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VARSOVIANMODELS I

GRIGOR SARGSYANAND RALF SCHINDLER

Abstract. LetMsw denote the least iterable innermodel with a strong cardinal above aWoodin cardinal.
By [11],Msw has a fully iterable core model,KMsw , andMsw is thus the least iterable extender model which
has an iterable core model with a Woodin cardinal. In V , KMsw is an iterate of Msw via its iteration
strategy Σ.
We here show thatMsw has a bedrock which arises from KMsw by telling KMsw a specific fragment Σ̄ of

its own iteration strategy, which in turn is a tail of Σ. HenceMsw is a generic extension of L[KMsw , Σ̄], but
the latter model is not a generic extension of any inner model properly contained in it.
These results generalize to models of the form Ms(x) for a cone of reals x, where Ms(x) denotes the

least iterable inner model with a strong cardinal containing x. In particular, the least iterable inner model
with a strong cardinal above two (or seven, or boundedly many)Woodin cardinals has a 2-small core model
K with a Woodin cardinal and its bedrock is again of the form L[K, Σ̄].

§1. Introduction. By a theorem of W. Hugh Woodin, every pure extender model
W with a Woodin cardinal has a nontrivial ground,1 i.e., there is some inner model
W̄ � W such thatW is a generic extension of W̄ . E.g., let W̄ = PW (M), where
M arises from an L[E]-construction insideW up to its first Woodin cardinal and
PW (M) denotes the P-construction aboveM and performed insideW , cf. [15].
The situation is different for hod mice, also called “strategic mice.” Woodin
showed that there are strategic mice which are bedrocks, i.e., which don’t admit any
nontrivial grounds, cf. [23]. Strategic mice naturally arise as HODs of models of
determinacy, cf. [9].
The current article produces a minimal example of an extender model with a
Woodin cardinalwhich, when equippedwith a fragment of its own iteration strategy,
is a bedrock, and it will also be the HOD of a homogeneous generic extension of an
extender model.
By a theorem of John Steel, extender models with no strong cardinals cannot
have a fully iterable core model with a Woodin cardinal. The article [3] analyzes the
mantle2 of (tame) extender models with Woodin cardinals but no strong cardinals
and shows that it is always a lower part model; in particular, their mantles are
not grounds. On the other hand, writing Msw for the least iterable inner model
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1The terms “ground,” “bedrock,” and “mantle” are taken from [2]. If W̄ ⊂W are both inner models,

then W̄ is a ground of W iff W is a generic extension of W̄ . W is a bedrock iff W itself is the only
ground ofW .
2The mantle of an inner model is defined to be the intersection of all of its grounds.
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with a strong cardinal above a Woodin cardinal, [11] shows thatMsw does have a
fully iterable core model KMsw which in turn has a strong cardinal above a Woodin
cardinal, so that the mantle of Msw should contain KMsw and not be a lower part
model.
The current article analyzes themantle ofMsw and shows that it is a ground, hence
the smallest ground, and thus a bedrock. The mantle turns out to be L[KMsw , Σ̄],
where Σ̄ is a fragment of the iteration strategy ofKMsw whichMsw can see and which
in turn is a fragment of the tail ofMsw’s own iteration strategy.KMsw is fully iterable
inside L[KMsw , Σ̄].

§2. The mantle of Msw. For the record, a mouse is a premouse which is
countably iterable, i.e., all transitive collapses of sufficiently elementary countable
substructures are supposed to be (�,�1, �1 + 1)-iterable. Cf. [19, Definition 4.4].
Throughout our article, we shall assume that V is closed under the operation
a �→ a¶ mapping a to a-pistol, the least active a-mouse with a strong cardinal. For
any transitive s.w.o.’d3 set a, we letMs(a) be theminimal proper class a-mouse with
a strong cardinal.Ms(a) is obtained from a¶ by iterating its top measure out of the
universe.
The premice of the current article are Mitchell–Steel premice, see [8, Section 1]
and [14, Section 2]. For the purposes of the current article, a premouse N is called
suitable if for some � ∈ N ,
1. N � “� is a Woodin cardinal,”
2. N =Ms(N|�)|�+Ms (N ),
3. for every � < �,Ms(N|�) � “� is not Woodin,” and
4. N � “I’m (�, �, �)-iterable.”
We shall now also assume that there is a suitable premouse, and more: Let us call
a premouseM sw-small iff for all extenders F fromM’s sequence,

M|crit(F ) � “there is no strong cardinal above a Woodin cardinal.”

Let us assume that there is a non-sw-small mouse, and letM#sw be the unique sound
non-sw-small mouseM such that every proper initial segment ofM is sw-small. As
we assume V to be closed under a �→ a¶, the (�,�1, �1)-iterability ofM#sw implies
that M#sw be fully iterable with respect to arbitrary stacks of normal trees. Let us
denote by

Msw

the result of iterating M#sw’s top measure out of the universe. Let � = �
Msw be the

Woodin cardinal ofMsw, and let κ = κMsw be the strong cardinal ofMsw. We have
thatMsw =Ms(Msw|�), andMsw|�+Msw is suitable.
By way of notation, ifW is any extender model, then we will denote by �W the
least Woodin cardinal of W (if it exists), we will denote by BW the �-generator
version of the extender algebra of W at �W (cf. [19, pp. 1657f.] and [15, Lemma
1.3]) given by the total extenders ofW ’s sequence up to �W (if it exists), and we will
denote by κW the least strong cardinal ofW (if it exists).

3Self-well-ordered.
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In what follows, the relevant W will always be an iterate of Msw, so that �W

will also be the unique Woodin cardinal of W , and κW will be the unique strong
cardinal ofW .
The iteration strategy forM with respect to finite stacks of normal trees induces
an iteration strategy, call it Σ, forMsw with respect to finite stacks of normal trees.
We have the following.
(1) Σ satisfies hull condensation, cf. [9, Definition 1.31],
(2) Σ satisfies branch condensation, cf. [9, Definition 2.14], and
(3) Σ is positional, cf. [9, Definition 2.35(4)].4

As suggested by the referee, let us also state the following property of Σ. If T
is a normal iteration tree on Msw which is according to Σ and has limit length,
and if b is a cofinal well-founded nondropping branch through T , then b = Σ(T ).
The reason is that if �(T ) �= �T0,b(�Msw), then if Q �MT

b is the least extension of
M(T ) such that �(T ) is not definably Woodin over Q, then Q is ¶-small above
�(T ) and hence iterable by absoluteness, so that b picks the rightQ-structure; and if
�(T ) = �T0,b(�Msw), thenMT

b will also be ¶-small above �(T ) and hence iterable by
absoluteness, so that b moves the theory of any finite set of indiscernibles correctly.
This property of Σ may be used to prove (1) through (3) above, and it could also be
used to simplify the proofs of Lemma 2.1 as well as parts of the proofs of Lemma
2.9. The reason why we decided to not make use of this property is that it fails
for more complicated mice, e.g., the ones studied in [10], and that we try to give
arguments which generalize.
We shall need the following slight refinement of (2):
Lemma 2.1. LetM be a proper class sized Σ-iterate ofMsw. Let U be an iteration
tree onM living onM |�M with a last modelMU

� such that [0, �]U does not drop and
U is according to ΣM . Let T be an iteration tree onM living onM |�M and of limit
length which is according to ΣM . If b and k are in some generic extension of V such
that
(a) b is a cofinal nondropping branch through T and
(b) k :MT

b |�M
T
b → MU

� |�M
U
� is elementary with

�U0,� �M |�M = k ◦ �T0,b �M |�M , (1)

then b = ΣM (T ).

Proof. Write c = ΣM (T ). If �(U) �= �T0,b(�M ) = �M
T
b , thenMT

b comes with a
Q-structure which by the existence of k is iterable, and this gives that b = c.
Let us now assume that �(U) = �T0,b(�M ). The key fact is that k may be extended
to k+ :MT

b → MU
� by setting

k+(�T0,b(f)(a)) = �
U
0,�(f)(k(a)).

It is easy to verify that k+ is well-defined and elementary. Also,

�U0,� = k
+ ◦ �T0,b . (2)

Now let 	 be a sufficiently large V -cardinal, and let 	+n denote the nth cardinal
successor of 	 as being computed in V .

4The last “positional” in [9, Definition 2.35(4)] should read “weakly positional,” though.
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We have that
X = HullM ({	+n : 0 < n < �}) ∩ �M

is cofinal in �M . Also,

�T0,c(	
+n) = 	+n for all n, 0 < n < �, (3)

and
�U0,�(	

+n) = 	+n for all n, 0 < n < �,

and by (2) the latter implies that

�T0,b(	
+n) = 	+n for all n, 0 < n < �. (4)

But (3) and (4) give that
�T0,c � X = �T0,b � X,

which implies that b = c by the “zipper argument,” cf. e.g., [19, p. 1645f.], as
desired. �(Lemma 2.1)
Some of the arguments to follow will look pretty familiar to researchers working
in the area of descriptive inner model theory, cf. e.g., [21, Section 3].
Let us consider the set U consisting of all U = (Uk : k ≤ n), some n < �, such
that either n = 0 and lh(U0) = 1 (i.e., U is trivial), or else there is a sequence
�0 < · · · < �n < κ of cutpoints ofMsw and:
(a) U ∈Msw|κ,
(b) U = (Uk : k ≤ n) is a finite stack of normal iteration trees Uk ,
(c) U0 is onMsw and lives below �,
and for every k ≤ n,
(d) lh(Uk) = (�k)+Msw = �(Uk),
(e) Uk is defiable over Msw|(�k)+Msw and is guided by Q-structures which are
obtained via P-constructions, cf. [15, Section 1],

(f) P(M(Uk)) is a proper class,5 �(Uk) is a Woodin cardinal of P(M(U)), and
P(M(U))[G ] =Msw

for some G which is BP(M(U))-generic over P(M(U)), and
(g) if k > 0, then Uk is on P(M(Uk−1)) and lives below �(Uk−1).
Let U = (Uk : k ≤ n) be as above, where Un is not trivial. For every k ≤ n
and inside Msw, P(M(Uk)) is a universal weasel overM(Uk) belowM(Uk)¶. Let
us write K(M(Uk)) for theM(Uk)¶-small core model overM(Uk) as constructed
insideMsw. In V , let bk = Σ(Uk). We then have:
Lemma 2.2. Let U = (Uk : k ≤ n) ∈ U, where Un is not trivial. Let I be the class
of generating indiscernibles for Msw given by iterating the top measure of (Msw|�)¶
out of the universe, and let � = �Msw,P(M(Un)) be the map given by b0


 · · ·
bn, i.e.,
the iteration map fromMsw to P(M(Un)) which is given by Σ.
(a) For every k ≤ n, P(M(Uk)) = K(M(Uk)) =Ms (M(Uk)) =MUk

bk
.

