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Verification of Hasselmann’s energy transfer
among surface gravity waves by direct numerical

simulations of primitive equations
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1-1 Yanagido, Gifu 501-1193, Japan

(Received 24 August 2000 and in revised form 2 April 2001)

The temporal evolution of nonlinear wave fields of surface gravity waves is studied
by large-scale direct numerical simulations of primitive equations in order to verify
Hasselmann’s theory for nonlinear energy transfer among component gravity waves.
In the simulations, all the nonlinear interactions, including both resonant and non-
resonant ones, are taken into account up to the four-wave processes. The initial wave
field is constructed by combining more than two million component free waves in such
a way that it has the JONSWAP or the Pierson–Moskowitz spectrum. The nonlinear
energy transfer is evaluated from the rate of change of the spectrum, and is compared
with Hasselmann’s theory. It is shown that, in spite of apparently insufficient duration
of the simulations such as just a few tens of characteristic periods, the energy transfer
obtained by the present method shows satisfactory agreement with Hasselmann’s
theory, at least in their qualitative features.

1. Introduction
The ocean waves are usually described, at least to lowest-order approximation, as

a superposition of an infinite number of component waves with various amplitudes,
frequencies and directions of propagation. These component waves interact with each
other through the nonlinearity of the governing equations and the boundary conditions
at the free surface, and also interact with the turbulent air flow blowing above them as
well as the turbulent motion within the water. In order to describe such a complicated
system with infinitely many degrees of freedom, we usually abandon the deterministic
description and resort instead to a statistical description. Among various statistical
quantities which are used to describe the state of the ocean wave field, one of the most
important and informative quantities is the energy spectrum which expresses how the
energy of the ocean wave field is distributed among component waves. In terms of the
wavenumber spectrum ε(k) or the directional spectrum Φ(ω, θ), the energy density E
(i.e. the energy of the wave field per unit horizontal area) is expressed as

E =

∫
ε(k) dk =

∫ 2π

0

∫ ∞
0

Φ(ω, θ) dω dθ, (1.1)

where k is the two-dimensional wavenumber vector in the horizontal plane, ω is the
linear frequency defined as ω(k) = (g|k|)1/2, and θ is the direction of propagation. The
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200 M. Tanaka

frequency spectrum Ψ (ω) can be obtained by integrating Φ(ω, θ) with respect to θ:

Ψ (ω) =

∫ 2π

0

Φ(ω, θ) dθ. (1.2)

At present, the energy spectrum of the ocean wave field is considered to evolve in
space and time according to the ‘energy balance equation’:

∂ε(k; x, t)

∂t
+ cg(k) · ∇hε(k; x, t) = Snl + Sin + Sds, (1.3)

where ∇h denotes the gradient operator in the horizontal x-plane and cg(k) is the
vector group velocity. This equation is also called the ‘kinetic wave equation’. The
source terms Snl , Sin and Sds represent, respectively, the energy transfer between
different component waves due to nonlinearity, energy input from the wind, and the
energy dissipation due to white capping. Among those source terms, we will focus
our attention here on Snl . For Snl , Hasselmann (1962) has derived a complicated yet
explicit expression:

Snl(k4) =

∫ ∫ ∫
ω4|T1234|2δ(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)

×{N1N2(N3 +N4)−N3N4(N1 +N2)} dk1 dk2 dk3. (1.4)

Here N(k) is the wave action density defined as N(k) = ε(k)/ω(k), ωi = ω(ki) (i =
1, 2, 3, 4), T1234 is a complicated function of k1, k2, k3, k4, and δ is Dirac’s delta
function. When the wave field is statistically homogeneous, and both Sin and Sds are
absent, (1.3) is greatly simplified to become

∂ε(k; t)

∂t
= Snl , (1.5)

and this is the form of the energy balance equation which we shall deal with in this
study.

Hasselmann (1962) obtained the expression (1.4) for Snl by applying a perturbation
analysis to the primitive equations for surface gravity waves which are described in
terms of surface displacement η(x, t) and velocity potential φ(x, z, t). Zakharov (1968)
formulated the same problem of nonlinear surface water waves as a Hamiltonian
system and derived an evolution equation for the complex amplitude of component
waves which is now known as the Zakharov equation. By way of this equation,
the derivation procesure of Snl can be made much simpler and theoretically more
transparent than the original method of Hasselmann. For detailed derivation of the
kinetic equation from the Zakharov equation, see, for example, Zakharov (1999),
Zakharov, L’vov & Falkovich (1992), and Yuen & Lake (1982). Dyachenko & Lvov
(1995) have confirmed that the expression for Snl which has been derived from the
Zakharov equation is equivalent to Hasselmann’s original expression (1.4).

Many researchers have taken the validity of the expression (1.4) for granted and
have been trying to develop efficient numerical algorithms which evaluate it fast
enough to be used in wave forecasting routinely. However, when we review the
derivation of the expression (1.4) for Snl , there are several points to feel uneasy about.
For example,

(a) Hasselmann’s Snl , as well as the Zakharov equation, has been derived for wave
fields with broad-band spectra, and hence all the component waves are assumed to
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Verification of Hasselmann’s energy transfer by direct numerical simulations 201

have energy of the same order of magnitude. Therefore the asymptotic relation

b(k1)� b(k2) b(k3)� b(k4) b(k5) b(k6) (1.6)

is assumed to hold for any combination of wavenumbers ki. Here b(k) is the complex
amplitude function introduced by Zakharov (1968) and is reviewed briefly in the next
section. On the other hand, in a typical wind wave field, the energy spectrum is known
to decay like ω−m with m = 4–5. Then the amplitudes of component waves whose
frequencies are larger than twice the peak frequency are only several percent of that
of the peak mode at the most. Therefore an asymptotic relation like (1.6) does not
necessarily hold in the actual ocean wave field.

(b) Hasselmann’s theory predicts that the nonlinear energy transfer occurs only
among those waves which satisfy resonance conditions exactly, while all the other
off-resonant interactions do not contribute to the evolution of the spectrum at all. In
the derivation of (1.4) from the Zakharov equation, this exclusive selection of resonant
interactions is achieved as a result of integration with respect to t over a time scale
much longer than (ak)−2, with ak being a small parameter measuring the characteristic
‘steepness’ of the wave field. If we take this fact naively, the derivation procedure
appears to imply that the change of the spectrum due to resonant interactions can
be observed only after we take a temporal average over many hundred characteristic
periods of the wave field. Should this be the case, what happens if we trace the
evolution of the wave field deterministically for a much shorter time, say just a
few tens of periods, and estimate the change of the spectrum of the field? Can we
still observe any sensible energy transfer comparable to Hasselmann’s Snl , or do the
lower-order, hence stronger, non-resonant interactions, whose effect would not cancel
out enough in such a short interval of time, mask the net energy transfer due to the
four-wave process? If it turns out that we cannot detect the energy transfer due to
four-wave resonant interactions from such a short deterministic evolution, what is the
relevance of the kinetic equation (1.5) for such a short-term or mid-term evolution of
the wave field?

