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1. Introduction

One of the anomalous behaviours of Laplacians on fractals is the existence of spec-
tral gaps, i.e., limk→∞ λk+1/λk > 1, where λk are the eigenvalues. This is not
possible for the standard Laplacian on bounded domains in Rn or on compact
Riemannian manifolds. In fact, according to the Weyl law, on a compact connected
oriented n-dimensional Riemannian manifold M ,

(λk)n/2 ∼ (2π)nk

Bn vol(M)
as k → ∞,
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Sums and gaps of eigenvalues 843

where vol(M) is the volume of M , and Bn is the volume of the unit ball in Rn

(see, e.g., [5]). Consequently, limk→∞ λk+1/λk = 1. Strichartz [36] showed that the
existence of spectral gaps implies better convergence of Fourier series. Rigorous
proofs for the existence of spectral gaps have been obtained for only a limited
number of fractals, such as the Sierpiński gasket and the Vicsek set (see [9,19,38]).
For Laplacians defined by most self-similar measures, especially those with overlaps,
it is not clear whether spectral gaps exist. This is the main motivation of the
present paper. This paper is also a continuation of the work by the authors [8] and
by Pinasco and Scarola [32] on estimating the first eigenvalue of Laplacians with
respect to fractal measures.

To describe some classical results, let Ω be a bounded domain on Rn and let
λk be the k-th Dirichlet eigenvalue. Li and Yau [24] obtained the following lower
estimate for the sum of the first k eigenvalues

k∑
i=1

λi � nCn

n + 2
k(n+2)/nvol(Ω)−2/n, (1.1)

where vol(Ω) denotes the volume of Ω, and Cn = (2π)2B−2/n
n .

An upper estimate was obtained by Kröger [23]. The results of Li-Yau and Kröger
have been extended to homogeneous Riemannian manifolds by Strichartz [35].

For the gaps between consecutive eigenvalues, Payne, Pólya and Weinberger [31]
(see also [33]) proved the following estimate for the gaps between two consecutive
eigenvalues:

λk+1 − λk � 4
∑k

i=1 λi

nk
. (1.2)

The goal of this paper is to prove analogues of (1.1) and (1.2) for Laplacians
defined by a measure μ. Let Ω ⊂ Rn be a bounded open subset of Rn and μ be a
positive finite Borel measure with μ(Ω) > 0 and with support being contained in Ω.
Under suitable conditions (see § 2), μ defines a Dirichlet Laplacian −Δμ; moreover,
there exists an orthonormal basis {ϕn} consisting of eigenfunctions of −Δμ and the
eigenvalues λn satisfy 0 < λ1 � λ2 � · · · , with limn→∞ λn = ∞. We remark that if
μ is the restriction of Lebesgue measure to Ω, then Δμ is the classical Dirichlet
Laplacian.

We first prove an analogue of the classical lower estimate of the sum of eigenvalues
of the standard Laplacian obtained by Li and Yau [24]. We let L2

μ(Ω) denote the
Hilbert space of square-integrable functions with respect to μ. For u ∈ L2

μ(Ω), if
there is no confusion of what Ω is, we let

‖u‖μ =

(∫
Ω

|u|2 dμ

)1/2

.

If μ is the restriction of Lebesgue measure to Ω, we denote the corresponding
L2-space and norm respectively by L2(Ω) and ‖ · ‖.
Theorem 1.1. Let Ω ⊆ Rn be a bounded domain, μ be a positive finite Borel
measure on Ω with supp(μ) ⊆ Ω, −Δμ be the Dirichlet Laplacian defined by μ
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described in § 2, λk be the k-th eigenvalue of −Δμ, and ϕk be the corresponding
L2

μ(Ω)-normalized eigenfunction. Then

k∑
j=1

λj � n

n + 2

(
k∑

j=1

‖ϕj‖2

)(n+2)/n(
Bn sup

z∈Rn

k∑
j=1

|ϕ̂j(z)|2
)−2/n

� nCn

n + 2

(
k∑

j=1

‖ϕj‖2

)
vol(Ω)−2/n,

where Cn = (2π)2B−2/n
n as in (1.1).

Finally, we generalize the classical theorem by Payne, Pólya and Weinberger [31]
on the gaps between two consecutive eigenvalues.

Theorem 1.2. Assume the hypotheses of theorem 1.1 and assume in addition that
the domain of the Dirichlet form E(·, ·) in (2.2) is H1

0 (Ω). Then for all k � 1,

λk+1 − λk � 4
∑k

i=1 λi

n
∑k

i=1 ‖ϕi‖2
· f(μ;ϕ1, . . . , ϕk)
g(μ;ϕ1, . . . , ϕk)

, (1.3)

where

f(μ;ϕ1, . . . , ϕk) :=
1
n

∫
Ω

|x|2
(

k∑
i=1

ϕ2
i

)
dx

− 2
n

k∑
i,�=1

n∑
α=1

(∫
Ω

xαϕiϕ� dμ

)∫
Ω

xαϕiϕ� dx

+
1
n

k∑
i,j,�=1

n∑
α=1

(∫
Ω

xαϕiϕj dμ

)(∫
Ω

xαϕiϕ� dμ

)∫
Ω

ϕjϕ� dx

and

g(μ;ϕ1, . . . , ϕk) :=
1
n

∫
Ω

|x|2
(

k∑
i=1

ϕ2
i

)
dμ − 1

n

k∑
i,�=1

n∑
α=1

(∫
Ω

xαϕiϕ� dμ

)2

.

Remark 1.1. In the case μ is Lebesgue measure, f(μ;ϕ1, . . . , ϕk)= g(μ;ϕ1, . . . , ϕk),
and consequently the inequality in theorem 1.2 reduces to

λk+1 − λk � 4
∑k

i=1 λi

nk
,

which coincides with the classical Payne, Pólya and Weinberger inequality
(see [31,33]).