(b) For every k ≤ n, I is a class of generating indiscernibles for P(M(Uk)) relative
toM(Uk).
(c) �(�) = � for every � ∈ I .
5Here and in what follows we write P(M ) for the P-construction overM as being performed inside

Msw. [15, Section 1] would write P(Msw,M,−) for this model.
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Proof. (a) and (b): Let us write M = M(Uk). As P(M )[G ] = Msw for some
generic G , K(M ) = K(M )Msw = K(M )P(M )[G ] = K(M )P(M ) ⊂ P(M ). On the
other hand, P(M ) is a universal weasel over M , so that there is an elementary
embedding j : K(M )→ P(M ), which, asK(M ) and P(M ) are belowM¶, is given
by an iteration of K(M ). But then K(M ) ⊂ P(M ) gives K(M ) = P(M ).
We have thatMsw = Hull

Msw(I ). We claim that

P(M ) = HullP(M )(�(Uk) ∪ I ). (5)

To show (5), notice first that the extender sequence of Msw may be defined over
P(M )[G ] from the parameterMsw|�(Uk) ∈ P(M )[G ] and the extender sequence of
P(M ). The forcing language associatedwith forcingwithBP(M ) overP(M ) thus has
a term for the extender sequence ofMsw and therefore also a term for the canonical
Σ1 Skolem function hMsw ofMsw, cf. [12, Theorem 10.16]. Writing h for this term for
hMsw , we have that the function h

∗ : BP(M ) × � × [Msw]<� → P(M ) with

h∗(p, n, a) =

{
y if p �B

P(M )

P(M ) h(ň, ǎ) = y̌, and

∅ otherwise.

is definable over P(M ) using a name for Msw|�(Uk). But G and Msw|�(Uk) are
computable from each other, so that HullP(M )(X ) is closed under h∗ for any X and
by BP(M ) ⊂ HullP(M )(�(Uk) ∪ I ) andMsw = HullMsw(I ), we obtain (5).
The fact that P(M ) is an inner model of Msw which is definable there from M
an the extender sequence of Msw above �(Uk) easily implies that I is also a class
of indiscernibles for P(M ), so that by (5) it is a class of generating indiscernibles
relative toM(Uk). This shows (b).
But now Ms(M(Uk)) is also a least inner model with a strong cardinal end-
extending M = M(Uk) and having a proper class of generating indiscernibles
relative toM(Uk). It follows that P(M ) =Ms (M(Uk)).
Virtually the same argument shows P(M ) = MUk

bk
by induction on k ≤ n. We

have shown (a).
(c) In the light of (a), (5) buys us that

MUn
bn
= HullM

Un
bn (�(Un) ∪ I ). (6)

At the same time,Msw = Hull
Msw(I ) implies that

MUn
bn
= HullM

Un
bn (�(Un) ∪ �”I ), (7)

and �”I is a class of indiscernibles forMUn
bn
relative to Un.

Let ϕ be a formula, let � be a Σ1 Skolem term, let x ∈ M(Un), let �1 < · · · < �

be from I , and let 	1 < · · · < 	
 be V -cardinals with �(�
) < 	1. We have that
�(	i) = 	i for 0 < i ≤ 
 , so that we may conclude that

MUn
bn

� ϕ(�(x, �1, . . . , �
))⇐⇒
MUn
bn

� ϕ(�(x, 	1, . . . , 	
))⇐⇒
MUn
bn

� ϕ(�(x, �(	1), . . . , �(	
)))⇐⇒
MUn
bn

� ϕ(�(x, �(�1), . . . , �(�
))).
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This shows that �M
Un
bn (x, �1, . . . , �
) �→ �M

Un
bn (x, �(�1), . . . , �(�
)) defines an ∈-

automorphism ofMUn
bn
and is hence the identity. We have shown (c). �(Lemma 2.2)

Let U = (U : k ≤ n) ∈ U. If Un is not trivial, then we shall write M(U) for
M(Un). To uniformize the notation, if n = 0 and T0 is trivial, then we shall denote
by P(M(U)) the modelMsw. Let us write F for the family of all proper class mice
of the formP(M(U)), where U ∈ U. For the record,F is definable insideMsw using
Msw’s extender sequence as a predicate.
Let T , U ∈ U, and writeN = P(M(T )) andN ′ = P(M(U)). By Lemma 2.2,N
is a Σ-iterate of Msw. Let ΣN denote the iteration strategy for N which is induced
by Σ. As Σ is positional, ΣN only depends onN , not on the particular iteration tree
which witnesses thatN is a Σ-iterate ofMsw.
Assume for now that N ′ is a ΣN -iterate of N via a finite stack of normal trees,
which is tantamount to saying that there is a finite stack T0
 · · ·
Tk of normal trees
onMsw such thatN is the last model of one of the Ti , i < k, andN ′ is the last model
of Tk . As Σ satisfies hull condensation, Σ is commuting, cf. [9, Definition 2.35(9)],
so that ΣN satisfies the Dodd–Jensen property, cf. [9, Proposition 2.36], and hence
there is a unique iteration map from N to N ′. In what follows, we let �N,N ′ denote
this unique iteration map from N to N ′.
Let’s now drop the assumption that N ′ be a ΣN -iterate of N . Let � < κ, � >
max(�(T ), �(U)), be a cutpoint ofMsw. Let T ∗, U∗ be normal iteration trees onN ,
N ′, respectively, such that both start out by iterating the least measurable cardinal
and its images � + 1 times, and from then on T ∗ and U∗ result from comparison,
simultaneously making an initial segment of the backgroundmodel generic over the
respective iterate; more precisely, if T ∗ � α and U∗ � α have already been defined,
where � + 2 ≤ α ≤ �+Msw, then if α is a successor ordinal, then we let � be least
such that

(a) E
MT ∗
α−1

� �= EMU∗
α−1

� or

(b) E
MT ∗
α−1

� = E
MU∗
α−1

� , there is no drop along [0, α − 1]T ∗ and no drop along

[0, α−1]U∗, andwriting F = E
MT ∗
α−1

� and� = crit(F ), � > �+M
T ∗
α−1 = �+M

U∗
α−1

and there is some sequence �ϕ = (ϕi : i < �) ∈ MT ∗

α−1|� =MU∗

α−1|� of formulae
associated with the �-version of the extender algebra of the current models
such that the extender sequence of Msw satisfies

∨
iF (�ϕ) ∩ MT ∗

α−1|� but not∨
�ϕ,

and then we let T ∗ � (α+1) and U∗ � (α+1) arise by applying EMT ∗
α−1

� and E
MU∗
α−1

�

(and padding on one side if � was chosen according to (a) and on this one side the
extender is empty), with the understanding that we stop the construction if there
is no such �; and if α is a limit ordinal, then we pick the unique cofinal branches
through T ∗ � α andU∗ � α whose limit models haveQ-structures as initial segments
which are given by P(M(T ∗ � α)) = P(M(T ∗ � α)), and we let T ∗ � (α + 1) and
U∗ � (α + 1) arise by adding those branches, again with the understanding that we
stop the construction if such branches don’t exist. Notice thatT ∗ andU ∗ are defined
insideMsw. By [15, Lemmas 1.3 and 1.5], the construction of T ∗ and U∗ will stop
exactly at stage �+Msw, whichmeans thatweproducedP(M(T ∗)) = P(M(U∗)) ∈ F
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such that by Lemma 2.2, writing R = P(M(T ∗)) = P(M(U∗)), R is a ΣN -iterate
of N as well as a ΣN ′ -iterate of N ′.
We may now let

(M∞, (�N,∞ : N ∈ F)) = dirlim(N, (�N,N ′ : N,N ′ ∈ F)).

