
Improved knowledge management through first-order logic
in engineering design ontologies

PAUL WITHERELL,1 SUNDAR KRISHNAMURTY,1 IAN R. GROSSE,1 AND JACK C. WILEDEN2

1Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts, USA
2Department of Computer Science, University of Massachusetts, Amherst, Massachusetts, USA

(RECEIVED May 8, 2008; ACCEPTED April 21, 2009)

Abstract

This paper presents the use of first-order logic to improve upon currently employed engineering design knowledge man-
agement techniques. Specifically, this work uses description logic in unison with Horn logic, to not only guide the knowl-
edge acquisition process but also to offer much needed support in decision making during the engineering design process in
a distributed environment. The knowledge management methods introduced are highlighted by the ability to identify mod-
eling knowledge inconsistencies through the recognition of model characteristic limitations, such as those imposed by
model idealizations. The adopted implementation languages include the Semantic Web Rule Language, which enables
Horn-like rules to be applied to an ontological knowledge base and the Semantic Web’s native Web Ontology Language.
As part of this work, an ontological tool, OPTEAM, was developed to capture key aspects of the design process through a
set of design-related ontologies and to serve as an application platform for facilitating the engineering design process. The
design, analysis, and optimization of a classical I-beam problem are presented as a test-bed case study to illustrate the ca-
pabilities of these ontologies in OPTEAM. A second, more extensive test-bed example based on an industry-supplied med-
ical device design problem is also introduced. Results indicate that well-defined, networked relationships within an onto-
logical knowledge base can ultimately lead to a refined design process, with guidance provided by the identification of
infeasible solutions and the introduction of “best-case” alternatives. These case studies also show how the application of
first-order logic to engineering design improves the knowledge acquisition, knowledge management, and knowledge
validation processes.

Keywords: Engineering Design; First-Order Logic; Knowledge Management; Ontology; Semantic Web Rule Language

1. INTRODUCTION

As engineering projects have become larger and more de-
tailed, industry has become increasingly reliant on distributed
design processes. This trend, along with advancements in
computer technology, has resulted in a shift away from tradi-
tional design notebooks to more computational knowledge
management systems. Such systems are often required to sup-
port the challenges of managing the rich information in
distributed environments created by both geographical and
organizational dispersions. Within these distributed environ-
ments, proper knowledge management has the potential to
maintain the integrity of the design process by providing an
engineer with a more complete understanding of a design
(Erickson et al., 1997; Morris, 1998).

Capable of providing formalized, adaptable architectures,
ontologies have become a popular means for managing and
distributing knowledge bases. In recent works, the authors
have explored these ontological knowledge management
techniques, leading to the development of frameworks for
engineering analysis and engineering design optimization
(Grosse et al., 2005; Witherell et al., 2006). These frame-
works of ontologies successfully shared and managed both
engineering analysis and optimization knowledge, although
their application in engineering design revealed some under-
standable shortcomings. As with most knowledge manage-
ment systems, in the absence of built-in validation mecha-
nisms, these ontologies allow knowledge to be incorrectly
instantiated and improperly used. Moreover, the large amount
of knowledge instantiation associated with developing rich
ontological knowledge bases presents a formidable task.

This paper presents methods for helping maintain the reli-
ability of information within an ontological knowledge base
in addition to assisting in the knowledge instantiation process,

Reprint requests to: Sundar Krishnamurty, Department of Mechanical and
Industrial Engineering, 160 Governor’s Drive, University of Massachusetts,
Amherst, MA 01003-2210, USA. E-mail: skrishna@ecs.umass.edu

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2010), 24, 245–257.
Cambridge University Press, 2009 0890-0604/09 $25.00
doi:10.1017/S0890060409990096

245

https://doi.org/10.1017/S0890060409990096 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990096

thereby demonstrating the applicability and usefulness of
first-order logic. To this end, first-order logic is used to address
three key issues in knowledge management that ontologies
by themselves do not:

1. corroborating knowledge instantiations,
2. maintaining consistency during the knowledge instan-

tiation process, and
3. minimizing redundancy in the knowledge instantiation

process.

Distributed design requires the contribution of many, in-
cluding experienced and inexperienced, new and old. Instan-
tiating and utilizing uncorroborated knowledge can be detri-
mental to the design process. When capturing and reusing
information, the underlying conditions of design content
(e.g., modeling assumptions necessary for dimensional re-
ductions in models, assumptions necessary for feature sup-
pressions, etc.) are not always identified or understood, often
becoming foregone conclusions, or accepted without consid-
eration. As designs evolve and changes mount, ensuring
transparency of, and satisfaction of, underlying conditions
for models (such as engineering analysis models and manu-
facturing models) is critical for knowledge reuse. Therefore,
identifying and understanding such conditions early in the
knowledge capturing process is vital for ensuring the integrity
of the design process.

Another aspect of knowledge instantiation, ensuring con-
sistency, is critical when navigating, retrieving, or operating
on knowledge in an instantiated knowledge base. Inconsis-
tent knowledge can lead to disastrous results (Euler et al.,
2001). To address this problem, this work presents a com-
prehensive approach that enables knowledge bases to main-
tain consistency by utilizing ontology domain concepts in
combination with the ability to compare values across do-
mains.

Knowledge instantiation within large knowledge frame-
works can become progressively more time-consuming, yet
repetitive, with design information often sharing common
values. For instance, two optimization models based on the
same product may share related design and analysis models,
the same design parameters, and the same objectives. Rela-
tionships between properties can be created and asserted to
simplify and speed up the instantiation process. Such relation-
ships have the capability to transfer known values, thus avoid-
ing unnecessary repetition. These facilitating methods ease
the task of creating similar knowledge while minimizing
the possibility of human error.

The following sections present an overview of logic in en-
gineering design with particular emphasis on the use of on-
tologies and Horn clauses within the Semantic Web, followed
by a detailed description of improved knowledge manage-
ment using first-order logic. Then, the unique features of
the resulting ontological tool for supporting the engineering
design process (OPTEAM) are highlighted with the help of
two case studies and the results are discussed.

2. LOGIC IN ENGINEERING DESIGN

2.1. Expert systems

Logic has been previously adopted in one form or another by
many in the engineering community, most notably in the
development of expert systems. First adopted by the artificial
intelligence community, expert systems emerged with the
development of early rule-based systems such as Mycin (Bu-
chanan & Shortliffe, 1984), an expert system used for
diagnosing infectious blood diseases in the early 1970s. En-
gineering adaptations soon emerged, including those by Gott-
lob and Nejdl (1990), Shephard et al. (1990), Turkiyyah and
Fenves (1996), and Becker and Kaepp (1997). In the engi-
neering design community, Brown (1985) proposed the De-
sign Specialists and Plans Language for developing “routine”
designs within an expert system. In these systems, the appli-
cation of logic often resulted in unsuccessful attempts to “au-
tomate” portions of the product development process, such as
designing products “at the push of the button.”

Despite being pursued heavily early on, it was realized ex-
pert systems such as these often encountered problems, for
example, noise resulting from certainty factors and leading
to infeasible results. This led to some improvements in expert
system design, for instance, here Bayesian statistics were in-
troduced to address uncertainties (Spiegelhalter et al.,
1993). Consequently, over time, many have come to abandon
the expert system approach, realizing that in most cases it is
not yet feasible to achieve desirable solutions without signif-
icant human input. Although this may no longer hold true as
technology advances, it is indeed a limitation currently recog-
nized (Prasad, 2004; Rogers, 2004). Without the necessary
human factor, logic-driven design automation often produces
infeasible or unusable results, leading many researchers to re-
evaluate their approach.