Remark 1.2. We note that in (1.3), ‖ϕj‖ > 0 for all i. In fact, if ∇ϕj = 0, then, in
view of the Poincaré inequality for measures [see (2.1)], we would get ‖ϕj‖μ = 0, a
contradiction.
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Remark 1.3. If Ω = (a, b) and supp(μ) = [a, b], it is proved in [4] that the domain
of the Dirichlet form E is equal to H1

0 (Ω). The same holds in higher dimensions if
μ is equivalent to Lebesgue measure [30].

Both theorems 1.1 and 1.2 involve the sum
∑k

i=1 ‖ϕi‖2, which suggests that it is
necessary to study the eigenfunctions. We are not able to obtain a good estimate
for this sum. Properties of eigenfunctions in one-dimension, especially when the
support of μ is an interval, have been studied in [3]). In § 3, we focus on the case
when the support of μ is not an interval, such as a Cantor-type measure.

This paper is organized as follows. In § 2, we recall the definition and some ele-
mentary properties of the Dirichlet Laplacian Δμ defined on a domain by a measure
μ. In § 3 we prove the min-max principle for −Δμ and some properties of the eigen-
functions in one-dimension. Theorem 1.1 is proved in § 4. § 5 is devoted to the proof
of theorem 1.2. Finally in § 6 we state some comments and open questions.

2. Preliminaries

For convenience, we summarize the definition of the Dirichlet Laplacian with respect
to a measure μ; details can be found in [20]. Let Ω ⊂ Rn be a bounded open subset
and μ be a positive finite Borel measure with supp(μ) ⊆ Ω and μ(Ω) > 0. We further
suppose μ satisfies the following Poincaré inequality (PI) for measures: There exists
a constant C > 0 such that∫

Ω

|u|2 dμ � C

∫
Ω

|∇u|2 dx for all u ∈ C∞
c (Ω). (2.1)

Notice that (PI) cannot be immediately extended to H1
0 (Ω) functions. For exam-

ple, let Ω = (0, 1) ⊆ R and μ be the standard Cantor measure, which is supported
on the Cantor set. For any u ∈ H1

0 (Ω), if we increase the value of u on the Can-
tor set,

∫ 1

0
|∇u|2 dx remains unchanged but

∫ 1

0
|u|2 dμ can be increased within the

same equivalence class of u without bound and hence the inequality cannot hold.
However, the following is true. (PI) implies that each equivalence class u ∈ H1

0 (Ω)
contains a unique (in L2

μ(Ω) sense) member ū that belongs to L2
μ(Ω) and satisfies

both conditions below:

(1) There exists a sequence {un} in C∞
c (Ω) such that un → ū in H1

0 (Ω) and
un → ū in L2

μ(Ω);

(2) ū satisfies the inequality in (2.1).

We call ū the L2
μ(Ω)-representative of u. Consider our Cantor set example above.

For u ∈ H1
0 (Ω), let {un} ⊆ C∞

c (Ω) be a sequence convergent to u and hence Cauchy
in H1

0 (Ω). By (PI), {un} is Cauchy and hence convergent in L2
μ(Ω). Then ū is the

function obtained by redefining u on the Cantor set to be the L2
μ(Ω) limit of un.

Assume (PI) holds and define a mapping ι : H1
0 (Ω) → L2

μ(Ω) by

ι(u) = ū.
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ι is a bounded linear operator, but not necessarily injective. Consider the subspace
N of H1

0 (Ω) defined as

N := {u ∈ H1
0 (Ω) : ‖ι(u)‖μ = 0}.

Now let N⊥ be the orthogonal complement of N in H1
0 (Ω). Then ι : N⊥ → L2

μ(Ω)
is injective. Throughout the rest of this paper, unless explicitly stated otherwise,
we will use the L2

μ(Ω)-representative ū of u and denote it simply by u.
Consider a nonnegative bilinear form E(·, ·) in L2

μ(Ω) given by

E(u, v) :=
∫

Ω

∇u · ∇v dx (2.2)

with domain dom(E) = N⊥, or more precisely, ι(N⊥). (PI) implies that (E ,dom(E))
is a closed quadratic form on L2

μ(Ω). Hence, there exists a nonnegative self-adjoint
operator −Δμ in L2

μ(Ω) such that dom(E) = dom((−Δμ)1/2) and

E(u, v) =
(
(−Δμ)1/2u, (−Δμ)1/2v

)
μ

for all u, v ∈ dom(E),

(see [7]), where throughout this paper, (·, ·)μ denotes the inner product in L2
μ(Ω).

We call Δμ the (Dirichlet) Laplacian with respect to μ. It follows that u ∈ dom(Δμ)
and −Δμu = f if and only if −Δu = f dμ in the sense of distribution: for all ϕ ∈
C∞

c (Ω),
∫
Ω
∇u · ∇ϕ dx =

∫
Ω

fϕdμ (see [20, proposition 2.2]). A real number λ ∈ R

is a (Dirichlet) eigenvalue of −Δμ with eigenfunction f if for all ϕ ∈ C∞
c (Ω),∫

Ω

∇f · ∇ϕ dx = λ

∫
Ω

fϕdμ. (2.3)

From [20, theorem 1.2], when μ satisfies (PI), there exists an orthonormal basis
{ϕn}∞n=1 of L2

μ(Ω) consisting of (Dirichlet) eigenfunctions of −Δμ. The eigen-
values {λn}∞n=1 satisfy 0 < λ1 � λ2 � · · · . Moreover, if dim(dom E) = ∞, then
limn→∞ λn = ∞. We have the following characterizations of dom E and dom (−Δμ):

dom E = N⊥ =

{ ∞∑
n=1

cnϕn :
∞∑

n=1

c2
nλn < ∞

}
,

dom (−Δμ) =

{ ∞∑
n=1

cnϕn :
∞∑

n=1

c2
nλ2

n < ∞
}

.