Notice that even though F is a definable collection of classes inMsw, this system is
not inMsw, as the maps �N,N ′ are not inMsw.
We are now going to show that we may “catch” F by a system which does exist
inMsw.
In what follows, we shall write �∞ = �M∞ and κ∞ = κM∞ .
Let s be a nonempty finite set of ordinals. Write s− = s \ max(s). For N =
P(M(U)) ∈ F we call N s-iterable iff for all T ∈ Msw onM(U) of limit length
	 < κ such that U
T ∈ U, say T = (Tk : k < n), n < �, there are for every i < n
cofinal branches

bi ∈ (Msw)Col(�,max(s))

through Ti such that, writingN0 for the startingmodel of T0 andNi+1 = P(M(Ti )),

�Ti0,bi (s) = s , and (8)

�Ti0,bi (Ni |max(s)) = Ni+1|max(s). (9)

Writing b for the composition of the branches bi , i < n, and then writing

�Ns = sup(�
N ∩HullN |max(s)(s−)),

the “zipper argument,” cf. e.g., the proof of [19, Theorem 6.10], shows that the map

�T0,b � HullN |max(s)(�Ns ∪ s−) (10)

is independent from the particular choice of b and hence is inMsw, and moreover if

�N,N ′(s) = s , and (11)

�N,N ′(N |max(s)) = N ′|max(s), (12)

then

�T0,b � HullN |max(s)(�Ns ∪ s−) = �N,N ′ � HullN |max(s)(�Ns ∪ s−). (13)

We now aim to define �sN,N ′ . For this, we make use of the concept of “strong
s-iterability.”6 Let s , s−, and N = P(M(U)) ∈ F be as before. We call N strongly
s-iterable iff N is s-iterable and for all T ∈ Msw onM(U) of limit length 	 < κ
such that U
T ∈ U, say T = (Tk : k < n), n < �, and for all T ′ ∈ Msw onM(U)
of limit length 	′ < κ such that U
T ′ ∈ U, say T ′ = (T ′

k : k < n
′), n′ < �, if the

bi ∈ (Msw)Col(�,max(s)) are cofinal branches through Ti which “fix s” à la (8) and
(9), i < n, and if the b′i ∈ (Msw)Col(�,max(s)) are cofinal branches through T ′

i which

6At the cost of making use of [20], we could avoid the concept of “strong s-iterability,” as follows. If
N = P(M(U)), N ′ ∈ F and there is some T with U
T ∈ U such that N ′ = P(M(T )), then by [20],
there is a unique normal such T with U
T ∈ U. We may then define �s

N,N ′ as the unique map as in (10)

for any cofinal branch b ∈ (Msw)Col(�,max(s)) through T which “fixes s” as in (8) and (9).
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“fix s” à la (8) and (9), i < n′, and if b is the composition of the branches bi , i < n,
and if b′ is the composition of the branches b′i , i < n

′, then

�T0,b � HullN |max(s)(�Ns ∪ s−) = �T
′

0,b′ � HullN |max(s)(�Ns ∪ s−). (14)

If (11) and (12) hold true, then by (13) so does (14).
Let us write

(N, s) �F (N ′, t)
to express the fact that N ∈ F is strongly s-iterable, N ′ ∈ F is strongly t-iterable,
t ⊃ s , and there is a tree T ∈ Msw on N as above such that N ′ = P(M(T )). If
(N, s) �F (N ′, s), then we shall write �sN,N ′ for the unique map as in (14).
Notice that for N and s as above, the (strong) s-iterability of N is uniformly
defined in a way which is first order overMsw.
Let s be a nonempty finite set of ordinals, N = P(M(U)) ∈ F , and U
T ∈ U.
Write c = ΣN (T ). If �T0,c(s) = s , then an easy absoluteness argument shows that
there is also some b ∈ (Msw)Col(�,max(s)) with (8) and (9) above.
Lemma 2.3. Let N = P(M(U)) ∈ F .
(1) Let s be any nonemptyfinite set of ordinals. There is some T such thatU
T ∈ U

andN ′ = P(M(T )) is strongly s-iterable.
(2) Let {�1 < · · · < �
} ⊂ I , where I is the class of generating indiscernibles for
Msw given by iterating the top measure of (Msw|�)¶ out of the universe, and write
s = {�1, . . . , �
}. Then N is strongly s-iterable.

Proof. (1): Otherwise there would some nonempty finite set s of ordinals and
some infinite sequence (Nn : n < �) such that N0 =Msw, and Nn+1 is a ΣNn -iterate
ofNn via some tree Tn such that T0
 · · ·
Tn ∈ U and �Nn,Nn+1(s) > s for all n < �.
This contradicts the (�,�,OR)-iterability ofMsw in V .
(2): This follows fromLemma 2.2(c) by a trivial absoluteness argument.�(Lemma 2.3)

The collection of all strongly s-iterableN ∈ F is finitely directed in that ifN ∈ F
is strongly s-iterable and N ′ ∈ F is strongly t-iterable, then there is N∗ ∈ F which
is strongly (s ∪ t)-iterable and

(N, s), (N ′ , t) �F (N∗, s ∪ t).
This is true because given (N, s) and (N ′, t), we may pick some R ∈ F which is
strongly s∪t-iterable. A joint comparison process as defined abovewill then produce
some strongly s ∪ t-iterable N∗ ∈ F which in V is ΣN -iterate ofN , a ΣN ′ -iterate of
N ′, as well as a ΣR-iterate of R.
We may then let

(M′
∞, (�

s
N,∞ : N ∈ F , N is strongly s-iterable)) (15)

be the direct limit of the system (N, (�sN,N ′ : (N, s) �F (N ′, s)).
Lemma 2.4.

M∞ =M′
∞. (16)

Proof. Let �′ be any ordinal, and let �′ = �N,∞(�), where N ∈ F . Let � < �N
and let s̄ be a finite set of indiscernibles forMsw such that

� ∈ HullN (� ∪ {s̄}).
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Such � and s̄ exist by Lemma 2.2(b). As ran(�Msw,N ) ∩ �N is cofinal in �N , we may
in addition assume (by enlarging � and s̄ if necessary) that

[�, �N ) ∩HullN ({s̄}) �= ∅.
Let s = s̄∪{�}, where � is anyV -cardinal strictly abovemax(s̄). ThenN is strongly
s-iterable by Lemma 2.3, and �Ns > �, so that � ∈ dom(�sN,∞).
This shows that we may define an elementary embedding ϕ :M∞ → M′

∞ by
ϕ(�N,∞(�)) = �sN,∞(�) for � and s as above. It remains to be shown that ϕ is
surjective.
To this end, let again �′ be any ordinal, and let �sN,∞(�) = �

′, where N ∈ F
is strongly s-iterable. Let N = P(M(U)), and let T be such that U
T ∈ U and,
setting N ′ = P(M(T )),

�N ′ ,N ′′(s) = s for all (N ′, s) �F (N ′′, s), (17)

cf. the proof of Lemma 2.3(1). We may pick a finite set t of indiscernibles forMsw
such that

s ∈ HullN
′|max(t)(�N

′

t ∪ t−),
cf. above. We then have that

�sN,N ′(�) ∈ HullN
′|max(t)(�N

′

t ∪ t−).
AlsoN ′ is strongly s∪t-iterable, by (17) and theproof ofLemma2.3(2), andbecause
�sN ′ ,N ′′ ⊂ �s∪tN ′ ,N ′′ = �N ′,N ′′ � HullN

′|max(t)(�N
′

t ∪ t−) for (N ′, s ∪ t) � (N ′′, s ∪ t)
(which is equivalent to (N ′, s) � (N ′′, s)), we will get that

�′ = �sN,∞(�) = �
s∪t
N ′ ,∞(�

s
N,N ′(�)) = �N ′,∞(�sN,N ′(�)),

so that ϕ is indeed onto and hence the identity. We showed (16). �(Lemma 2.4)
The following is straightforward to verify.

Lemma 2.5. In V ,M∞ is a Σ-iterate ofMsw via an �-stack of normal trees each
of which are individually inMsw.
Moreover, let F be a total extender from theMsw-sequence with crit(F ) = κ, and
write j : Msw →F ult(Msw;F ). Then j(M∞) is an ΣM∞ -iterate ofM∞ via using
�Msw,∞(F ), followed by an �-stack of normal iteration trees which are according to
Σult(M∞;�Msw,∞(F ))

.

Proof. Let (Uk : k < �) be such that Uk ∈ U for all k < � and setting Nk =
P(M(Uk)) for k < �, (Nk : k < �) is cofinal in F , i.e., if P(M(U)) ∈ F , then there
is some k < � such that Nk is a ΣP(M(U))-iterate of P(M(U)). The direct limit of
the Nk , along with the maps �Nk,N
 , k ≤ 
 < �, must yieldM∞.
Next, we have for every N ∈ F , j(N) ∈ j(F) and j(N) = ult(N ;F � N),
where F � N is on the sequence of N . The direct limit of the ult(N ;E � N),
along with j(�N,N ′), with N , N ′ ∈ F , N ′ being a ΣN -iterate of N , is then equal to
ult(M∞;�Msw,∞(F )) and canonically embeds into j(M∞). IfN = P(M(U)) ∈ F ,
then ult(N ;E � N) is an iterate of Msw via U
E � N , and if N , N ′ ∈ F , where
N ′ is a ΣN -iterate of N via T , and if T = U0
 · · ·
Uk−1, where all Ui , i < k, are
normal, then j(Ui) has the very same tree structure as Ui , and, as Ui is a hull of
j(Ui ), the fact that Σ satisfies branch condensation implies that j(Ui ) is according
to Σ and Σ(Ui ) = Σ(j(Ui )) for i < k.
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We may conclude that the collection of all j(N), for N ∈ F , is definable in
ult(Msw;F ), and for � = κ which is a cutpoint of ult(Msw;F ) below j(κ) we may
work in ult(Msw;F ) to simultaneously compare all j(N), N ∈ F , in a fashion
as on p. 501f. to produce some M = Pult(Msw;F )(M(U ′)) ∈ j(F) with �(U ′) =
κ+ult(Msw;F ) = κ+Msw and such thatM is a Σj(N )-iterate of j(N) for all N ∈ F .
ult(M∞;�Msw,∞(F )) is a definable inner model of ult(Msw;F ) and the for-
mer must now canonically embed into M . We may then choose some � > κ
which is a cutpoint of ult(Msw;F ) and work in ult(Msw;F ) to compare M
with ult(M∞;�Msw,∞(F )) in a fashion as on p. 501f. to produce some M

∗ =
Pult(Msw;F )(M(U∗)) ∈ j(F) with �(U∗) = �+ult(Msw;F ) and such that M∗ is a ΣM -
iterate ofM and also an iterate of ult(M∞;�Msw,∞(F )) via Σult(M∞;�Msw,∞(F ))

. We
may actually produce an �-sequence of suchM∗ which is cofinal in Fult(Msw;F ).
j(M∞) may thus be represented as an iterate of M∞ via using �Msw,∞(F ),
followed by an �-stack of normal iteration trees which are according to
Σult(M∞;�Msw,∞(F ))

. �(Lemma 2.5)
InsideM∞, we may look at the image of the system (15) under the map �0,∞.
Let us writeM∞

∞ for the direct limit model, i.e.,

M∞
∞ = �Msw,∞(M∞),

which is a definable subclass ofM∞, defined in the same way overM∞ asM∞
was defined overMsw by (15). In analogy to Lemma 2.5, we have:

Lemma 2.6. If N ∈ FM∞ , then N is a ΣM∞ -iterate of M∞, and M∞
∞ is a

ΣM∞ -iterate ofM∞ via an �-stack of normal trees onM∞
∞.

