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VARSOVIAN MODELS 1

GRIGOR SARGSYAN AND RALF SCHINDLER

Abstract. Let My, denote the least iterable inner model with a strong cardinal above a Woodin cardinal.
By [11]. My, has a fully iterable core model, K Msw and My, is thus the least iterable extender model which
has an iterable core model with a Woodin cardinal. In ¥, K is an iterate of M, via its iteration
strategy X.

We here show that M, has a bedrock which arises from K*sv by telling K% a specific fragment £ of
its own iteration strategy, which in turn is a tail of T. Hence My, is a generic extension of L[K sV %], but
the latter model is not a generic extension of any inner model properly contained in it.

These results generalize to models of the form M;(x) for a cone of reals x, where M;(x) denotes the
least iterable inner model with a strong cardinal containing x. In particular, the least iterable inner model
with a strong cardinal above two (or seven, or boundedly many) Woodin cardinals has a 2-small core model
K with a Woodin cardinal and its bedrock is again of the form L[K.X].

§1. Introduction. By a theorem of W. Hugh Woodin, every pure extender model
W with a Woodin cardinal has a nontrivial ground,1 1.e., there is some inner model
W C W such that W is a generic extension of W. E.g.. let W = P" (M), where
M arises from an L[E]-construction inside W up to its first Woodin cardinal and
PW (M) denotes the P-construction above M and performed inside W, cf. [15].

The situation is different for hod mice, also called “strategic mice.” Woodin
showed that there are strategic mice which are bedrocks, i.e., which don’t admit any
nontrivial grounds, cf. [23]. Strategic mice naturally arise as HODs of models of
determinacy, cf. [9].

The current article produces a minimal example of an extender model with a
Woodin cardinal which, when equipped with a fragment of its own iteration strategy,
is a bedrock, and it will also be the HOD of a homogeneous generic extension of an
extender model.

By a theorem of John Steel, extender models with no strong cardinals cannot
have a fully iterable core model with a Woodin cardinal. The article [3] analyzes the
mantle” of (tame) extender models with Woodin cardinals but no strong cardinals
and shows that it is always a lower part model; in particular, their mantles are
not grounds. On the other hand, writing My, for the least iterable inner model
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IThe terms “ground.” “bedrock.” and “mantle” are taken from [2]. If W C W are both inner models,
then W is a ground of W iff W is a generic extension of W. W is a bedrock iff W itself is the only
ground of W.

2The mantle of an inner model is defined to be the intersection of all of its grounds.
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with a strong cardinal above a Woodin cardinal, [11] shows that Mg, does have a
fully iterable core model K™= which in turn has a strong cardinal above a Woodin
cardinal, so that the mantle of My, should contain K™~ and not be a lower part
model.

The current article analyzes the mantle of M, and shows thatitis a ground, hence
the smallest ground, and thus a bedrock. The mantle turns out to be L[K Mew i],
where £ is a fragment of the iteration strategy of K ™~ which My, can see and which
in turn is a fragment of the tail of Mg,’s own iteration strategy. K ™ is fully iterable
inside L[K ¥, X].

§2. The mantle of M,. For the record, a mouse is a premouse which is
countably iterable, i.e.. all transitive collapses of sufficiently elementary countable
substructures are supposed to be (w, ., w; + 1)-iterable. Cf. [19, Definition 4.4].

Throughout our article, we shall assume that V' is closed under the operation
a — a¥ mapping a to a-pistol, the least active a-mouse with a strong cardinal. For
any transitive s.w.0.’d> set a. we let M;(a) be the minimal proper class a-mouse with
a strong cardinal. M;(a) is obtained from a ¥ by iterating its top measure out of the
universe.

The premice of the current article are Mitchell-Steel premice, see [8, Section 1]
and [14, Section 2]. For the purposes of the current article, a premouse N is called
suitable if for some § € N,

1. N E “0 is a Woodin cardinal,”

2. N = My(N|0) oMM,

3. forevery n <6, Ms(Nn) E “n is not Woodin,” and
4. N E“I'm (w,d,0)-iterable.”

We shall now also assume that there is a suitable premouse, and more: Let us call
a premouse M sw-small iff for all extenders F from M’s sequence,

Mcrit(F) F “there is no strong cardinal above a Woodin cardinal.”

Let us assume that there is a non-sw-small mouse, and let M, be the unique sound
non-sw-small mouse M such that every proper initial segment of M is sw-small. As
we assume V to be closed under a — a¥, the (w, w1, w1 )-iterability of MS?V implies
that M¥ be fully iterable with respect to arbitrary stacks of normal trees. Let us
denote by

M,

the result of iterating M¥’s top measure out of the universe. Let § = §™= be the
Woodin cardinal of My, and let « = k™ be the strong cardinal of Ms,. We have
that My, = M(Mg|d), and My, |0™Ms is suitable.

By way of notation, if W is any extender model. then we will denote by 5" the
least Woodin cardinal of W (if it exists), we will denote by B the J-generator
version of the extender algebra of W at 6" (cf. [19. pp. 1657f] and [15. Lemma
1.3]) given by the total extenders of W’s sequence up to " (if it exists), and we will
denote by k" the least strong cardinal of W (if it exists).

3Self-well-ordered.
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In what follows, the relevant W will always be an iterate of Mg, so that o
will also be the unique Woodin cardinal of W, and " will be the unique strong
cardinal of .

The iteration strategy for M with respect to finite stacks of normal trees induces
an iteration strategy, call it X, for My, with respect to finite stacks of normal trees.
‘We have the following.

(1) X satisfies hull condensation, cf. [9, Definition 1.31],

(2) X satisfies branch condensation, cf. [9, Definition 2.14], and

(3) X is positional, cf. [9, Definition 2.35(4)].4

As suggested by the referee, let us also state the following property of X. If T
is a normal iteration tree on Mg, which is according to £ and has limit length,
and if b is a cofinal well-founded nondropping branch through 7, then b = Z(T).
The reason is that if 6(7) # n],(6™). then if @ < M] is the least extension of
M(T) such that 6(7) is not definably Woodin over Q, then Q is §-small above
J(7T) and hence iterable by absoluteness, so that b picks the right Q-structure; and if
8(T) = nJ,(6M), then M] will also be §-small above 5(7") and hence iterable by
absoluteness, so that » moves the theory of any finite set of indiscernibles correctly.
This property of £ may be used to prove (1) through (3) above. and it could also be
used to simplify the proofs of Lemma 2.1 as well as parts of the proofs of Lemma
2.9. The reason why we decided to not make use of this property is that it fails
for more complicated mice, e.g., the ones studied in [10], and that we try to give
arguments which generalize.

We shall need the following slight refinement of (2):

LEMMA 2.1. Let M be a proper class sized X-iterate of M. Let U be an iteration
tree on M living on M |0™ with a last model MY such that [0, 01, does not drop and
U is according to Ty;. Let T be an iteration tree on M living on M |6™ and of limit
length which is according to . If b and k are in some generic extension of V' such
that

(a) b is a cofinal nondropping branch through T and
(b) k: MT oM — MY |6M is elementary with

iy | MM =kon], | MIGM. (1)
thenb =Xy (T).

PrOOF. Write ¢ = 2 (T). If S(U) # n],(6M) = M7, then M] comes with a
Q-structure which by the existence of £ is iterable, and this gives that b = c.
Let us now assume that §(U) = n], (6™ ). The key fact is that & may be extended

to k*: M — MY by setting
kH(mdy (f)(@) = mgly () (Kk(a)).
It is easy to verify that k* is well-defined and elementary. Also,
T = kT ongy. (2)

Now let 4 be a sufficiently large ¥ -cardinal, and let A*” denote the n'" cardinal
successor of 4 as being computed in V.

4The last “positional” in [9, Definition 2.35(4)] should read “weakly positional.” though.
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‘We have that
X =Hull”({A": 0 <n<w})noM

is cofinal in 6™ . Also,

”({cr(ﬁ'") =AM foralln,0 < n < w, (3)
and
() = 2™ foralln,0 < n < .

and by (2) the latter implies that

n{b(ﬁ'”) ="foralln,0 < n < . (4)

But (3) and (4) give that

. X =nl, X
which implies that b = ¢ by the “zipper argument,” cf. e.g., [19, p. 1645f], as
desired. (Lemma 2.1)

Some of the arguments to follow will look pretty familiar to researchers working
in the area of descriptive inner model theory, cf. e.g., [21, Section 3].

Let us consider the set U consisting of all i/ = (U : k < n), some n < w, such
that either n = 0 and 1h(iy) = 1 (i.e.. U is trivial), or else there is a sequence
no < -+ < n, < k of cutpoints of My, and:

(a) U € My |k,

(b) U = (Uy: k < n) is a finite stack of normal iteration trees U,
(¢) Uy is on Mg, and lives below &,

and for every k < n,
(d) hth) = ()™ = 0 (Uy),
(e) U is defiable over My |(17;)*™ and is guided by Q-structures which are
obtained via P-constructions, cf. [15, Section 1],
(f) P(M(Uy)) is a proper class.’ 6(Uy ) is a Woodin cardinal of P(M(U/)), and

PMU))IG] = Msy

for some G which is BYM®)_generic over P(M(U)), and
(g) if k > 0, then Uy is on P(M (U _1)) and lives below & (U ).

Let Y = (Uy: k < n) be as above, where U, is not trivial. For every k < n
and inside My,. P(M(Uy)) is a universal weasel over M (U ) below M (1) Y. Let
us write K (M (Uy)) for the M (U )T-small core model over M (U ) as constructed
inside My,. In V', let b, = (U ). We then have:

LeMMA 2.2. LetU = (Uy: k < n) € U, where U, is not trivial. Let I be the class
of generating indiscernibles for Mg, given by iterating the top measure of (Mgy|6)Y
out of the universe, and let m = 7y p(my)) be the map given by by™ - - - "by,. i.e..
the iteration map from Mgy, to P(M(U,)) which is given by 2.

(a) Forevery k <n, PIM(Uy)) = K(MUy)) = M;(M(Uy)) = MZ("'.

(b) For every k < n, I is a class of generating indiscernibles for P(M(Uy)) relative
to M (L{k).

(c) n(y) = n foreveryn c I.

SHere and in what follows we write P(M ) for the P-construction over M as being performed inside
Msy. [15. Section 1] would write P(Msw. M, —) for this model.
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ProOF. (a) and (b): Let us write M = M(U;). As P(M)[G] = My, for some
generic G, K(M) = K(M)M» = K(M)PMIG — g(M)PM) = P(M). On the
other hand, P(M) is a universal weasel over M, so that there is an elementary
embedding j: K(M) — P(M), which, as K (M) and P(M) are below MY, is given
by an iteration of K (M ). But then K (M) C P(M) gives K(M) = P(M).

