 in C = 1

3D
n
∪ (Bn

\
2
3B

n). Now it is
easily seen that we can apply [TE, Theorem 4] (with γ = α) to get ϕ ∈ Diffr,α(Bn) such
that det Dϕ = θ and ϕ = Id in C , with

|ϕ − Id|1;Bn small. (4.10)

Then
g̃A,λ = gA,λ ◦ ϕ

−1

is a volume-preserving Cr,α diffeomorphism of Bn onto its image with{
g̃A,λ = Id in 1

3D
n,

g̃A,λ = h A,λ in Bn
\

2
3B

n,

and
‖g̃A,λ − Id‖C1;Bn is small. (4.11)
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(A.3) Back to the general case. Setting

f̃ A,λ = A ◦ g̃A,λ,

it is immediate to verify that {
f̃ A,λ = A near 0,

supp( f̃ A,λ − fλ)⊂⊂ Bn .

By (4.11) and Fact 2 below, for δ (and λ) small,

‖ f̃ A,λ − D f (0)‖C1;Bn < ε0/2 (4.12)

for all f satisfying (b) and all A satisfying (c). For a proof of Fact 2 with a linear estimate,
see (C.8) below.

Fact 2. For any n ∈ Z+, ε > 0 and c ≥ 1 there is δ > 0 such that, given any A ∈ L(n, R),
D ∈ SLc and a C1 map g : Bn

→ Rn ,

‖A − D‖, ‖g − Id‖C1;Bn < δ H⇒ ‖A ◦ g − D‖C1;Bn < ε.

(A.4) Scaling down to the real scale. It remains to scale down f̃ A,λ back to the real
scale. Let

f A,λ : λBn
−→ Rn

z 7−→ λ f̃ A,λ(λ
−1z).

Since the C1 norm does not increase under contracting homothetic conjugation and λ < 1,

‖ f A,λ − D f (0)‖C1;λBn ≤ ‖ f̃ A,λ − D f (0)‖C1;Bn < ε0/2. (4.13)

Taking λ even smaller, if necessary, we can further guarantee that

‖ f − D f (0)‖C1;λBn < ε0/2.

Therefore, as supp( f A,λ − f |λBn )⊂⊂ λBn , extending f A := f A,λ by f to the whole ηBn ,
we finally get, by the triangle inequality, that

‖ f A − f ‖C1;ηBn < ε0

and it is immediate to check that f A is Cr,α and satisfies all the conclusions of Lemma 2.

(B) Case f ∈ C∞. Having fixed n, c and ε0, both the determination of δ = δ(c, n, ε0)

and the construction of f A are similar to those in case (A), except that the volume-
correcting diffeomorphism ϕ in (A.2) must be obtained by a different method, as
using [TE, Theorem 4], there is no guarantee that the solution to det Dϕ = θ is smooth
when θ is smooth (in the later case, we get a solution ϕr of class Cr , for each r ∈ Z+,
but a priori nothing guarantees that these ϕr coincide to form a C∞ diffeomorphism.
Reciprocally, [TE, Theorem 5] and [CDK, Lemma 10.4] employed below cannot be
applied in case (A) since they do not provide the necessary gain of regularity, from
Cr−1,α(determinant θ ) to Cr,α (diffeomorphism ϕ)). Here all functions involved are
smooth and

| fλ − D f (0)|2;Bn −−−→
λ→0

0
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(up to the C1 norm; see (A.1) above). For each multiindex σ of order two, one has, for the
partial derivatives of the components of fλ,

sup
x∈Bn
|∂σ f i

λ(x)| = sup
x∈Bn

λ|∂σ f i (λx)| ≤ λ| f |2;λBn −−−→
λ→0

0.

Therefore,
|h A,λ − A−1

◦ D f (0)|2;Bn −−−→
λ→0

0 (4.14)

and, consequently, reasoning as in (A),

|gA,λ − Id|2;Bn is small

and hence
|θ − 1|1;Bn is small.

Then, we apply [TE, Theorem 5] and [CDK, Lemma 10.4] to get a C∞ solution
diffeomorphism to det Dϕ = θ with ϕ = Id in C and

|ϕ − Id|1;Bn small.