In general, the effectiveness of an expert system is mea-
sured by two main components (Dos Santos & Mookerjee,
1991): the knowledge base and the control strategy that af-
fects the processing order of the knowledge base. The separa-
tion of these two components is essential when differentiating
an expert system from a knowledge-based framework. The
development of a “control strategy” for processing the knowl-
edge base became a major obstacle in the advancement of ex-
pert systems, leaving the knowledge base the focus of many
new approaches. This perspective forms the basis for the
work presented in this paper.

2.2. Ontologies and knowledge-based engineering

Because knowledge bases are an essential part of expert sys-
tems, much of their advancement was achieved in tandem
with the development of expert systems. Early works with
the development of knowledge bases in engineering focused
on product knowledge representation, including work by
deKleer and Brown (1983), Iwasaki and Chandrasekaran
(1992), Alberts and Dikker (1992), Henson et al. (1994),

P. Witherell et al.246

https://doi.org/10.1017/S0890060409990096 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990096

Goel, Bhatta, and Stroulia (1996), Goel et al. (1996), Qian
and Gero (1996), Ranta et al. (1996), and Umeda et al.
(1996). These works laid the groundwork for formally repre-
senting product information, such as the high-level divisions
of product information representation into form, function, and
behavior adopted in the NIST Design Repository Project
(Szykman et al., 1998) and again in the design Repository de-
veloped at the Missouri University for Science and Technol-
ogy (Bohm et al., 2006). The core-level knowledge represen-
tation consisting of objects and relationships adopted by the
NIST Design Repostitory (Szykman et al., 2000) corresponds
to a fundamental concept of a formal information structure
that, when instantiated, represents knowledge about a particu-
lar domain that can then be operated upon by computers and
humans alike (Grosse et al., 2005). Works such as these high-
light the advantages offered through the formal representation
of knowledge in product design, specifically when pertaining
to ontologies.

More recently, Bullinger et al. (2005) demonstrated the
benefits of capturing knowledge using ontologies. Although
noting the importance of capturing knowledge to create a
more user-friendly design environment, they also acknowl-
edge the possible advantages accompanying the ability to op-
erate on ontological knowledge bases. Bullinger et al. recog-
nize that the full power of ontological-based knowledge
management resides in support of not only knowledge acqui-
sition but also the ability to analyze and reason on this knowl-
edge. Bullinger and colleagues point out that “By describing
the typical methods of an application domain as well as the
associated requirements appropriately a software agent
(SWRL reasoner) can be used to recommend use of methods
or materials.” The present paper extends the work of Bullin-
ger et al. by exploring methods for utilizing captured knowl-
edge.

Researchers at the University of Michigan adopted logic to
facilitate interoperability during product development. Patil
et al. (2005) propose a Product Semantic Representation Lan-
guage (PSRL) to enable semantic interoperability across ap-
plication domains using mathematics and corresponding rea-
soning. PSRL is based upon DARPA Agent Markup
Language (DAML) þ Ontology Inference Layer (OIL), pre-
cursors to the Web Ontology Language (OWL; www.w3.org/
TR/owl-features/). Patil et al. (2005) note that description
logics (DLs) such as DAML þOIL may not be able to com-
pletely represent all relevant design knowledge and that
more powerful first-order logic may be best suited for full
and accurate representation.

Collaborative work by Wayne State University, Chonnam
National University, and University of Pittsburgh resulted
in the implementation of Semantic Web Rule Language
(SWRL) rules within a knowledge base for assembly design
(Kim et al., 2006). This implementation uses the expressivity
of the Semantic Web and SWRL to partially automate por-
tions of the assembly design process through logical asser-
tions. Kim et al. (2006) illustrate the effectiveness of captur-
ing assembly process knowledge using ontologies and domain

concepts as opposed to traditional data syntax. Kim et al.
(2006) also illustrate how ontologies and SWRL facilitate
collaboration in the assembly design process. Using their
ontology, classifications are made within the assembly design
process and otherwise unspecified constraints are inferred.

Extending their initial work, Kim et al. (2006) developed
an information-sharing paradigm, called semantic assembly
design modeling, to facilitate product development collabora-
tion. In this paradigm, particular constraints are defined that
must be satisfied during the assembly design process and
then SWRL rules are able to imply or assert other constraints
not initially identified. In this manner, they are able to facil-
itate the knowledge acquisition process with assertions using
first-order logic. While acknowledging the necessity for cap-
turing design rationale, or “higher level” knowledge, Kim did
not propose any methods for operating on it.

At the University of Massachusetts Amherst, preliminary
work with engineering analysis and optimization knowledge
resulted in the adoption of ontologies and the development of
two separate knowledge-capturing tools, Ontology for Engi-
neering Analysis Models (ON-TEAM) and Ontology for Op-
timization (ONTOP). ON-TEAM (Grosse et al., 2005; With-
erell et al., 2006), the initial application, provides engineers
with the ability to capture both “higher” and “lower” level en-
gineering analysis model knowledge, such as modeling as-
sumptions and parameter values, respectively. ONTOP was
subsequently created to facilitate engineering design optimi-
zation. ONTOP provides engineers the ability to quickly
identify a feasible method for a given design optimization
problem and enables the user to instantiate and store relevant
optimization modeling knowledge.

3. A BRIEF INTRODUCTION TO FIRST-ORDER
LOGIC

Multiple languages used by the artificial intelligence commu-
nity provide full or almost full expressivity of first-order
logic, including F-Logic (Kifer & Lausen, 1989), CARIN
(Levy & Rousset, 1998), and KIF (Genesereth & Fikes,
2001), among others. Each of these languages brings its
own unique abilities when creating and operating on a knowl-
edge base. The DL-based OWL, however, has emerged as a
leading implementation language for developing ontological
knowledge frameworks. Primarily because its Semantic Web
ties, OWL allows knowledge to be easily shared over the
Web. OWL uses three different expressive sublanguages,
OWL Lite, OWL DL, and OWL Full. Although all are based
on DL, OWL DL most closely corresponds to it. OWL DL
corresponds with SHOIND-n DL, a fragment of classical
first-order logic (Tsarkov et al., 2004).

Considered a subset of first-order logic (Borgida, 1996), DL
(Fig. 1) is a language used in knowledge representation to ex-
press concepts and concept hierarchies. DL provides a method
for representing the terminological knowledge of an applica-
tion domain in a formal, structured manner. What makes DL
attractive, however, is both its decidability and tractability.

First-order logic in engineering design ontologies 247

https://doi.org/10.1017/S0890060409990096 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990096

The decidability of DL allows consistency checks to be per-
formed on ontologies, assuring they are well formed. The trac-
tability, or computational tractability of DL, refers to the ability
to perform automated reasoning on the knowledge base using
realistic computing resources and reasonable amounts of time.

One of the most attractive aspects of OWL is its ability to be
extended by the SWRL (Horrocks et al., 2005). SWRL, intro-
duced by a W3C (http://www.w3.org/) proposal to increase the
expressivity of the Semantic Web, extends OWL both syntac-
tically and semantically. Although other first-order languages
may possess more expressivity than SWRL, they do not pro-
vide the same level of practicality provided by SWRL’s com-
plimentary nature to OWL and inherent ties to the Semantic
Web. Developed from Rule ML (Wagner et al., 2003), the
SWRL extension of OWL creates a much more expressive lan-
guage than either OWL or Horn clauses individually.