We have that My, = Hull”* (7). We claim that

P(M) =Hull"™ (W) ul). (5)

To show (5), notice first that the extender sequence of Mg, may be defined over
P(M)[G] from the parameter Mg, |6(Uy) € P(M)[G] and the extender sequence of
P(M). The forcing language associated with forcing with B?(M) over P(M) thus has
a term for the extender sequence of My, and therefore also a term for the canonical
¥ Skolem function Ay, of My, cf. [12, Theorem 10.16]. Writing /4 for this term for
I, we have that the function 7% : BYM) x &) x [M,]<® — P(M) with

: Y PN
W (p.n.a) = {y if p H—?Qf% h(7.3) =y, and

)  otherwise.

is definable over P(M) using a name for My |d(Uy). But G and Mg|6 (U ) are
computable from each other, so that Hull” (M) (X) is closed under h* for any X and
by BPM)  Hull®™)(§(14,) U I) and Mg, = Hull™>(I), we obtain (5).

The fact that P(M) is an inner model of Mg, which is definable there from M
an the extender sequence of Mg, above J(U) easily implies that I is also a class
of indiscernibles for P(M ). so that by (5) it is a class of generating indiscernibles
relative to M (U ). This shows (b).

But now M;(M(Uy)) is also a least inner model with a strong cardinal end-
extending M = M (U ) and having a proper class of generating indiscernibles
relative to M (Uy ). It follows that P(M ) = M,(M(Uy)).

Virtually the same argument shows P(M) = Mllfk" by induction on k < n. We

have shown (a).
(c) In the light of (a), (5) buys us that

MY = HullMe (3U,) U T). (6)
At the same time, My, = Hull”*(I) implies that
MY = Hull™a' (3, U D), (7)

and =71 is a class of indiscernibles for MZ: relative to U,.

Let ¢ be a formula, let 7 be a £ Skolem term, let x € M(U,), let 1 < --- < 1
be from I, and let 4; < --- < A, be V-cardinals with 7(y,) < A;. We have that
7(4;) = A; for 0 < i < £, so that we may conclude that

Mllfn” Foltlx.n.....n)) <=

M E o(t(x.dr. ... Je)) <=
Mﬁ{ Fo(t(x.n(i),....n(lk))) <=
)

MZ,” Eoltlx.zln),....xlne)
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This shows that v (x.m1..... ne) — oM (x,7(n1).....7m(ne)) defines an c-
automorphism of Mg’ and is hence the identity. We have shown (c). ALemma 2.2)

Let Y = (U: k < n) € U. If U, is not trivial, then we shall write M (U) for
M(U,). To uniformize the notation, if # = 0 and 7y is trivial, then we shall denote
by P(M(U)) the model M. Let us write F for the family of all proper class mice
of the form P(M(U)), where 4 € U. For the record, F is definable inside My, using
My,’s extender sequence as a predicate.

Let 7. U € U, and write N = P(M(T)) and N’ = P(M(U)). By Lemma 2.2, N
is a X-iterate of My,. Let X denote the iteration strategy for N which is induced
by Z. As X is positional, Xy only depends on N, not on the particular iteration tree
which witnesses that N is a X-iterate of My, .

Assume for now that N’/ is a Xy-iterate of N via a finite stack of normal trees,
which is tantamount to saying that there is a finite stack 7™ - - - =7 of normal trees
on My, such that N is the last model of one of the 7;, i < k, and N’ is the last model
of Tx. As X satisfies hull condensation, ¥ is commuting, cf. [9, Definition 2.35(9)].
so that Xy satisfies the Dodd—Jensen property, cf. [9, Proposition 2.36], and hence
there is a unique iteration map from N to N'. In what follows, we let 7y v denote
this unique iteration map from N to N'.

Let’s now drop the assumption that N’ be a Xy-iterate of N. Let y < k. 7 >
max(5(7).5(U)). be a cutpoint of My,. Let 7*, U* be normal iteration trees on N,
N’, respectively, such that both start out by iterating the least measurable cardinal
and its images # + 1 times, and from then on 7* and U* result from comparison,
simultaneously making an initial segment of the background model generic over the
respective iterate; more precisely, if 7* | @ and U* | «a have already been defined,
where n +2 < a < ;7+MSW, then if « is a successor ordinal, then we let v be least

such that
MT*l M“*
a * E,
@ B2 Lo
(b) E, *7' = E , there is no drop along [0, @ — 1]y~ and no drop along

Z/{*

[0, & — 1]y~ and writing F = E;"* " and u = crit(F),v > p*Mi1 = y+Me
and there is some sequence ¢ = (go,. i<p)e M v =ML |y offormulae
associated with the J-version of the extender algebra of the current models
such that the extender sequence of My, satisfies \/ iz (@) N /\/l;ril|v but not

V&,
-

and then welet 7* | (a+ 1) and U* | (o + 1) arise by applying EMe" and E)
(and padding on one side if v was chosen according to (a) and on this one side the
extender is empty), with the understanding that we stop the construction if there
is no such v; and if « is a limit ordinal, then we pick the unique cofinal branches
through 7* [ @ andU/* | @ whose limit models have Q-structures as initial segments
which are given by P(M(T* | a)) = P(M(T* | «)), and we let T* | (a + 1) and
U* | (a + 1) arise by adding those branches, again with the understanding that we
stop the construction if such branches don’t exist. Notice that 7* and U* are defined
inside M,. By [15, Lemmas 1.3 and 1.5], the construction of 7* and &/* will stop
exactly at stage # M= which means that we produced P(M(T*)) = P(M(U*)) € F

1/[*
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such that by Lemma 2.2, writing R = P(M(T*)) = P(M(U*)), R is a Ty-iterate
of N as well as a Xy -iterate of N'.
We may now let

(Moo, (7[1\[{001 N € f)) = dlrhm(N, (nNiN’: N, N' e .7:))

Notice that even though F is a definable collection of classes in My, this system is
not in My, as the maps 7y _y- are not in Mg,
We are now going to show that we may “catch” F by a system which does exist

in M.
In what follows, we shall write 5o, = 6M=>= and ko, = kM.
Let s be a nonempty finite set of ordinals. Write s~ = s \ max(s). For N =

P(M(U)) € F we call N s-iterable iff for all T € Mg, on M(U) of limit length
A < ksuchthat U™T € U, say T = (T: k < n), n < w, there are for every i < n
cofinal branches

bi c (Msw)Col(w,max(s))

through 7; such that, writing N, for the starting model of 79 and N; 1 = P(M(T;)).

ROT},i (s) =s.and 8)
70y, (Ni|max(s)) = Njy1|max(s). ©)
Writing b for the composition of the branches b;, i < n, and then writing
7Y =sup(6™ n HullVmax(s) (g=)),

the “zipper argument,” cf. e.g., the proof of [19, Theorem 6.10], shows that the map

nd, | HullVmax (N s (10)
is independent from the particular choice of » and hence is in Mg, and moreover if
nyn(s) =s,and (11)
ny.v (N|max(s)) = N'|max(s). (12)

then
ngy | Hulleax(S)(ysIV Us ) =nyn | Hulleax(S)(ysIV Us). (13)

We now aim to define 7}, 5,. For this, we make use of the concept of “strong
s-iterability.”® Let s, s—, and N = P(M(U)) € F be as before. We call N strongly
s-iterable iff N is s-iterable and for all T € Mg on M(U) of limit length A < &
such that Y~ T € U.say T = (Tr: k < n).n < w, and for all 7' € Mg, on M(U)
of limit length A’ < & such that U~T" € U.say T’ = (T/: k < n’). n’ < w. if the
bi € (Mg,)CoN@max(s) are cofinal branches through 7; which “fix s” a la (8) and
(9). i < n. and if the b} € (My,)CN@max(s)) are cofinal branches through 7; which

At the cost of making use of [20]. we could avoid the concept of “strong s-iterability.” as follows. If
N = P(M(U)). N' € F and there is some 7 with Y ~7T € U such that N’ = P(M(T)). then by [20].
there is a unique normal such T withtd ™ T € U. We may then define 7}, ,, as the unique map as in (10)

for any cofinal branch b € (Mgy)CoN@max(s)) through 7" which “fixes s™ as in (8) and (9).
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“fix s” ala (8) and (9), i < n’, and if b is the composition of the branches b;, i < n,
and if b’ is the composition of the branches b;. i < n’, then

nd, | HullVmax@ (N G g=y — 27 HullVImax) (N 5, (14)

If (11) and (12) hold true, then by (13) so does (14).

Let us write

(N.s) =7 (N".1)

to express the fact that N € F is strongly s-iterable, N’ € F is strongly ¢-iterable,
t D s, and there is a tree T € My, on N as above such that N’ = P(M(T)). If
(N.s) =7 (N'.s). then we shall write 7}, y, for the unique map as in (14).

Notice that for N and s as above, the (strong) s-iterability of N is uniformly
defined in a way which is first order over M.

Let s be a nonempty finite set of ordinals, N = P(M(U)) € F,andUU~T € U.
Write ¢ = Zy(T). If nf_(s) = s. then an easy absoluteness argument shows that
there is also some b € (M, )@ max(s)) with (8) and (9) above.

LemMma 2.3. Let N = P(M(U)) € F.

(1) Let s be any nonempty finite set of ordinals. There is some T such thatUU™T € U
and N' = P(M(T)) is strongly s-iterable.

(2) Let {m < --- <y} C I, where I is the class of generating indiscernibles for
My, given by iterating the top measure of (Mgy|0)Y out of the universe, and write
s={n1,....ne}. Then N is strongly s-iterable.

Proor. (1): Otherwise there would some nonempty finite set s of ordinals and
some infinite sequence (N, : n < w) such that Ng = M, and N,,,| is a Zy, -iterate
of N, via some tree 7, such that 7o~ --- =7, € Uand ny, v,,,(s) > s foralln < .
This contradicts the (w, w, OR)-iterability of Mg, in V.

(2): This follows from Lemma 2.2(c) by a trivial absoluteness argument. —(temma 2.3)

The collection of all strongly s-iterable N € F is finitely directed in thatif N € F
is strongly s-iterable and N’ € F is strongly z-iterable, then there is N* € F which
is strongly (s U ¢)-iterable and

(N.s),(N'",t) =7 (N*,s U1).

This is true because given (N, s) and (N',¢), we may pick some R € F which is
strongly s Uz-iterable. A joint comparison process as defined above will then produce
some strongly s U z-iterable N* € F which in V is y-iterate of N, a Xy -iterate of
N’, as well as a Xp-iterate of R.