It can be verified that, in [TE, Theorem 5], if the volume form θ is smooth, the solution
diffeomorphism ϕ is also smooth. This follows from the fact that the solution to the
linearized problem div u = θ − 1 in [TE, Theorem 3] is smooth since it depends only
on θ and not on r, α (see [TE, Remark 3 and Footnote 3]) and from the way in which
ϕ is found (integrating the time dependent vector field ut = u/((1− t)θ + t); cf. [DM,
Lemma 2], [CDK, pp. 209–210]). One then uses the estimate in [TE, Theorem 3] and that
in [CDK, Lemma 10.4] to get the estimate |ϕ − Id|1;Bn ≤ C |θ − 1|1;Bn , for some constant
C = C(n) > 0. The construction then follows that of case (A). As shown in (D) below, the
more general (and abstract) result [CDK, Lemma 10.4] can actually entirely replace the
use of [TE, Theorem 5] above.

(C) Linear dependence δ = χε0 for 0< ε0 ≤ 1 in the case f ∈ Cr,α
\C∞. The case

of f ∈ C∞ is similar; the changes needed being indicated in (D) below. As in §3.1, we
shall establish a finite chain of linear bounds that finally lead to the determination of the
constant χ . We emphasize that | · |r,α in (C.2)–(C.5) is the Cr,α norm defined in (A) above
and ‖ · ‖C1 in (C.5)–(C.8) is the standard Whitney C1 norm (§A.1) in which Lemma 2 is
formulated.

We start by establishing the actual estimate in Fact 1.

(C.1) Given any n ∈ Z+, c ≥ 1, A ∈ SL(n, R) and D f (0) ∈ SLc,

‖A − D f (0)‖< δ ≤ 1H⇒ ‖A−1
◦ D f (0)− Id‖< (c + 1)n−1δ = C1(c, n)δ.

We have
‖A−1

◦ D f (0)− Id‖ = ‖A−1
◦ (D f (0)− A)‖< ‖A−1

‖ · δ.

Since A ∈ SL(n, R) and ‖A‖< c + 1, looking at its polar decomposition, one sees that

min
x∈Sn−1

|A(x)|> (c + 1)−n+1

and thus ‖A−1
‖< (c + 1)n−1 and the assertion follows.
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In what follows, C , C ′ and C ′′ denote auxiliary generic constants (varying from step to
step), whose existence follows from standard Hölder estimates [CDK, pp. 342 and 366] or
is evident from the context.

(C.2) ‖A−1
◦ D f (0)− Id‖< δ H⇒ |gA,λ − Id|1,α;Bn < C2(n)δ. The partition function

ξ is fixed for each dimension n and |ξ |1,α;Bn ≤ C(n)|ξ |2;Bn [CDK, p. 342], and therefore
one has, by (4.7), for λ small enough,

|gA,λ − Id|1,α;Bn = |ξ(h A,λ − Id)|1,α;Bn

≤ C ′(n)|ξ |1,α;Bn |h A,λ − Id|1,α;Bn

≤ C ′′(n)|h A,λ − Id|1,α;Bn

<C ′′(n)δ = C2(n)δ.

(C.3) |gA,λ − Id|1,α;Bn < δ ≤ 1H⇒ |θ − 1|1,α;Bn < C3(n)δ. One has

|θ − 1|0,α;Bn =max(|θ − 1|0;Bn , [θ ]α;Bn ).

Clearly, |θ − 1|0;Bn < C(n)δ for θ − 1 is the sum of n! terms of the form

±((̂a1 + δ1)(̂a2 + δ2) · · · (̂an + δn)− â1â2 · · · ân),

where each âi = 0 or 1 is an entry of the Id matrix and |δi |< δ ≤ 1, and thus |θ − 1|0;Bn <

n!(2n
− 1)δ.