SWRL is based on Horn clauses that allow for such rela-
tionships as “if–then” statements. A Horn clause is defined
as a clause with at most one positive literal (Horn, 1956),
thereby any number of if–then conditions leads to only one
conclusion. Horn clauses are important in theorem proving
in that the conjunction of two Horn clauses is a Horn clause.
A simple example of a Horn clause is the following:

p ^ qð Þ) s

This reads as if p and q, then s, or given a p, and given a q, the
conclusion s can be drawn. Such inferences are essential in
providing additional functionalities to an OWL knowledge
base, as SWRL allows further conclusions to be drawn based
on existing knowledge. The expressive power of SWRL also
allows “existentials” to be expressed in the head of a rule, thus
extending beyond the expressive power of Horn clauses
(Tsarkov et al., 2004).

SWRL provides “built-in” capabilities, which gives the
language additional expressivity independent of the Horn-
like rules. These built-ins include mathematical functions
such as multiply (swrlb:multiply), divide (swrlb:divide) and
comparisons such as greater than (swrlb:greaterThan) or
less than (swrlb:lessThan). Other built-ins include such ev-
eryday information as date and time, as well as string opera-
tors such as match and contains.

While providing a means of increasing expressivity,
SWRL’s Horn-like rules also potentially impair OWL-DL’s
DL-based decidability. An ontology is considered undecid-
able when classes exist in which membership cannot be de-
cided by an algorithm (www.nist.gov/dads/HTML/undecida-
bleLanguage). Schmidt-Schaub’s (1989) simulations of role
values maps are an example of how the expressiveness of
SWRL can lead to undecidability. Such scenarios create
problems when employing traditional reasoners to check on-
tology consistency. This potential lack of decidability, how-
ever, is avoided by using relatively simple implementations
of SWRL. To ensure decidability, a translation approach
using first-order logic may also be used (Tsarkov et al., 2004).

Figure 2, the Semantic Web Stack, shows the roles of OWL
and SWRL. OWL, built semantically on the Resource De-
scription Framework (RDF) and RDF schema, provides the
ontology language (upper orange stack). This language cap-
tures the concepts of ontologies within the infrastructure
of the Semantic Web. On top of the “Ontology” stack lie
“Rules” and “Logic framework.” These additional layers of
the Semantic Web stack are expressed using SWRL. OWL
is used to formally represent knowledge associated with the
design process, but SWRL provides the ability to conduct
logical inferencing on this knowledge.

As the Semantic Web infrastructure continues its growth,
the number of supporting applications, such as reasoners
and inference engines, also continues to grow. OWL reason-
ers are tools mainly utilized to ensure the consistency and
classify the instances of an OWL ontology. Inference engines

Fig. 1. An illustration of logic types based on Grosof et al. (2003). [A color
version of this figure can be viewed online at journals.cambridge.org/aie]

Fig. 2. The Semantic Web Stack from Tim Berners-Lee presentation for the
Japan Prize, 2002. [A color version of this figure can be viewed online at jour-
nals.cambridge.org/aie]

P. Witherell et al.248

https://doi.org/10.1017/S0890060409990096 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990096

provide the ability to draw conclusions and make assertions
based on SWRL rules. There are currently several alternatives
for implementing SWRL rules within an OWL knowledge
base. Some OWL reasoners, such as RacerPro (Haarslev
et al., 2004), Pellet (Sirin et al., 2004), and Hoolet (Tsarkov
et al., 2004), among others, have extended their capabilities to
support SWRL inferencing. Ontological development tools
such as Protégé (Gruber, 1994; Noy et al., 2001; Gennari
et al., 2003) and Swoop (Kalyanpur et al., 2005) have pro-
vided reasoning and inference capabilities to their established
knowledge bases. Protégé has built-in support for SWRL
using the SWRLTab and JESS rule engine (Friedman-Hill,
2003), and Swoop has integrated the reasoner Pellet. The
availability of tools such as these allow for the practical crea-
tion of an ontological knowledge base for engineering design
that is facilitated by first-order logic.

4. LOGIC-BASED METHODS FOR IMPROVED
ONTOLOGICAL KNOWLEDGE
MANAGEMENT

4.1. Insights into developing intelligent frameworks

The application of Horn rules provides additional expressiv-
ity and generates many new possible applications for an onto-
logical knowledge base. For example, first-order logic now
allows the knowledge acquisition process to be guided by
identifying uncorroborated and inconsistent knowledge, as
well as facilitated by inferring and asserting values when
instantiating a knowledge base. During the development of
these methods, two learned insights helped better provide
the foundation for the efficient development of intelligent
ontological knowledge bases:

1. When capturing abstract knowledge, providing deliber-
ately structured frameworks allows such knowledge to
be most proficiently employed.

2. When dealing with multiple distributed frameworks, it
is prudent to designate a location for asserting instances
that have been inferred as unsubstantiated or inconsis-
tent knowledge.

To address the first insight, the difference must first be un-
derstood between lower and higher level knowledge instan-
tiations. Lower level knowledge includes very “basic” infor-
mation, such as values of parameters and constraints. Higher
level knowledge includes the more abstract knowledge, such
as assumptions and idealizations. Higher level knowledge
is traditionally stored only as text strings, resulting in only
human-interpretable knowledge. However, by capturing these
text strings as separate individual instantiations, higher level
knowledge can be made not only human interpretable but
also machine interpretable. This can be achieved by tightly
modeling these instances of higher level knowledge within
specific ontology domains, allowing inherent associations to
be made with the knowledge. This leads to an increase in

more logic-friendly object-type knowledge and enables
effective operation on higher level knowledge. For instance,
consider modeling assumptions. In developing a model, many
types of assumptions may be made, such as on the geometry,
on the loading, or on material properties. Distinguishing be-
tween these types of assumptions is important when corrob-
orating knowledge during the knowledge instantiation process.
The ability to capture higher level knowledge in domains leads
to a much richer source of information than would capturing a
conglomerate of text strings.

The second insight addresses complications that arise when
developing an intelligent knowledge framework in the open
world of the Semantic Web. When exclusively using reasoners
and OWL, restriction classes are used to classify types of
knowledge. Therefore, when developing a knowledge base
for strictly reasoning on restriction classes, it is advantageous
to create large amounts of classes and separate different types
of knowledge. This paper proposes that scenarios often exist
when it is more practical, if not necessary, to use a Horn rule
to classify a knowledge instantiation while maintaining the in-
tegrity of a knowledge framework, as opposed to creating ad-
ditional restriction classes. However, because the characteris-
tics of SWRL, knowledge instantiations cannot simply be
“reclassified.” This means that an instance of knowledge
within an OWL framework cannot simply be moved from
one class to another using SWRL. Human input is therefore
necessary to reclassify knowledge. To support human input,
the introduction of an umbrella class provides a means for re-
classifying knowledge. This umbrella class, such as a “Viola-
tions” class, contains asserted knowledge instantiations that do
not comply with developed rules. The umbrella class simply
becomes an additional superclass to an asserted instance.
The umbrella class concept is meant for assisting in guiding
and validating the knowledge capturing process more than fa-
cilitating knowledge acquisition, and thus, becomes an impor-
tant concept when developing an “intelligent” knowledge base
to support the engineering design process.