In particular, we get a unique iteration map, call it �∞0,∞, fromM∞ intoM∞
∞,

which is given by ΣM∞ . A priori, there doesn’t seem to be a reason why �
∞
0,∞ should

be definable inMsw.
However, for each ordinal � let us denote by �∗ the minimum of the set of all
�N,∞(�) for N ∈ F . The argument forM∞ =M′

∞ we gave above shows that for
every � and everyN ∈ F there is some finite set s of ordinals such thatN is strongly
s-iterable and � ∈ dom(�sN,∞). We may then define � �→ �∗ insideMsw by

�∗ = min({�sN,∞(�) : N is strongly s-iterable and � ∈ dom(�sN,∞)}). (18)

We have that if � = �N,∞(�̄), where N is strongly s-iterable for some s such that
� ∈ ran(�sN,∞), then

�N,∞(�) = �N,∞(�N,∞(�̄))

= �N,∞(�sN,∞(�̄))

= �N,∞(�sN,∞)(�N,∞(�̄))

= �∞0,∞(�),

which means that
�∗ = �∞0,∞(�).

Notice that �∞0,∞ is also equal to the ultrapower map produced by applying the
long extender derived from �∞0,∞ � M∞|�∞ to the modelM∞. In other words,

� �→ �∗ may be defined inside the model L[M∞, (� �→ �∗) � �∞], (19)
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and in particular

L[M∞, (� �→ �∗)] = L[M∞, (� �→ �∗) � �∞].
Lemma 2.7. (a) κ is the least measurable cardinal ofM∞.
(b) �∞ = κ+Msw .
(c) κ+Msw < κ∞ < (κ∞)+M∞ < (κ∞)++M∞ = κ++Msw .

Proof. (a): This is easy.
(b): Cf. [21, Lemma 3.38(2)]. To show that �∞ ≤ κ+ in Msw, let � < �∞, say
� = �sN,∞(�̄), where N ∈ F is strongly s-iterable and �̄ < �Ns . Then each ordinal
below � is of the form �sN ′,∞(�) for some N

′ ∈ F with (N, s) �F (N ′, s) and
� < �sN,N ′(�̄). As F has cardinality κ, this shows that � < κ+ inMsw.
Let us now show that κ+Msw ≤ �∞. Let α < κ+Msw , and let f : κ → α, f ∈ Msw,
be bijective, say f = �Msw|max(s)(s−), where � is a Σ1-Skolem term and s is a finite
set ofMsw-indiscernibles.
Let � < α, and let 	 < κ be such that � = f(	). Let N ∈ F be such that

	 < min(�Ns , the least measurable cardinal of N)

and �sN,N ′(�) = � for all N ′ ∈ F where �sN,N ′ is defined. Let

SN = {ε : ∃� < the least measurable of N ∃p ∈ B
N p �B

N

N �N [Ġ]|max(s)(š−)(�̌) = ε̌}.
We have that � ∈ SN and otp(SN ) < �N . Let �N� be the unique � such that � is the
� th element of SN . In particular, �N� < �

N .
We claim that � �→ �sN,∞(�N� ) is well-defined, i.e., that it is independent from the
particular choice of an N as above, and that it is also order-preserving. Well, this
is because if � ≤ � ′ < α and �N� and �N

′

�′ are defined, then there is some Q ∈ F
such that �sN,Q and �

s
N ′ ,Q are both defined and �

s
N,Q(S

N ) = QN = �sN ′,Q(S
N ′
), and

hence �Q� ≤ �Q�′ .
But now � �→ �sN,∞(�N� ) is an injection from α into �∞ which exists inMsw.
(c): κ+Msw < κ∞ is obviously given by (b).
To show that (κ∞)+M∞ < κ++Msw , we use the argument from the proof of Lemma
2.5 and let F = EMsw� be the least total extender of the Msw-sequence which has
critical point κ. Write iF : Msw →F W = ult(Msw;F ), so that iF (κ)+W < κ++Msw =
κ++W . For each N ∈ F , F ∩N is the least total extender of the N -sequence which
has critical point κ = κN , and ult(N ;F ∩ N) ∈ FW . A joint comparison process
as defined above on p. 501f. allows us to produce some N∗ ∈ FW such that
1. in V , N∗ is a Σult(N ;F∩N )-iterate of ult(N ;F ∩N) for all N ∈ F = FMsw and
2. �N

∗
= κ+W = κ+Msw .

As Σ is commuting, for each N ∈ F there is a unique iteration map, call it �N,N∗ ,
from N to N∗, namely the ultrapower map N → ult(N ;F ∩ N) followed by the
iteration map from ult(N ;F ∩ N) to N∗, and if N , N ′ ∈ F such that �N,N ′ exists,
then

�N ′,N∗ ◦ �N,N ′ = �N,N∗ .

Therefore, there is a canonical elementary embedding

k :M∞ → N∗.
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But N∗ = P(N∗|κ+Msw), as being constructed insideW . Therefore,

k(κ∞) = κN
∗
= κW = iF (κ),

and
(κ∞)+M∞ ≤ iF (κ)+W < κ++Msw .

Finally, (κ∞)++M∞ = �Msw,∞(κ
++Msw) ≥ κ++Msw . As κ++Msw is a cardinal in

M∞, this gives (κ∞)++M∞ = κ++Msw . �(Lemma 2.7)
The following key lemma makes up the first key step in analyzing the mantle of
Msw.

Lemma 2.8. Let us write κ+ = κ+Msw and κ++ = κ++Msw .7 Msw is a forcing
extension of L[M∞, � �→ �∗] via some P which satisfies the κ+-c.c.
In fact,

Msw = L[M∞, � �→ �∗][Msw|κ++],
whereMsw|κ++ is P-generic overL[M∞, � �→ �∗] for some P ∈ L[M∞, � �→ �∗] such
that L[M∞, � �→ �∗] � “P has the κ+-c.c. and is of size κ++.”

Proof. We shall make use of Bukovský’s theorem from [1]. For the reader’s con-
venience, we give a proof sketch in the appendix to the current article, cf. Theorem
3.5, cf. also [13].
We claim thatL[M∞, � �→ �∗] uniformlyκ+-coversMsw, cf.Definition 3.1, i.e., for
all functions f ∈Msw with dom(f) ∈ L[M∞, � �→ �∗] and ran(f) ⊂ L[M∞, � �→
�∗] there is some function g ∈ L[M∞, � �→ �∗] with dom(g) = dom(f) such that
for all x ∈ dom(g),
(a) f(x) ∈ g(x) and
(b) Card(g(x)) < κ+ for all x ∈ dom(g).
It obviously suffices to prove this for all f whose domain is an ordinal and whose
range is contained in the class of all ordinals.
Suppose what we claim would not be true. As L[M∞, � �→ �∗] is definable
inside Msw (from Msw’s extender sequence8), there is then some counterexample
f : � → ORwhich is parameter-free definable insideMsw (again, fromMsw’s exten-
der sequence). Let us fix such an f, f : � → OR, and let ϕ be a formula in the
language ofMsw such that for all �, �, f(�) = � iffMsw � ϕ(�, �).
If N ∈ F , then Msw = N [h] for some h which is BN -generic over N ; in fact,
h =Msw|�N . The extender sequence ofMsw is then uniformly definable insideN [h]
from the extender sequence ofN and the parameterMsw|�N . There is then a formula
� such that for allN ∈ F , � is a formula of the forcing language ofN associated to
forcing with BN over N such that ifMsw = N [h], where h which is BN -generic over
N , then for all �, �,Msw � ϕ(�, �) iff there is some p ∈ h such thatp �B

h

N �(�̌, �̌). Of
course, the formula � is also a formula of the forcing language ofM∞ associated
to forcing with BM∞ overM∞.
Let N ∈ F or N =M∞. If p ∈ BN , then we write

p �B
N

N “� defines a function”

7Making use of this notation, we will later show that κ++ = (κ∞)++M∞ , cf. Lemma 2.9.
8Claim 2.12(a) will in fact prove a stronger definability fact, but this is not needed here.
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to mean that

p �B
N

N ∀v∀w∀w ′�(v,w) ∧�(v,w ′)→ w = w ′.

Let gN ∈ N be the function with domain �Msw,N (�) (in case N =M∞ by this we
mean �Msw,∞(�)) such that for all � < �Msw,N (�),

gN (�) = {� : ∃p ∈ BN p �B
N

N “� defines a function and �(�̌, �̌)”}. (20)

As BN has the �N -c.c. inside N , Card(g̃(�)) < �N in N for all � < �Msw,N (�).
Of course, if N ∈ F , then �N,∞(gN ) = gM∞ .
Let g ∈ L[M∞, � �→ �∗] be the function with domain � such that for all � < �,

g(�) = {� : �∗ ∈ gM∞(�
∗)}. (21)

Obviously, Card(g(�)) ≤ Card(gM∞(�
∗)) < �∞ in L[M∞, � �→ �∗].