To simplify the notation, we write g for the generic component gi
A,λ of gA,λ and ∂k g

for its generic partial derivative of order k.
In abridged notation, the determinant θ = det DgA,λ is the sum of n! monomials of the

form ±(∂g)n . Using the the following estimate for the α-Hölder seminorm of the product
of scalar functions [CDK, p. 366],

[h1 · · · hn]α ≤ n max
j
|h j |

n−1
0 ·max

j
[h j ]α,

and since, by hypothesis,

sup
Bn
|∂g| ≤ |gA,λ|1,α;Bn < |Id|1,α;Bn + 1= 2

and [∂g]α;Bn < δ, one has (in abridged form)

[θ ]α;Bn ≤

n!∑
[(∂g)n]α;Bn < n!n2n−1δ = C ′(n)δ.

Thus (C.3) holds.

(C.4) Let Ω = Bn
\

1
4D

n and U = (Dn
\

2
3B

n) ∪ ( 1
3D

n
\

1
4B

n). Let ε̂ = ε̂(r, α, n)=
ε̂(r, α,U, Ω) and C4 = C4(r, α, n)= c(r, α,U, Ω) be the corresponding constants
in [TE, Theorem 4]. One has, for the solution diffeomorphism ϕ ∈ Diffr,α(Bn) obtained
via [TE, Theorem 4] in (A.2) above,

|θ − 1|0,α;Bn < δ ≤ ε(r, α, n)H⇒ |ϕ − Id|1;Bn < C4(r, α, n)δ.

(C.5) We now return to the Whitney C1 norm. Since ‖ · ‖C1 ≤ n| · |1 for maps Bn
→ Rn

(§A.1), one has

|ϕ − Id|1;Bn < δ H⇒ ‖ϕ − Id‖C1;Bn < nδ = C5(n)δ.
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(C.6) Let C6 = 3. Then

‖ϕ − Id‖C1;Bn < δ ≤ 1/2H⇒ ‖ϕ−1
− Id‖C1;Bn < C6δ.

Since ϕ−1 is a diffeomorphism of Bn onto itself, one has

‖ϕ−1
− Id‖C1;Bn = ‖(ϕ − Id) ◦ ϕ−1

‖C1;Bn ≤ ‖ϕ − Id‖C1;Bn (1+ ‖ϕ−1
‖C1;Bn )

< δ(1+ ‖ϕ−1
‖C1;Bn ),

‖ϕ − Id‖C1;Bn < 1/2H⇒ min
u∈Sn−1

|Dϕ(x; u)|> 1/2 for all x ∈ Bn

H⇒ sup
Bn
‖Dϕ−1

‖< 2,

and therefore, as ‖ϕ−1
‖C0;Bn = 1 it follows that ‖ϕ−1

‖C1;Bn < 2, and thus (C.6) holds.

(C.7) Let C7 = 4. Then

‖ϕ−1
− Id‖C1;Bn , ‖gA,λ − Id‖C1;Bn < δ ≤ 1 H⇒ ‖gA,λ ◦ ϕ

−1
− Id‖C1;Bn < C7δ.

Let ĝ := gA,λ. Then

‖ĝ ◦ ϕ−1
− Id‖C1;Bn ≤ ‖(ĝ − Id) ◦ ϕ−1

‖C1;Bn + ‖ϕ
−1
− Id‖C1;Bn

< ‖ĝ − Id‖C1;Bn (1+ ‖ϕ−1
‖C1;Bn )+ δ

< δ(1+ ‖Id‖C1;Bn + 1)+ δ = 4δ.

(C.8) Let C8 = C8(c)= c + 2. Then

‖A − D f (0)‖, ‖gA,λ − Id‖C1;Bn < δ ≤ 1H⇒ ‖A ◦ gA,λ − D f (0)‖C1;Bn < C8δ.

We use the following basic estimate: given any linear map L ∈ L(n, R) and any C1-
bounded map h : Bn

→ Rn ,

‖L ◦ h‖C1;Bn ≤ ‖L‖ · ‖h‖C1;Bn .

Now, writing ĝ for gA,λ and D for D f (0),

‖A ◦ ĝ − D‖C1;Bn = ‖(A − D) ◦ ĝ + D ◦ (ĝ − Id)‖C1;Bn

≤ ‖A − D‖ · ‖ĝ‖C1;Bn + ‖D‖ · ‖ĝ − Id‖C1;Bn

< δ(‖Id‖C1;Bn + 1)+ cδ = (c + 2)δ.