4.2. Development of intelligent methods

In contrast to those described in Section 2, the methods pro-
posed in this paper present a unique approach to the application
of logic in engineering design. This approach does not auto-
mate processes and leave important decisions to computer al-
gorithms, but instead serves as a facilitator to the engineering
design process. The introduction of logical inferencing to ex-
plicit engineering design and optimization knowledge frame-
works provides capabilities beyond those achieved in earlier
works that captured knowledge through ontologies.

In Section 1 we noted that first-order logic could be used to
address three key issues in knowledge management that
ontologies alone do not address:

1. corroborating knowledge instantiations,
2. maintaining consistency during the knowledge instan-

tiation process, and

First-order logic in engineering design ontologies 249

https://doi.org/10.1017/S0890060409990096 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990096

3. minimizing redundancy in the knowledge instantiation
process.

These three issues will now be addressed using methodol-
ogies discussed in this paper.

The first to be discussed is how to address the issue of cor-
roborating knowledge instantiated within a distributed frame-
work. One way of corroborating knowledge, especially lower
level knowledge, within an OWL framework is with the use
of SWRL built-ins. Built-ins, such as “swrlb:greaterThan”
or “swrlb:lessThan,” allow for comparisons of instantiated
values. For instance, values of parameters can be constrained
by comparing them with limitations imposed by SWRL rules.
When a SWRL limitation is breached, the responsible value is
then asserted into an umbrella class. The extensive library of
SWRL built-ins allows for many such comparisons. The cor-
roboration of higher level knowledge is a little less straight-
forward. Though still based on the ability of inferencing to
compare instances, corroboration of higher level knowledge
also depends on the explicitness of the domains used to cap-
ture the higher level knowledge, such as the assumptions
example given in Section 4.1. As the domains used to capture
higher level knowledge become increasingly explicit, the
identified uncorroborated knowledge becomes more specific.
The amount of achievable knowledge corroboration ulti-
mately depends on the extensiveness of the knowledge frame-
work.

The second issue, maintaining knowledge consistency, is
achieved using both OWL and SWRL. Using OWL, property
values can be restricted to come from only identified classes.
This is useful for achieving such objectives as ensuring only
continuous parameters are used when applying a continuous
optimization technique. However, class structure does not al-
ways allow for such restrictions, and such restrictions are not
always desired. For instance, consider the task of assigning a
unit to a model parameter. Were the units ontology structured
to distinguish between types of measurement, such as length
or mass, instances belonging to the same class of such an on-
tology may include both meter and foot. Even if a second on-
tology were developed to distinguish between English and
metric units, this would not solve the problem of distinguish-
ing between millimeter and meter. SWRL has the ability to
address situations such as this by comparing instance values.
Were one model parameter to use the unit millimeter, while
another were to use the unit meter, SWRL has the ability to
identify that different instances of units were used. Once it
has been determined that one unit value was not the same in-
stance as another unit value, the parameters are inserted into
the umbrella class so the situation can be rectified and unit
consistency can be insured.

Finally, the third issue identified, minimizing redundancy
in the knowledge instantiation process, involves utilizing
the inference capabilities of SWRL. As explained in the Sec-
tion 1, these methods are most useful when basing a new
knowledge instantiation on an existing one. Domains in an
ontological framework often share many of the same

properties. The creation of a property for the purposes of
identifying when there is redundant information in a new
knowledge instantiation allows an engineer to choose
when to transfer knowledge from one instance to another.
The value of such a “based_on” property decides when and
what existing knowledge is to be passed. This method is
available only when the existing knowledge instantiation
shares at least one of the same properties as the new knowl-
edge instantiation.

Now that the methodology for addressing the identified
issues has been explained, the development of a tool based
on this methodology will be described in Section 5.

5. IMPLEMENTATION: DEVELOPMENT
OF OPTEAM

The integration of ON-TEAM and ONTOP laid the ground-
work for a linked knowledge base that incorporates optimiza-
tion models, analysis models, and geometric models. Con-
joining domains to form a common knowledge base allows
for a much more inclusive framework for the facilitation of
both engineering design optimization and engineering analy-
sis. By adding Horn rule functionality to the ontological
knowledge base, the tool OPTEAM was developed, an intel-
ligent and extensive product design and development knowl-
edge base with knowledge easily stored and readily accessible
using ontologies.

OPTEAM was developed and implemented in the onto-
logical development tool Protégé. Protégé provides an easy
to use graphical interface for manipulating both OWL and
SWRL. Protégé’s open source code and plug-in capabilities
allow for the development of independent tools, such as the
automatic tech report generator (Kanuri, 2007), which allows
an engineer to recapture much of the time spent instantiating
modeling knowledge by automatically generating technical
reports from the captured knowledge. Although developed
in Protégé, OPTEAM’s foundation of the Semantic Web’s
OWL and SWRL allow it to exist independently.

OPTEAM facilitates the engineering analysis and design
processes by asserting values of similar properties across
classes and instances. Creating an analysis model based
upon a geometric model is an example of this. In the design
environment, it is often the case that an analysis model is
based upon a geometric model, usually a computer-aided de-
sign (CAD) model. Because of this dependency, much of the
knowledge between the two may also be shared, including ge-
ometry, modeling assumptions, and idealizations. By recog-
nizing this dependency and using a “based_on” property,
logical relationships assert the pertinent knowledge within a
new knowledge instantiation.

To help successfully guide the knowledge instantiation
process, as well as identify uncorroborated knowledge within
an existing knowledge base, a “Violations” class was created
within the OPTEAM framework. When necessary, relation-
ships assert one or more instances into the “Violations” class,
identifying when uncorroborated knowledge has been created

P. Witherell et al.250

https://doi.org/10.1017/S0890060409990096 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990096

and providing the engineer with the opportunity to address
any “concerns” OPTEAM may have. Although “Violations”
instances are automatically inserted, decisions on how to han-
dle these instances are left to the engineer. A property of this
“Violations” class is to identify which property value of the
instance created the violation. Another property is able to
identify what other instances of knowledge caused the viola-
tion. This method is the basis for identifying uncorroborated
knowledge instantiated within the OPTEAM framework due
to design modifications or changes to preexisting knowledge.
For example, analysis or optimization models may contain
instances of knowledge that are affected by a modification
of a dimension within a CAD model.

To support the ability to operate on higher level knowl-
edge concepts, taxonomies of idealizations, idealization jus-
tifications, and assumptions have been created. Proceeding
on the notion that all idealizations are based on assumptions,
explicit rules are used to determine whether an idealization
is justified. Because all idealizations are based on assump-
tions, assumptions possessed by models are compared
with assumptions required by an idealization. When a model
no longer supports all assumptions required by an idealiza-
tion, the idealization becomes invalid, and the model is as-
serted into the “Violations” class. Thus, when models are
created, they support any assumptions made by original
idealizations. As modifications are made, model assump-
tions and idealizations are altered, but the requirement that
all idealizations are supported by assumptions continues to
be enforced.

Similar rules are applied to recognize when a model’s lim-
itations have been reached, providing a unique method for
model management. These limitations are identified not by
what a model is unable to support, but by what a model
does and will support. In the “open-world” framework of
OWL, and its lack of support for negation as failure, this is
very important. The ability to realize when a model limitation
has been reached can guide an engineer in his or her decisions
throughout the design process.