The Laplacian Δμ can be used to describe various physical phenomena on a domain
Ω with an inhomogeneous mass distribution. For example, an inhomogeneous
vibrating string or membrane with mass distribution μ and satisfying the Dirichlet
boundary condition is governed by a wave equation of the form utt = c2Δμu. Simi-
larly, heat conduction in such a domain can be described by a heat equation of the
form ut = kΔμu.

Classically, in one dimension, the operator Δμ has been studied quite extensively.
Kac and Krĕın [21] studied the spectrum of Δμ as well as the associated spectral
function, i.e., a nonnegative increasing function having jumps at each eigenvalue
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of Δμ. In [21], the support of the measure is allowed to be noncompact and the
measure is allowed to be infinite, and for these cases, criteria for the spectrum to be
positive and discrete are obtained by making use of a generalized Fourier transform
mapping the L2-space defined by μ to an L2-space defined by the spectral measure.
The operator Δμ can be defined equivalently by Volterra–Stieltjes integral equations
(see [2,22]). Feller studied the operator Δμ in connection with diffusion processes
[10,11]. Spectral asymptotics of Δμ was studied by McKean and Ray [25].

More recently, the operator Δμ has been studied extensively in connection
with fractal measures by authors including Fujita, Solomyak, Verbitsky, Naimark,
Freiberg, Lobus, Zähle, Bird et al., Hu et al., Andrews et al., Gu et al., Tang,
Xie and the authors (see [1,3,4,6,8,12–18,20,26–30,34,37] and the references
therein). Many of these papers study the spectral asymptotics of Δμ, while others
study the associated wave, heat and Schrödinger equations. We point out that the
operators in some of Freiberg and Zähle’s work are more general. More precisely,
one may regard Δμ formally as d2/(dμdx), since the Dirichlet form defining Δμ

[see (2.2)] is an integral with respect to Lebesgue measure dx. Freiberg and Zähle
studied more general operators of the form d2/(dμdν), where ν is a Borel measure
without point mass.

To state a sufficient condition for (PI), we recall that the lower L∞-dimension
of a measure μ is defined by

dim∞(μ) = lim inf
δ→0+

ln(supx μ(Bδ(x)))
ln δ

,

where the supremum is taken over all x ∈ supp(μ).

Theorem 2.1. ([20, theorems 1.1 and 1.2]) Let Ω ⊆ Rn be a bounded open set and
μ be a positive finite Borel measure on Rn with supp(μ) ⊆ Ω and μ(Ω) > 0. Assume
dim∞(μ) > n − 2.

(a) (PI) holds. In particular, if n = 1, or n = 2 and μ is upper s-regular with
s > 0, or μ is absolutely continuous with bounded density, then (PI) holds.

(b) The set of eigenvalues of −Δμ is contained in (0,∞) and has no accumulation
point. Hence −Δμ has a positive smallest eigenvalue λμ

1 .

3. Min-max principle and properties of eigenfunctions

Let Ω be a bounded domain in Rn and μ be a positive finite Borel measure with
supp(μ) ⊆ Ω. In this section we extend the variational principle for the principal
eigenvalue and Courant’s min-max principle for the k-th eigenvalue to the Lapla-
cians Δμ. This will be needed in the proof of theorem 1.2. We introduce some
additional notation that will be needed in the proof of the theorem. For any subset
S ⊆ dom E , let 〈S〉 be the vector subspace of dom E spanned by S, and let S⊥ be
the orthogonal complement of S in dom E with respect to the inner product in
H1

0 (Ω).
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Theorem 3.1 Min-max principle. Let Δμ be the Dirichlet Laplacian defined on a
bounded domain Ω ⊆ Rn and let 0 < λ1 � λ2 � · · · be the eigenvalues. Then for
k = 1, 2, . . . , the k-th eigenvalue satisfies

λk = max
S∈Σk−1

min
{E(u, u) : u ∈ S⊥, ‖u‖μ = 1

}
, (3.1)

where Σk−1 is the collection of all (k − 1)-dimensional subspaces of dom E . In
particular, for k = 1 we have the variational principle for the principal eigenvalue:

λ1 = min
{E(u, u) : u ∈ dom E , ‖u‖μ = 1

}
. (3.2)

Proof. Step 1. Let {ϕk} ⊆ L2
μ(Ω) be an orthonormal basis of L2

μ(Ω) with {ϕk} ⊂
dom E satisfying {

−Δμϕk = λkϕk in Ω
ϕk = 0 in ∂Ω

(3.3)

for k = 1, 2, . . . . Hence

E(ϕk, ϕl) = (λkϕk, ϕl)μ = λkδkl, (3.4)

where δkl is the Kronecker delta. If u ∈ dom E and ‖u‖μ = 1, then we can write

u =
∞∑

k=1

dkϕk in L2
μ(Ω), (3.5)

where dk = (u, ϕk)μ, and the equality holds in the sense that ‖u −∑N
k=1 dkϕk‖μ →

0 as N → ∞. Moreover,
∞∑

k=1

d2
k = ‖u‖2

μ = 1. (3.6)

Step 2. Equation (3.4) implies that {ϕk/λ
1/2
k }∞k=1 ⊆ dom E is an orthonormal

set with respect to the inner product E(·, ·). We claim that {ϕk/λ
1/2
k }∞k=1 is an

orthonormal basis of dom E with respect to E(·, ·). To see this, we let u ∈ dom E
such that E(ϕk, u) = 0 for all k � 1. Then (λkϕk, u)μ = 0 for all k � 1 and hence
(ϕk, u)μ = 0 for all k � 1. Thus, u = 0 μ-a.e. on Ω, which implies that u = 0 in
dom E (in the H1

0 -norm), since ι : N⊥ → L2
μ(Ω) is an injection. Thus, for all u ∈

dom E ,

u =
∞∑

k=1

ak
ϕk

λ
1/2
k

, (3.7)

where ak = E(u, ϕk/λ
1/2
k ). Observe that

ak = E
(

ϕk

λ
1/2
k

, u

)
=

1

λ
1/2
k

(λkϕk, u)μ =
1

λ
1/2
k

(
λkϕk,

∞∑
�=1

d�ϕ�

)
μ

= λ
1/2
k dk.
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Substituting this into (3.7), we get

u =
∞∑

k=1

(λ1/2
k dk)

ϕk

λ
1/2
k

=
∞∑

k=1

dkϕk in dom E . (3.8)

Combining (3.4), (3.6), (3.8), we get

E(u, u) = E
( ∞∑

k=1

dkϕk,

∞∑
k=1

dkϕk

)
=

∞∑
k=1

d2
kλk � λ1.