We may then let

(ML, (Y oot N € F, N is strongly s-iterable)) (15)
be the direct limit of the system (N, (7}, 5. (N.s) <z (N'.s)).
LemMma 2.4,
Moo = M. (16)

PROOF. Let p’ be any ordinal, and let p’ = ny.oo(p), where N € F. Let y < 6V
and let § be a finite set of indiscernibles for Mg, such that

p € Hull" (y U {5}).
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Such y and § exist by Lemma 2.2(b). As ran(my, v) NSY is cofinal in 6V, we may
in addition assume (by enlarging y and § if necessary) that

[x.0™) N Hull" ({5}) # 0.

Let s = §U{t}, where 7 is any V/ -cardinal strictly above max(5). Then N is strongly
s-iterable by Lemma 2.3, and y¥ > z.so that p € dom(n3, ).

This shows that we may define an elementary embedding ¢: M., — M. by
o(nn(p)) = 7y o (p) for p and s as above. It remains to be shown that ¢ is
surjective.

To this end, let again p’ be any ordinal, and let z, __(p) = p’. where N € F
is strongly s-iterable. Let N = P(M(U)). and let T be such that /~7 € U and,
setting N’ = P(M(T)).

nn v (s) = s forall (N, s) <7 (N".s). (17)

cf. the proof of Lemma 2.3(1). We may pick a finite set ¢ of indiscernibles for Mg,
such that ) ,
s € HullV' max( ()N =),

cf. above. We then have that
v (p) € HullV' 1max() (, N =),

Also N’ is strongly s U¢-iterable, by (17) and the proof of Lemma 2.3(2), and because
7y o C 7y = ey | HullY X (N =) for (N7, s Ut) < (N, s Ut)
(which is equivalent to (N',s) < (N”.s)), we will get that

P =y 0o (p) = TN oo (W v/ (P)) = 7 oo (my v/ (P)).
so that ¢ is indeed onto and hence the identity. We showed (16). (Lemma 2.4)
The following is straightforward to verify.

LemmA 2.5. In V', M is a Z-iterate of Mgy, via an w-stack of normal trees each
of which are individually in M.

Moreover, let F be a total extender from the Mg-sequence with crit(F) = &, and
write j: Mgy —p Wlt(Mgyy: F). Then j(My) is an T -iterate of Mo, via using
TMy,.00 (F). followed by an w-stack of normal iteration trees which are according to
LUl (Moo Tatg 00 (F))-

ProOF. Let (Uy: k < w) be such that U, € U for all k < w and setting N, =
P(M(Uy)) fork < w. (Ni: k < w)iscofinalin F, i.e., if P(M(U)) € F. then there
is some k <  such that Ny is a Zp(rq)-iterate of P(M(U)). The direct limit of
the Nj, along with the maps 7y, n,. £ < £ < w, must yield M.

Next, we have for every N € F, j(N) € j(F) and j(N) = ult(N;F | N),
where F | N is on the sequence of N. The direct limit of the ult(N:E | N),
along with j(nyy/), with N, N’ € F, N’ being a Xy-iterate of N, is then equal to
ult(Moo: Tas,, 00 (F)) and canonically embeds into j(M). IfFN = P(M(U)) € F.
then ult(N; E | N) is an iterate of My, viaUU"E | N, and if N, N' € F, where
N’ is a Ty-iterate of N via T, and if T = Uy~ --- "U_, where all Uf;, i < k, are
normal, then j(l{;) has the very same tree structure as Uf;, and, as U; is a hull of
j(U;). the fact that T satisfies branch condensation implies that j(14;) is according
toXand T(U;) = Z(j(U;)) fori < k.
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We may conclude that the collection of all j(N), for N € F. is definable in
ult(Mgy:; F). and for # =  which is a cutpoint of ult(Ms,: F) below j(x) we may
work in ult(M,: F) to simultaneously compare all j(N), N € F, in a fashion
as on p. 501f. to produce some M = PUMsE)(M(UY')) € j(F) with d(U') =
kU MaiF) — o+ Ms and such that M is a = (y)-iterate of j(N) forall N € F.

Ult(Moo: mar, .00 (F)) is a definable inner model of ult(Myy: F) and the for-
mer must now canonically embed into M. We may then choose some 7 > k
which is a cutpoint of ult(Mgy:; F) and work in ult(Mg,; F) to compare M
with ult(Meo: Tar,,.00(F)) in a fashion as on p. 501f. to produce some M* =
PUMs ) (M (UY*)) € j(F) with §(U*) = 5tolt™s:F) and such that M* is a Zy-
iterate of M and also an iterate of ult(Moo: s, .00 (F)) Via Sy g F))- We
may actually produce an w-sequence of such M* which is cofinal in FUt(MsF),

j(My) may thus be represented as an iterate of M, via using 7y, oo (F),
followed by an w-stack of normal iteration trees which are according to

oo IﬂMsw.oo<

Z it Moo Tatgy o0 (F)- Lemma23)

Inside M., we may look at the image of the system (15) under the map 7 .
Let us write M for the direct limit model, i.e..

Mg = nMswoo(Moo)e
which is a definable subclass of M., defined in the same way over M, as M
was defined over Mg, by (15). In analogy to Lemma 2.5, we have:

LemMma 2.6. If N € FM=_ then N is a X -iterate of My, and M is a
X, -iterate of Mo via an w-stack of normal trees on M.

In particular, we get a unique iteration map, call it 7§°_, from M, into M,
which is given by Xy, . A priori, there doesn’t seem to be a reason why 75 should
be definable in M, .

However, for each ordinal p let us denote by p* the minimum of the set of all
Tn.oo(p) for N € F. The argument for M., = M’_ we gave above shows that for

every p and every N € F there is some finite set s of ordinals such that V is strongly
s-iterable and p € dom(z}, ). We may then define p — p* inside M, by

p* =min({ny . (p): N is strongly s-iterable and p € dom(ny )}). (18)

We have thatif p = ny.oo(p), where N is strongly s-iterable for some s such that
p € ran(ny, ). then

which means that
P* = oo (p).
Notice that #§<% is also equal to the ultrapower map produced by applying the
long extender derived from 7§%_ [ Mo |doo to the model M. In other words,

p — p* may be defined inside the model L{M . (p = p*) | ool (19)

https://doi.org/10.1017/js1.2018.5 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2018.5

506 GRIGOR SARGSYAN AND RALF SCHINDLER

and in particular
L[Moo. (p = p™)] = LMo, (p = p*) T 0cc].
LemMma 2.7. (a) & is the least measurable cardinal of M.

b) 0oo = KM,
o0
(€) KM < Koo < (Koo) ™Mo < (Koo ) TTMee = gHHMs,

ProOF. (a): This is easy.

(b): Cf. [21, Lemma 3.38(2)]. To show that §o, < kT in My, let § < Juo. say
n = 7wy (7). where N € F is strongly s-iterable and 77 < . Then each ordinal
below 7 is of the form 7}, . ({) for some N’ € F with (N.s) <z (N’.s) and
(< ”fv,N'(ﬁ)- As F has cardinality &, this shows that 7 < k™ in M.

Let us now show that k™ < . Leta < k™= andlet f: k — a. f € Mg,.
be bijective, say f = tMwImax(s) (=) where 7 is a X;-Skolem term and s is a finite
set of M, -indiscernibles.

Let f < . and let 4 < & be such that § = f(4). Let N € F be such that

A< rnin(yf,V , the least measurable cardinal of N)
and 7}, ., (B) = p for all N’ € F where 7}y y, is defined. Let

Y = {e: Ju < the least measurable of N 3p € B" p II—I}%N NONmax(s) (=) () = é}.
We have that § € SV and otp(SV) < V. Let y[’}’ be the unique y such that g is the
y™ element of SV In particular, y) < o,

We claim that f — 73y (yllzv ) is well-defined, i.e., that it is independent from the
particular choice of an N as above, and that it is also order-preserving. Well, this
is because if f# < f’ < a and y;;’ and yl’;{/ are defined, then there is some Q € F
such that 73, , and 73, , are both defined and 7}, ,(SV) = Q¥ = n3;, ,(SV"). and
hence yﬁQ < yﬂQ,.

But now g8 7y (yllzv ) is an injection from « into §., which exists in M.

(c): k™w < K is obviously given by (b).

To show that (ko) TM> < k+TTMs we use the argument from the proof of Lemma
2.5and let F = EVMSW be the least total extender of the M,-sequence which has
critical point k. Write iy : My, —p W = ult(Mg,: F).sothatip(k)*" < k™ Mw =
kTtW _ Foreach N € F, F N N is the least total extender of the N -sequence which
has critical point & = ", and ult(N; F N N) € F". A joint comparison process
as defined above on p. 501f. allows us to produce some N* € F" such that

1. in V', N*is a Zyy(y.pnn)-iterate of ult(N: F N N) forall N € F = FMs and

2. 0N = gtV = gt M,

As X is commuting, for each N € F there is a unique iteration map, call it 7y y«.
from N to N*, namely the ultrapower map N — ult(N; F N N) followed by the
iteration map from ult(N; F N N) to N*, and if N, N’ € F such that ny y- exists,
then

TIN'N* OTTN NN’ = IN.N*-
Therefore, there is a canonical elementary embedding

k: Mg — N¥.

https://doi.org/10.1017/js1.2018.5 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2018.5

VARSOVIAN MODELS I 507

But N* = P(N* |K,+MSW), as being constructed inside . Therefore,
k(koo) = 6" =&" = ip(k).

and
(Koo) ™Mo <ip(k)™" < gHHMs,

Finally, (koo)ttM>= = mpr, 00 (kTTM) > M Ag gTFMsw is a cardinal in

MOO: thlS giVeS (KOO)++M°° = K/++M°W. _|(Lemma 2.7)
The following key lemma makes up the first key step in analyzing the mantle of
My

Lemma 2.8. Let us write k¥ = &M and k™ = x™Mw 7 M, is a forcing
extension of LM, p — p*] via some P which satisfies the k™ -c.c.
In fact,
Moy = LMoo, p = p*I[Moy 7],

where Mgy |k is P-generic over L{M ., p — p*] for someP € L[Mo, p — p*] such
that LIM . p — p*] E “P has the k*-c.c. and is of size k+F.”

Proor. We shall make use of Bukovsky’s theorem from [1]. For the reader’s con-
venience, we give a proof sketch in the appendix to the current article, cf. Theorem
3.5, cf. also [13].

We claim that L[ M., p — p*]uniformly s -covers My, cf. Definition 3.1, i.e.. for
all functions f € My, with dom(f) € L[M.p — p*landran(f) C L[Mu. p —
p*] there is some function g € L[M.. p — p*] with dom(g) = dom(f) such that
for all x € dom(g),

(a) f(x) € g(x)and

(b) Card(g(x)) < x* forall x € dom(g).

It obviously suffices to prove this for all / whose domain is an ordinal and whose
range is contained in the class of all ordinals.