With these considerations in mind, we believe that the validity of Hasselmann’s
expression for Snl needs to be critically assessed by some completely independent
measure. We do not think it a sound situation that, although Hasselmann’s Snl has
never been confirmed by any independent measure, nevertheless everybody believes
in it. It is clear that verification of Hasselmann’s theory can never be achieved in field
observations, where effects of other sources such as Sin and Sds are always present.
Zhao et al. (1996) performed a series of wave-tank experiments to evaluate the
nonlinear energy transfer from the difference of Ψ (ω) obtained at various locations
along the wavetank. However, the experimental result shows a large scatter from
case to case, and we cannot derive any definite conclusion from their work. The
most promising approach for this purpose would certainly be numerical experiments.
In this paper, we deterministically trace the temporal evolution of random wave
fields by integrating numerically the primitive equations for surface gravity waves,
and then evaluate the nonlinear energy transfer from the rate of change of the
spectrum.

In § 2, we first review the fundamentals such as the primitive governing equations for
surface gravity waves, Zakharov’s Hamiltonian formalism and the complex amplitude
function b(k). In § 3, we present the numerical results for the one-dimensional and
the two-dimensional transfer functions T1(ω) and T2(ω, θ), and compare them with
Hasselmann’s Snl . Conclusions and discussion are given in § 4.
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202 M. Tanaka

2. Fundamentals
2.1. Governing equations

We consider the irrotational motion of water which is assumed to be inviscid and
incompressible. The flow can be described by a velocity potential φ(x, z, t) which
satisfies Laplace’s equation within the water. The water depth is assumed to be
infinite. Then the governing equations for the motion of nonlinear surface gravity
waves are

∇2φ(x, z, t) = 0, −∞ < z 6 η(x, t), (2.1)

φt + gz + 1
2
(∇φ)2 = 0, z = η(x, t), (2.2)

ηt + ∇hφ · ∇hη = φz, z = η(x, t), (2.3)

φ→ 0, z → −∞, (2.4)

where η(x, t) is the free surface displacement and ∇h ≡ (∂/∂x, ∂/∂y) is the gradient
operator in the horizontal (x, y)-plane. The vertical coordinate z is pointing upward
with its origin located at the mean free surface. In terms of the velocity potential
ψ(x, t) (= φ(x, η(x, t), t)) evaluated at the free surface, the boundary conditions (2.2),
(2.3) can be rewritten as

ψt + gη + 1
2
(∇hψ)2 − 1

2
W 2

{
1 + (∇hη)2

}
= 0, (2.5)

ηt + ∇hψ · ∇hη −W {
1 + (∇hη)2

}
= 0, (2.6)

where W (x, t) denotes the vertical velocity evaluated at the free surface.
In order to follow the unsteady evolution of a wave field numerically according to

(2.5) and (2.6), we need to solve a Dirichlet problem of Laplace’s equation for φ(x, z, t)
to obtain W (x, t) at each time step. For this purpose we employ the high-order spectral
method (abbreviated as HOSM hereinafter) developed independently by West et al.
(1987) and Dommermuth & Yue (1987). A concise review of HOSM can also be
found in Tanaka (2001). In this method the wave field is assumed to be periodic in
both the x- and y-directions, and the Dirichlet problem for φ(x, z, t) is solved very
efficiently by combining the techniques of amplitude expansion and the fast Fourier
transform. Once W is obtained, we can update η(x, t) and ψ(x, t) to the next time
step by integrating (2.5) and (2.6) numerically by the Runge–Kutta method or some
other standard method for ordinary differential equations. Between the two slightly
different versions of HOSM, we choose the version by West et al. (1987) rather than
the one by Dommermuth & Yue (1987) because only the former treats the boundary
conditions (2.5), (2.6) in a consistent manner with respect to {η(x, t), ψ(x, t)}, which
turn out to be a pair of canonical variables of Zakharov’s Hamiltonian formalism of
the water wave problem as discussed below.

2.2. Complex amplitude function b(k)

Zakharov (1968) has proved that the boundary value problem specified by (2.1), (2.5),
(2.6) can be expressed as a pair of canonical equations

∂η(x, t)

∂t
=

δH

δψ(x, t)
,

∂ψ(x, t)

∂t
= − δH

δη(x, t)
, (2.7)

by employing the total energy

H =
1

2

∫
dx

∫ η

−∞
(∇φ)2 dz +

g

2

∫
η2 dx (2.8)
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Verification of Hasselmann’s energy transfer by direct numerical simulations 203

as the Hamiltonian and {η(x, t), ψ(x, t)} as the pair of canonical variables. He also
introduced a very convenient new canonical variable b(k, t), which we call the ‘complex
amplitude function’ here, by

b(k, t) =

(
ω(k)

2k

)1/2

η̂(k, t) + i

(
k

2ω(k)

)1/2

ψ̂(k, t), ω(k) = (gk)1/2 , (2.9)

where η̂(k) and ψ̂(k) denote, respectively, the Fourier transform of η(x) and ψ(x).
In terms of b(k, t), the evolution of the wave field can be described by a single
complex-valued equation:

i
∂ b(k, t)

∂t
=
δH(b, b∗)
δ b∗(k, t)

, (2.10)

where the asterisk denotes complex conjugation. In terms of b(k, t), variables η(x)
and ψ(x) are expressed as

η(x) =
1

2π

∫ (
k

2ω(k)

)1/2

{b(k) + b∗(−k)} eik·x dk, (2.11)

ψ(x) =
−i

2π

∫ (
ω(k)

2k

)1/2

{b(k)− b∗(−k)} eik·x dk. (2.12)

Substituting (2.11), (2.12) into (2.8) and performing the integrals with respect to x
and z, we obtain the expressions for the potential energy P2 (the second term of (2.8))
and the leading-order part K2 of the kinetic energy (the first term of (2.8)) as follows:

P2 =
g

2

∫ ∫ (
k

2ω(k)

)
{b(k) + b∗(−k)} {b(−k) + b∗(k)} dk, (2.13)

K2 = −
∫ ∫ (

ω(k)

4

)
{b(k)− b∗(−k)} {b(−k)− b∗(k)} dk. (2.14)