Let � < � and � = f(�), i.e.,Msw � ϕ(�, �). PickN ∈ F such that �∗ = �N,∞(�)
and �∗ = �N,∞(�). AsMsw = N [h], for some h which is BN -generic over N , there
is some p ∈ h ⊂ BN with

p �B
N

N “� defines a function and �(�̌, �̌),” (22)

so that � ∈ gN (�). But then
�∗ = �N,∞(�) ∈ �N,∞(gN )(�N,∞(�)) = gM∞(�

∗),

and hence � ∈ g(�). Because �∞ = κ+ by Lemma 2.7, we have shown that
L[M∞, � �→ �∗] κ+-uniformly coversMsw.
The conclusion now follows from Theorem 3.5, letting the 	 from the statement
of Theorem 3.5 be equal to κ+Msw . �(Lemma 2.8)
Lemma 2.9. (a) M∞ is fully iterable insideMsw, in fact ΣM∞ � Msw is definable
inMsw.
(b) If P is a poset in Msw and if g ∈ V is P-generic over Msw, thenM∞ is fully
iterable insideMsw[g], in fact ΣM∞ �Msw[g] is definable inMsw[g].
(c) κ+Msw = �∞ < (�∞)+L[M∞,� �→�∗] = κ++Msw .
(d) If 	 is a cardinal of L[M∞, � �→ �∗] with 	 ≥ �∞, then 	 is also a cardinal of
Msw.

Proof. (a): Cf. [11]. We aim to show that ΣM∞ �Msw is definable inMsw. To this
end, let T ∈Msw be a tree of limit length onM∞ which is according to ΣM∞ . Let
c = ΣM∞(T ).
If there is a drop along c, or if there is no drop along c and �(T ) �= �MT

c , then
there is a Q-structure Q � MT

c which is ¶-small above �(T ). But then Q ∈ Msw,
asQmay be found insideW by stacking sound mice which are ¶-small above �(T )
and project to �(T ) on top ofM(T ).
Let us now assume that there is no drop along c and �(T ) = �MT

c . We have that
MT
c is an iterate of K(M(T ))Msw . Let us assume thatMT

c = K(M(T ))Msw and
leave the other case to the reader’s discretion.
We then have thatMT

c is definable in Msw. Let E be a total extender on the
Msw-sequence such that crit(E) = κ and T ∈ ult(Msw;E). Let us write

j : Msw →E W = ult(Msw;E).
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We may produce some N ∈ FW such that in V , N |�N is a normal iterate of
MT
c |�(T ). There is hence some elementary

k′ :MT
c |�(T )→ j(M∞|�∞) = (M∞)W |�MW

∞ . (23)

Let g be Col(�, �(T ))-generic overV . InsideMsw[g] let us consider a tree T search-
ing for a cofinal branch b through T such that b does not drop and there is an
elementary embedding

k :MT
b |�(T )→ j(M∞|�∞)

such that

k ◦ �T0,b � M∞|�∞ = j � M∞|�∞. (24)

We claim that c = ΣM∞(T ) is given by a branch through T . To see this, let
x ∈ M∞|�∞. Let x ∈ ran(�N,∞), where N ∈ F , and write x̄ = �N,∞−1(x). Pick
s , a finite set ofMsw-indiscernibles which is moved neither by �Msw,∞ nor by j and
such that x̄ ∈ HullN |max(s)(�Ns ∪ s−) = dom(�sN,∞). Notice that j(x̄) = x̄, and
j(N) = ult(N ;E ∩ N) ∈ FW . We may copy T onto ult(M∞;�Msw,∞(E)) via the
map i = i�Msw ,∞(E), write iT for the resulting tree. Let

i∗ :MT
c → ult(MT

c ; i
T
c ◦ i(E)) =MiT

c .

We may produce some N∗ ∈ FW such that in V , N∗ is a Σj(N )-iterate of j(N)
as well as a ΣMiT

c
-iterate ofMiT

c . We write �j(N ),N∗ and �MiT
c ,N

∗ for the iteration
maps, and we also write �N∗,j(M∞) for the iteration map from N

∗ to j(M∞).
We now get that

j(x) = j(�N,∞(x̄))

= j(�sN,∞(x̄))

= j(�sN,∞)(j(x̄))

= �sj(N ),j(M∞)
(x̄)

= �N∗,j(M∞) ◦ �MiT
c ,N

∗ ◦ �iT0,c ◦ �j(N ),ult(M∞;�Msw ,∞(E))
(x̄)

= �N∗,j(M∞) ◦ �MiT
c ,N

∗ ◦ �iT0,c ◦ i∗ ◦ �T0,c(x),

so that k = �N∗,j(M∞) ◦ �MiT
c ,N

∗ ◦ �iT0,c ◦ i∗ witnesses that c is indeed given by a
branch through T .
Notice that (24) implies that

k ◦ �T0,b ◦ �Msw,∞ �Msw|� = j ◦ �Msw,∞ �Msw|�. (25)

Let x ∈Msw|�, and let s be a finite set ofMsw-indiscernibles which aremoved neither
by �Msw,∞ nor by j and such that x ∈ HullMsw|max(s)(�Msws ∪ s−) = dom(�sMsw,∞).
Then �sMsw,∞ ∈ Msw and j ◦ �Msw,∞(x) = j ◦ �sMsw,∞(x) = j(�

s
Msw,∞)(j(x)) =

�s
Msw,j(M∞)

(x) = �Msw,j(M∞)(x), where �Msw,j(M∞) is the iteration map fromMsw
to j(M∞). Hence the right hand side of (25) is equal to �Msw,j(M∞). The left hand
side of (25) is equal to the iteration map �T0,b ◦ �Msw,∞ �Msw|� followed by k.
By Lemmas 2.5 and 2.1, b must therefore be equal to c, so that in fact c ∈Msw.
We have shown that ΣM∞(T ) ∈ Msw for every T ∈ Msw. But recall that �∞ =
κ+Msw , cf. Lemma 2.7(b), and �∞ is hence regular in Msw. Hence if T is a tree

https://doi.org/10.1017/jsl.2018.5 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.5


510 GRIGOR SARGSYANAND RALF SCHINDLER

onM∞ with �(T ) = �0,Σ(T )(�∞), then Msw will have exactly one cofinal branch
through T , namely Σ(T ). ΣM∞ �Msw is therefore definable inMsw.
(b): Let T ∈Msw[g] be a tree of limit length onM∞ which is according to ΣM∞ .
Let c = ΣM∞(T ). Assume that there is no drop along c and �(T ) = �M

T
c .

Let � be an appropriate ordinal, and let h be Col(�, �)-generic over V such that
Msw[g] ⊂ Msw[h]. Say p �Col(�,�)Msw

“Ṫ is a tree of limit length on M∞ which is
guided by ¶-small iterable Q-structures, and �(Ṫ ) is Woodin in K(M(Ṫ )).”
For any q ≤Col(�,�) p let hq denote the unique Col(�, �)-generic filter over N
such that for n < �,

(
⋃
hq)(n) =

{
q(n) if n ∈ dom(q), and
(
⋃
h)(n) otherwise.

Inside Msw[h], we may pseudo-compare all K(M(Ṫ hq )), q ≤Col(�,�) p, so as to
produce K(M) for someM. AsM is definable insideMsw[h] from {hq : q ≤Col(�,�)
p} and some parameters fromMsw,M will actually be an element ofMsw, and in
V [h], K(M) is a ΣMT

c
-iterate ofMT

c , a fact which will give rise to the existence of
the natural iteration map fromMT

c = K(M(T )) into K(M).
InsideMsw, we may now pseudo-compareM∞ with K(M), producing a ΣM∞ -
iterateM∗ ofM∞ such that in V , K(M) is also a ΣK(M)-iterate of K(M), a fact
which will give rise to the existence of the natural iteration map from K(M) into
M∗. AsM∞ is iterable inMsw by (a), the iteration map

i :M∞ →M∗

is definable insideMsw. InsideMsw[h], wemay now construct a treeT searching for a
cofinal branch b throughT togetherwith an elementary embeddingk :MT

b |�(T )→
M∗|�M∗

such that

k ◦ �T0,c � M∞|�∞ = i � M∞|�∞.

T is ill-founded in V [h], hence in Msw[h], and by Lemma 2.1 there is a unique b
given by a branch through T , so that b ∈Msw[g].
This argument shows that ΣM∞ �Msw[g] is definable inMsw[g].
(c): Let E be the least extender on theM∞-sequence such that E is total and
crit(E) = κ∞. Inside ult(M∞;E), wemay pick someN = P(M(U)) ∈ Fult(M∞;E)

such that �(U) = (κ∞)+ult(M∞;E) = (κ∞)+M∞ . Let c = ΣM∞(U).
By the proof of Lemma 2.2, N = MU

c . But c ∈ L[M∞, � �→ �∗] by (b), and
hence �0,c”�∞ ∈ L[M∞, � �→ �∗] witnesses that (κ∞)+M∞ has cofinality �∞ inside
L[M∞, � �→ �∗].
BecauseN is also the¶-small coremodel overM(U) inside ult(M∞;E), again by
the proof of Lemma 2.2, theWeakCovering Lemma (cf. e.g., [4]) therefore gives that
Card((κ∞)+M∞) = �∞ inside L[M∞, � �→ �∗]. By Lemma 2.7(c), (κ∞)++M∞ =
κ++Msw , so that now (�∞)+L[M∞,� �→�∗] = κ++Msw .
(d): This now immediately follows from (c) and Lemma 2.8. �(Lemma 2.9)
Let us define the meaning of “the core model of Msw.” One way to make sense
of this phrase is to define the core model as a hull of Kc , essentially as Steel did it
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in [18]. To this end, let us work inMsw. Let Kc be as defined in [5, Definition 2.7],9

but with the following additivity adjustment: the critical point of an extender added
(i.e., crit(G) forG as in [5, Definition 2.7(a)]) is supposed to be above κ+Msw . In the
light of Lemma 2.9(a), the article [11] shows that Kc is fully iterable (insideMsw).
The core model K may then be isolated as the unique weaselW such that for every
α,W |α is isomorphic to an initial segment of⋂