Many rules have been and are being developed and imple-
mented in support of OPTEAM. Table 1 defines some of the
applications of SWRL rules and their relevance. The rules are
numbered and will later be referenced when describing the
example instantiation of an I-beam. These rules were all cre-
ated to operate on the developed framework, independent of
specific knowledge instantiations.

6. CASE STUDIES

6.1. Engineering case study 1: The design of an I-beam

The instantiation of a knowledge base for the design and op-
timization of an I-beam, shown in Figure 3, is used to demon-
strate how the addition of logical operators eases much of the
knowledge capturing process, while also providing guidance.
This example exploits many of the rules illustrated in Table 1.
In this example, the initial problem statement was to minimize

the cross section of an I-beam subject to deflection and stress
constraints, as seen in Figure 3. The units used here are Eng-
lish, and the length is measured in inches and pressure in
pounds per square inch.

Table 1. Examples of implemented SWRL rules

Rule
Application Description SWRL Example

1. Populating a
library of
instances

Automatically
populate a
library of
models,
images, etc.

ModelA(?y))
LibraryofModelA(?y)

2. Unit
consistency

Identifies unit
inconsistencies

Parameter(?x) ^

isConstrainedBy(?x, ?y) ^

hasUnits(?x, ?z) ^

hasUnits(?y, ?a) ^

differentFrom(?z, ?a))
Violation(?x)

3. Associating
models

Associate models
through a
common model
or models.

Model(?x) ^ Modelof(?x, ?y)
^ Model(?z) ^ Modelof(?z,
?y)) hasAssociatedModel
(?x, ?z) ^

hasAssociatedModel(?z, ?x)
4. Propagation

of properties
Propagate

properties of a
child model to a
parent model.

Submodel(?x) ^ Model(?z) ^

hasParameter(?x, ?y) ^

hasParentModel(?x, ?z))
hasParameter(?z, ?y)

5. Creation of
supporting
knowledge

Create knowledge
that is implied
by the creation
of an instance.

ConstrainedModel(?x) ^

hasVariable(?x, ?y) ^

isConstrainedBy(?y, ?z))
hasConstraint(?x, ?z)

6. Identifying
constraint
violations

This rule example
sets an upper
limit on a
variable.

Constraint(?x) ^ hasValue(?x,
?y) ^ Parameter(?z) ^

hasValue(?z, ?a) ^ Greater/
Less(?x, Greater) ^

isConstrainedBy(?z, ?x) ^

swlb:lessThan(?y, ?a))
Violation(?x)

7. Calculation
of objective
value

Find the current
value of an
objective
function such as
f(x) ¼ 3x 2 5y.

ObjectiveFucntion(?x) ^

Parameter1(?x, ?z) ^

hasValue(?z, ?a) ^

Parameter2(?x, ?b) ^

hasValue(?b, ?c) ^

Parameter3(?x, ?d) ^

hasValue(?d, ?e) ^

Parameter4(?x, ?f) ^

hasValue(?f, ?g) ^

swrlb:multiply(?h, ?a, ?c) ^

swrlb:multiply(?i, ?e, ?g) ^

swrlb:subtract(?y, ?h, ?i))
hasValue(?x, ?y)

8. Creation of
new models
based on
existing
ones

This is an example
of some of the
knowledge that
may be passed
when using
existing models
as templates for
other models.

Model(?x) ^ Modelof(?x, ?y)
^ IntendedFor(?x, ?d) ^

hasParameter(?x, ?a) ^

hasAssociatedModel(?x, ?b)
^ NewRevision(?x, ?z))
Model(?z) ^ Modelof(?z,
?y) ^ hasParameter(?z, ?a)
^ hasAssociatedModel(?z,
?b) ^ IntendedFor(?z, ?d)

First-order logic in engineering design ontologies 251

https://doi.org/10.1017/S0890060409990096 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990096

The knowledge capturing process for the I-beam began
with the simple instantiation of a product instance. This
product instance served as the root instance during the devel-
opment of the I-beam, with all related knowledge either
directly or indirectly linking to it. This initial step was followed
by the development of a CAD model of an I-beam while cap-
turing the knowledge involved in creating its geometry. For a
simple I-beam problem, the lower level knowledge was lim-
ited to values of thickness, height, width, and length. The
higher level knowledge included a brief description of the
model, as well as any idealizations made, such as the neglect-
ing of weld geometry during the modeling process.

After creating the geometric representation of the I-beam,
the next step was to develop the initial analysis problem.
Using a strictly OWL knowledge framework, this step would
require navigating through the ontology and beginning a fresh
instantiation of an analysis model, in this scenario a finite ele-
ment analysis model. However, using a rule similar to rule 8
(the exact properties and classes used may vary) from Table 1
in the OPTEAM framework, much of the knowledge instan-
tiation was automated because the analysis model was based
on the existing geometric model. For instance, they share the
same related models, are based on the same initial product,
share many of the same parameters, and share properties
such as who the model is intended for. Automatically instan-
tiating common parameters and their values insured the anal-
ysis model was an accurate representation of the geometric
model. The automatic instantiation of this knowledge reduced
the amount of time required to create a successful knowledge
instantiation.

After creating the basic instantiation of the finite element
analysis model using the shared attributes, model-specific in-
formation was added. This knowledge consisted of any
higher level knowledge including assumptions, such as the
negligible effect of the beam welds, and resulting idealiza-

tions, such as the suppression of the welds. Again, OPTEAM
facilitated the knowledge instantiation process. In this sce-
nario associations between analysis, geometric and optimiza-
tion models were made using rule 3 from Table 1. Rules 1 and
5 also facilitated the knowledge instantiation by passing com-
mon values. Rule 2 guided the knowledge gathering process
by providing unit consistency checks.

OPTEAM used a SWRL rule similar to rule 8 when creat-
ing a new instance of an optimization model. Based on the re-
sults of the initial analysis, the initial parameters were set for
the optimization of the I-beam. These parameters included
the geometrically related parameters, the material property
parameters, and the initial conditions set forth by the analysis
results, such as stress and deflection. These initial conditions
were important in determining appropriate optimization
methods. For this example, the objective was to minimize
the cross section of the beam. Although OWL was used to en-
sure the proper optimization method was chosen between
continuous or discrete based on the classification of the opti-
mized parameters, a SWRL rule was used to ensure a con-
strained method was used rather than an unconstrained
method based on the existence of constraints in the given
problem.

The I-beam optimization problem was subjected to both
stress and deflection constraints. Although OWL offers the
ability to capture information about these constraints within
the knowledge base, SWRL has the ability to flag violated
constraints. Using SWRL rules similar to rule 6 in Table 1
and SWRL built-ins, relationships were defined between pa-
rameter values and constraint values. These relationships
identified when a constraint was violated by asserting an in-
stance of the I-beam optimization model into the “Violations”
class while identifying what constraint was violated. This
again demonstrates how SWRL adds a semblance of intelli-
gence to an OWL knowledge base.

Fig. 3. Optimizing and I-beam subject to constraints. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

P. Witherell et al.252

https://doi.org/10.1017/S0890060409990096 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990096

The I-beam example highlighted a selection of the rules of-
fered by OPTEAM. Together, these rules provide a signifi-
cant improvement over OWL frameworks in knowledge man-
agement and capturing capabilities while also simplifying
much of the process. An example of what SWRL rules look
like when implemented in Protégé is seen Figure 4, showing
the implementation of SWRL rules used in the I-beam knowl-
edge instantiation.