Suppose what we claim would not be true. As L[My..p — p*] is definable
inside My, (from M,’s extender sequence®), there is then some counterexample
f: 0 — OR which is parameter-free definable inside My, (again, from Mj,’s exten-
der sequence). Let us fix such an /. f: 6 — OR, and let ¢ be a formula in the
language of My, such that for all &, 5, f(&) = iff My, F @(E.77).

If N € F, then My, = N[h] for some i which is IB%N-generic over N; in fact,
h = My,|6" . The extender sequence of My, is then uniformly definable inside N[/]
from the extender sequence of N and the parameter Mg, |6" . There is then a formula
w such that forall N € F, y is a formula of the forcing language of NV associated to
forcing with BY over N such that if My, = N[h]. where & which is B" -generic over
N.thenforall &, 57, Mg, = (&, 5) iff thereis some p € & such that p II—]]Bf,h w(E. 7). Of
course, the formula y is also a formula of the forcing language of M, associated
to forcing with BM= over M.

Let N € For N = M. If p € BY then we write

P H—%N “w defines a function”

7Making use of this notation, we will later show that KT = (koo )t TMoe | cf. Lemma 2.9.
8Claim 2.12(a) will in fact prove a stronger definability fact. but this is not needed here.
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to mean that
p II-]JB\;V YovwYw' y(v,w) Aw(v,w') = w=w'.

Let gy € N be the function with domain 7y, v (@) (in case N = M, by this we
mean 7y, ~(60)) such that for all & < 7y, v ().

gv(&) ={n:IpeB’p Il—%\’ “w defines a function and w(&,7)”}.  (20)

As BY has the 6" -c.c. inside N, Card(g(¢)) < 6" in N for all & < myr, v (0).
Of course, if N € F, then ny.oo(gn) = g, -
Let g € L[ M, p — p*] be the function with domain @ such that for all & < 0,

g(&) ={n:n" € grm. (&)} (21)

Obviously, Card(g(¢)) < Card(ga (E*)) < doo in L[ Moo, p = p*].

Leté < Oandy = f(&),ie., My F (&, 7). Pick N € F such that ¢* = 7y (&)
and 7* = ny.o0(17). As Mg, = NT[h]. for some h which is BY -generic over N, there
is some p € h C BY with

p H—%N “w defines a function and (&, #).” (22)
so thatn € gy (&). But then

N =7Noo () € TN.oo(gN) (N0 () = gmo. (EF).

and hence # € g(&). Because do, = k™ by Lemma 2.7. we have shown that
L[M,.p — p*] " -uniformly covers My,.

The conclusion now follows from Theorem 3.5, letting the /4 from the statement
of Theorem 3.5 be equal to x+Msw, (Lemma 2.8)

LEMMA 2.9. (a) Mo is fully iterable inside Mgy, in fact Eap, | My is definable
in M,.

(b) If P is a poset in My, and if g € V is P-generic over M,. then M, is fully
iterable inside My[g). in fact Ty, | Msw|g] is definable in M, [g].

(c) KM = g < (00 ) TEMocp2p"] — ot+ Mo

(d) If A is a cardinal of L{M . p + p*] with A > 8o, then A is also a cardinal of
My, .

PROOF. (a): Cf. [11]. We aim to show that Zr(__ | My, is definable in My,. To this
end, let 7 € Mg, be a tree of limit length on M, which is according to X __. Let
c = ZMac (T)

If there is a drop along c, or if there is no drop along ¢ and 6(7") # oM then
there is a Q-structure @ < M7 which is §-small above 5(7). But then Q € My,.
as Q may be found inside W by stacking sound mice which are §-small above §(7)
and project to (7)) on top of M(T).

Let us now assume that there is no drop along ¢ and (7)) = M7 We have that
MT is an iterate of K(M(T))M~. Let us assume that M7 = K(M(T))™» and
leave the other case to the reader’s discretion.

We then have that MT is definable in Mg,. Let E be a total extender on the
M, -sequence such that crit(E) = x and 7 € ult(My,: E). Let us write

i Mgy —g W =ult(Mgy: E).
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We may produce some N € F" such that in V', N|6" is a normal iterate of
MT|6(T). There is hence some elementary

K': MTIO(T) = j(Maoldos) = (Moo) " [6M5. (23)

Let g be Col(w,5(T))-generic over V. Inside Mgy [g] let us consider a tree T search-
ing for a cofinal branch b through 7 such that b does not drop and there is an
elementary embedding

le: MT16(T) = j(Mooldoo)
such that
kondy I Macldoo = j | Mos|0o. (24)
We claim that ¢ = X (7) is given by a branch through 7. To see this, let
X € Myoo|dso. Let x € ran(ny.oo), where N € F, and write ¥ = 7y~ ' (x). Pick
s, a finite set of M,-indiscernibles which is moved neither by 7y, oo nor by j and
such that x € HullNlma"m(ySN Us~) = dom(zn} ). Notice that j(¥) = X, and

J(N) =ult(N;:ENN) € F". We may copy T onto ult(Mo: mtar, 00 (E)) via the
map i = iy, (g). write /7 for the resulting tree. Let

i*: MT = ult(M7 07 0i(E)) = M7,
We may produce some N* € F" such thatin V, N* is a X ;(n)-iterate of Jj(N)
as well as a X 7 -iterate of M7, We write 7;(y) y~ and m 7 y- for the iteration

maps. and we also write 7y () for the iteration map from N* to j(Moo).
We now get that

_ ) iT <
= TN j(Mae) © TMIT N © T e © TEH(N) il Mo oo (£) (F)
iT L g* T
= Tye (M) © TTAMIT N* O T 017 01 (X)),
so that k = 7y« j(am.) © TAT N+ © nyT o i* witnesses that ¢ is indeed given by a

branch through 7.
Notice that (24) implies that

ko ng,—b O 00 | Msw|d = J © Tary00 | Maw|0. (25)

Let x € Mgy |d, and let s be a finite set of My -indiscernibles which are moved neither
by 7,00 NOT by j and such that x € HullMmax(s) ()M () g=) = dom(mj, ).
Then 7}, ., € My and j oy, o(x) = jomy, (x) = j(@)y, )0(x) =
njww/<Mx>(x) = Ty, j(Mo) (X). Where 7y, i(aq.) 18 the iteration map from My
to j(Moo). Hence the right hand side of (25) is equal to 7y, ;a4 )- The left hand
side of (25) is equal to the iteration map 7], © 7y, o0 | Myw|d followed by k.

By Lemmas 2.5 and 2.1, b must therefore be equal to ¢, so that in fact ¢ € My,.

We have shown that Zyq__(7) € My, for every T € My,. But recall that 6o, =
kM of. Lemma 2.7(b). and é is hence regular in My,. Hence if 7 is a tree
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on M, with (7)) = 7g5(1)(0s). then Mg, will have exactly one cofinal branch
through 7, namely (7). Zaq, | My is therefore definable in My,

(b): Let T € Myy[g] be a tree of limit length on M, which is according to
Let ¢ = Zpq (7). Assume that there is no drop along ¢ and §(7") = oM

Let 0 be an appropriate ordinal, and let / be Col(w, #)-generic over V such that
Myy[g] C Mw[h]. Say p ”_(1;25@9) “T is a tree of limit length on M, which is
guided by §-small iterable Q-structures, and 5(7") is Woodin in K (M (7)).”

For any ¢ <cq0) P let h; denote the unique Col(w, 0)-generic filter over N
such that for n < w,

q(n) if n € dom(g). and
Uh { (Uh)(n) otherwise.

Inside My [/]. we may pseudo-compare all K(M(7™)). ¢ <coi(w.p) P- SO as to
produce K (M) for some M. As M is definable inside M [/2] from {h,: ¢ <coi(w.0)
p} and some parameters from Mg, M will actually be an element of My, and in
VIh], K(M)isaX M -iterate of MY, a fact which will give rise to the existence of
the natural iteration map from M7 = K (M(T)) into K (M).

Inside My,. we may now pseudo-compare M, with K (M), producing a Zp__-
iterate M* of M, such thatin ¥, K(M) is also a Zg(q)-iterate of K (M), a fact
which will give rise to the existence of the natural iteration map from K (M) into
M*. As M, is iterable in My, by (a), the iteration map

it My > M7

is definable inside My, Inside Mg,[/], we may now construct a tree T searching fora
cofinal branch b through 7 together with an elementary embedding k : M |6(T) —
M*[6M” such that

kond, | M|doo =i | Moo|0o

T is ill-founded in V[A], hence in M,[h], and by Lemma 2.1 there is a unique b
given by a branch through 7', so that b € My[g].

This argument shows that X ¢ [ Mqw[g] is definable in M [g].

(c): Let E be the least extender on the M ,-sequence such that E is total and
crit(E) = Koo. Inside ult(Mo; E), we may pick some N = P(M(U)) € FultiMoo:E)
such that 6 (U) = (ko) WMo E) = (5, )T Mo Let ¢ = Ty (U).

By the proof of Lemma 2.2, N = MY. But ¢ € L[Mq.,p + p*] by (b), and
hence 71,000 € L[Mewo. p — p*] witnesses that (k) !> has cofinality é, inside
LiMoc.p — p*].

Because N is also the §-small core model over M (Uf) inside ult(M.; E), again by
the proof of Lemma 2.2, the Weak Covering Lemma (cf. e.g., [4]) therefore gives that
Card((koo) ™) = 6o inside L[M . p = p*]. By Lemma 2.7(c). (koo )T M= =
kM 50 that now (0 ) THMeer—=p"1 = g t+Msv

(d): This now immediately follows from (c) and Lemma 2.8. (Lemma 29)

Let us define the meaning of “the core model of Mj,.” One way to make sense
of this phrase is to define the core model as a hull of K¢, essentially as Steel did it
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in [18]. To this end., let us work in My,. Let K¢ be as defined in [5, Definition 2.7].°
but with the following additivity adjustment: the critical point of an extender added
(i.e., crit(G) for G asin [5, Definition 2.7(a)]) is supposed to be above k+s_ In the
light of Lemma 2.9(a), the article [11] shows that K¢ is fully iterable (inside Myy).
The core model K may then be isolated as the unique weasel I such that for every
a, W |a is isomorphic to an initial segment of

({Hull®" (T): T is 4o-thick in K*}.

where A is defined as in [18, p. 8] and the notion of an “S-thick class” of ordinals
is defined as in [18, Definition 3.8] (but with Q being replaced by the class of all
ordinals in both cases). The article [11] verifies that the core model K of Mg, thus
defined, exists and is fully iterable inside M.