(C.9) Let ε̂ = ε̂(r, α, n) be the constant obtained in (C.4). Note that we may assume
that all constants Ck above are ≥ 2. Then, following the above chain of linear estimates, it
is immediate to verify that the constant χ = χ(r, α, c, n) below satisfies the conclusions
of Lemma 2 when f ∈ Cr,α

\C∞: i.e.,

χ =
1

C1C2C3
min

(̂
ε,

1
C4C5C6C7C8

)
.

It remains only to verify that the Cr,α map gA,λ = Id+ ξ(h A,λ − Id) is, in fact, a
diffeomorphism. It is easily seen (see below) that

‖gA,λ − Id‖C1;Bn ≤ 1/4 H⇒ gA,λ is a diffeomorphism onto its image. (4.15)
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Now δ = χε0 ≤ χ since ε0 ≤ 1, therefore

‖gA,λ − Id‖C1;Bn ≤ n‖gA,λ − Id‖1,α;Bn ≤ nC2C1χ < 1/4

as C5 = n and all constants Ck are ≥ 2. Thus

nC2C1χ ≤
1

C3C4C6C7C8
≤ 2−5.

It remains to prove (4.15). It is immediate from the hypothesis that the derivative is
everywhere non-singular, and thus only the injectivity of ĝ := gA,λ needs to be established.
We show that, for any x, y ∈ Bn , |̂g(y)− ĝ(x)| ≥ 1

6 |y − x |. The hypothesis implies that,
for any v ∈ Rn , |Dĝ(0; v)| ≥ 2

3 |v|. Let h(x)= ĝ(x)− ĝ(0)− Dĝ(0; x). Then

sup
Bn
‖Dh‖ = sup

Bn
‖Dĝ − Dĝ(0)‖ ≤ sup

Bn
‖Dĝ − Id‖ + sup

Bn
‖Id− Dĝ(0)‖ ≤ 1

4 +
1
4 =

1
2

and thus, for any x, y ∈ Bn , |h(y)− h(x)| ≤ 1
2 |y − x |. Hence

|̂g(y)− ĝ(x)| = |Dĝ(0; y − x)+ h(y)− h(x)|

≥ |Dĝ(0; y − x)| − |h(y)− h(x)|

≥
2
3 |y − x | − 1

2 |y − x | = 1
6 |y − x |.

Therefore ĝ = gA,λ is injective and the proof of (C) is complete.

(D) Linear dependence δ = χε0 for 0< ε0 ≤ 1 in the case f ∈ C∞.

(D.1) The estimate in (C.1) above carries unchanged to the present C∞ case.

(D.2) From (4.14), reasoning as in (C.2) and now applying the estimate for the | · |r
norm of the product (the end of §A.1), we immediately get

‖A−1
◦ D f (0)− Id‖< δ H⇒ |gA,λ − Id|2;Bn < 22

|ξ |2;Bnδ = C2(n)δ.

(D.3) |gA,λ − Id|2;Bn < δ ≤ 1H⇒ |θ − 1|1;Bn < C3(n)δ. The estimate |θ − 1|0;Bn <

n!(2n
− 1)δ was obtained in (C.3). In the abridged notation adopted there, the components

∂iθ = (∇θ)
i of ∇θ are of the form

n!∑ n∑
±(∂2g)(∂g)n−1.

Since, by hypothesis, supBn |∂g|< 2 and supBn |∂2g|< δ, it follows that

max
i

sup
Bn
|∂iθ | ≤ n!n2n−1δ,

which, together with the estimate above for |θ − 1|0;Bn , finally gives

|θ − 1|1;Bn < n!n2n−1δ = C3(n)δ.

(D.4) |θ − 1|1;Bn < δ H⇒ |θ − 1|0,1/2;Bn <
√

2nδ = C4(n)δ. Reasoning as in §A.1
(equivalence of norms | · |r and ‖ · ‖Cr ), we have

max
i

sup
Bn
|∂iθ |< δ H⇒ sup

Bn
‖∇θ‖<

√
nδ
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and thus, by the mean value inequality,

[θ − 1]1/2;Bn = sup
x,y∈Bn; x 6=y

|θ(y)− θ(x)|
√
|y − x |

≤ sup
x,y∈Bn

√
|y − x | sup

Bn
‖∇θ‖<

√
2nδ.