The sum of these two contributions gives the expression for H2, the lowest-order part
of H , as

H2 =

∫
ω(k)b(k)b∗(k)dk, (2.15)

which in turn gives the canonical equation for linear waves:

i
∂b(k, t)

∂t
= ω(k)b(k, t). (2.16)

In this respect, b(k) plays the role of the normal mode of the linear wave field. The
significance of b(k) for our present purpose becomes clearer by considering a special
case in which b(k) is given by a delta function as

b(k, t) = b0δ(k − k0)e
−iω0t, ω0 = ω(k0), b0 constant. (2.17)

Equations (2.11) and (2.12) then give

η(x, t) = a0 cos(k0 · x− ω0t+ α), ψ(x, t) =

(
ω0

k0

)
a0 sin(k0 · x− ω0t+ α), (2.18)

where

a0 =
1

π

(
k0

2ω0

)1/2

|b0|, α = arg b0. (2.19)
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This demonstrates that, when the wave field is described in terms of a distribution
of b(k) on the k-plane, each point, k0 say, on the k-plane corresponds to a uniform
wavetrain of progressive surface gravity waves with wavenumber k0, and its amplitude
and the phase constant are determined by b(k0).

As explained before, we trace the evolution of a wave field by integrating (2.5) and
(2.6) numerically. Therefore the raw data which we get directly from the numerical
computation at each time step are η(x, t) and ψ(x, t). On the other hand, what we
want is a spectrum like Φ(ω, θ, t), and to estimate it we need to interpret the wave field
as a superposition of component waves. The above result implies that this changeover
from the description of the wave field in terms of {η(x), ψ(x)} to the one in terms of
the spectrum Φ(ω, θ) can be achieved quite easily by making use of b(k).

2.3. Relation between b(k) and Φ(ω, θ)

In our implementation of HOSM the wave field is assumed to be periodic both in
x and y with period Lx and Ly , respectively. Hence the wavenumber vector k is
discretized as

k =
(
kx, ky

)
=

(
2πk

Lx
,
2πl

Ly

)
(k, l integer). (2.20)

Then η(x) and ψ(x) are represented by discrete Fourier transforms as

η(x) =
∑
k

η̂ke
ik·x, ψ(x) =

∑
k

ψ̂ke
ik·x, (2.21)

and b(k) is given correspondingly by

bk =

(
ωk

2|k|
)1/2

η̂k + i

( |k|
2ωk

)1/2

ψ̂k, ωk = ω(k). (2.22)

Each mesh point on the k-plane represents a component wave with corresponding
wavenumber as discussed above.

The energy density E is given by

E =
1

A

[
1

2

∫
A

dx

∫ η

−∞
(∇φ)2 dz +

g

2

∫
A

η2 dx

]
, (2.23)

where A denotes the rectangle 0 6 x 6 Lx, 0 6 y 6 Ly on the x-plane. Substituting
the relations

η̂k =

( |k|
2ωk

)1/2 (
bk + b∗−k

)
, ψ̂k = −i

(
ωk

2|k|
)1/2 (

bk − b∗−k
)

(2.24)

into (2.23) and performing the integrals with respect to x and z, we obtain the
leading-order approximation for E in terms of bk as follows:

E ≈∑
k

ωk|bk|2. (2.25)

On the other hand, E can also be expressed by the directional spectrum Φ(ω, θ) as

E =

∫ 2π

0

∫ ∞
0

Φ(ω, θ) dω dθ =

∫
g2

2ω(k)3
Φ(ω, θ)dk ≈∑

k

g2

2ω3
k

Φ(ω, θ)∆Sk, (2.26)

where ∆Sk is the area of a rectangular mesh on the k-plane given by

∆Sk = ∆kx × ∆ky =

(
2π

Lx

)
×
(

2π

Ly

)
. (2.27)
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Equating (2.25) and (2.26) gives an approximate relation between |bk| and Φ(ω, θ) as
follows:

|bk|2 ≈ g2

2ω4
k

Φ(ω, θ)∆Sk. (2.28)

This relation enables us to construct a distribution of {bk} when the energy spectrum
of the wave field is prescribed. The initial phases of {bk} are given by a homogeneous
random number in [0, 2π].

We assume that Φ(ω, θ) is expressed as Φ(ω, θ) = Ψ (ω)G(θ) with

Ψ (ω) = αg2ω−5 exp

[
−5

4

(
ω

ωp

)−4
]
γexp[−(ω−ωp)2/(2σ2ω2

p )], (2.29)

and

G(θ) =

{
(2/π) cos2 θ, |θ| 6 π/2
0, |θ| > π/2,

(2.30)

where α is a non-dimensional coefficient called the Phillips constant, and ωp is
the angular frequency at the peak of the spectrum. From now on, we employ the
normalization of space and time such that both ωp and g are unity. Under this
normalization, the frequency spectrum Ψ (ω) is written as

Ψ (ω) = αω−5 exp

(
− 5

4ω4

)
γexp[−(ω−1)2/2σ2]. (2.31)

In the following, we call Φ(ω, θ) the JONSWAP spectrum when

α = 3.279E, γ = 3.3, σ =

{
0.07 (ω < 1)

0.09 (ω > 1),
(2.32)

and the Pierson–Moskowitz(P-M) spectrum when

α = 5E, γ = 1.0. (2.33)

The relations between α and E in (2.32) and (2.33) have come from the fact that∫ ∞
0

ω−5 exp

(
− 5

4ω4

)
γexp[−(ω−1)2/2σ2] dω =

{
1/3.279 if γ = 3.3

1/5 if γ = 1.0.
(2.34)

3. Numerical results
3.1. Parameters

We follow the temporal evolution of wave fields according to the free surface boundary
conditions (2.5) and (2.6). The vertical velocity W (x, t) is evaluated by HOSM, and
the integration in time is performed by the fourth-order Runge–Kutta method. In the
integration in time, we update {bkeiωkt} instead of {bk(t)} or {η(x, t), ψ(x, t)} because
this enables us to use a larger step size ∆t without losing numerical accuracy (Tanaka
2001).

The numbers of mesh points (Nx,Ny) in the physical space (x, y-plane) and the
order of nonlinearity M are fixed, respectively, as Nx = 212 = 4096, Ny = Nx/2 = 2048
and M = 3 in all the computations discussed below. The x-axis is taken along the
principal direction of propagation. The choice M = 3 implies that we take account
all of the three-wave and four-wave nonlinear interactions, irrespective of whether
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resonant or non-resonant. Considering the condition for the numerical computation
to be free from aliasing errors, the maximum mode numbers kmax in the x-direction
and lmax in the y-direction are determined, respectively, as kmax = Nx/(M + 1) = 1024
and lmax = Ny/(M + 1) = 512. Note that k, l, kmax and lmax, as well as kp appearing
below, denote mode numbers and hence are integers, while kx and ky are components
of vector wavenumbers and take real values.