In our context, there is a shortcut, though, which will serve our purposes. We may
let M play the role of K¢, as follows. Inside My, we define I' C OR to be thick iff
for all but nonstationary many inaccessibles o, I' N a™ contains an a-club. As M
exists but all mice in Mg, are sw-small, My, thinks that for all but nonstationary
many o, « is inaccessible, a ™M= = o, and « is not the critical point of an M -
measure. (Cf. [18, Definition 3.8].) By Lemma 2.9(a). the arguments of [18, Section
5] then go through to show that definably over Mg, there is a unique weasel W such
that for some thick class I'j, whenever I' C T’y is a thick class, then

W = HullM=(T). (26)

We call this weasel the core model of Mg, abbreviated by K. As K elementarily
embeds into M, (by (26), Lemma 2.9(a) implies that K is fully iterable inside

Mgy Also, Mg, thinks that for all but nonstationary many «, « is inaccessible and
atMe = ot

We are now going to verify that K is actually equal to M,
LEmMA 2.10. M, =K.

PrOOF. Let us fix g which is Col(w. < )-generic over My,. Let us write'”
H = HOD~I8],
Cram 2.11. L[Ms.p— p*] C H.

Proor. Let us write C for the collection, as being defined inside Mgy[g], of all
extender models N with a Woodin cardinal, 6, and a strong cardinal, x", such
that the following conditions (1) through (6) are met.

(1) N|(5N)+N is suitable,

(2) &
3) N Mgy[g] for some i which is Col(w, < x)-generic over N,
(4) N K(N|5N) is the §-small core model over N |67,

9This definition is a variant of the one presented in [7. Section 2], but with the smallness assumption
on the premice showing up in the K¢ construction being relaxed, and it builds upon the definition which
is given in [18, p. 6f.].

100rdinal definability here is taken as definability in the usual language of set theory with € as the
only nonlogical predicate, in particular excluding a predicate for the extender sequence of Mgy .
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(5) N is pseudo-iterable in the following sense. Let T(N) be the collection of all
U= U:k <n) € N,somen < w, such that either n = 0 and 1h(U) = 1
(i.e., U is trivial), or else there is a sequence 779 < - - - < 1, < & of cutpoints of
N and:

(a) U € Nk,
(b) U = (Uy: k < n) is a finite stack of normal iteration trees Uy,
(c) Uy is on N and lives below 5%,
and for every k < n,
(d) if k < n, then Th(U) = ()™ = 6(Uy). and h(U,) = (7,)™Y = d(Uy),
(e) Uy is definable over N|(17;,)*" and is guided by Q-structures which are
obtained via P-constructions inside N, cf. [15, Section 1],
(f) ifk < n, then PV (M (Uy)) is a proper class, 5 (U ) is a Woodin cardinal of
PN(M(U)), and
PN (MU))[G] =N
for some G which is B?M®)_generic over P(M(U)). and
(g) if k > 0, then U is on PNV (M (U _,)) and lives below & (U ;). (We allow
U, to consist of only one model, namely PV (M (U, _1)).)
For N to be pseudo-iterable we demand that if i/ = (U : k < n) € T(N).
then
(a) if U, has a last model, say Mz’ and if F is an extender from the sequence
of M%’ such that if [0, 8], does not drop, then the index of F is below
M then Uy: k < n)~ (U, F) € T(N), where (U,” F) is the normal
extension of U, and
(b) if U, is of limit length, then there is either a cofinal branch b through U,
such that (U : k < n)~(U,"b) € T(N). or else letting U* be the trivial
tree consisting only of the model PV (U,). (Uy: k < n)"U* € T(N).

Before stating condition (6) let us say that we call M a pseudo-iterate of N iff there

issome U = (Uy: k < n) € T(N) such that U4, consists of only one model, namely

M. We will write FV for the collection of all pseudo-iterates of N.!' Let s be a

nonempty finite set of ordinals. For M € FV we call M € FV s-iterable inside N

iff forallid = (Uy: k < n) € T(N), writing M, for the starting model of Uy, k < n,

if M = My, for some k¢ < n, there are for every i > k. i < n+ 1. cofinal branches

bi c (Msw)Col(w,max(s))

through U; such that

(1) ngf}n(s) = s and
(2) =gl (Ni|max(s)) = Niy1|max(s).!?
In this situation, we may write b for the composition of the branches b;, ky < i <
n + 1, and we may consider the map
77;0“20 Uy, ' HuHM,(O|max(s)(y;‘//k0 U Si). (27)
We call M strongly s-iterable inside N iff the map in (27) doesn’t depend on the
particular choice of U.

11'We have that FMsw defined this way, is equal to F as being defined earlier.
12The two notions of being s-iterable in My we have now defined, cf. p. 502, coincide with each other.
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Our last condition on N now runs:

(6) For every finite set s of ordinals there is some M € FV such that M is
strongly s-iterable in N.

Given N € C, we may define a direct limit system inside N in much the same way as
the system was defined in Mg, to give rise to M .. We write (M, )" for the direct
limit of that system as being defined in N.

We claim that if N € C, then

(MOO)N = Moo

and that in fact the systems giving rise to M, and (M.)", respectively, have cofi-
nally many common points. As C is ordinal definable inside My[g]. this immediately
establishes Claim 2.11.

Let us thus fix some N € C. Let & < & be least such that N |6V € Mg[g | £]. We
have, by the forcing absoluteness of the §-small K over N |6,

N = (K(N™)" = (K(N ™) = (K (N[o™) M1 = (K (N]6™) M1, (28)

so that in particular N existsin Mgy[g [ £]asasubclass which is definable there from
the parameter N|5". Symmetrically, if &’ < & is least such that M|6 € N[h | &'].
then

Mgy = (K (Mg, |0))N1<T (29)

and M, existsin N[/ | ¢] as a subclass which is definable there from the parameter
My |0.

Let us denote by F) the Mg,-extender of Mitchell order 0 and with critical point
k, and let us denote by F> the N-extender of Mitchell order 0 with critical point «.
Let 7ty : Mg, — ult(Mg: E1) and np: N — ult(N; E,) denote the ultrapower maps.
Let us write
H — (HN+ )ult(Msw;El)[g] — (HN+)MSW'[g] — (HN+)N[11] — (H,i+)u1t<N;E2)[h].

We have that
ult(Mg: E1)[g] = K(H)Msw[g] — K(H)uh(MswiEl)[g],
and
ult(N: Ex)[h] = K (H )V = K (7)"V:E0,
Let us write K (H) for this common value of the §-small K over H. Then
ult(Myy: E1)[g] = K(H) = ult(N; E)[A]. (30)
This immediately gives

(k) = ma(k). (31)

But also, Mgy |x ™™ may be defined over H from the parameter Mgy |k as the stack
of all §-small sound mice end-extending My, |k and projecting to x, and

ult(My: Ey) = PUIt<MSW';E]>[g](MSW|KI+MSW) _ pK(I?) (MSW|H+MSW)_ (32)
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In the same way. N|x*" may be defined over H from the parameter N|x as the
stack of all §-small sound mice end-extending N |« and projecting to , and
ult(N: Ey) = PUVEIR(N|gtV) = pKUD (N| V), (33)

Let k be Col(w, [x, 71 (k)))-generic over the common model from (30), cf. (31).

Then 7, and =, lift to
s Myw[g] — ult(My: E1)[g k] = K(H)[k]
and
fia: N[h] = ult(N: E;)[h"k] = K (H)[k].

respectively. The maps 7; and 7, might be different, but the universes of their
domains and target models are the same, and by (31), any objects defined in
Mg[g] = NJ[h] from parameters in (H, )"l U {k} = (H,)"" U {k} will be
moved the same way.

In particular, #; maps N = (K (N |6V ))M~l¢] to

(K(N|5N))u1t(MSW:E|)[gAk] _ (K(N|5N))ult(N:Ez)[hAk] _ ﬁz(K(N|5N)N[h])
B(N) = ult(N: Ez),

ie.,
1 (N) = ult(N; E»). (34)

Let p < k be arbitrary. We have that ult(M,,:; E)[g k] thinks that there is
some strong cutpoint 7 < 7 (k) of both ult(My: E1) = 711 (Myy,) = K(Mgy|d) and
ult(N: E;) = #1(N) = K(N|6V) with n > p (namely, # = &) such that setting

H = (Hw)ﬁ](Msw)[gAkM]

(so H = H for n = k). 11(Mg,)|nt™M~) may be defined over H' from the
parameter 7, ( Mgy )|y as the stack of ¢-small sound mice end-extending 71 ( My )|7
and projecting to 7,

7t (M) = PRI KIN 7y (M) 1)) = PR (i (M) g 7).

71 (N)|pt% ) may be defined over H' from the parameter 7;(N )|y as the stack of
all §-small sound mice end-extending 7 (N )| and projecting to 7. and finally there
is some 4* which is Col(w, < #)-generic over #,(N) (namely, 4* = h) such that
1(Mg)[g™k | 7] = #1(N)[#*] and

A1(N) = PRI (7 (N) RNy = PRUED (7 (N) |1 V),

By the elementarity of #; and because p < k was arbitrary, we then get arbitrarily
large # <  which are strong cutpoints of both My, and N such that setting

H'" = (HW)Msw[gM], (35)

My |7 may be defined over H” from the parameter Mj,|y as the stack of all
§-small sound mice end-extending My |7 and projecting to .,

MW — PMsw[gr”](MSW|;7+Msw) — PK(H//)(MSW|;7+MSW):
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NN may be defined over H” from the parameter N |7 as the stack of all §-small
sound mice end-extending N|n and projecting to #, and there is some #* which is
Col(w, < n)-generic over N such that
N = PNy N) = PRED (N [ Y), (36)
where K (H") is the §-small core model over H" inside the model
Mgy[g [ n] = N[h"].

Let us write S C « for the set all of # < k with the properties as above, so that S is
unbounded in .

Let us now suppose that M is a premouse with a largest limit ordinal 5 such
that

1. ptMs < oM < M for somen € S,

2. Me MyNN,

3. M E “6M is a Woodin cardinal,” and

4. both My |6™ and N|6M are BM-generic over M.

We then have, for H” as in (35) and 4* being Col(w, < #)-generic over N with (36),
pMsw(M) = PMwlg F”](M)
= PXHII(M) (37)
= PVII(M)
=PY(M).
where K (H") is the §-small K over H" in My[g | n] = N[h*].