Therefore, since |θ − 1|0;Bn < δ, (D.4) follows.

(D.5) |θ − 1|0,1/2;Bn < δ H⇒ |u|1;Bn < C5(n)δ. Let u ∈ X∞(Bn) be the solution to{
div u = θ − 1,

u = 0 in C ,

obtained via [TE, Theorem 3] (see (A.2) for the meaning of C and (B) for the regularity
of u), which satisfies

|u|1;Bn ≤ C(n)|θ − 1|0,1/2;Bn < C(n)δ.

(D.6) |θ − 1|1;Bn , |u|1;Bn < δ ≤ 1/2H⇒ |ϕ − Id|1;Bn < C6(n)δ. For t ∈ [0, 1], let ft =

(1− t)θ + t and ut = u/ ft . Using [CDK, Lemma 10.4] with Ω = Bn , r = 1, α = 0 and
T = 1, and since u = 0 in C , we obtain a solution ϕ := ϕ1 ∈ Diff∞(Bn) to{

det Dϕ = θ,

ϕ = Id in C ,

(for the regularity of ϕ see (B) above). Moreover (see below),

|θ − 1|1;Bn , |u|1;Bn < δ ≤ 1/2H⇒ |ut |1;Bn < 8δ ≤ 4 for all t ∈ [0, 1]. (4.16)

Therefore (still by [CDK, Lemma 10.4]),

|ϕ − Id|1;Bn ≤ C(n)
∫ 1

0
|ut |1;Bn dt ≤ C(n)8δ.

It remains to show that (4.16) holds.

(0) maxt∈[0,1]|ut |0;Bn ≤ 2|u|0;Bn < 2δ since, by hypothesis,

min
t∈[0,1]

inf
Bn

ft > 1/2.

(1) The partial derivatives of the components of ut are of the form

∂ j ui
t =

(∂ j ui )((1− t)θ + t)− ui (1− t)∂ jθ

((1− t)θ + t)2

and therefore

max
i, j; t∈[0,1]

sup
Bn
|∂ j ui

t | ≤

(
3δ
2
+
δ

2

)/
1
4
= 8δ

since |∂ j ui
|, |ui
|< δ, maxt∈[0,1] supBn | ft |< 3/2, t ∈ [0, 1] and supBn |∂ jθ |< 1/2.

(D.7) From this point onward the estimates are the same as in (C.5)–(C.8) and,
accordingly, we reindex the constants C5, C6, C7, C8 there as C7, C8, C9, C10, respectively.
Again, we may assume that Ck ≥ 2 for 1≤ k ≤ 10 and following the chain of estimates
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it is immediate to verify that the constant χ = χ(c, n) below satisfies the conclusions of
Lemma 2 when f ∈ C∞: i.e.,

χ =
1

C1C2C3 · · · C10
.

Since C3 > n, reasoning as in (C.9), it is immediate to verify that also, in this case, gA,λ

is, in fact, a diffeomorphism onto its image. The proof of Lemma 2 is complete. �

A. Appendix.
A.1. Cr norms of vector fields and maps. Let |·| be the Euclidean norm on Rn . Fix a
(finite) regular C∞ atlas (V j , φ j ) j≤m of M . Let A ⊂ M be an open set and let X ∈ Xr (A)
be a vector field of class Cr , r ∈ Z+, defined on A. On each (partial) local chart associated
with A, (V j ∩ A, φ j |V j∩A), X has an expression

X j : φ j (V j ∩ A)−→ Rn .

X is Cr -bounded on A (see §2) if the Whitney Cr norm of X is finite: i.e.,

‖X‖Cr ;A := max
j;0≤k≤r

sup
φ j (V j∩A)

‖Dk X j‖<∞.