The relation between (Nx,Ny) and (kmax, lmax) employed above may need explana-
tion. Let kmax be the mode number corresponding to the largest wavenumber that
we want to describe correctly, and Nx be the number of mesh points in the physical
space. Suppose that the order of nonlinearity is M and the prescribed wave field
consists of those waves with mode numbers up to kmax. Then the nonlinearity in the
boundary conditions would generate wave modes up to Mkmax, and aliasing error
occurs if Mkmax > Nx/2. However the aliasing error affects only those modes with
mode number k which satisfy

k > 1
2
Nx − (Mkmax − 1

2
Nx) = Nx −Mkmax, (3.1)

and those modes with k less than kmax would evade the contamination by aliasing
error if we take Nx large enough to satisfy the condition

kmax < Nx −Mkmax, i.e. Nx > (M + 1)kmax. (3.2)

This is the method of aliasing removal which West et al. (1987) employed, and we
follow them in this paper. When M = 2, this method reduces to the well-known
‘3/2-rule’ which is often used in computational fluid dynamics (e.g. Canuto et al.
1988).

When the θ-dependence of Φ(ω, θ) is proportional to cos2 θ as assumed here, the
ratio k̄x/k̄y of the average wavenumbers is defined by

k̄x/k̄y =

∫
kxε(k) dk

/∫
kyε(k) dk = 2. (3.3)

Accordingly it would be reasonable to fix the large-wavenumber cutoff of kx to be
twice that of ky , and this explains why we use twice the number of points in the
x-direction than in the y-direction. As the mode numbers k and l vary in the range
−kmax 6 k 6 kmax and −lmax 6 l 6 lmax, the total number of component waves whose
temporal evolution we are to follow amounts to more than 2 million (2049 × 1025,
more precisely).

In most computations, we require that the maximum mode number kmax corre-
sponds to the 15th harmonic of the peak of the spectrum. This fixes the mode
number kp of the peak as kp = kmax/15 = 68, implying that the region on the phys-
ical x-plane which is treated by the numerical computation is a square with area
68λp × 68λp, with λp(= 2π) being the wavelength corresponding to the peak of the
spectrum. On the other hand, the corresponding region on the k-plane is a rectangle
−15 6 kx 6 15, −7.5 6 ky 6 7.5, and it is covered by a uniform square mesh with
a mesh size 1/68× 1/68. The wavenumber cut off at 15kp in kx and 7.5kp in ky may
appear needlessly high, but this turns out not to be sufficient, at least for the case
with the P-M spectrum, as we discuss in § 3.4 below.

The energy density E is varied in the range 0.002 6 E 6 0.005, and the cor-
responding range of the significant waveheight H1/3 is 0.179 6 H1/3 6 0.283 if
estimated by the relation H1/3 ≈ 4

√
E. Note that this is the range of H1/3 when

the dominant wavelength is normalized to 2π. If the peak frequency is 1/8 Hz and
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Figure 1. Evolution of skewness S and kurtosis K of η(x, t): case[E005J–1].

hence the dominant wavelength is 100 m, the range of H1/3 as above corresponds to
2.85 m 6 H1/3 6 4.50 m.

The step size ∆t of time integration is fixed as Tp/25, with Tp being the period
corresponding to the peak of the spectrum, and is 2π according to our normalization.
The duration of computation is 20Tp for most of the computations, while it is
extended to 30Tp for some special cases. The accuracy of the computation is checked
by monitoring the variation of the total energy

Etotal =
1

2

∫ ∫
ψ
∂η

∂t
dx+

1

2

∫ ∫
η2 dx, (3.4)

which is an integral of motion of the system. Although the accuracy varies from case
to case, Etotal remains constant within about 1% throughout most of the computations.

In the following we use a simple notation to specify each of the computations. For
example, case[E005J–3] denotes the third run of a series of computations in which
the initial spectrum is given by the JONSWAP spectrum (2.31) with E = 0.005.

3.2. Statistics of η(x, t)

Figure 1 shows the evolution of the skewness S and the kurtosis K of η(x, t) obtained
from the case[E005J–1] which are defined respectively by

S =
1

NxNy

Nx∑
i=1

Ny∑
j=1

η3
i,j

/
η3

rms, K =
1

NxNy

Nx∑
i=1

Ny∑
j=1

η4
i,j

/
η4

rms, (3.5)

where ηi,j is the value of η(x, t) at the (i, j) grid point on the (x, y)-plane. It can be
observed that both S and K fluctuate around some mean values which are slightly
larger than those corresponding to the Gaussian distribution (i.e. S = 0, K = 3). The
figure also suggests the existence of a transient process during the first few periods.

As explained in § 2, the initial wave field is constructed as a superposition of
sinusoidal wavetrains, i.e. the solutions of the linearized system. When this artificially
created wave field is left to evolve according to the governing equations for nonlinear
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Figure 2. Comparison of standardized p.d.f. of η and the third-order Gram–Charlier Series:
case[E005J–1].

water waves, the nonlinear interactions among component waves generate bound
waves at the sums and the differences of their wavenumber vectors. This generation
of bound waves or harmonics results in the fluctuations of S and K shown in figure 1.
During this process of transition, the three-wave interactions appear to dominate over
other nonlinear interactions because they are of lowest order, hence most effective,
in such a short time as a few periods. This view is also supported by the period of
oscillation of S and K , observed in figure 1 to be about 1.7. This can be identified as
the period of the beat between the bound waves at 2kp with frequency 2ω(kp) (= 2),
which is generated by the three-wave interaction kp + kp = 2kp, and the free wave at
2kp whose frequency is ω(2kp) =

√
2.

The large fluctuations of S and K almost disappear by t ≈ 5Tp, and they remain
nearly constant afterwards. This fact suggests that the initial wave field, which is
just a superposition of linear free waves, has transformed to a ‘consistent’ nonlinear
wave field during the first few periods. By a ‘consistent’ nonlinear wave field, we
mean a wave field in which the free wave components accompany the corresponding
bound waves which they are supposed to accompany, just like the bound wave
(1/2)a2k cos 2(kx − ωt) for the free wave a cos(kx − ωt) in a Stokes wave. In the
evaluation of the nonlinear energy transfer which is discussed below, we will discard
the data obtained from the interval 0 6 t 6 6Tp. Although we have not employed it
here, the initialization procedure developed by Dommermuth (2000) might be able to
generate more appropriate initial wave fields.