Now let s € OR<?, andlet M € F = FMs~ be strongly s-iterable in My, and let
M’ € FV be strongly s-iterable in N. We aim to find M* € F N F such that

(M.s) =r (M*.s)and (M'.5) <zx (M*,5).
Let &’ < &" < k besuch thatg | & € N[h | £”]. so that by (28) and (29)
N C My[g [€]1C N[h [ &"].

which implies that N is a ground of Mgy[g | £]. and in fact both My, and N grounds
of Mgy [g | £]via posets of size less than k. Therefore, by [22, Proposition 5.1], there
is an inner model P C Mg, N N such that P is a ground of My [g [ £] via a poset
of size less than x. We may then pick some 6 < & such that for some ¢ € My,[g]
which is Col(w, 8)-generic over P,

{ Mgy |6. N6 . M|6M M |6M"} C Ple]. (38)
and in fact all of Mg,. N, M, M’ exist in P[£] as subclasses which are definable
there as K (Mgy|6), K(N|6Y), K(M|6M), and K(M'|6M"), respectively.

Let 79, 71. 09, 01 € P9 pe such that
= Mo|o™ 1} = N|6™)™. 6t = M|(6™)™ . and o = M'|(6™ )™ . (39)
Let p € Col(w, 0) force over P all the relevant properties about 79,71, g9.01 for the

following to go through. For any ¢ <cj(s.0) p let £, denote the unique Col(w. 6)-
generic filter over N such that for n < w,

q(n) if n € dom(q), and
UE { (U#)(n) otherwise.
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Let 7 € S. 7 > max{& &'}. Notice that ™tV < pt+Malelel — pH+Ma <
p NS — p++N by (28) and (29). so that

g Mey — AN,

This is then also the common 7+ of all K (rgq), K (rfq). Working in P[¢], let for
q SCOl(a)ﬂ) D

. . 2, 2, .
U, and U, ; be normal iteration trees on ¢’ and o, respectively.

such that

L 1h@,) = @) = n* ¥ = 6(2y) = 6(U]) for all ¢ <coon) -

2. M(uq) = M(Ué,) forallg. ¢’ <Col(w.0) P

3. every U, as well as every U, is guided by 9-small Q-structures,

4. K(rg")|5(l/{q) is generic over M (U, ) for all ¢ <cj(.0) p. and

5. K(‘cf") d(U}) is generic over M(U}) for all ¢ <cqi(w0) P-
Let us write M for the common value of all M(l4,) and M(U;). Notice that
MePC MyNN. Set

M* = (K(M))F.
By (37), we have that
M* = (P(M)M = (P(M))". (40)

Also, U, is normal and is a tree on M which produces M*, so that (modulo
potential padding) U, can be computed in My, via the comparison process which
tries to coiterate M and M*. Similarly, I/{; is normal and is a tree on M’ which
produces M*, so that (again modulo potential padding) U, € N.As M is strongly

s-iterable in My, and M’ is strongly s-iterable in N, we therefore get that
M* e FNFN, (M, s) =z (M*.s).,and (M',s) <zx (M*.5).
as desired. (Claim 2.11)

Cramnm2.12.  (a) H C L[Mw,. p + p*]. Hence, H = L[M ., p — p*].
(b) If y < 600 and X € H NP(y), then X € M. In particular, (Hs_ )" =
Mooldm.

ProOOF. (a): Let us fix X, a set of ordinals, such that X € H,say X C y and
e Xiff

Fn < o an..... a). (41)

If N € F. then there is some & which is Col(w, < k)-generic over N such that
N[h] = Mg,[g]. so that (41) is equivalent with

FRN<) o (E ... ). (42)

In particular, X € (| F and 7y n/(X) = X forall N, N’ € F such that y y- exists
and

nNiN/(al,...,ak):al,...,ozk. (43)
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Let N € F be such that (43) holds true for all N’ € F such that 7y - exists, and
set X = 7y.oo(X) € Myo. Then for any & < y, if N’ € F is such that 7y y exists
and ny: y (&) = & for all N” € F for which zy/ v exists, we have that & € X iff

&= nN"oo(é) € nN’,oo(X) = nN,oo(X) = /‘77

sothat X € L[M.. p — p*].

We have shown (a). (b): Let 7 < doo, 82y y < Zar,.00(7). Pick a finite set s of
ordinals such that My, is strongly s-iterable and 7 < yM=, cf. the argument on p.
504. We have that 3, | yM~ € M. so that

(P p*) Ty =m0 17 = Tatrg 00Ty 00 [ 705) Ty
is an element of M .. The above argument then shows (b). (Claim 2.12)

Claim 2.12(a) has the following remarkable consequence.

LEMMA 2.13. Mo|do is fully iterable inside L{Moo.p — p*), in fact Ty, |
LMy, p — p*]is definable inside L{M . p — p*].

PROOF. Let T € LM, p — p*] be a tree on M |0 of limit length which is
according to X . Write b = T (7). By Lemma 2.9(a), b € My,. If there is a
(necessarily, §-small) Q-structure Q < /\/l;,r then Q € L[M. p — p*] and hence
also b € L[M. p — p*]. So let us assume that there is no such Q-structure.

Then 5(7) = MJ] NOR, and hence cf(1h(7)) = cf(5(7T)) = cf(M] NOR) =
0o = KT inside M,. Let g be Col(w, < k)-generic over M,. Then 6o, = N
in Mgy[g]. so that inside Mg[g]. b is the unique cofinal branch through 7. As
T € LiMy. p — p*] = H = HODM*&] by Claim 2.12(a). we get b € HODM ],
and hence b € L[M, p — p*].

The argument we gave shows that 2y [ L[Ms.p — p*]is definable inside
LMy.p v~ p*l. (Lemma 2.13)

We are now ready to finish the proof of Lemma 2.10.

As LM, p — p*]is a ground of M, by Lemma 2.8 and M is fully iterable
inside both My, as well as L[M., p — p*] by Lemmas 2.9(a) and 2.13, we may
define the core model K HMe<»=7"1 of L[ M. p — p*]in much the same way as we
defined the core model K = K™= of My, onp.511and K = KM = KUMeoc.p=p"],
Inside L[ M, p +— p*]. there is a canonical elementary embedding j: K — M
given by (26). We aim to show that j = id.

Let us assume that j # id, and set 4 = crit(j). Inside L[M .. p — p*]. K and
M, coiterate to a common weasel, Q, such that if 7x o and nr__ o denote the
canonical iteration maps,

TMs.Q ©J = TK.Q- (44)
If j(1) < 0s. then by (44) j | A*K is cofinal in j(A)*Me and witnesses that
j(A)*Me= is singular. However, this contradicts Claim 2.12(b). If j(1) = .. then A
is the Woodin cardinal of K, but there is some initial segment N of M, projecting to
A which defines a counterexample to the Woodinness of 4. However, by universality,
N would have to be an initial segment of K. Finally, if j(A) > Jw., then j comes
from an iteration of K strictly above d,, the common Woodin cardinal of K and
M. But M, is generated from J,, together with a club class of indiscernibles
above ko, which immediately gives j | ko, = id and then j = id. A(Lemma 2.10)
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THEOREM 2.14. L[M, p — p*] is the mantle of Mgy.

PROOF. As L[ M., p — p*]is a ground of M, by Lemma 2.8, if suffices to prove
that LM, p — p ] C W for every ground W of M.

So let us fix W, a ground of M,. Let P € W be a poset such that for some
g € My, which is P-generic over W, My, = W][g]. Let 4 be the cardinality of P
inside W, so that P Col(w. 4) = Col(w. 4). Let i be Col(w. 4)-generic over M.
and let 4 be Col(w, A)-generic over W such that W [h] = Mg,[h].

W [h] contains M |0~ as an element, and it can define M, as K (M |0 ). Let
t € W@ be such that M. |00 = 7". By Lemma 2.9(b). M, is fully iterable
inside W [h], so that we may pick some p € & such that

p H—ﬁf"(“”’i) K () is sw-small, has a strong cardinal above
the Woodin cardinal N OR, and is fully iterable.

For any ¢ <coj(s.,) P let hy denote the unique Col(w, 4)-generic filter over W such
that for n < w,

q(n) if n € dom(g). and
Uh { (Uh)(n) otherwise,

and let us write M ¥ for K (¢/«), as being computed inside W[h] = W[h,]. By (45).
every MY, q <coi(.s) P18 fully iterable inside W[h], and it is straightforward to see
that all M7, g <) P coiterate to a common coiterate, say Q. We have that Q
is a definable inner model of .

Let I' C OR be the class of all ordinal fixed points under all the iteration maps
froman MY, ¢ <cj(e.;) p-to Q. T is then a definable class in W, and also I is easily
verified to be thick in the sense of the definition given on p. 511. We must then have
that

Moo = Hull2(T),

so that M, C W.

In order to show that the map p — p* is in W, it suffices to show that X__ is
amenable to and definable over V.

Let 7 € W be an iteration tree on M, of limit length which is according to
... Write b = Zpq_ (7). We have that b € W [h] by Lemma 2.9(c). If M] has
an initial segment Q end-extending M(7") such that §(7) is not definably Woodin
over Q, then the unique least such @ may be found inside W by stacking sound
mice which are €-small above J(7") and project to 6(7) on top of M(T), so that
b € W. Otherwise b does not drop and 6(7) = ng » (0 ). We then have that inside
W h]. b is the only cofinal branch ¢ through 7 such that 5(7) = n{.(6s) and M]
is iterable above 6 (7). (In fact, inside W [h]. b is the only cofinal branch ¢ through
T such that 6(7) = n],(d) and M is well-founded, cf. the remark on p. 498.)
Therefore b € W'.

But the argument we gave also shows that X is amenable to and definable
over W. _|(Theorem 2.14)

We call L[M, p — p*] the Varsovian model derived from Ms,. If M is a model
which is elementarlly equivalent to Mgy, then the Varsovian model derived from M
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is that inner model of M which is defined over M as L[M ., p — p*]is defined over
Mgy .
LemMa 2.15 (F. Schlutzenberg).
(a) ran(myy, o) is closed under both ng°, and (ng%,)
(b) Hull®™=+=r"T(ran(my o)) NOR = ran(mpz, o) N OR.