As the atlas is regular, Cr vector fields defined on M are always Cr -bounded. Here,
‖D0 X j (x)‖ := |X j (x)| and ‖Dk X j (x)‖ :=maxui∈Sn−1 |Dk X j (x; u1, . . . , uk)|). In §3,
we work with the equivalent norm

|X |r;A := max
i, j; 0≤|σ |≤r

sup
φ j (V j∩A)

|∂σ X i
j |,

where X j = (X1
j , . . . , Xn

j ) and σ runs over all multiindices σ = (σ1, . . . , σn) ∈ Nn
0 for

which |σ | =
∑
σi ≤ r . It is easily seen that

| · |r;A ≤ ‖ · ‖Cr ;A ≤ n(r+1)/2
| · |r;A,

noting that maxx∈Sn−1
∑n

i=1 |xi | is attained when |x1| = · · · = |xn| = n−1/2, which thus
implies that λ≤ ‖Dk X j (x)‖ ≤ n(k+1)/2λ for λ=maxi;|σ |=k |∂

σ X i
j (x)|.

With the obvious changes, the same definitions are adopted for the Cr norms of maps
X ∈ Cr (A; Rq) (the local chart expressions of X being then of the form X j = X ◦ φ−1

i ),
provided we restrict ourselves to the subspace of those that are Cr bounded. In this context,
if h ∈ Cr (A) and either X ∈ Xr (A) or X ∈ Cr (A; Rq), then by the Leibniz product rule,

|h X |r;A ≤ 2r
|h|r;A|X |r;A,

which is an inequality systematically used in §3.1.

A.2. Local C1-metrization of Diffr,α
µ (M) and chart representations.

Definition A.1. (We recall the convention Cr,0
:= Cr and C∞,α := C∞). Fix a

conservative regular atlas (Vi , φi )i≤m of M as before (see the convention in §2).
Given r ∈ Z+ ∪ {∞}, 0≤ α ≤ 1, Diff r,α

µ (M) is the group (under composition) of the
Cr,α diffeomorphisms f of M onto itself preserving the volume form, ω = f ∗(ω), or,
equivalently, the Lebesgue measure µ induced by it on M . These are the bijections
f : M→ M satisfying, for each pair i, j ≤ m:
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(1) the map
f j i = φ j ◦ f ◦ φ−1

i : φi (Vi ∩ f −1(V j ))−→ Rn

is of class Cr,α , and the same holds for f −1 in place of f ; and
(2) det D f j i ≡ 1.

A.2.1. Covering system for f ∈ Diff r,α
µ (M) and local C1 metrization. Given f ∈

Diff r,α
µ (M), by the compactness of M , one can find a finite open cover Bl≤m̃ of M and

two maps
i, j : {1, . . . , m̃} −→ {1, . . . , m}

such that
Bl ⊂ Vi(l) and f (Bl)⊂ V j (l).

The triple Bl≤m̃ , i , j is called a covering system for f and will be denoted by Υ . For each
ε > 0, let Uε,Υ ( f ) be the set of those g ∈ Diff r,α

µ (M) such that, for all l ≤ m̃,

g(Bl)⊂ V j (l) and ‖gl − fl‖, ‖D(gl − fl)‖< ε,

where
gl = φ j (l) ◦ g ◦ φ−1

i(l)|Bl∗ and Bl∗ := φi(l)(Bl),

fl being defined in the same way. These Uε,Υ ( f ) induce a C1-topology on Diff r,α
µ (M)

(see, e.g., [PR, p. 262]), making it locally metrizable by the standard Whitney C1 norm:
for any h, g ∈Uε,Υ ( f ),

dC1(h, g) := ‖h − g‖C1 =max
l≤m̃
‖hl − gl‖C1 .

Clearly, a covering system for f also works for any g ∈Uε,Υ ( f ), ε > 0.

A.2.2. Chart representations of f |B . Given f ∈ Diff r,α
µ (M), suppose that B ⊂ M is an

open set such that B ⊂ Vi and f (B)⊂ V j for some i, j ≤ m. Then

f̂ = f j i,B = φ j ◦ f ◦ φ−1
i |φi (B)

is a chart representation of f |B with domain φi (B)⊂ φi (Vi ) and target φ j (V j ). If x ∈ B,
we call f̂ a chart representation of f around x . To simplify the notation, we abbreviate
by x the point φi (x) representing x in the domain of f̂ .