{HullK
c

(Γ): Γ is A0-thick in Kc},

where A0 is defined as in [18, p. 8] and the notion of an “S-thick class” of ordinals
is defined as in [18, Definition 3.8] (but with Ω being replaced by the class of all
ordinals in both cases). The article [11] verifies that the core model K ofMsw, thus
defined, exists and is fully iterable insideMsw.
In our context, there is a shortcut, though, which will serve our purposes.Wemay
letM∞ play the role ofKc , as follows. InsideMsw, we define Γ ⊂ OR to be thick iff
for all but nonstationary many inaccessibles α, Γ ∩ α+ contains an α-club. AsM#sw
exists but all mice in Msw are sw-small, Msw thinks that for all but nonstationary
many α, α is inaccessible, α+M∞ = α+, and α is not the critical point of anM∞-
measure. (Cf. [18, Definition 3.8].) By Lemma 2.9(a), the arguments of [18, Section
5] then go through to show that definably overMsw there is a unique weaselW such
that for some thick class Γ0, whenever Γ ⊂ Γ0 is a thick class, then

W ∼= HullM∞(Γ). (26)

We call this weasel the core model of Msw, abbreviated by K . As K elementarily
embeds into M∞ (by (26), Lemma 2.9(a) implies that K is fully iterable inside
Msw. Also,Msw thinks that for all but nonstationary many α, α is inaccessible and
α+M∞ = α+.
We are now going to verify thatK is actually equal toM∞.

Lemma 2.10. M∞ = K .

Proof. Let us fix g which is Col(�,< κ)-generic overMsw. Let us write10

H = HODMsw[g].

Claim 2.11. L[M∞, � �→ �∗] ⊂ H .

Proof. Let us write C for the collection, as being defined inside Msw[g], of all
extender models N with a Woodin cardinal, �N , and a strong cardinal, κN , such
that the following conditions (1) through (6) are met.

(1) N |(�N )+N is suitable,
(2) κN = κ,
(3) N [h] =Msw[g] for some h which is Col(�,< κ)-generic over N ,
(4) N = K(N |�N ) is the ¶-small core model over N |�N ,

9This definition is a variant of the one presented in [7, Section 2], but with the smallness assumption
on the premice showing up in theKc construction being relaxed, and it builds upon the definition which
is given in [18, p. 6f.].
10Ordinal definability here is taken as definability in the usual language of set theory with ∈ as the

only nonlogical predicate, in particular excluding a predicate for the extender sequence ofMsw.
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(5) N is pseudo-iterable in the following sense. Let T(N) be the collection of all
U = (Uk : k ≤ n) ∈ N , some n < �, such that either n = 0 and lh(U0) = 1
(i.e., U is trivial), or else there is a sequence �0 < · · · < �n < κ of cutpoints of
N and:
(a) U ∈ N |κ,
(b) U = (Uk : k ≤ n) is a finite stack of normal iteration trees Uk ,
(c) U0 is on N and lives below �N ,
and for every k < n,
(d) if k < n, then lh(Uk) = (�k)+N = �(Uk), and lh(Un) = (�n)+N = �(Un),
(e) Uk is definable over N |(�k)+N and is guided by Q-structures which are
obtained via P-constructions inside N , cf. [15, Section 1],

(f) if k < n, then PN (M(Uk)) is a proper class, �(Uk) is a Woodin cardinal of
PN (M(U)), and

PN (M(U))[G ] = N
for some G which is BP(M(U))-generic over P(M(U)), and

(g) if k > 0, then Uk is on PN (M(Uk−1)) and lives below �(Uk−1). (We allow
Un to consist of only one model, namely PN (M(Un−1)).)

For N to be pseudo-iterable we demand that if U = (Uk : k ≤ n) ∈ T(N),
then
(a) if Un has a last model, sayMUn

� and if F is an extender from the sequence
ofMUn

� such that if [0, �]Un does not drop, then the index of F is below

�M
Un
� , then (Uk : k < n)
(Un
F ) ∈ T(N), where (Un
F ) is the normal

extension of Un, and
(b) if Un is of limit length, then there is either a cofinal branch b through Un
such that (Uk : k < n)
(Un
b) ∈ T(N), or else letting U∗ be the trivial
tree consisting only of the model PN (Un), (Uk : k ≤ n)
U∗ ∈ T(N).

Before stating condition (6) let us say that we callM a pseudo-iterate of N iff there
is some U = (Uk : k ≤ n) ∈ T(N) such that Un consists of only one model, namely
M . We will write FN for the collection of all pseudo-iterates of N .11 Let s be a
nonempty finite set of ordinals. ForM ∈ FN we callM ∈ FN s-iterable inside N
iff for all U = (Uk : k ≤ n) ∈ T(N), writingMk for the starting model of Uk , k ≤ n,
ifM =Mk0 for some k0 < n, there are for every i ≥ k0, i < n+ 1, cofinal branches

bi ∈ (Msw)Col(�,max(s))

through Ui such that
(1) �Ui0,bi (s) = s and

(2) �Ui0,bi (Ni |max(s)) = Ni+1|max(s).
12

In this situation, we may write b for the composition of the branches bi , k0 ≤ i <
n + 1, and we may consider the map

�
U
k0 ···


Un
0,b � HullMk0 |max(s)(�Mk0s ∪ s−). (27)

We call M strongly s-iterable inside N iff the map in (27) doesn’t depend on the
particular choice of U .

11We have that FMsw , defined this way, is equal to F as being defined earlier.
12The two notions of being s-iterable inMsw we have now defined, cf. p. 502, coincide with each other.
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Our last condition on N now runs:

(6) For every finite set s of ordinals there is some M ∈ FN such that M is
strongly s-iterable in N .

GivenN ∈ C, we may define a direct limit system insideN in much the same way as
the system was defined inMsw to give rise toM∞. We write (M∞)N for the direct
limit of that system as being defined in N .
We claim that if N ∈ C, then

(M∞)N =M∞

and that in fact the systems giving rise toM∞ and (M∞)N , respectively, have cofi-
nallymany common points. As C is ordinal definable insideMsw[g], this immediately
establishes Claim 2.11.
Let us thus fix some N ∈ C. Let � < κ be least such thatN |�N ∈Msw[g � �]. We
have, by the forcing absoluteness of the ¶-small K over N |�N ,

N = (K(N |�N))N = (K(N |�N))N [h] = (K(N |�N))Msw[g] = (K(N |�N))Msw[g��], (28)
so that in particularN exists inMsw[g � �] as a subclass which is definable there from
the parameter N |�N . Symmetrically, if �′ < κ is least such thatMsw|� ∈ N [h � �′],
then

Msw = (K(Msw|�))N [h��
′] (29)

andMsw exists inN [h � �′] as a subclass which is definable there from the parameter
Msw|�.
Let us denote by F1 theMsw-extender of Mitchell order 0 and with critical point
κ, and let us denote by F2 the N -extender of Mitchell order 0 with critical point κ.
Let �1 : Msw → ult(Msw;E1) and �2 : N → ult(N ;E2) denote the ultrapower maps.
Let us write

H̄ = (Hκ+)ult(Msw;E1)[g] = (Hκ+)Msw[g] = (Hκ+)N [h] = (Hκ+)ult(N ;E2)[h].

We have that

ult(Msw;E1)[g] = K(H̄ )Msw[g] = K(H̄ )ult(Msw;E1)[g],

and

ult(N ;E2)[h] = K(H̄ )N [h] = K(H̄ )ult(N ;E2)[h].

Let us write K(H̄ ) for this common value of the ¶-small K over H̄ . Then

ult(Msw;E1)[g] = K(H̄ ) = ult(N ;E2)[h]. (30)

This immediately gives

�1(κ) = �2(κ). (31)

But also,Msw|κ+Msw may be defined over H̄ from the parameterMsw|κ as the stack
of all ¶-small sound mice end-extendingMsw|κ and projecting to κ, and

ult(Msw;E1) = Pult(Msw;E1)[g](Msw|κ+Msw) = PK(H̄ )(Msw|κ+Msw). (32)
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In the same way, N |κ+N may be defined over H̄ from the parameter N |κ as the
stack of all ¶-small sound mice end-extending N |κ and projecting to κ, and

ult(N ;E2) = Pult(N ;E2)[h](N |κ+N ) = PK(H̄ )(N |κ+N ). (33)

Let k be Col(�, [κ, �1(κ)))-generic over the common model from (30), cf. (31).
Then �1 and �2 lift to

�̃1 : Msw[g]→ ult(Msw;E1)[g
k] = K(H̄ )[k]

and
�̃2 : N [h]→ ult(N ;E2)[h
k] = K(H̄ )[k],

respectively. The maps �̃1 and �̃2 might be different, but the universes of their
domains and target models are the same, and by (31), any objects defined in
Msw[g] = N [h] from parameters in (Hκ)Msw[g] ∪ {κ} = (Hκ)N [h] ∪ {κ} will be
moved the same way.
In particular, �̃1 maps N = (K(N |�N ))Msw[g] to

(K(N |�N ))ult(Msw;E1)[g

k] = (K(N |�N ))ult(N ;E2)[h


k] = �̃2(K(N |�N )N [h])
= �̃2(N) = ult(N ;E2),

i.e.,

�̃1(N) = ult(N ;E2). (34)

Let � < κ be arbitrary. We have that ult(Msw;E1)[g
k] thinks that there is
some strong cutpoint � < �̃1(κ) of both ult(Msw;E1) = �̃1(Msw) = K(Msw|�) and
ult(N ;E2) = �̃1(N) = K(N |�N ) with � > � (namely, � = κ) such that setting

H ′ = (H�+)�̃1(Msw)[g

k��]

(so H ′ = H̄ for � = κ), �̃1(Msw)|�+�̃1(Msw) may be defined over H ′ from the
parameter �̃1(Msw)|� as the stack of ¶-small sound mice end-extending �̃1(Msw)|�
and projecting to �,

�̃1(Msw) = P �̃1(Msw)[g
k��](�̃1(Msw)|�+�̃1(Msw)) = PK(H ′)(�̃1(Msw)|�+�̃1(Msw)),

�̃1(N)|�+�̃1(N ) may be defined over H ′ from the parameter �̃1(N)|� as the stack of
all ¶-small sound mice end-extending �̃1(N)|� and projecting to �, and finally there
is some h∗ which is Col(�,< �)-generic over �̃2(N) (namely, h∗ = h) such that
�̃1(Msw)[g
k � �] = �̃1(N)[h∗] and

�̃1(N) = P �̃1(N )[h∗](�̃1(N)|�+�̃1(N )) = PK(H ′)(�̃1(N)|�+�̃1(N )).