Since E(ϕ1, ϕ1) = λ1, (3.2) follows.
Step 3. Let {ϕk}∞k=1 ⊆ L2

μ(Ω) be as in Step 1. Let v ∈ dom E with ‖v‖μ = 1. Write
v =

∑∞
i=1 ciϕi, where the equality holds in both L2

μ(Ω) and dom E . As E(v, v) =∑∞
i=1 λic

2
i ,

λk = min
{ ∞∑

i=1

λic
2
i : c1 = · · · = ck−1 = 0,

∞∑
i=1

c2
i = 1

}

= min
{E(v, v) : v ∈ 〈ϕ1, . . . , ϕk−1〉⊥, ‖v‖μ = 1

}
. (3.9)

We claim that this is equal to

max
S∈Σk−1

min
{E(v, v) : v ∈ S⊥, ‖v‖μ = 1}.

To prove this, let S ∈ Σk−1 and let S = 〈v1, . . . , vk−1〉 with v� =
∑∞

i=1 d�iϕi for
	 = 1, . . . , k − 1. Consider the following two cases.

Case 1. det(d�i)k−1
�,i=1 = 0.

In this case, there exist c1, . . . , ck−1, not all zero, such that

k−1∑
i=1

c2
i = 1 and

k−1∑
i=1

d�ici = 0, 	 = 1, . . . , k − 1. (3.10)

Let ṽ :=
∑k−1

i=1 ciϕi. Then by (3.10), ṽ ∈ S⊥ and ‖ṽ‖μ = 1. Using these and (3.9),
we get

min
v∈S⊥,‖v‖µ=1

E(v, v) � E(ṽ, ṽ) =
k−1∑
i=1

λic
2
i � λk = min

v∈〈ϕ1,...,ϕk−1〉⊥,‖v‖µ=1
E(v, v).

Case 2. det(d�i)k−1
�,i=1 �= 0.

Let v ∈ 〈ϕ1, . . . , ϕk−1〉⊥ with ‖v‖μ = 1, i.e., v =
∑∞

i=k ciϕi with
∑∞

i=k c2
i = 1

and E(v, v) =
∑∞

i=k λic
2
i . We will find v′ ∈ S⊥ with ‖v′‖μ = 1 such that E(v′, v′) �

E(v, v).
We claim that there exists ṽ =

∑∞
i=1 ciϕi (i.e., ṽ has the same ϕi components as

v for i � k) such that (ṽ, v�)μ = 0 for all 	 = 1, . . . , k − 1. To see this notice that
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the condition (ṽ, v�)μ = 0 implies that

k−1∑
i=1

d�ici = −
∞∑

i=k

d�ici, 	 = 1, . . . , k − 1.

Since det(d�i)k−1
�,i=1 �= 0, a solution c1, . . . , ck−1 exists (possibly all 0). This proves

the claim. Let v′ := ṽ/‖ṽ‖μ. Note that

‖ṽ‖2
μ =

k−1∑
i=1

c2
i +

∞∑
i=k

c2
i =

k−1∑
i=1

c2
i + 1,

and

k−1∑
j=1

λjc
2
j �

⎛
⎝k−1∑

j=1

c2
j

⎞
⎠λk =

⎛
⎝k−1∑

j=1

c2
j

⎞
⎠
⎛
⎝ ∞∑

j=k

c2
j

⎞
⎠λk �

⎛
⎝k−1∑

j=1

c2
j

⎞
⎠
⎛
⎝ ∞∑

j=k

λjc
2
j

⎞
⎠ .

Thus,

E(v′, v′) =
1

‖ṽ‖2
μ

E(ṽ, ṽ) =
1

1 +
∑k−1

i=1 c2
i

∞∑
j=1

λjc
2
j

=
1

1 +
∑k−1

i=1 c2
i

⎛
⎝k−1∑

j=1

λjc
2
j +

∞∑
j=k

λjc
2
j

⎞
⎠

�
∞∑

j=k

λjc
2
j = E(v, v).

It follows that

min
v′∈S⊥,‖v′‖µ=1

E(v′, v′) � min
v∈〈ϕ1,...,ϕk〉⊥,‖v‖µ=1

E(v, v).

This completes the proof. �

The following proposition establishes some properties of eigenfunctions in one-
dimension, some of them being specific for measures on bounded domains in R.
Additional properties of eigenfunctions can be found in [3]. Let L1(E) be the one-
dimensional Lebesgue measure of a subset E ⊆ R.

Proposition 3.2. Let Ω ⊂ R be a bounded open interval, μ be a positive finite
Borel measure on Ω with supp(μ) ⊆ Ω,Δμ be the Dirichlet Laplacian with respect
to μ, and ϕ ∈ H1

0 (Ω) be an eigenfunction of −Δμ, i.e., there exists λ ∈ R such that
−Δμϕ = λϕ. Then

(a) ϕ ∈ C0,1/2(Ω);

(b) ϕ is linear over any component of Ω \ supp(μ);
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(c) if L1(supp(μ)) = 0, then ϕ /∈ C2(Ω), and in fact, ϕ′ is not absolutely contin-
uous (with respect to Lebesgue measure);

(d) eigenfunctions corresponding to the first eigenvalue do not change sign;

(e) the first eigenvalue is simple.