Figure 2 shows the probability density function (p.d.f.) of η(x, t) obtained from
case[E005J–1] at t = 0 and t = 10Tp. The p.d.f. has been standardized such that
the mean is 0 and the standard deviation is 1. In the same figure is also shown the
third-order Gram–Charlier series with the same skewness as η at t = 10Tp, which fits
perfectly well to the standardized p.d.f. of η at that time. For standardization and
the Gram–Charlier distribution, see Stuart & Ord (1994). The p.d.f. at t = 0 is nearly
Gaussian as being expected from its method of construction, and differs significantly
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from that evaluated at t = 10Tp. On the other hand, the p.d.f. at t = 20Tp, although
not shown here, is almost the same as that evaluated at t = 10Tp. This fact supports
our supposition that a ‘consistent’ and quasi-steady nonlinear wave field has been
built up by t = 10Tp.

3.3. Frequency spectrum Ψ (ω)

As explained in § 2, the energy density E is given approximately in terms of {bk} by

E ≈∑
k

ωk|bk|2 =
∑
k,l

ωk,l |bk,l |2. (3.6)

On the other hand, it is also given, by definition, in terms of the frequency spectrum
Ψ (ω) by

E =

∫ ∞
0

Ψ (ω) dω ≈∑
j

Ψ (j∆ω)∆ω. (3.7)

Combining these two equations, we obtain an approximate expression for Ψ (ω) at
discrete values of ω with an interval ∆ω as follows:

Ψ (j∆ω) ≈∑
k,l

′
ωk,l |bk,l |2

/
∆ω (j = 1, 2, . . .), (3.8)

where
∑′

k,l denotes summation over those pairs of mode numbers (k, l) that satisfy
the condition

(j − 1
2
)∆ω 6 ωk,l < (j + 1

2
)∆ω. (3.9)

The choice of the frequency resolution ∆ω is rather subtle. Use of too large ∆ω
would blur the fine structure of the true spectrum, while too small ∆ω would give a
jagged spectrum due to insufficient smoothing. Here we fix ∆ω as 1/20 (remember
that ωp = 1). An interval [ω − ∆ω/2, ω + ∆ω/2] on the ω-axis corresponds to a
circular ring on the k-plane with radius ω2 and width 2ω∆ω. Because the area of
the ring is 4πω3∆ω and the area of one mesh on the k-plane is 1/k2

p , the number
of component waves, which is equal to the number of mesh points, that will fall
in the interval [ω − ∆ω/2, ω + ∆ω/2] is given by 4πω3∆ω kp

2. When kp = 68 and
∆ω = 1/20, the single marker point at ω = 1 on a graph of Ψ (ω) like that shown
in figure 3 below represents some 2900 component waves, while the marker point at
ω = 2 represents more than 23 000 component waves.

Figure 3 shows Ψ (ω) which is obtained in this way for the case[E005J–1] at
t = 10Tp and t = 25Tp. It should be noted that Ψ (ω) evolves in time quite slowly,
and remains almost the same during such a short interval as 15Tp. According to
Hasselmann’s theory, the nonlinear energy transfer Snl , which also gives the rate of
change of Ψ (ω) as indicated by (1.5), is of O(E3) while the magnitude of Ψ (ω) itself
is O(E), hence the characteristic time scale of the evolution of Ψ (ω) is of O(E−2). This
implies that it would take at least several thousands of periods for Ψ (ω) to experience
an appreciable change when E = O(10−3), typical of real oceans. (Remember also
that the range of E we consider here is 0.002 6 E 6 0.005.) The purpose of this work
is to evaluate the energy transfer from such a slight change of Ψ (ω, t) as shown in
figure 3. Thus the success of this attempt obviously depends on the accurate estimate
of Ψ (ω).

As described in § 3.1, we trace the evolution of more than two million component
waves. The reason for treating so many is to increase the accuracy of the estimated
spectrum. According to the theory of spectral estimate (see, for example, Newland
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Figure 3. Frequency spectrum Ψ (ω) obtained at t = 10Tp and 25Tp: case[E005J–1].

1993 and Bendat & Piersol 1986), the variance of the estimated spectrum decreases
inversely proportional to the statistical degrees of freedom, which is given, in our case,
by twice the number of component waves which will fall into a single bin of width ∆ω.
As this is proportional to k2

p as discussed above, we need to use a sufficiently fine mesh
on the k-plane to make the statistical degrees of freedom, and hence the reliability of
the estimated spectrum, large enough. At the same time, the k-plane should also be
wide enough if we are to include sufficiently higher harmonics such as the fifteenth
harmonic of the peak mode. In order to fulfil both these requirements simultaneously,
use of such a huge number of component waves as two million is inevitable so long
as we are to describe the wave field based on Fourier-series representation.

Further, there is another reason to use a very fine mesh on the k-plane. As
Kartashova (1998) discusses, the evolution of a discrete system can be essentially
different from that of a continuous system. So we should be careful not to allow the
discreteness of the numerical simulation to affect the result in any serious manner.
It should be stressed that the sparsity of the mesh on the k-plane can never be
compensated for, however many realizations we may use in the estimate of the
spectrum by their arithmetic mean. On the contrary, the number of realizations
necessary for obtaining a statistically reliable result can be very small, provided the
numerical domain on the k-plane is wide enough and, at the same time, discretized
finely enough as we will show below.

3.4. One-dimensional transfer T1(ω)

We have employed two methods for estimating the one-dimensional nonlinear energy
transfer T1(ω). In the first and simpler method, T1(ω) is estimated by dividing the
difference between Ψ (ω, t) evaluated at two different times, t1 and t2 say, by the
interval t2 − t1:

T1(ω) =
Ψ (ω, t2)−Ψ (ω, t1)

t2 − t1 . (3.10)
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Figure 4. T1(ω)/E3 estimated by the first method for the JONSWAP spectrum.
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Figure 5. Ψ (0.95) and Ψ (1.10) as functions of t/Tp: case[E005J–1].