By the elementarity of �̃1 and because � < κ was arbitrary, we then get arbitrarily
large � < κ which are strong cutpoints of bothMsw and N such that setting

H ′′ = (H�+)Msw[g��], (35)

Msw|�+Msw may be defined over H ′′ from the parameter Msw|� as the stack of all
¶-small sound mice end-extendingMsw|� and projecting to �,

Msw = PMsw[g��](Msw|�+Msw) = PK(H ′′)(Msw|�+Msw),
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N |�+N may be defined overH ′′ from the parameter N |� as the stack of all ¶-small
sound mice end-extending N |� and projecting to �, and there is some h∗ which is
Col(�,< �)-generic over N such that

N = PN [h
∗](N |�+N ) = PK(H

′′)(N |�+N ), (36)

where K(H ′′) is the ¶-small core model overH ′′ inside the model

Msw[g � �] = N [h∗].
Let us write S ⊂ κ for the set all of � < κ with the properties as above, so that S is
unbounded in κ.
Let us now suppose thatM is a premouse with a largest limit ordinal �M such
that
1. �+Msw < �M ≤ �++Msw for some � ∈ S,
2. M ∈Msw ∩N ,
3. M � “�M is a Woodin cardinal,” and
4. bothMsw|�M and N |�M are BM-generic overM.
We then have, forH ′′ as in (35) and h∗ being Col(�,< �)-generic overN with (36),

PMsw(M) = PMsw[g��](M)
= PK(H ′′)(M) (37)

= PN [h∗](M)
= PN (M),

where K(H ′′) is the ¶-small K overH ′′ inMsw[g � �] = N [h∗].
Now let s ∈ OR<� , and letM ∈ F = FMsw be strongly s-iterable inMsw, and let
M ′ ∈ FN be strongly s-iterable in N . We aim to findM∗ ∈ F ∩ FN such that

(M, s) �F (M∗, s) and (M ′, s) �FN (M
∗, s).

Let �′ ≤ �′′ < κ be such that g � � ∈ N [h � �′′], so that by (28) and (29)
N ⊂Msw[g � �] ⊂ N [h � �′′],

which implies thatN is a ground ofMsw[g � �], and in fact bothMsw andN grounds
ofMsw[g � �] via posets of size less than κ. Therefore, by [22, Proposition 5.1], there
is an inner model P ⊂ Msw ∩ N such that P is a ground ofMsw[g � �] via a poset
of size less than κ. We may then pick some � < κ such that for some 
 ∈ Msw[g]
which is Col(�, �)-generic over P,

{Msw|�,N |�N ,M |�M ,M ′|�M ′} ⊂ P[
], (38)

and in fact all of Msw, N , M , M ′ exist in P[
] as subclasses which are definable
there as K(Msw|�), K(N |�N ), K(M |�M ), and K(M ′|�M ′

), respectively.
Let �0, �1, �0, �1 ∈ PCol(�,�) be such that

�
0 =Msw|�+Msw , �
1 = N |(�N )+N , �
0 =M |(�M )+M , and �
1 =M ′|(�M ′
)+M

′
. (39)

Let p ∈ Col(�, �) force over P all the relevant properties about �0,�1, �0,�1 for the
following to go through. For any q ≤Col(�,�) p let 
q denote the unique Col(�, �)-
generic filter over N such that for n < �,

(
⋃

q)(n) =

{
q(n) if n ∈ dom(q), and
(
⋃

)(n) otherwise.
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Let � ∈ S, � > max{�, �′}. Notice that �++N ≤ �++Msw[g��] = �++Msw ≤
�++N [h�� = �++N by (28) and (29), so that

�++Msw = �++N .

This is then also the common �++ of all K(�
q0 ), K(�

q
1 ). Working in P[
], let for

q ≤Col(�,�) p,

Uq and U ′
q be normal iteration trees on �


q
0 and �


q
1 , respectively,

such that

1. lh(Uq) = lh(U ′
q) = �

++Msw = �(Uq) = �(U ′
q) for all q ≤Col(�,�) p,

2. M(Uq) =M(U ′
q′) for all q, q

′ ≤Col(�,�) p,
3. every Uq as well as every U ′

q is guided by ¶-small Q-structures,
4. K(�
q0 )|�(Uq) is generic overM(Uq) for all q ≤Col(�,�) p, and
5. K(�
q1 )|�(U ′

q) is generic overM(U ′
q) for all q ≤Col(�,�) p.

Let us write M for the common value of all M(Uq) and M(U ′
q). Notice that

M ∈ P ⊂Msw ∩N . Set
M∗ = (K(M))P.

By (37), we have that

M∗ = (P(M))Msw = (P(M))N . (40)

Also, Up is normal and is a tree on M which produces M∗, so that (modulo
potential padding) Up can be computed inMsw via the comparison process which
tries to coiterate M andM∗. Similarly, U ′

p is normal and is a tree on M
′ which

producesM∗, so that (again modulo potential padding) U ′
p ∈ N . AsM is strongly

s-iterable inMsw andM ′ is strongly s-iterable in N , we therefore get that

M∗ ∈ F ∩ FN , (M, s) �F (M∗, s), and (M ′, s) �FN (M
∗, s),

as desired. �(Claim 2.11)

Claim 2.12. (a) H ⊂ L[M∞, � �→ �∗]. Hence, H = L[M∞, � �→ �∗].
(b) If � < �∞ and X ∈ H ∩ P(�), then X ∈ M∞. In particular, (H�∞)

H =
M∞|�∞.

Proof. (a): Let us fix X , a set of ordinals, such that X ∈ H , say X ⊂ � and
� ∈ X iff

�Col(�,<κ)Msw
ϕ(�̌, α̌1, . . . , α̌k). (41)

If N ∈ F , then there is some h which is Col(�,< κ)-generic over N such that
N [h] =Msw[g], so that (41) is equivalent with

�Col(�,<κ)N ϕ(�̌, α̌1, . . . , α̌k). (42)

In particular, X ∈
⋂
F and �N,N ′(X ) = X for all N , N ′ ∈ F such that �N,N ′ exists

and

�N,N ′(α1, . . . , αk) = α1, . . . , αk. (43)
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Let N ∈ F be such that (43) holds true for all N ′ ∈ F such that �N,N ′ exists, and
set X̃ = �N,∞(X ) ∈ M∞. Then for any � < �, if N ′ ∈ F is such that �N,N ′ exists
and �N ′,N ′′(�) = � for all N ′′ ∈ F for which �N ′,N ′′ exists, we have that � ∈ X iff

�∗ = �N ′ ,∞(�) ∈ �N ′ ,∞(X ) = �N,∞(X ) = X̃ ,

so that X ∈ L[M∞, � �→ �∗].
We have shown (a). (b): Let � < �∞, say � ≤ �Msw,∞(�̄). Pick a finite set s of
ordinals such thatMsw is strongly s-iterable and �̄ < �Msws , cf. the argument on p.
504. We have that �sMsw,∞ � �Msws ∈Msw, so that

(� �→ �∗) � � = �∞0,∞ � � = �Msw,∞(�sMsw,∞ � �Msws ) � �
is an element ofM∞. The above argument then shows (b). �(Claim 2.12)
Claim 2.12(a) has the following remarkable consequence.
Lemma 2.13. M∞|�∞ is fully iterable inside L[M∞, � �→ �∗], in fact ΣM∞ �
L[M∞, � �→ �∗] is definable inside L[M∞, � �→ �∗].