Proof.

(a) It follows directly from Sobolev’s embedding theorem that H1
0 (Ω) ↪→

C0,1/2(Ω).

(b) Consider a component (a, b) of Ω \ supp(μ). For all v ∈ C∞
c (a, b) ⊆ C∞

c (Ω),∫
Ω

ϕ′v′ dx = λ

∫
Ω

ϕv dμ = 0,

and hence it also holds for continuous piecewise linear v with supp(v) ⊂ (a, b).
Note that ϕ′|(a,b) ∈ L2(a, b) ⊂ L1(a, b). Let δ > 0 and

a < x1 − δ < x1 < x1 + δ < x2 − δ < x2 < x2 + δ < b.

Let v ∈ C(a, b) that is equal to 0 on (a, x1 − δ) ∪ (x2 + δ, b), equal to 1 on
(x1 + δ, x2 − δ), and linear over (x1 − δ, x1 + δ) and (x2 − δ, x2 + δ). Then

0 =
∫ b

a

ϕ′v′ dy =
∫ x1+δ

x1−δ

ϕ′(y)v′(y) dy +
∫ x2+δ

x2−δ

ϕ′(y)v′(y) dy

=
1
2δ

∫ x1+δ

x1−δ

ϕ′(y) dy − 1
2δ

∫ x2+δ

x2−δ

ϕ′(y) dy.

By the Lebesgue differentiation theorem, for Lebesgue a.e. x ∈ (a, b), ϕ′(x) =
c, a constant. As ϕ ∈ H1

0 (Ω) is absolutely continuous, for all x ∈ (a, b),

ϕ(x) = ϕ(a) +
∫ x

a

ϕ′(y) dy = ϕ(a) + c(x − a),

completing the proof of (b).

(c) By part (b), ϕ′′ = 0 Lebesgue a.e. Hence, if ϕ′ is absolutely continuous, then
for Lebesgue a.e. a, b ∈ Ω,

ϕ′(a) − ϕ′(b) =
∫ b

a

ϕ′′(y) dy = 0.

Thus, ϕ′ is a constant. Since ϕ ∈ H1
0 (Ω), we conclude that ϕ ≡ 0, contradict-

ing that ϕ is an eigenfunction.

(d) By [3, proposition 3.4], eigenfunctions corresponding to the first eigenvalue
are concave or convex. As they vanish at the end points, they do not change
sign.
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(e) Let ϕ1 and ϕ2 be normalized eigenfunctions corresponding to the first eigen-
value of −Δμ. Then ϕ1, ϕ2 ∈ C0,1/2(Ω) ⊂ C(Ω). If ϕ1 ≡ ϕ2 on supp(μ), then
by linearity on components of Ω \ supp(μ) and continuity, ϕ1 ≡ ϕ2 on Ω. Thus
ϕ1 �≡ ϕ2 if and only if ϕ1 �≡ ϕ2 on supp(μ).
Suppose that ϕ1 and ϕ2 are of the same sign, say positive, and ϕ1 �≡ ϕ2. If
ϕ1 � ϕ2, then ϕ1 > ϕ2 on some subset E ⊂ Ω with μ(E) > 0. Hence

1 =
∫

Ω

|ϕ1|2 dμ >

∫
Ω

|ϕ2|2 dμ = 1,

a contradiction. Thus, there exist x1, x2 ∈ Ω such that ϕ1(x1) > ϕ2(x1) and
ϕ1(x2) < ϕ2(x2). Now ϕ = ϕ1 − ϕ2 is an eigenfunction with ϕ(x1) > 0 and
ϕ(x2) < 0, contradicting (d). �

4. Lower estimate of sums of eigenvalues

We will use the lemma from [24] which says that if f is a real-valued function
defined on Rn with 0 � f � M1, and∫

Rn

|z|2f(z) dz � M2,

then ∫
Rn

f(z) dz � (M1Bn)2/(n+2)M
n/(n+2)
2

(
n + 2

n

)n/(n+2)

, (4.1)

where we recall that Bn is the volume of the unit ball in Rn.

Proof of theorem 1.1. Let

Φ(x, y) =
k∑

j=1

ϕj(x)ϕj(y), x, y ∈ Ω and f(z) :=
∫

Ω

|Φ̂(z, y)|2 dμ(y), z ∈ Rn,

(4.2)
where

Φ̂(z, y) = (2π)−n/2

∫
Rn

Φ(x, y) e−ix·z dx

is the Fourier transform of Φ at z and each ϕj is extended to Rn by setting it equal
to 0 on Rd \ Ω. Then, using the linearity of the Fourier transform, we have

f(z) =
∫

Ω

∣∣∣ k∑
j=1

ϕ̂j(z)ϕj(y)
∣∣∣2 dμ(y)

=
∫

Ω

k∑
j,�=1

ϕ̂j(z)ϕj(y)ϕ̂�(z)ϕ�(y) dμ(y)

=
k∑

j=1

∣∣ϕ̂j(z)
∣∣2. (4.3)

https://doi.org/10.1017/prm.2020.39 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.39


Sums and gaps of eigenvalues 853

Let M1 := supz∈Rn

∑k
j=1 |ϕ̂j(z)|2. Then it follows that for all z ∈ Rn,

0 � f(z) � M1 � (2π)−n
k∑

j=1

‖ϕj‖2
L1(Ω) � (2π)−nvol(Ω)

k∑
j=1

‖ϕj‖2. (4.4)

Also,∫
Rn

|z|2f(z) dz =
∫

Ω

∫
Rn

|z|2|Φ̂(z, y)|2 dz dμ(y)

=
∫

Ω

∫
Rn

|∇̂zΦ(z, y)|2 dz dμ(y)

=
∫

Ω

∫
Ω

|∇xΦ(x, y)|2 dxdμ(y) (Plancherel’s theorem)

=
∫

Ω

∫
Ω

(
k∑

j=1

λjϕj(x)ϕj(y)