A.2.3. Comparable chart representations. Given any other g ∈ Diff r,α
µ (M) such that

g(B)⊂ V j , f̂ = f j i,B and ĝ = g j i,B are called comparable chart representations of f
and g on B (alternatively, comparable chart representations of f |B and g|B). By the
continuity of the composition operator in relation to the C1 norm, if ‖ f̂ − ĝ‖C1 is small,
then ‖ f̃ − g̃‖C1 is small for any other pair of comparable chart representations of f |B and
g|B . Thus a C1 perturbation of a chart representation of f |B results in C1 perturbations of
all other chart representations of f |B , the transition between two such chart representations
being explicitly given by

f ĵ î,B = φ ĵ j ◦ f j i;B ◦ φî i ,

where φkl = φk ◦ φ
−1
l are the chart transition maps.
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A.3. Statement and proof of Lemma A.1.

LEMMA A.1. Let M be a (second countable, Hausdorff) connected, boundaryless C∞ n-
manifold. Given a compact subset K with an open neighbourhood U ( M such that U\K
is connected, there is a compact n-submanifold V with connected C∞ boundary such that
K ⊂ int V and V ⊂U.

Proof. Take a finite cover B1, . . . , B j of K by open Euclidean balls† such that V0 :=⋃
i≤ j Bi ⊂U . Slightly perturbing the Bi if necessary, we can assume that the smooth

(n − 1)-spheres ∂Bi intersect transversely so that V0 is a compact n-submanifold with
piecewise smooth boundary. Smooth out the ‘edges’ of V0 so that the resulting n-
submanifold V1 has C∞ boundary and still satisfies K ⊂ int V1 and V1 ⊂U (this is clearly
possible since the smoothing can be performed arbitrarily near ∂V0). Assume that ∂V1

is disconnected (otherwise the proof is complete). The idea is to use the connectedness
of U\K to connect successively and inside U\K all the components of ∂V1, and thus
create a new submanifold satisfying the desired conclusions. Needless to say, care must
be taken to avoid the intercrossing of the ‘connecting tubes’, the nature of the ‘connecting
surgery’ depending, at each step i , on whether the tube connecting two components of ∂Vi

is contained in Vi\K or in U\int Vi (see below).
There is no difficulty in showing that, given any component b0 of ∂V1, there is a distinct

component b1 and an injective C∞ path γ : [0, 1] →U\K , γ ′(t) 6= 0, such that

γ (0) ∈ b0, γ (]0, 1[) ∩ ∂V1 = ∅, γ (1) ∈ b1

and γ is transverse to ∂V1 at γ (0), γ (1). Clearly, γ ∗ := γ (]0, 1[) is contained either in
(I) (int V1)\K or in (II) U\V1. Thicken the embedded segment γ ([0, 1]) to a thin C∞

embedded ‘tube’ Dn−1
× [0, 1]

f1
↪→U\K with its bases Dn−1

× 0 and Dn−1
× 1 attached

(respectively) to b0 and b1 so that:
(1) the ‘outer cylinder’ Sn−2

× [0, 1] is smoothly attached to b0 and b1; and
(2) as γ ∗, C = f1(Dn−1

×]0, 1[) is disjoint from ∂V1.
Now, as γ ∗, C is contained either in (I) or in (II). In the first case, let

V2 = V1\ f1(Bn−1
× [0, 1]) (‘worm-hole drilling’)

and, in the second,

V2 = V1 ∪ f1(Dn−1
× [0, 1]) (‘solid handle attaching’).

Since V2 is obtained from V1 modifying inside U\K only, it is immediate that V2 is also an
n-submanifold with C∞ boundary still satisfying K ⊂ int V2 and V2 ⊂U , but ∂V2 has one
component less than ∂V1. If ∂V2 is still disconnected, then use a finite induction argument:
we do with V2 exactly what was done with V1, decreasing again the number of boundary
components by one. After k − 1 steps (k = number of components of ∂V1), we get a
manifold V = Vk , as desired. �

† D ⊂ M is an Euclidean open ball if there is some local chart (Vi , φi ) such that D ⊂ Vi and, up to a translation,
φi (D)= λBn for some λ > 0.
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