6.2. Engineering case study 2: The design of a
pediatric left ventricular assist device (PVAD)
impeller

The topological optimization of a PVAD impeller is used to
further exhibit the capacity of OPTEAM. Unlike the I-beam
example, however, the PVAD impeller example concentrates
more on the operation on higher level knowledge.

The PVAD impeller example was introduced (Witherell
et al., 2006) to demonstrate the comprehensive knowledge that
can be captured by an OWL-based framework. Many assump-
tions and idealizations led to the final topological optimization
of the PVAD impeller. Beginning as a three-dimensional (3-D)
impeller with a sophisticated blade design, the blades were
deemed to have a negligible effect on the overall stress experi-
enced by the impeller. Therefore, their complex geometry was
suppressed. This suppression became a model idealization.
The idealization of blade suppression resulted in an axisym-

metrical analysis model where one did not exist before. This
symmetry allowed the creation of a two-dimensional (2-D)
model that accurately represented the behavior of the 3-D
model in the context of the analysis objectives. This 2-D model
was then used to run both stress and modal analyses on the
PVAD impeller, as well as a topological optimization.

OPTEAM possesses the ability to not only capture the
knowledge associated with the 2-D representation of the
PVAD impeller but also identify when the knowledge is no
longer valid. The initial idealization of the PVAD impeller
was the suppression of the impeller blades. For this suppres-
sion to be made, it was assumed that the current blade struc-
ture had a negligible effect on the intended modal and stress
analyses. However, if a computational fluid dynamics analy-
sis were run, blade suppression would be detrimental to ac-
quiring accurate flow results. In such a case, the blade sup-
pression would no longer be valid. Furthermore, if a design
change was made, such that the size and shape of the blades
were altered, then blade suppression may no longer be an ap-
propriate idealization for either the stress or modal analyses.
Although a single engineer carrying out an analysis may
recognize when an idealization becomes invalid, such occur-
rences will become increasingly difficult to identify in
a distributed environment, such as the Semantic Web.
OPTEAM provides a platform addressing such situations.

In the presented design scenario of the PVAD impeller, an
existing impeller design was gently modified so it could be

Fig. 4. Implemented SWRL rules in SWRL Tab. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

First-order logic in engineering design ontologies 253

https://doi.org/10.1017/S0890060409990096 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990096

used in a new yet similar environment. The modifications to the
design of the impeller included a mild increase in the size of the
blades. The new environment also introduced a slightly in-
creased flow rate experienced by the impeller. An existing
finite element model was copied when beginning the new
stress analysis. However, because of the blade alterations,
the new finite element model could no longer support the as-
sumptions of “Negligible blade mass” and “Negligible flow
rate.” The new model now had a new list of assumptions.

The 2-D finite element model of the impeller required an
“Impeller axisymmetry” idealization to be made during the
creation of this impeller. The existence of the “Impeller axi-
symmetry” idealization required the “Impeller blade suppres-
sion” idealization, because of the complex geometry of the
blade. Therefore, all assumptions required for the “Impeller
blade suppression” idealization were also necessary for an
“Impeller axisymmetry” idealization to be made. The re-
moval of the “Negligible blade mass” and “Negligible flow
rate” assumptions triggered a SWRL rule that stated that all
assumptions required to make an idealization must also be
present in the model, otherwise a violation occurred. Because
the “Negligible blade mass” and “Negligible flow rate” as-
sumptions were no longer made, OPTEAM was able to iden-
tify that the “Impeller blade suppression” idealization made
by this model was no longer applicable. Therefore, it was
able to deduce that the “Impeller axisymmetry” idealization
was also no longer valid. Because these idealizations were

no longer supported, the 2-D axisymmetrical impeller model
was asserted into the “Violations” class, as seen in Figure 5.

Figure 6 is a screen shot of an instance of an asserted vio-
lation of a 2-D axisymmetrical impeller model. It is seen that
the instance belongs to two classes, the “Finite_element_
model_component” class and the “Violations” class. The “Vio-
lations” class property values show that OPTEAM was able
to identify that a violation has occurred and what assumptions
and idealizations were no longer valid. This awareness helps
ensure the integrity of the design process during its analysis
model development phase. However, if it were deemed that
the model supported these assumptions and idealizations,
the violated assumptions would be added to the model as-
sumptions, and the asserted violation could be removed.

7. DISCUSSION

This paper demonstrated how the application of first-order
logic can be used to guide and facilitate the knowledge acquisi-
tion process. Other advantages also exist. The methods pre-
sented in this paper are not intrinsic to their demonstrated
implementations; they can be adapted to additional applica-
tions throughout the engineering design process as well.
For instance, logic can identify when a certain decision
may be beneficial over another, such as choosing applicable
techniques in an optimization problem, and identifying
what advantages one technique may provide over another.

Fig. 5. Asserted violation. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

P. Witherell et al.254

https://doi.org/10.1017/S0890060409990096 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990096

For a specific example, a gradient-based method may provide
an accurate result but require a significant amount of compu-
tational costs, whereas a direct search method may sacrifice
some accuracy but at a fraction of the costs. Other examples
include choosing the most effective element/mesh combina-
tion in a finite element problem, or perhaps identifying the
most computationally friendly model. For example, an
I-beam meshed with beam elements may possess a greater ac-
curacy than it would with a solid tetrahedral element model
when subjected to bending stresses. These are decisions an
engineer often faces during the product development process,
and rules can assist the engineer in his or her decision by not
only presenting alternatives but also the related design impli-
cations during the design process.

Until now, the use of Horn logic has focused on inferencing
between classes and class properties of an ontological frame-
work. However, the ability to inference on specific instances
of ontologies, thus providing the ability to curtail large prolif-
erations of classes in an ontological framework, has not been
addressed. For example, consider an electromechanical circuit
system. Here, if the system’s electronics (such as a circuit
board) required an ontology for each component, a specialized
framework approach would quickly become difficult to man-
age. An alternative approach is to operate on instances of as-
semblies and assembly components, thus capturing the same
knowledge without requiring the creation of specialized ontol-
ogies, creating relationships among instance properties instead.
This scenario still allows for the use of rules to track how alter-

ing parameter values (i.e., length, width, thickness, or diame-
ter) may affect the integrity of the resulting design, without
the need of a complex framework.

Another significant outcome of this work lies in the ap-
proach taken to overcome the many challenges presented by
the Semantic Web when developing a dynamic knowledge
base. Although OWL’s and SWRL’s connections with the Se-
mantic Web provide many unique benefits, there are also asso-
ciated drawbacks. For example, the open-world nature of the
Semantic Web and its only partial expressivity of first-order
logic can make many otherwise mundane logical inferences
difficult. A definitive example, as well as one of the hardest
challenges to overcome, is the nonexistence of negation as fail-
ure. This means that while assertions are allowed when required
conditions are met, the same cannot be said for when these
conditions are not met. To address this challenge a “Viola-
tions” class was created, turning this particular limitation into
an advantage and providing a unique method for introducing
knowledge discrepancies to engineers. Advances in semantic
systems such as reasoners and rule engines and the develop-
ment of corresponding languages promise to offer significant
enhancements to the currently available capabilities of Seman-
tic Web-based distributed knowledge frameworks.