)(
k∑

�=1

ϕ�(x)ϕ�(y)

)
dμ(x) dμ(y)

=
k∑

j=1

λj =: M2, (4.5)

where the fourth equality follows from (2.3). Using (4.3) followed by the Plancherel
theorem, we get ∫

Rn

f(z) dz =
k∑

j=1

‖ϕ̂j(z)‖2 =
k∑

j=1

‖ϕj‖2. (4.6)

By applying [24, lemma 1] (see (4.1)) to the function f in (4.2), and using (4.5)
and (4.6), we get

k∑
j=1

‖ϕj‖2 =
∫

Rn

f(z) dz � (M1Bn)2/(n+2)M
n/(n+2)
2

(
n + 2

n

)n/(n+2)

=

(
Bn sup

z∈Rn

k∑
j=1

|ϕ̂j(z)|2
)2/(n+2)( k∑

j=1

λj

)n/(n+2)(
n + 2

n

)n/(n+2)

.

Thus, using (4.4), we get

k∑
j=1

λj �
(

k∑
j=1

‖ϕj‖2

)(n+2)/n(
Bn sup

z∈Rn

k∑
j=1

|ϕ̂j(z)|2
)−2/n(

n

n + 2

)

�
(

k∑
j=1

‖ϕj‖2

)(
(2π)−nvol(Ω)Bn

)−2/n

(
n

n + 2

)
,

which completes the proof. �
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5. Upper estimate of gaps of eigenvalues

This section is devoted to generalizing the estimate of Payne, Pólya and Weinberger
in (1.2) to Laplacians with respect to measures. We use the same notation as in
theorem 1.1.

Proof of theorem 1.2. By the min-max principle (theorem 3.1),

λk+1 = inf
{∫

Ω
|∇v|2 dx∫
Ω

v2 dμ
:
∫

Ω

vϕi dμ = 0, i = 1, . . . , k, v ∈ dom E
}

. (5.1)

For i = 1, . . . , k, choose test functions vi = gϕi −
∑k

j=1 aijϕj , where the aij are
determined below and g is some polynomial function that will be chosen later. As
dom E can be identified with the entire H1

0 (Ω), we have vi ∈ dom E . We assume
(vi, ϕ�)μ = 0 for 	 = 1, . . . , k. Then

0 =
∫

Ω

gϕiϕ� dμ −
k∑

j=1

aij

∫
Ω

ϕjϕ� dμ =
∫

Ω

gϕiϕ� dμ − ai�.

This determines ai� and shows that ai� = a�i. We also have∫
Ω

v2
i dμ =

∫
Ω

(
gϕivi −

k∑
j=1

aijϕjvi

)
dμ =

∫
Ω

gϕivi dμ (5.2)

and ∫
Ω

|∇vi|2 dx =
∫

Ω

∇
(

gϕi −
k∑

j=1

aijϕj

)
· ∇vi dx

=
∫

Ω

∇(gϕi)∇vi dx −
k∑

j=1

aij

∫
Ω

∇ϕj · ∇vi dx

=
∫

Ω

(
ϕi∇g + g∇ϕi

)
· ∇vi dx + 0

=
∫

Ω

ϕi∇g · ∇vi dx +
∫

Ω

g∇ϕi · ∇vi dx.

Note that

λi

∫
Ω

ϕigvi dμ =
∫

Ω

∇ϕi · ∇(gvi) dx =
∫

Ω

∇ϕi ·
(
g∇vi + vi∇g

)
dx

and hence ∫
Ω

g∇ϕi · ∇vi = λi

∫
Ω

ϕigvi dμ −
∫

Ω

vi∇ϕi · ∇g dx.

Combining the above expressions, we get∫
Ω

|∇vi|2 dx =
∫

Ω

ϕi∇g · ∇vi dx + λi

∫
Ω

ϕigvi dμ −
∫

Ω

vi∇ϕi · ∇g dx. (5.3)
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The first term on the right-hand side can be expressed as∫
Ω

ϕi∇g · ∇vi dx = −
∫

Ω

div(ϕi∇g)vi dx = −
∫

Ω

vi∇ϕi · ∇g dx −
∫

Ω

ϕiviΔg dx.

Hence∫
Ω

|∇vi|2 dx = −
∫

Ω

ϕiviΔg dx − 2
∫

Ω

vi∇ϕi · ∇g dx + λi

∫
Ω

gϕivi dμ. (5.4)

Consider the second term on the right-hand side of (5.3). By using the definition
of vi and the symmetry of aij , we have

−2
k∑

i=1

∫
Ω

vi∇g · ∇ϕi dx = −2
k∑

i=1

∫
Ω

g∇g · ϕi∇ϕi dx + 2
k∑

i,j=1

aij

∫
Ω

ϕj∇ϕi · ∇g dx

= −1
2

k∑
i=1

∫
Ω

∇g2 · ∇ϕ2
i dx +

k∑
i,j=1

aij

∫
Ω

∇(ϕiϕj) · ∇g dx

=
1
2

k∑
i=1

∫
Ω

ϕ2
i Δg2 dx −

k∑
i,j=1

aij

∫
Ω

ϕiϕjΔg dx. (5.5)

Combining (5.2), (5.4), (5.5), and using the definition of vi again, we get

k∑
i=1

∫
Ω

|∇vi|2 dx = −
k∑

i=1

∫
Ω

viϕiΔg dx +
1
2

k∑
i=1

∫
Ω

ϕ2
i Δg2 dx

−
k∑

i,j=1

aij

∫
Ω

ϕiϕjΔg dx +
k∑

i=1

λi

∫
Ω

gϕivi dμ

= −
k∑

i=1

∫
Ω

ϕ2
i gΔg dx +

k∑
i,j=1

aij

∫
Ω

ϕiϕjΔg dx

+
1
2

k∑
i=1

∫
Ω

ϕ2
i Δg2 dx

−
k∑

i,j=1

aij

∫
Ω

ϕiϕjΔg dx +
k∑

i=1

λi

∫
Ω

gϕivi dμ

=
k∑

i=1

∫
Ω

ϕ2
i |∇g|2 dx +

k∑
i=1

λi

∫
Ω

v2
i dμ

�
k∑

i=1

∫
Ω

ϕ2
i |∇g|2 dx + λk

k∑
i=1

∫
Ω

v2
i dμ.