Figure 4 shows T1(ω) thus obtained for three cases with the JONSWAP spectrum:
cases[E004J–1], [E004J–2] and [E005J–1]. In these estimates of T1(ω), t1 and t2 are
tentatively chosen as t1 = 10Tp and t2 = 25Tp. The cases[E004J–1] and [E004J–2]
have the same E but different distributions of initial phases of the component
waves. On the other hand, cases[E004J–1] and [E005J–1] have different E but the
distributions of initial phases are the same. Therefore these two cases have exactly
the same initial surface profile η(x, 0) and the velocity potential ψ(x, 0) when scaled
by
√
E. Of course, this proportionality is lost immediately once the system starts to

evolve according to the nonlinear evolution equations (2.5) and (2.6). Hasselmann’s
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Figure 6. T1(ω)/E3 estimated by the second method for the JONSWAP spectrum.

theory predicts that the nonlinear energy transfer is proportional to E3 as depicted
in (1.4), and in figure 4 we show T1(ω)/E3 to facilitate the comparison between cases
with different values of E.

The second method for estimating T1(ω) is based on the evolution of Ψ (ω) in t
at fixed values of ω. Figure 5 shows Ψ (ω, t) for ω = 0.95 and 1.10 as functions of t
which are obtained from case[E005J–1]. It can be observed that, for both values of
ω, Ψ (ω, t) changes almost linearly in t, implying that T1(ω) remains nearly constant
during that period. Actually, when we fit a straight line to each of the curves shown in
the figure by the least-square method, the correlation coefficient is about 0.99 for both
curves. The slope of the best-fit straight line gives an estimate for T1(ω). In doing
this we have discarded the data from the first six periods by considering the initial
transient process discussed in § 3.2. Figure 6 shows T1(ω) estimated by this second
method for the same cases as those shown in figure 4. In this second method, the
Ψ (ω) at all output time steps are utilized, and hence we can expect to obtain better
results. Actually T1(ω) obtained by the second method shows a smaller dispersion
among cases than that obtained by the first method, particularly around the peak of
the spectrum. From now on we will estimate T1(ω) only by the second method by
using Ψ (ω, t) between 6Tp < t 6 20Tp.

3.4.1. JONSWAP spectrum

In figure 7 we show T1(ω) obtained from sixteen runs all of which have the
JONSWAP spectrum with E = 0.004 at t = 0. They differ only in the distribution
of initial phases of the component waves. The figure gives a rough estimate of the
variability of T1(ω) from run to run. The difference between runs is very small for
the high-frequency region where ω > 2ωp. As discussed in § 3.3, the reliability of our
estimate of Ψ (ω) increases in proportion to ω3. The result shown in figure 7 strongly
suggests that we would be able to obtain an estimate for T1(ω), whose scatter is very
small and is hence quite reliable not only in the high-frequency region but also in the
region around the peak of the spectrum, if the numerical mesh on the k-plane is 23
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Figure 7. T1(ω)/E3 obtained from 16 runs with the JONSWAP spectrum: E = 0.004.
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Figure 8. Average T1(ω)/E3 for the JONSWAP spectrum, E = 0.003 and 0.004.

times finer than the present one. Unfortunately, however, computations of this size
are not possible for us at the moment.

Figure 8 is the average of sixteen T1(ω) shown in figure 7. The corresponding result
for E = 0.003 is also shown in the figure. The mth run (m = 1, . . . , 16) with E = 0.003
and the mth run with E = 0.004 have the same distribution of the initial phases.
According to (2.32), E = 0.003 and E = 0.004 correspond to the Phillips constant
α = 0.0098 and 0.0131 respectively.

In our numerical simulations, all the nonlinear interactions up to four-wave pro-
cesses are taken into account, irrespective of whether resonant or non-resonant.
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Therefore it is not trivial at all that T1(ω) can be scaled by E3. As shown in figure 8,
however, T1(ω) obtained for two different values of E are almost indistinguishable
when divided by E3. This implies that the lower-order, and hence larger in magnitude,
three-wave non-resonant interactions do not affect the evolution of the frequency
spectrum Ψ (ω), as Hasselmann’s theory predicts, even for such a short-term evolu-
tion as that for 20Tp. There have been many previous works such as Masuda (1980),
Hasselmann & Hasselmann (1981), Resio & Perrie (1991) and Komatsu & Masuda
(1996) which have evaluated the analytical expression for T1(ω) given by Hasselmann
(1962). However, as far as we are aware, this is the first time that T1(ω) has been
obtained without relying on Hasselmann’s theory.

In the following comparison with Hasselmann’s theory, Snl(ω) denotes the one-
dimensional nonlinear energy transfer given by Hasselmann’s theory, while T1(ω)
denotes the same quantity but obtained by our direct numerical simulations. Among
many previous works which have evaluated Snl(ω) for the JONSWAP and the P-M
spectra with the same θ-dependence as that assumed here, we will compare our result
mainly with those of Resio & Perrie (1991), which is abbreviated as RP91 hereinafter.
When Ψ (ω) is the JONSWAP spectrum, the important characteristics of Snl(ω) as
evaluated by previous authors can be summarized as follows: (i) it has a maximum
at ω ≈ 0.95 and minimum at ω ≈ 1.1; (ii) it shows a large oscillation on the high-
frequency side of the minimum before becoming positive again at ω ≈ 2; (iii) it
reaches a positive local maximum at around 2.5, then monotonically diminishes to
zero as ω increases further. It can be clearly observed in figure 8 that our T1(ω) also
possesses all of these characteristics. Thus, as far as the overall pattern is concerned,
it would be fair to say that our T1(ω) is very close to Hasselmann’s Snl(ω).

Now let us compare T1(ω) and Snl(ω) more quantitatively. For comparing results
with different normalization, it would be convenient to introduce a non-dimensional
quantity S̃nl(ω) which is defined by S̃nl(ω) = Snl(ω)/E3g−4ω8

p and T̃1(ω) likewise
defined in terms of T1(ω). As g = 1 and ωp = 1 in our numerical simulations,
T̃1(ω) = T1(ω)/E3. According to the result shown in figure 8, −21 6 T̃1(ω) 6 30 for
both E = 0.003 and E = 0.004. RP91 evaluated Snl(f) when α = 0.01, fp = 0.3 Hz.
Figure 2(a) of their paper indicates that they obtained −2.3 × 10−5 6 Snl(f) 6
3.4 × 10−5. Since E = 0.305αg2ω−4

p for the JONSWAP spectrum as (2.34) indicates,
and Snl(ω) = Snl(f)/2π, the corresponding range of S̃nl(ω) is −17 6 S̃nl(ω) 6 25.
Thus the nonlinear energy transfer T1(ω) obtained by the present direct simulation is
about 20% larger than Hasselmann’s Snl(ω) as evaluated by RP91. Judging from the
dispersion among different runs such as that shown in figure 7, which is rather large
especially around the peak of the spectrum, a discrepancy of this magnitude seems to
be acceptable.