This work presented methods for expanding the traditional
purposes of knowledge-based engineering to serve a larger
role in the design process. Beyond providing a structured
knowledge framework, first-order logic was able to establish
both influential and dependent relationships within a suite of

Fig. 6. Violations properties. [A color version of this figure can be viewed online at journals.cambridge.org/aie]

First-order logic in engineering design ontologies 255

https://doi.org/10.1017/S0890060409990096 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990096

well-defined engineering domain ontologies. These relation-
ships provided an intelligent aspect to a well-formed
knowledge base, allowing the knowledge base to advance be-
yond a static repository. Although it may be argued that exist-
ing CAD tools offer similar capabilities to manage basic data,
such as parameters and constraints, such rules are native to a
single environment, and are unable to be executed across sys-
tems. In the developed ontological framework, the abstraction
of domain knowledge allows relationships to be created be-
tween more complex entities beyond simply numerical val-
ues, as shown by the case studies. In short, the addition of
rules provides a unique dynamic attribute unseen in the tradi-
tional engineering knowledge base, creating an environment
that not only supports collaboration but also the corroboration
of knowledge.

8. SUMMARY

This paper introduced the use of first-order logic subsets
implemented in the form of the Semantic Web’s OWL and
SWRL to enhance the knowledge acquisition and knowledge
management capabilities of ontologies. The developed
methods, based on Horn rules, allow for a substantial reduc-
tion in the possibility of human error during the design pro-
cess by the identification of uncorroborated and inconsistent
knowledge that may otherwise go unnoticed. Specifically,
they addressed three key issues in knowledge management
that ontologies by themselves do not address: corroboration
of knowledge instantiations, retained consistency during the
knowledge instantiation process, and minimization of redun-
dancy in the knowledge instantiation process. This work re-
sulted in the engineering knowledge management tool OP-
TEAM. Findings from its application to two case studies
show that logic-based methods offer a structured approach
to enhance knowledge acquisition, knowledge management,
and knowledge validation techniques in engineering design
ontologies.

ACKNOWLEDGMENTS

This material is based on work supported by NSF Grant 0332508
and by industry members of the NSF Center for e-Design.

REFERENCES

Alberts, L.K., & Dikker, F. (1992). Integrating standards and synthesis
knowledge using the YMIR ontology. In Artificial Intelligence in Design
(Gero, J.S., & Sudweeks, F., Eds.), pp. 517–534. Boston: Kluwer Aca-
demic.

Becker, B.J., & Kaepp, G.A. (1997). BDS: a knowledge-based bumber de-
sign system. 1997 ASME Design Engineering Technical Conf., Paper
No. DETC97/CIE-4272, Sacramento, CA.

Bohm, M.R., Stone, R.B., Simpson, T.W., & Steva, E.D. (2006). Introduc-
tion of a data schema: the inner workings of a design repository. Proc.
ASME IDETC/CIE.

Borgida, A. (1996). On the relative expressiveness of description logics and
predicate logics. Artificial Intelligence 82(1–2), 353–367.

Brown, D.C. (1985). Capturing mechanical design knowledge. Proc. ASME
Int. Computers in Engineering Conf., Boston.

Buchanan, B.G., & Shortliffe, E.H. (1984). Rule Based Expert Systems: The
Mycin Experiments of the Stanford Heuristic Programming Project.
Reading, MA: Addison–Wesley.

Bullinger, H.J., Warschat, J., Schumacher, O., Slama, A., & Ohlhausen, P.
(2005). Ontology-Based Project Management for Acceleration of Inno-
vation Projects. LNCS, Vol. 3379. New York: Springer.

de Kleer, J. & Brown, J.S. (1983). Assumptions and ambiguities in mechan-
istic mental models. In Mental Models (Genter, D., & Stevens, E.L.,
Eds.), pp. 155–190. Hillsdale, NJ: Erlbaum.

Dos Santos, B.L., & Mookerjee, V. (1991). Towards optimal expert system
design, Proc. 24th Hawaii Int. Conf. Systems Sciences.

Erickson, D.M., Brown, D.R., Hwang, K., Pan, Y., & Daga, A. (1997). A
framework for cooperating engineering knowledge agents. 1997 ASME
Design Engineering Technical Conf., Paper No. DETC97/CIE-4299,
Sacramento, CA.

Euler, E.E., Jolly, S.D., & Curtis, H.H. (2001). The failures of the Mars Cli-
mate Orbiter and Mars Polar Lander: a perspective from the people in-
volved. Proc. Guidance and Control 2001, Paper No. AAS 01-074.
Springfield, VA: American Astronautical Society.

Friedman-Hill, E. (2003). Jess in Action. Greenwich, CT: Manning Publica-
tions.

Genesereth, M., & Fikes, R. (2001). Knowledge Interchange Format Version
3.0 Reference Manual Technical Report, Logic Group Report Logic-
92-1, Stanford University. Accessed at http://logic.stanford.edu/kif/
Hypertext/kif-manual.html

Gennari, J., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M.,
Eriksson, H., Noy, N.F., & Tu, S.W. (2003). The evolution of Protégé:
an environment for knowledge-based systems development. Interna-
tional Journal of Human–Computer Studies 58(1), 89–123.

Goel, A., Bhatta, S., & Stroulia, E. (1996). KRITIK: an early case-based de-
sign system. In Issues and Applications of Case-Based Reasoning to
Design (Maher, M., & Pu, P., Eds.). Mahwah, NJ: Erlbaum.

Goel, A., Gomez, A., Grue, N., Murdock, J.W., Recker, M., & Govindaraj, T.
(1996). Explanatory interface in interactive design environments. In Arti-
ficial Intelligence in Design (Gero, J.S., Ed.). Boston: Kluwer Academic.

Gottlob, G., & Nejdl, W. (1990). Proc. Expert Systems in Engineering, Prin-
ciples and Applications, Int. Workshop. LNCS, Vol. 462. New York:
Springer.

Grosse, I.R., Milton-Benoit, J.M., & Wileden, J.C. (2005). Ontologies for
supporting engineering analysis models. Artificial Intelligence for Engi-
neering Design, Analysis, and Manufacturing 19(1), 1–18.

Grosof, N.B., Horrocks, I., Volz, R., & Cecker, S. (2003). Description logic
programs: combining logic programs with description logic. Proc. 12th
Int. Conf. World Wide Web WWW2003, pp. 48–57, Budapest, Hungary,
May 20–24.

Gruber, T., & Olsen, G. (1994). An ontology for engineering mathematics.
Proc. 4th Int. Conf. Principles of Knowledge Representation and Reason-
ing (Doyle, J., Torasso, P., & Sandewall, E., Eds.), pp. 258–269. San Ma-
teo, CA: Morgan Kaufmann.

Haarslev, V., Möller, R., & Wessel, M. (2004). Querying the Semantic Web with
Racer þ nRQL. KI-04 Workshop on Applications on Description Logics.

Henson, B., Juster, N., & de Pennington, A. (1994). Towards an integrated
representation of function, behavior and form, computer aided conceptual
design. Proc. 1994 Lancaster Int. Workshop on Engineering Design
(Sharpe, J., & Oh, V., Eds.), pp. 95–111. Lancaster: Lancaster University
EDC.

Horn, A. (1956). On sentences which are true of direct unions of algebras.
Journal of Symbolic Logic 16, 14–21.