—1

PrOOF. (a) Let p be such that {p, p*} Nran(zu,, ) # 0. Let s be a finite set of
M, -indiscernibles such that

p € HullMsmax(s) (o, Moy =)
We have that 752, | HullM=Im)(; M U =) € M and in fact
Tooo | HullMeemaxs) (, Moo (57 =z (magy, o0 | HullMomax) (Mo =)

where 7, 00 | HullM“‘maX(")(ijx Us~) € My, Then if p € ran(my, o)
then p* = (7%, | Hull’\"”'ma"(”(ySMoo Us))(p) € ran(mu, ). and if p* €
ran(myy,, o). then p = (r, | HullM=Ima)(yMec (y 57)) =1 (%) € ran(may,, o0 ).
(b) Let p € Hull“™="=?"Yran(zy, ..)) N OR. By (a). it suffices to prove that
p*eran(my, 0o0)-
We may pick a finite set s of Mg-indiscernibles such that
p € Hull Meer=r71(g), (45)

Let N € F be strongly s-iterable such that y y:(p) = pforall N’ € F with iy y- |.
As L[Mo. p — p*] = HOD™" for some/all & which are Col(w, < x)-generic over
N, cf. Claim 2.12(a), (45) implies that
p € Hull (s).
But then
p* € HullM=(s) C ran(ny, o).
_|(Lemma 2.15)

COROLLARY 2.16. Let oz V = Hull“M™e=""Vran(zy ). where V is transi-
tive. V = L[Mgy. p — Tpy,.00(p)]. and o D marg, 0o-

PrOOF. By Lemma 2.15(b) and by (19), it remains to be seen that

7 ((p = p*) [000) = Tatyc0 | 6, (46)

Mgw —
Sn

) =7 Mee- by the elementarity of

For n <  let us write s, = {R{",.... R}, }. Then for each n < @, mar, 00 | 7

Sn My

nj‘l:lwoo r ysafsw € MSW and U(TEMSW.,oo r Vsn
o and ¢(s,) = s,. and the latter is equal to z§%_ | y;¥'> which is hence in M.
But then U_l((P — p*) = O-_I(Un<w n(()>,ooo f ysj,}/too) = Un<w ‘7_1(770020 f Vf:/t‘”) =
U nSn r VST’W = nMSW‘oo f5 WhICh ShOWS (46) _|(Corollary 2.16)

n<w *“Mgy.00
LEMMA 2.17. Let 6:V = L[Mgy.p — Tar,00(p)] = HulltMeer—=r"l(ran
(Taty,.00)). V is iterable via iteration trees which live on Mgy|o.

Proor. Implicitly, [21] contains a simplified version of the argument to follow, cf.
[21, Lemma 3.46]. This was pointed out to the authors by Farmer Schlutzenberg
who then independently arrived at a proof of Lemma 2.17.
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We claim that ¥ may serve as an iteration strategy for iteration trees on V which live
on Mgy|d. This makes sense by Claim 2.12(b), Corollary 2.16, and the elementarity
of g.

Let 7 be a putative tree on V which lives on Mg,|d and is according to . If M7 is
a transitive proper class, a: < Ih(7'), then we may write M] = L[M,.n,]. The tree
T induces a canonical tree, which we shall denote by 7, on My, which is according
to X.

Let us write IT for the set of all & < 1h(7") such that M7 is a proper class. If

a € 1h(T) \ I, then MT M. We claim that we may define a sequence
(My. 700, M} . 705 V. 7o) a0 € TT)

such that
(a) Mo = Mgy, 1o = Tpgy.00. My = Moo, 1§ = (p — p*)
and foralla <7 B < 1h(T) with o, f € I,
(b) My =MT,
) L[My. 7, | OR] = M7,
d) V, = L[M}. ] is the Varsovian model derived from M,,,
) 7a: My — M} is an elementary embedding,
) foo: L[My, 7o | OR] — L[M}, 7}]is an elementary embedding,
) @
)

Ih(E )—ﬂaflh(Ey)f0fa<TV+1§T/>’,
na D na, and

(c
(
(e
(f
(g
(h
(i) =7 ﬂ ol 5

Let us present the successor steps of the construction, leaving the limit steps
to the reader’s discretion. Let @ = T-prec(ff + 1), where g + 1 € II. and write
F=E] =E].

We may define an elementary embedding

Agrr: ult(L[My. 7o | OR]: F) = Vg
by setting
fpa(la. f15') = [a.u > Fa(f ) (ma ()3

M,
2

L[My. 1o | OR] — 2 > LM} 7"

(o' (07
T T
T f+1 o p+1

L[MﬂJrl,n/}Jrl fOR] E— L[Mﬂ+1 77.'ﬁ+1]

g1

I\
Mg
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This is indeed well-defined and elementary, as we may use (7, | [crit(F)]Cd(@) ¢
M, and compute as follows. Let ¢ be a formula, let us assume for notational
convenience that ¢ has only one free variable, and let ¢ € [Ih(F)]<® and

1 [erit(F)1Cad@) 5 MT f e M.

M1 E plla fT)
= {u € [erit(F)] " : MT E o(f (1)} € Fo
= {u € [erit(F)] " LIMZ. 73] F @(alf)(7a(u)))} € Fa
= {u € [erit(F)] " LM 1) E @(fa(f) (70 1 erit(F)]"“)(u)))} € F.
= a e nlp({u € [erit(F)“ s LM 73] E @ (Fa(f) (a1 [erit(F)I ) ()))})
= LMy E ol g (Fa(£))(ra | Lerit(F)I) (a)))
= LM T E ol g (Fa(£)(1a(a)).

Notice that Zg. | Ih(F) = 7, | 1h(F), as required by (g).
The key point is now that

Mg, Nran(fg,) = MZH. (47)

(47) is established by the argument which gave Schlutzenberg’s Lemma 2.15. Let
I denote the class of all Mg,-indiscernibles, and let us assume for notational
convenience that all embeddings which we consider fix all the points in /.

In order to show (47), let x € Mg N ran(7ip.1). say x = #igy (%) € Mg .

We have that ¥ € Hull™#i (In(F) U I). so that x € Hull"®™7+1](7, "Ih(F) U
1) N Mj,,. By the elementarity of ngjﬁJrl, LM, . 7j,,] is the Varsovian model

derived from My, which in turn is equal to HOD?™ for all P € FMs+1 and
all & which are Col(w, < k” )-generic over P, cf. Claim 2.12(a). We thus have
x € Hull’ (751 "Ih(F) U I) for all P € FMs+1. By picking P sufficiently far out in
the system, we thus get that

751 (x) € Hulli (n5, ) o 7pyy "Th(F) U T). (48)

However, for each ordinal p we may pick some s € [I]<“ such that p € dom(n;} sl

HullM;H\max(s)(V;Mﬁ*ﬂ) U {s}). ie. 7[7)‘,+l(p) = (”7f+1 I HullM;+1|max(s)(ij1/§‘+,) U
{s7})(p). and then

* * * ) (o My —
mh 1 (p) = (whyy | HullMia ) 50y G £57 1)) (p)

= g g (g | HUllo ) (M0 1 £5-1)) ()

= 71g g (oo | HUllM 1836 (, M0y 1 (=) (p).

But my | Hull™ &MYy G f5-1) ¢ Hull™(I). hence mo(my |
HullMO*|m€”‘(s)(ySM0 WU{s~}) € HullMo (I), hence ngﬁﬂ (ro(mo | HullMO*‘maX(S)(ysMO )
U{s~}))) € Hull™s+1(I). This shows that Hull#+ (75, "lh(F)UT) is closed under
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p n/§+l(p) as vyell as under p — (n/§+l)_1(p), so that by x € My, (48) is
tantamount to saying that

x € Hull/ 1 (75, "In(F) U T). (49)

We have shown that x € My, N ran(7g1) implies (49). This gives (47).
By (47). we may let ng, | = 741 | Mgy It remains to be verified that

7] g1 (1) = g1 | OR. (50)

Let ¢ = nZﬂH(f)(a), where a € [Ih(F)]<? and f: [crit(F)]d@ — OR,
f € MT . Then

70 51 () (&) = 7] gy () (7 41 () (@)
=n p1(ma o )] 4,1 (a))
= 7] g1 (U = Fa () (o | [erit(F)]5) () (a)
= ﬁﬂ+1(nlﬁ+l(f)(a))

= ﬁ'l}+] (f) _|(Theorem 2.17)

The proof of Theorem 2.19 makes use of the following result. We know that M
is an iterate of My, via an w-stack of normal trees. (7,: n < ). The normalizing
procedure which is developed in the articles [16], [17], and [20] produces a normal
iteration tree X (7,: n < w) on Mg, with last model M.

TueoreM 2.18 (F. Schlutzenberg, J. Steel) ([16,17,20]). My is a Z-iterate of
My, via a normal iteration tree on Mgy, which lives on Mgy|0 and with iteration map
T Mgy .00+

THEOREM 2.19. & is a Woodin cardinal inside L[ Mgy, p — Ttar,, 00 (p)]-

Proor. The proof we are about to present was also found independently by
Farmer Schlutzenberg following a hint by John Steel.

Let 7 be the (unique) tree on My, which witnesses the statement of Theorem
2.18. By Corollary 2.16(b), we may construe 7 as a tree on L[ My, p — Zar,,.00(p)]
and we may lift the iteration map 7z, o to an iteration map

: L[MSWap — nMswoo(/))] - L[MOO’O-]’

where ¢ is the image of p — 7y, o (p) under #. However, the same argument as in
the proof of Corollary 2.16(a) shows that

TM 00 (Mg .00 1 0) = 3% | oo- (51)

This is true because if again s, = {Ry...., N1} for n < o, then 7w, oo (Tary, 00 |

) = Ttg00Unco Tt oo [ 700) = Unco Ttaco (@, oo T 705) = Upco Moo |
Moo — 500 S

ySn ”0400 r oo

We therefore have that
1 L[Msw. p = Ttyy00(p)] = LMoo, p = p7]

is given by the normal iteration tree 7.
Let us now suppose that é is not a Woodin cardinal in L[ Mgy, p — Tar,.00(p)]
which implies that d., is not a Woodin cardinal in L[ M., p — p*]. Notice that

https://doi.org/10.1017/js1.2018.5 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2018.5

VARSOVIAN MODELS I 523

T must have length 5o + 1 = ™ 4+ 1, and 7 | ™™ is guided by §-small
QO-structures, so that 7 [ k™~ € My,

Write 4 = k™M and V = L[Mq..p + p*]. Let g € V be Col(w. 1)-generic
over My,. Inside M[g]. let T be a tree of height w searching for a Q and b such
that

(o) Qis a transitive model of ZFC™ of height A such that  is a cardinal in Q and
HP = My|o.

(B) b is a cofinal branch through 7 | k™ such that when 77 is T | x*Mw,
being construed as a tree on Q'3 then all the models M7, o < &M are
well-founded, and

7
ngjb: Q—>H)v

T is ill-founded in V', as we may set Q = Hf[MSW’nMSW'“FOR] and b = [0, kM) 1.
Therefore, T is ill-founded in M,[g] C V' as well. Let @ and b in Mg,[g] be given
by a branch through 7. Suppose that b # [0, k™). As T | kM is normal, the
“zipper argument,” cf. e.g., [19, p. 1645f], then shows that 6 (7 | k) = §,, must
be Woodin in H}” which is against our current hypothesis.