For i = 1, . . . , k, (5.1) implies that

λk+1

∫
Ω

v2
i dμ �

∫
Ω

|∇vi|2 dx.
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Hence

λk+1 − λk �
∑k

i=1

∫
Ω

ϕ2
i |∇g|2 dx∑k

i=1

∫
Ω

v2
i dμ

.

Now take g = ga(x) =
∑n

β=1 aβxβ with
∑n

β=1 a2
β = 1. Then Δg = 0 and |∇g| = 1.

It follows that

λk+1 − λk �
∑k

i=1

∫
Ω

ϕ2
i dx∑k

i=1

∫
Ω

v2
ia dμ

=
∑k

i=1 ‖ϕi‖2∑k
i=1

∫
Ω

v2
ia dμ

, (5.6)

where via = gaϕi −
∑k

j=1 aijϕj . Using (5.5) and the facts that Δg2 = 2 and Δg = 0,
we get

k∑
i=1

‖ϕi‖2 =
k∑

i=1

∫
Ω

ϕ2
i dx = −2

k∑
i=1

∫
Ω

via(∇ga · ∇ϕi) dx

= −2
k∑

i=1

∫
Ω

via

(
n∑

β=1

aβ
∂ϕi

∂xβ

)
dx.

Let dS be the normalized uniform measure on Sn−1 so that
∫

Sn−1 dS = 1. Then

1
2

k∑
i=1

‖ϕi‖2 = −
k∑

i=1

∫
Sn−1

∫
Ω

via

(
n∑

β=1

aβ
∂ϕi

∂xβ

)
dxdS

= −
∫

Sn−1

∫
Ω

( k∑
i=1

via

(
n∑

β=1

aβ
∂ϕi

∂xβ

))
dxdS

�
(∫

Ω

∫
Sn−1

k∑
i=1

v2
ia dS dx

)1/2

×
(∫

Ω

∫
Sn−1

k∑
i=1

(
n∑

β=1

aβ
∂ϕi

∂xβ

)2

dS dx

)1/2

.

Obviously, for α, β ∈ {1, . . . , n}, we have
∫

Sn−1 aαaβ dS = δαβ/n. Hence

∫
Ω

∫
Sn−1

k∑
i=1

(
n∑

β=1

aβ
∂ϕi

∂xβ

)2

dS dx =
k∑

i=1

∫
Ω

1
n

n∑
β=1

(
∂ϕi

∂xβ

)2

dx

=
k∑

i=1

1
n

∫
Ω

|∇ϕi|2 dx

=
1
n

k∑
i=1

λi

∫
Ω

ϕ2
i dμ =

1
n

k∑
i=1

λi.
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It follows that

1
4

(
k∑

i=1

‖ϕi‖2

)2

� 1
n

(
k∑

i=1

λi

)∫
Ω

∫
Sn−1

k∑
i=1

v2
ia dS dx. (5.7)

Also, from (5.6) we get

(λk+1 − λk)
k∑

i=1

∫
Sn−1

∫
Ω

v2
ia dμdS �

k∑
i=1

‖ϕi‖2. (5.8)

Combining (5.7) and (5.8) yields

λk+1 − λk �
∑k

i=1 ‖ϕi‖2∑k
i=1

∫
Ω

∫
Sn−1 v2

ia dS dx
·
∑k

i=1

∫
Ω

∫
Sn−1 v2

ia dS dx∑k
i=1

∫
Ω

∫
Sn−1 v2

ia dS dμ

� 4
∑k

i=1 λi

n
∑k

i=1 ‖ϕi‖2
·
∑k

i=1

∫
Sn−1

∫
Ω

v2
ia dxdS∑k

i=1

∫
Sn−1

∫
Ω

v2
ia dμdS

(5.9)

To compute the integrals in (5.9), we first note that

∫
Ω

v2
ia dx =

∫
Ω

(
gaϕi −

k∑
j=1

aijϕj

)(
gaϕi −

k∑
�=1

ai�ϕ�

)
dx

=
∫

Ω

g2
aϕ2

i dx − 2
∫

Ω

gaϕi

k∑
�=1

ai�ϕ� dx +
k∑

j,�=1

∫
Ω

aijai�ϕjϕ� dx

= (I) − 2(II) + (III).

(I) =
∫

Ω

(
n∑

α=1

aαxα

)(
n∑

β=1

aβxβ

)
ϕ2

i dx =
n∑

α,β=1

aαaβ

∫
Ω

xαxβϕ2
i dx.

Notice that

aij =
∫

Ω

gaϕiϕj dμ =
n∑

α=1

aα

∫
Ω

xαϕiϕj dμ. (5.10)

Using the definition of g, followed by (5.10), we get

(II) =
∫

Ω

(
n∑

α=1

aαxα

)
ϕi

k∑
�=1

ai�ϕ� dx =
n∑

α=1

k∑
�=1

aαai�

∫
Ω

xαϕiϕ� dx

=
k∑

�=1

n∑
α,β=1

aαaβ

(∫
Ω

xβϕiϕ� dμ

)(∫
Ω

xαϕiϕ� dx

)
.
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(III) =
k∑

j,�=1

(
n∑

α=1

aα

∫
Ω

xαϕiϕj dμ

)(
n∑

β=1

aβ

∫
Ω

xβϕiϕ� dμ

)∫
Ω

ϕjϕ� dx

=
k∑

j,�=1

n∑
α,β=1

aαaβ

(∫
Ω

xαϕiϕj dμ

)(∫
Ω

xβϕiϕ� dμ

)∫
Ω

ϕjϕ� dx

∫
Sn−1

(I) dS =
n∑

α,β=1

(∫
Sn−1

aαaβ dS

)∫
Ω

xαxβϕ2
i dx =

1
n

n∑
α=1

∫
Ω

x2
αϕ2

i dx

=
1
n

∫
Ω

|x|2ϕ2
i dx.