Horrocks, I., Patel-Schneider, P., Bechhofer, S., & Tsarkov, D. (2005). OWL
rules: a proposal and prototype implementation. Journal of Web Seman-
tics 3(1), 23–40.

Iwasaki, Y., & Chandrasekaran, B. (1992). Design verification through func-
tion and behavior-oriented representations: bridging the gap between
function and behavior. In Artificial Intelligence in Design (Gero, J.S.,
Ed.), pp. 597–616. Boston: Kluwer Academic.

Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B., & Hendler, J. (2005).
Swoop: a Web ontology editing browser. Journal of Web Semantics 4(1).
doi:10.1016/j.websem.2005.10.001

Kanuri, N. (2007). Ontologies and methods for interoperability of engineer-
ing analysis models (EAM’s) in an e-design environment. Master’s The-
sis. University of Massachusetts Amherst.

Kifer, M., & Lausen, G. (1989). F-logic: a higher-order language for reason-
ing about objects, inheritance, and scheme. Int. Conf. Management of
Data, pp. 134–146.

P. Witherell et al.256

https://doi.org/10.1017/S0890060409990096 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990096

Kim, K., Yang, H., & Manley, D. (2006). Assembly design ontology for ser-
vice-oriented design collaboration. Computer-Aided Design and Appli-
cations 3(5), 603–613.

Levy, A.Y., & Rousset, M.C. (1998). Combining Horn rules and description
logics in CARIN. Artificial Intelligence 104(1–2), 165–209.

Morris, K.N. (1998). Agent support for collaborative design, 1998 ASME
Computers in Engineering Conf., Paper No. DETC98/CIE-5551.

Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergerson, R.W., & Musen,
M.A. (2001). Creating Semantic Web contents with Protege-2000. IEEE
Intelligent Systems 16(2), 60–71.

Qian, L., & Gero, J.S. (1996). Function–behavior–structure paths and their
role in analogy based design. Artificial Intelligence for Engineering De-
sign, Analysis and Manufacturing 10(4), 289–312.

Patil, L., Dutta, D., & Sriram, R. (2005). Ontology-based exchange of
product data semantics. IEEE Transactions on Automation Science and
Engineering 2(3), 213–225.

Prasad, B. (2004). Knowledge driven automation. Enterprise Engineering
Systems, ParTech 2004.

Ranta, M., Mäntylä, M., Umeda, Y., & Tomiyama, T. (1996). Integration of
functional and feature based product modeling—the IMS/GNOSIS Ex-
perience. Computer-Aided Design 28(5), 371–381.

Rogers, J. (2004). Getting the most gains out of knowledge-based engineer-
ing—Parker Aerospace Experiences. 2004 Annual Conf. TechniFair.

Schmidt-Schauß, M. (1989). Subsumption in KL-ONE is undecidable. Proc.
1st Int. Conf. Principles of Knowledge Representation and Reasoning KR
‘89 (Brachman, R.J., Levesque, H.J., & Reiter, R., Eds.), pp. 421–431.
Los Altos, CA: Morgan Kaufmann.

Shepar, M.S., Bachmann, L., Georges, M.K., & Korngold, E.V. (1990).
Framework for reliable generation and control of analysis idealizations.
Computer Methods in Applied Mechanics and Engineering 82(1–3),
257–280.

Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., & Katz, Y. (2004). Pellet: a
practical OWL-DL reasoner. 3rd Int. Semantic Web Conf. ISWC2004.

Spiegelhalter, D., Dawid, A., Lauritzen, S., & Cowel, R. (1993). Bayesian
analysis in expert systems. Statistical Science 8(3), 219–247.

Szykman, S., Sriram, R.D., Bochenek, C., & Racz, J. (1998). The NIST De-
sign Repository Project. Advances in Soft Computer-Engineering Design
and Manufacturing. London: Springer–Verlag.

Szykman, S., Sriram, R.D., Bochenek, C., Racz, J.W., & Senfaute, J. (2000).
Design repositories: engineering design’s new knowledge base. Intelli-
gent Systems and Their Applications 15, 48–55.

Tsarkov, D., Riazanov, A., Bechhofer, S., & Horrocks, I. (2004). Using vam-
pire to reason with OWL. 3rd Int. Semantic Web Conf.

Turkiyyah, G.M., & Fenves, S.J. (1996). Knowledge-based assistance for fi-
nite element modeling. AI Applications in Civil and Structural Engineer-
ing 11(3), 23–32.

Umeda, Y., Ishii, M.,Yoshioka, M., Shimomura, Y., & Tomiyama, T. (1996).
Supporting conceptual design based on the function–behavior–state
modeler. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing 10, 275–288.

Wagner, G., Tabet, S., & Boley, H. (2003). MOF-RuleML: the abstract syn-
tax of RuleML as a MOF model. Integrate 2003, OMG Meeting, Boston.

Witherell, P., Krishnamurty, S., & Grosse, I.R. (2006). Ontologies for sup-
porting engineering design optimization. Journal of Computing and In-
formation Science in Engineering 7(2), 141–150.

Paul Witherell is a third-year PhD student in the Department
of Mechanical and Industrial Engineering at the University of
Massachusetts Amherst. He received his BS and MS degrees

in mechanical engineering from the University of Massachu-
setts Amherst in 2004 and 2006, respectively. Mr. Witherell’s
research interests are in the area of product design, with a fo-
cus on knowledge representation in the product development
process. Much of his work is based on the development of
ontologies and semantic methods to support and facilitate
the many aspects of the product development process.

Sundar Krishnamurty is an Associate Professor of mechan-
ical and industrial engineering at the University of Massachu-
setts Amherst. He received his BS in civil engineering from
IIT-Kanpur in 1982, his MS in civil engineering from the
University of Pennsylvania in 1984, and his PhD in mechan-
ical engineering from the University of Wisconsin–Madison
in 1989. Dr. Krishnamurty is currently the site Director for
the NSF Industry/University Cooperative Research Center
(NSF-I/UCRC) for e-Design and Realization of Engineering
Products and Systems. His research focuses on a wide range
of fundamental and applied research topics in design, includ-
ing Semantic Web ontologies, decision-based design, design
innovation, and therapeutic design.

Ian R. Grosse is an Associate Professor in mechanical engi-
neering and Director of the Intelligent Modeling, Analysis,
and Design Laboratory at the University of Massachusetts.
He was also a former site Director for the NSF Center for
e-Design and Realization of Engineered Products and Sys-
tems. He received his BS from Cornell University in 1979
and his MS and PhD from Virginia Polytechnic Institute
and State University in 1983 and 1987, respectively. Dr.
Grosse’s research interests include the application of Seman-
tic Web technologies for modeling, capturing, and sharing
engineering design knowledge in a distributed environment
and finite element modeling and analysis of biological sys-
tems in comparative biology and anthropology.

Jack C. Wileden is a Professor in the Department of Compu-
ter Science and Director of the Convergent Computing Sys-
tems Laboratory at University of Massachusetts Amherst.
He has been on the faculty of the University of Massachusetts
Amherst since 1978. He received a BA in mathematics and
MS and PhD in computer and communications sciences
from the University of Michigan in 1972, 1973, and 1978, re-
spectively. Dr. Wileden’s research interests are programming
languages and interoperability. His work is primarily directed
toward producing tools, techniques, and formal foundations
to support development and evolution of maximally seamless
systems comprising interoperating components.

First-order logic in engineering design ontologies 257

https://doi.org/10.1017/S0890060409990096 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409990096