3.4.2. P-M spectrum

We have also performed a similar series of simulations for the P-M spectrum.
Figure 9 is the same as figure 7 except that the initial spectrum is given by the
P-M spectrum with E = 0.0035 instead of the JONSWAP spectrum. The average
is shown in figure 10, where the average of sixteen runs with E = 0.002 is also
shown. According to (2.33), E = 0.002 and E = 0.0035 correspond to α = 0.01 and
α = 0.0175, respectively. It can be confirmed that our T1(ω) as plotted in figure 10
has succeeded in reproducing important characteristics of Hasselmann’s Snl(ω) again,
such as (i) the existence of the positive maximum at ω ≈ 1.0, i.e. the frequency right at
the peak of Ψ (ω), (ii) the existence of minimum at ω ≈ 1.5 which is slightly larger in
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Figure 9. T1(ω)/E3 obtained from 16 runs with the P-M spectrum, E = 0.0035.
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Figure 10. Average T1(ω)/E3 for the P-M spectrum, E = 0.002 and 0.0035.

magnitude than the positive peak at ω ≈ 1.0, and (iii) a change of sign from negative
to positive at ω ≈ 2.5.

In spite of such a favourable agreement in the overall pattern, the quantitative
agreement between Snl(ω) and T1(ω) is rather disappointing. According to figure 10,
−29 6 T̃1(ω) 6 23 for E = 0.002, and −35 6 T̃1(ω) 6 29 for E = 0.0035. On the
other hand, RP91 obtained −6.4× 10−6 6 Snl(f) 6 6.4× 10−6 for the P-M spectrum
with α = 0.01, fp = 0.3 Hz as shown in their figure 2(c). Since E = 0.2αg2ω−4

p

for the P-M spectrum as indicated by (2.34), the corresponding range of S̃nl(ω)
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is −17 6 S̃nl(ω) 6 17. Thus our T1(ω) is from 35% to even 100% larger than
Hasselmann’s Snl(ω) as evaluated by RP91.

All of our computations have been performed within a rectangle −15 6 kx 6 15,
−7.5 6 ky 6 7.5 on the k-plane as explained in § 3.1. Then the maximum realizable
frequency is about 4.1ωp. Comparison between figures 8 and 10 indicates that, when
E is the same, the energy transfer in the high-frequency region is much more vigorous
for the P-M spectrum than for the JONSWAP spectrum. In this sense, the numerical
computation for the P-M spectrum is more vulnerable to the truncation of the
k-plane. In figure 10, the curve for E = 0.0035 appears to be shifted to the left
(i.e. to the lower frequency) compared to that for E = 0.002, and this probably
suggests that the numerical results for the P-M spectrum have been influenced by
the wavenumber cut off, especially when E is larger. Due to the vigorous energy
flux towards the high-frequency region, simulations with the P-M spectrum are more
liable to numerical overflow than those with the JONSWAP spectrum. Part of the
energy which is transfered to the high-frequency region gradually piles up along the
periphery of the truncated k-plane, aggravates the truncation itself, and finally leads
to numerical overflow. In the actual situation, this overflow would be replaced by
some dissipative processes such as breaking.

There would be two ways to avoid this troublesome influence of the wavenumber
cutoff, and consequently enable us to obtain a better estimate for T1(ω) which is
nicely scaled by E3 as we have obtained for the JONSWAP spectrum. The first way
would be to extend the rectangle on the k-plane. However, with the limitation of our
computational environment, this extension requires us to use a coarser mesh on the
k-plane, which would inevitably deteriorate the estimate of Ψ (ω) and hence that of
T1(ω). The second way would be to perform simulations with much smaller E. As the
result with E = 0.002 in figure 10 shows much better agreement with Snl(ω) than that
with E = 0.0035, this way appears to be promising at first sight. However, since the
rate of change of Ψ (ω) is proportional to E3, the interval of time which is necessary
for Ψ (ω) to show a change which is large enough to be detected with sufficient
accuracy increases as 1/E3, and this interval of time would become unaffordably
long for our computational environment if E needs to be decreased further than the
present values. Thus neither way appears to be practical for us at the moment.

3.5. Two-dimensional transfer T2(ω, θ)

The directional spectrum Φ(ω, θ) with resolutions ∆ω and ∆θ may be estimated
similarly by

Φ(i∆ω, j∆θ) ≈∑
k,l

′′
ωk,l |bk,l |2

/
∆ω∆θ, (3.11)

where
∑
k,l

′′
denotes summation over pairs of mode numbers (k, l) that satisfy

(i− 1
2
)∆ω 6 ωk,l < (i+ 1

2
)∆ω and (j − 1

2
)∆θ 6 θk,l < (j + 1

2
)∆θ. (3.12)

By evaluating Φ(ω, θ) at two different times, t1 and t2 say, we can obtain an estimate
for the two-dimensional nonlinear energy transfer T2(ω, θ) by

T2(ω, θ) =
Φ(ω, θ, t2)− Φ(ω, θ, t1)

t2 − t1 . (3.13)
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Figure 11. Surface plot of T2(ω, θ) for the JONSWAP spectrum: case[E005J–1].

This corresponds to the first method which we used to estimate T1(ω). A method
corresponding to the second method for estimating T1(ω) is also possible, but we do
not employ it here.

Figure 11 shows the surface plot of T2(ω, θ) thus obtained for a case with a
JONSWAP spectrum with a E = 0.005. Here we tentatively fix ∆ω = 0.1, ∆θ = 15◦.
The pattern as a whole again agrees quite well with Hasselmann’s Snl(ω, θ) as evaluated
by previous authors. Particularly we can observe that the pair of ridges centred at
(ω, θ) ≈ (2.4,±50◦) and elongated along the ω-axis, which is one of the remarkable
features of Snl(ω, θ), has been successfully reproduced. Although not shown here,
T2(ω, θ) for the P-M spectrum also shows such a fair agreement with Snl(ω, θ) at least
as far as their qualitative patterns are concerned.

4. Conclusions and discussion
We have verified Hasselmann’s theory for the nonlinear energy transfer among

surface gravity waves by direct numerical simulations of the primitive equations for
surface gravity waves. It has been confirmed that the nonlinear transfer can be scaled
by E3 as suggested by Hasselmann (1962) even when the effects of non-resonant
interactions are taken into account.

According to the derivation of Hasselmann’s Snl from the Zakharov equation, the
effect of non-resonant interactions vanishes as a result of integration with respect to t
over a time scale which is much longer than (ak)−2, or E−1. At first sight, this appears
to imply that Hasselmann’s Snl gives the long-term average of the rate of change
of Ψ (ω), and that the rate of change of Ψ (ω) which is obtained from an evolution
for much shorter times such as those treated here would differ from Snl , because the
lower-order non-resonant interactions could make an even larger contribution than
the four-wave resonant interactions to such a short-term evolution.