Therefore, [0, kM) = b € Mg[g]. As this was shown to be true for any b
such that Q and b come from a branch through 7 for some Q, we must have that
[0, kM) € My, by the homogeneity of Col(w, 4). But this gives that

+Msw

T My,00 [0 = nTM

0.[0.6Msw ) - € My,

which is a map which sends 6 < & cofinally into do, = x>, Hence k*Ms is
singular in My,,. Contradiction! (Theorem 2.19)

J. Steel observed that if g is Col(w, < k)-generic over My,. then My,[g] is not a
model of “every OD-set of reals is determined,” so that one cannot use [6] to deduce
the conclusion of Lemma 2.19.

Lemma 2.20. L[Mae.p = p*] = LIMoo|bo0- Zpt s ]-

PROOF SKETCH. “D”: By Lemma 2.13, 2y | L[Mo, p — p*]is definable inside
LiMoo.p = p*].

“c” Let us write W for K(Myl|ds) as being constructed inside
LMoo |0oo. T .- Inside LM oo|0oo. Zpq 15, 1. W is fully iterable, W satis-
fies weak covering above d.., and W has a Woodin cardinal. By an unpublished
theorem of Steel. W must then have a strong cardinal above d.. From the point of
view of L[M . p — p*]. W must then be a universal weasel.

We thus get an elementary embedding j : My — W. Suppose j # id.
Using an argument from [11], we may then reconstruct j | M lcrit(j)" inside
LMoo |0o0. 215, ] as follows.

Write 4 = crit(j)*M> and A’ = j(4). There are trees 7 and 7, both on M,
and inside L[Moo|0oo. Z a1, .. ] Of length 2 4+ 1 and 2’ + 1. respectively. such that
)= n](0s0) and 2/ = 1], (0). j | Moolerit(j)* is then the unique map which
sends 7], "doc 10 1], 0o

Contradiction! A(Lemma 2.20)

13This is possible by item (c).
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In a sequel to this article, cf. [10], we will study Varsovian models in more
generality.

The attentive reader will notice that the preceding arguments actually produced
the following statement.

THEOREM 2.21. For a cone of reals x, My(x) has a 2-small core model K = KM:()
which in V is an iterate of Mgy, and the mantle of M,(x) is the Varsovian model
L[K.Zk]. where L is the tail of X.

83. Appendix: Bukovsky’s theorem.

DEerFNITION 3.1. Let W be an inner model of V. Let 4 be an infinite cardinal.
We say that W uniformly A-covers V iff for all functions f € V with dom(f) € W
and ran(f) C W there is some function g € W with dom(g) = dom( /) such that
f(x) € g(x) and Card(g(x)) < A for all x € dom(g).

If there is some poset P € W having the A-c.c. in W and some g which is P-generic
over W such that V' = W]g], then W uniformly A-covers }'. Bukovsky’s Theorem
3.5 will say that the converse is true also.

The following is probably part of the folklore.

THEOREM 3.2. Let W be an inner model of V', and let 1 be an infinite regular
cardinal. Assume that W uniformly J-covers V . and assume also that P2Q<*) NV C
W.Then W =V.

ProoF. Let us call any set I' of functions an antichain iff for all a, b € T" with
a # b there is some i € dom(a) Ndom(b) with a(i) # b(i).
It is easily seen that the hypotheses on W give that

woew (52)

To verify (52), notice first that by P(2<*) N V' C W, W computes the cardinal
successor of 2<* correctly and for every y < 2<4)*, P(y) NV C W.

Now let f: 2<* — OR, f € V. Using the fact that W uniformly i-covers V.
let g € W be a function with dom(g) = 2<* such that g(¢) is a set of ordinals,
f(&) € g(&). and Card(g(¢)) < Aforall & < 2<4. Let e: y = Jran(g) be the
(inverse of the) transitive collapse of | Jran(g), so that e € W and y < (2<4)*.
As P(y) NV C W, the function e~' o f: 2<* — y is in W, which gives that
f=eo(e lof)ec W.Weshowed (52).

Assume that 4: o — 2, for some ordinal ., is such that 4 € '\ W. Let us write
F for the collection of all functions @ such that there is some x C « of size < /4 such
that a: x — 2. Using again the fact that W uniformly J-covers V.'# we may pick a
function g in W such that if I’ C F is an antichain with I' € W, then

(i) g(I') € W is a subset of T of size < 4 and
(ii) if there is some (unique!) @ € T witha = 4 | dom(a), then a € g(T').

We call @ € F legal iff for no antichain T € W, a € T\ g(I'). Notice that being
legal is defined inside W (from the parameter g € W).
Every 4 | x, where x C « has size < 4, is legal.

14This use is now substantial, in contrast to the previous one.
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If I' C Fis an antichain with I € W, and if every a € I is legal. then we must
have g(I") = I, from which it follows that I has size < /.
Let 0 >> o be such that 0<* = 0. Let

X < (Hg;G,{A},]:,g, HynN W)
be such that <*X c X and Card(X) = 2<*. By (52). X N W € W, and of course
XNW<(HyNnW:.c.F.g)c W (53)

Write o: W = X N W for the (inverse of the) transitive collapse of X N W, so
that o € W. o extends to 6: H = X. the (inverse of the) transitive collapse of X.

Notice that P(2<*) NV C W gives that A = 6~ '(4) € W, which in turn yields
that

Al (XNa)=c"dec W, (54)

We are now going to derive a contradiction from (54).

Using (54), we may work inside W and define a sequence (@, : i < A) of elements
of F such that ¢; € X and dom(aq;) D dom(a;) for all j < i < A as follows.
Assume (a;: j < i) has already been chosen. Notice that (a;: j < i) € X by
<*X C X.Write x = i dom(a;), so that x € X. Clearly, for every ¢ < « there
is some legal ¢ € F such that x U {¢} C dom(a) and a = A | dom(a) (just pick
A | (x U{&})). There must then be some ¢ < « such that there are legal @ and b in
F with x U{&} c dom(a) Ndom(b) and a(¢) # b(&), as otherwise 4 would be the
union of all legal @ € F witha D 4 [ x and thus 4 would be in W

By (53) we must then have inside X some ¢ < « and some legal a and b in
F with x U {¢} € dom(a) N dom(b) and a(&) # b(&). By (54), we may then
choose in W some £ € o N X and some ¢ € F N X such that x U {¢} C dom(a).
alx=(A41(XnNa))lx(=4[x)anda(l)# (4] (X Na))(&) (= 4(&)). Let

a; =d.
Writing I' = {a;:i < A}, I’ € W, and T is an antichain consisting of legal
functions. But this is a contradiction! A Theorem 3.2)

Let us fix W C V, an inner model, and let 4 and u be infinite cardinals, 4 < u.
We aim to define a poset in W which will be a candidate for generically adding a
given subset of u.

Working in W, let £ be the infinitary language with atomic fomulae “¢ € 4.”
for £ < u. and such that the set of formulae is closed under negation and infinite
disjunctions of the form \}/ I" for all well-ordered sets I of fomulae with Card(I') <
. Writing u<* = (u=<*)", L has size u<*.

For A C u. A € VU @r™) and ¢ e £. we may define the meaning of “4 E ¢”
in the obvious recursive fashion: 4 £ “¢ € a”iff ¢ € 4. A F - iff A ¥ ¢, and
AE\{Tiff A E ¢ for some ¢ € I. Inside V0@ #™) the relation “4 E ¢” is Borel
inthecodes. ForT' C £, 4 F T'means 4 F ¢ forallp € T. ForTU{p} € P(L)NW,
we write

Tko (55)

iff in WL for all A C p. if 4 ET. then 4 F . (55) is thus defined over
W, and inside WCl@#™) (55) is I} in the codes By absoluteness, (55) is thus
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equivalent with the fact that in pCollon™) forall A C u.if AE T, then A F . For
[ € P(L)N W. T is called consistent iff there is no ¢ € L such that ' - ¢ and

" - — ¢, which in turn is easily seen to be equivalent with the fact that in W €l@«™)

(equivalently, in ¥ C0l@4™)) there is some A C u with 4 & T,
Now let

LYW S [LIYNW.geW
be a function such that

(i) g(I') c T and
(i) Card(g(I)) < 4

forall T € [L]* N W. Let us call ¢ € L illegal iff there is some I' € [£]* N W such
that o € '\ g(I). and let us write T¢ for the set of all formulae of the form'>

o — \X/ &(T). (56)

where ¢ isillegal, T € [C]* N W, and ¢ € T\ g(I').
Let us write ¢ for the set of all ¢ € £ such that 7¢ U {¢} is consistent. We also
write
2] <psz QO/ (57)
for T¢ U{p} ¢’
Cram 3.3. PS¢ has the A-c.c. inside W .

PrOOF. Let T € [P4]* N W. Let p € T\ g(I"). By (56). ¢ <pc \{/ g(T'). so that T
cannot be an antichain. AClaim 3.3)

For an arbitrary choice of g, we might have that P¢ is quite trivial, or even P$ = ().
LetA Cu, A€ V. Weset

Gi={pePs: AF p}.
Cram 3.4. Assume that A= T¢. Then G4 C P8 is a P2 -generic filter over W and

A={l<u: “Cca’e Gy} e WG]

PROOF. If ¢, ¢’ € P8, A F ¢, and ¢ <p: @', then 4 E ¢’ using absoluteness. If
0.9 €PE,AFE p.and AF @' . then AF p A" o A’ € PE by A F T, and
clearly o A ¢’ <p: ¢ and ¢ A ¢’ <pc ¢’. Hence G is a filter.

Now let I' € W be a maximal antichain in P¢. By Claim 3.3, I € [P¢]<4. If
GiNT =0, thendE -~ \Y/T.ByAdET? = \Y/T €P?, and

ru{-\Y/T}or

is an antichain. Contradiction!
The rest is easy. (Claim 3.4)

B¢ — ¢’ is short for \/{—p, ¢'}.
164 A @ is short for = \Y/{—¢p, ~¢’}.
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THEOREM 3.5 (Lev Bukovsky). Let W C V be an inner model, and let J. be an

infinite regular cardinal such that W uniformly J-covers V. Let e 27 P(2<%) be
a bijection, and let

A={2% p+én<2 nEce)).

There is then some poset P € W such that

(a) P has the - -c.c.in W.

(b) P has size 2>~ in W,

(c) Ais ]P’-generlc over W, and
)V

(d [A].

PROOF. Let us write A
= 22</A7

as being computed in V.
By the fact that W uniformly A-covers V', we may find a function

g LY =L geW

such that forall T € [£) N W,

(i) g(T) CT.
(i) Card(g(I')) < 4, and
(iii) if 4 & ¢ for some ¢ € T, then 4 F \{/ g(T').

For this choice of g, 4 £ T¢. Hence by Claim 3.4, G4 is P¢-generic over W, and
A € W[G4]. This gives (a), (b), and (c). Clearly, W[G 4] inherits from W the fact
that it uniformly A-covers V', so that (d) is given by Theorem 3.2. A (Theorem 3.5)
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