∫
Sn−1

(II) dS =
k∑

�=1

n∑
α,β=1

δαβ

n

(∫
Ω

xβϕiϕ� dμ

)(∫
Ω

xαϕiϕ� dx

)

=
1
n

k∑
�=1

n∑
α=1

(∫
Ω

xαϕiϕ� dμ

)(∫
Ω

xαϕiϕ� dx

)

∫
Sn−1

(III) dS =
k∑

j,�=1

n∑
α,β=1

δαβ

n

(∫
Ω

xαϕiϕj dμ

)(∫
Ω

xβϕiϕ� dμ

)∫
Ω

ϕjϕ� dx

=
1
n

k∑
j,�=1

n∑
α=1

(∫
Ω

xαϕiϕj dμ

)(∫
Ω

xαϕiϕ� dμ

)∫
Ω

ϕjϕ� dx.

Combining the above integrals we get

∫
Sn−1

∫
Ω

v2
ia dxdS =

1
n

∫
Ω

|x|2ϕ2
i dx − 2

n

k∑
�=1

n∑
α=1

(∫
Ω

xαϕiϕ� dμ

)∫
Ω

xαϕiϕ� dx

+
1
n

k∑
j,�=1

n∑
α=1

(∫
Ω

xαϕiϕj dμ

)(∫
Ω

xαϕiϕ� dμ

)∫
Ω

ϕjϕ� dx.

Therefore,

k∑
i=1

∫
Sn−1

∫
Ω

v2
ia dxdS

=
1
n

∫
Ω

|x|2
(

k∑
i=1

ϕ2
i

)
dx − 2

n

k∑
i,�=1

n∑
α=1

(∫
Ω

xαϕiϕ� dμ

)∫
Ω

xαϕiϕ� dx

+
1
n

k∑
i,j,�=1

n∑
α=1

(∫
Ω

xαϕiϕj dμ

)(∫
Ω

xαϕiϕ� dμ

)∫
Ω

ϕjϕ� dx. (5.11)
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A similar calculation gives

k∑
i=1

∫
Sn−1

∫
Ω

v2
ia dμdS =

1
n

∫
Ω

|x|2
(

k∑
i=1

ϕ2
i

)
dμ − 1

n

k∑
i,�=1

n∑
α=1

(∫
Ω

xαϕiϕ� dμ

)2

.

(5.12)

Combining (5.9), (5.11) and (5.12) completes the proof of the theorem. �

6. Comments and open problems

In view of theorems 1.1 and 1.2, it is of interest to estimate the bound of the
norm ‖ϕi‖ of the eigenfunctions ϕi that satisfy ‖ϕi‖μ = 1. It is also of interest to
characterize measures μ that satisfy the condition dom E = H1

0 (Ω) in theorem 1.2.
An upper estimate for the sum of eigenvalues was obtained by Kröger [23]. Let
dist(x, ∂Ω) denote the distance from a point x ∈ Ω to the boundary of Ω. Let
Ωr = {x ∈ Ω : dist(x, ∂Ω) < 1/r} and B be a unit ball in Rn. Kröger proved that
if there exists a constant C

(0)
Ω such that vol(Ωr) � (C(0)

Ω /r)vol(Ω)(n−2)n for every
r > vol(Ω)−1/n, then for every k � (C(0)

Ω )n,

k∑
j=1

λj � (2π)2
n

n + 2
(
vol(Ω)vol(B)

)−2/n(
k(n+2)/n + C(1)

n C
(1)
Ω k(n+1)/n

)
, (6.1)

where C
(1)
n is a constant depending only on the dimension n. It is of interest to

generalize this result to Laplacians with respect to measures.
The spectral asymptotics of Laplacians defined on domains by fractal measures

have been investigated and obtained by a number of authors (see [14,17,25–27,29]
and the references therein). It is of interest to find examples among these measure
for which spectral gaps exist.
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22 I. S. Kac and M. G. Krĕın. On the spectral functions of the string. Am. Math. Soc. Transl.
(2) 103 (1974), 19–102.

23 P. Kröger. Estimates for sums of eigenvalues of the Laplacian. J. Funct. Anal. 126 (1994),
217–227.

24 P. Li and S.-T. Yau. On the Schrödinger equation and the eigenvalue problem. Commun.
Math. Phys. 88 (1983), 309–318.

25 H. P. McKean and D. B. Ray. Spectral distribution of a differential operator. Duke Math.
J. 29 (1962), 281–292.

26 K. Naimark and M. Solomyak. The eigenvalue behaviour for the boundary value problems
related to self-similar measures on R

d. Math. Res. Lett. 2 (1995), 279–298.

https://doi.org/10.1017/prm.2020.39 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.39


Sums and gaps of eigenvalues 861

27 S.-M. Ngai. Spectral asymptotics of Laplacians associated with one-dimensional iterated
function systems with overlaps. Can. J. Math. 63 (2011), 648–688.

28 S.-M. Ngai and W. Tang. Eigenvalue asymptotics and Bohr’s formula for fractal Schrödinger
operators. Pacific J. Math. 300 (2019), 83–119.

29 S.-M. Ngai, W. Tang and Y. Xie. Spectral asymptotics of one-dimensional fractal Laplacians
in the absence of second-order identities. Discrete Cont. Dyn. Syst. 38 (2018), 1849–1887.

30 S.-M. Ngai, W. Tang and Y. Xie. Wave propagation speed on fractals. J. Fourier Anal.
Appl. 26 (2020), 31.
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