But our numerical results indicate clearly that the rate of change of Ψ (ω) is given
by Hasselmann’s Snl not only in the sense of long-term average but also at every
instant of time. If this were not the case, it would be impossible to forecast the wave
field 24 hours or 48 hours later by integrating the kinetic equation (1.5) or the energy
balance equation (1.3) step by step with a short step size such as a few minutes.

So what has eliminated the effect of non-resonant interactions from the short-term
evolution obtained by direct numerical simulations of the primitive equations? It is
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Figure 12. Comparison between Ψ (ω) and the energy of selected component waves. •, Ψ (ω) with
ω = 0.95; ◦, �, ωk|bk|2 of two selected modes with ω ≈ 0.95, case[E005J–1].

the averaging among modes on the k-plane which is used to estimate the spectrum. As
explained in § 3, we have estimated Ψ (ω) and Φ(ω, θ) by taking the average of many
component waves on the k-plane as their definitions (3.8) and (3.11) indicate, and
through this averaging process all those contributions that depend explicitly on the
phase relations between component waves have been cancelled out. Thus the effect of
non-resonant interactions has disappeared not as a result of long-term integration in
t, as the derivation of the kinetic equation (1.5) suggests, but as a result of averaging
on the k-plane. This averaging on the k-plane has enabled us to detect the slow
trend in the evolution of the spectrum in such a short time as just a few tens of
characteristic periods.

To show the efficiency of the averaging on the k-plane in removing the effect
of non-resonant interactions, we plot in figure 12 the evolution of Ψ (ω, t) with
ω = 0.95 and the energy ωk|bk|2 of two adjacent modes which fall in the same
bin 0.95 − ∆ω/2 6 ω < 0.95 + ∆ω/2 when Ψ (ω, t) is estimated. All quantities
have been divided by their respective averages over 0 6 t 6 20Tp to facilitate the
comparison of their variability. It can be observed clearly that the large oscillations
in the energy of component waves, which have been brought about by non-resonant
interactions dominated by three-wave processes, have been removed quite efficiently by
the averaging, and that the resultant spectrum Ψ (ω, t) behaves almost monotonically
except for the first few periods, showing only the slow and irreversible trend which
we are trying to detect.

We are aware that we have not proved if the spectrum estimated by the averaging
on the k-plane is equivalent to the spectrum defined by ensemble averaging, and
that, in a strict sense, only the latter is supposed to obey the kinetic equation (1.5)
in its evolution in time. In reality, however, we usually have only a single but huge
realization, i.e. the actual wave field in the part of the ocean that we are interested in,
and the forecast based on (1.5), or (1.3) in more realistic situations, would be entirely
hopeless if the spectrum estimated for a single but huge realization by the averaging
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Figure 13. T1(ω)/E3 obtained from 10 low-resolution runs with JONSWAP spectrum, E = 0.005.

on the k-plane differs significantly from the spectrum defined by ensemble averaging.
The problem of the evolution of the spectrum defined by the averaging on the k-plane
might be investigated more systematically by the approach developed by Rasmussen
& Stiassnie (1999) and Stiassnie (2001).

Since the spectra are estimated by averaging on the k-plane, the statistical reliability
of our results critically depends on the density of modes on the k-plane. Referring
to figure 7, all the realizations give an almost identical result for larger ω where the
statistical degrees of freedom is larger and hence the spectral estimate is more reliable.
If we carry out the same analysis while reducing the density of modes on the k-plane
to about 1/10, we obtain instead a result shown in figure 13. It can be observed
clearly that the increase of the density of modes has greatly reduced the dispersion
among runs. By extrapolating this result, we believe that it would be possible to get
quite a reliable estimate for T1(ω) from even a single realization, provided the density
of modes on the k-plane is large enough.

Recently Annenkov & Shrira (2001) have developed a new approach to numerical
modelling of water wave evolution based on the Zakharov equation and, as an
application of that, studied the transition to chaos of gravity waves. They found that
two initially close points in the phase space, each corresponding to one wave field,
diverge exponentially like exp(λt) with λ ≈ (ak)2. From this fact, they concluded that
a wave field with ak ≈ 0.1, typical of oceans, loses all the information on the initial
conditions over the time of the order of O(103) characteristic wave periods. Because
complete loss of information on the initial condition is generally required for the
statistical description of the wave field, as well as the kinetic equation (1.5) which it
gives, to be applicable, their finding appears to imply that it would be hopeless to
try to detect a nonlinear energy transfer Snl in (1.5) by numerical simulations which
follow the evolution of the wave field only for a few tens of periods. However, the
success of our approach in detecting the nonlinear transfer such as that shown in
figure 8 proves that this is not the case. Further investigation is necessary to clarify
the relation between these two results.
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In all the computations discussed in this paper, we have truncated the nonlinear
interactions at the four-wave processes by setting M = 3 in HOSM. So it would
be desirable to assess quantitatively the contributions from higher-order nonlinear
interactions which have been neglected from the outset. Unlike for more analytical
approaches such as those based on the higher-order Zakharov equations (Krasitskii
1994; Stiassnie & Shemer 1984), it is quite easy for our numerical approach to take
into account those higher-order nonlinear interactions. Actually it can be achieved
just by changing M in the programme from 3 to some larger integer. Although this
increase of M requires larger storage and longer CPU time, no essential difficulty
is expected. We would like to investigate this in the future when our computational
circumstance is improved.

Another interesting aspect of the problem which we have not treated in this work
is the effect of finite water depth. Unlike the infinite depth case where Hasselmann’s
theory for nonlinear energy transfer as well as the weak turbulence thoery by Zakharov
and his colleagues appear to be supported unanimously, the situation seems much
more complicated, and there remain various things to be clarified further. One such
problem would be the relative importance of the non-resonant three-wave process
and the resonant four-wave process. As the water depth decreases and the dispersion
gets weaker, it is expected that the lower-order non-resonant interactions begin to
play more and more important roles in the evolution of the spectrum than in the
deep-water case. Moreover Zakharov (1999) argues that the validity of the weak
turbulence theory itself might be strictly limited when the water becomes shallow.
The programme based on HOSM can be adapted to the case of finite depth quite
easily, and has been applied successfully to various finite-depth problems (e.g. Tanaka
1993). Direct numerical simulations of the primitive equations based on HOSM would
certainly be quite promising as a method of studying the dynamics of fields of surface
gravity waves in finite-depth or shallow water.
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