Proof. Let T ∈ L[M∞, � �→ �∗] be a tree onM∞|�∞ of limit length which is
according to ΣM∞ . Write b = ΣM∞(T ). By Lemma 2.9(a), b ∈ Msw. If there is a
(necessarily, ¶-small) Q-structure Q � MT

b , then Q ∈ L[M∞, � �→ �∗] and hence
also b ∈ L[M∞, � �→ �∗]. So let us assume that there is no such Q-structure.
Then �(T ) =MT

b ∩ OR, and hence cf(lh(T )) = cf(�(T )) = cf(MT
b ∩ OR) =

�∞ = κ+ inside Msw. Let g be Col(�,< κ)-generic over Msw. Then �∞ = ℵ2
in Msw[g], so that inside Msw[g], b is the unique cofinal branch through T . As
T ∈ L[M∞, � �→ �∗] = H = HODMsw[g] by Claim 2.12(a), we get b ∈ HODMsw[g],
and hence b ∈ L[M∞, � �→ �∗].
The argument we gave shows that ΣM∞ � L[M∞, � �→ �∗] is definable inside
L[M∞, � �→ �∗]. �(Lemma 2.13)
We are now ready to finish the proof of Lemma 2.10.
As L[M∞, � �→ �∗] is a ground ofMsw by Lemma 2.8 andM∞ is fully iterable
inside both Msw as well as L[M∞, � �→ �∗] by Lemmas 2.9(a) and 2.13, we may
define the core modelKL[M∞,� �→�∗] ofL[M∞, � �→ �∗] in much the sameway as we
defined the coremodelK = KMsw ofMsw on p. 511 andK = KMsw = KL[M∞,� �→�∗].
Inside L[M∞, � �→ �∗], there is a canonical elementary embedding j : K → M∞
given by (26). We aim to show that j = id.
Let us assume that j �= id, and set 	 = crit(j). Inside L[M∞, � �→ �∗], K and

M∞ coiterate to a common weasel, Q, such that if �K,Q and �M∞,Q denote the
canonical iteration maps,

�M∞,Q ◦ j = �K,Q. (44)

If j(	) < �∞, then by (44) j � 	+K is cofinal in j(	)+M∞ and witnesses that
j(	)+M∞ is singular. However, this contradicts Claim 2.12(b). If j(	) = �∞, then 	
is theWoodin cardinal ofK , but there is some initial segmentN ofM∞ projecting to
	which defines a counterexample to theWoodinness of 	. However, by universality,
N would have to be an initial segment of K . Finally, if j(	) > �∞, then j comes
from an iteration of K strictly above �∞, the common Woodin cardinal of K and
M∞. ButM∞ is generated from �∞ together with a club class of indiscernibles
above κ∞, which immediately gives j � κ∞ = id and then j = id. �(Lemma 2.10)
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Theorem 2.14. L[M∞, � �→ �∗] is the mantle ofMsw.

Proof. As L[M∞, � �→ �∗] is a ground ofMsw by Lemma 2.8, if suffices to prove
that L[M∞, � �→ �∗] ⊂W for every groundW ofMsw.
So let us fix W , a ground of Msw. Let P ∈ W be a poset such that for some
g ∈ Msw which is P-generic over W , Msw = W [g]. Let 	 be the cardinality of P
insideW , so that P ∗ Col(�, 	) ∼= Col(�, 	). Let h̄ be Col(�, 	)-generic overMsw,
and let h be Col(�, 	)-generic overW such thatW [h] =Msw[h̄].
W [h] containsM∞|�∞ as an element, and it can defineM∞ asK(M∞|�∞). Let
� ∈ W Col(�,	) be such thatM∞|�∞ = �h . By Lemma 2.9(b),M∞ is fully iterable
insideW [h], so that we may pick some p ∈ h such that

p �Col(�,	)W K(�) is sw-small, has a strong cardinal above

the Woodin cardinal � ∩OR, and is fully iterable.

For any q ≤Col(�,	) p let hq denote the unique Col(�, 	)-generic filter overW such
that for n < �,

(
⋃
hq)(n) =

{
q(n) if n ∈ dom(q), and
(
⋃
h)(n) otherwise,

and let us writeMq for K(�hq ), as being computed insideW [h] =W [hq ]. By (45),
everyMq , q ≤Col(�,	) p, is fully iterable insideW [h], and it is straightforward to see
that allMq , q ≤Col(�,	) p, coiterate to a common coiterate, say Q. We have that Q
is a definable inner model ofW .
Let Γ ⊂ OR be the class of all ordinal fixed points under all the iteration maps
from anMq , q ≤Col(�,	) p, toQ. Γ is then a definable class inW , and also Γ is easily
verified to be thick in the sense of the definition given on p. 511. We must then have
that

M∞ ∼= HullQ(Γ),
so thatM∞ ⊂W .
In order to show that the map � �→ �∗ is in W , it suffices to show that ΣM∞ is
amenable to and definable overW .
Let T ∈ W be an iteration tree onM∞ of limit length which is according to
ΣM∞ . Write b = ΣM∞(T ). We have that b ∈ W [h] by Lemma 2.9(c). IfMT

b has
an initial segment Q end-extendingM(T ) such that �(T ) is not definably Woodin
over Q, then the unique least such Q may be found inside W by stacking sound
mice which are ¶-small above �(T ) and project to �(T ) on top ofM(T ), so that
b ∈ W . Otherwise b does not drop and �(T ) = �T0,b(�∞). We then have that inside
W [h], b is the only cofinal branch c through T such that �(T ) = �T0,c(�∞) andMT

c

is iterable above �(T ). (In fact, insideW [h], b is the only cofinal branch c through
T such that �(T ) = �T0,c(�∞) andMT

c is well-founded, cf. the remark on p. 498.)
Therefore b ∈W .
But the argument we gave also shows that ΣM∞ is amenable to and definable
overW . �(Theorem 2.14)
We call L[M∞, � �→ �∗] the Varsovian model derived fromMsw. IfM is a model
which is elementarily equivalent toMsw, then the Varsovian model derived fromM
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is that inner model ofM which is defined overM as L[M∞, � �→ �∗] is defined over
Msw.
Lemma 2.15 (F. Schlutzenberg).
(a) ran(�Msw,∞) is closed under both �

∞
0,∞ and (�

∞
0,∞)

−1.
(b) HullL[M∞,� �→�∗](ran(�Msw,∞)) ∩OR = ran(�Msw,∞) ∩OR.

Proof. (a) Let � be such that {�, �∗} ∩ ran(�Msw,∞) �= ∅. Let s be a finite set of
Msw-indiscernibles such that

� ∈ HullMsw|max(s)(�Msws ∪ s−).

We have that �∞0,∞ � HullM∞|max(s)(�M∞
s ∪ s−) ∈ M∞ and in fact

�∞0,∞ � HullM∞|max(s)(�M∞
s ∪ s−) = �Msw,∞(�Msw,∞ � HullMsw|max(s)(�Msws ∪ s−),

where �Msw,∞ � HullM∞|max(s)(�M∞
s ∪ s−) ∈ Msw. Then if � ∈ ran(�Msw,∞),

then �∗ = (�∞0,∞ � HullM∞|max(s)(�M∞
s ∪ s−))(�) ∈ ran(�Msw,∞), and if �∗ ∈

ran(�Msw,∞), then � = (�
∞
0,∞ � HullM∞|max(s)(�M∞

s ∪ s−))−1(�∗) ∈ ran(�Msw,∞).
(b) Let � ∈ HullL[M∞,� �→�∗](ran(�Msw,∞)) ∩OR. By (a), it suffices to prove that
�∗ ∈ ran(�Msw,∞).
We may pick a finite set s ofMsw-indiscernibles such that

� ∈ HullL[M∞,� �→�∗](s). (45)

LetN ∈ F be strongly s-iterable such that�N,N ′(�) = � for allN ′ ∈ F with �N,N ′ ↓.
As L[M∞, � �→ �∗] = HODN [h] for some/all h which are Col(�,< κ)-generic over
N , cf. Claim 2.12(a), (45) implies that

� ∈ HullN (s).
But then

�∗ ∈ HullM∞(s) ⊂ ran(�Msw,∞).
�(Lemma 2.15)

Corollary 2.16. Let � : V ∼= HullL[M∞,� �→�∗](ran(�Msw,∞)), where V is transi-
tive. V = L[Msw, � �→ �Msw,∞(�)], and � ⊃ �Msw,∞.

Proof. By Lemma 2.15(b) and by (19), it remains to be seen that

�−1((� �→ �∗) � �∞) = �Msw,∞ � �. (46)

For n < � let us write sn = {ℵV1 , . . . ,ℵVn+1}. Then for each n < �, �Msw,∞ � �Mswsn =
�snMsw,∞ � �Mswsn ∈ Msw and �(�snMsw,∞ � �Mswsn ) = �

sn
M∞,M∞

∞
, by the elementarity of

� and �(sn) = sn, and the latter is equal to �∞0,∞ � �M∞
sn which is hence inM∞.

But then �−1((� �→ �∗) = �−1(
⋃
n<� �

∞
0,∞ � �M∞

sn ) =
⋃
n<� �

−1(�∞0,∞ � �M∞
sn ) =⋃

n<� �
sn
Msw,∞ � �Mswsn = �Msw,∞ � �, which shows (46). �(Corollary 2.16)

Lemma 2.17. Let � : V = L[Msw, � �→ �Msw,∞(�)] ∼= HullL[M∞,� �→�∗](ran
(�Msw,∞)). V is iterable via iteration trees which live onMsw|�.
Proof. Implicitly, [21] contains a simplified version of the argument to follow, cf.
[21, Lemma 3.46]. This was pointed out to the authors by Farmer Schlutzenberg
who then independently arrived at a proof of Lemma 2.17.
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Weclaim that Σmay serve as an iteration strategy for iteration trees onVwhich live
onMsw|�. This makes sense by Claim 2.12(b), Corollary 2.16, and the elementarity
of �.
Let T be a putative tree on V which lives onMsw|� and is according to Σ. IfMT

α is
a transitive proper class, α < lh(T ), then we may writeMT

α = L[Mα, �α ]. The tree
T induces a canonical tree, which we shall denote by T̄ , onMsw which is according
to Σ.
Let us write Π for the set of all α < lh(T ) such thatMT

α is a proper class. If
α ∈ lh(T ) \Π, thenMT̄

α =MT
α . We claim that we may define a sequence

((Mα, �α,M∗
α , �

∗
α,Vα, �̃α) : α ∈ Π)

such that

(a) M0 =Msw, �0 = �Msw,∞,M
∗
0 =M∞, �∗0 = (� �→ �∗)

and for all α ≤T � < lh(T ) with α, � ∈ Π,
(b) Mα =MT̄

α ,
(c) L[Mα, �α � OR] =MT

α ,
(d) Vα = L[M∗

α , �
∗
α] is the Varsovian model derived fromMα ,

(e) �α : Mα →M∗
α is an elementary embedding,

(f) �̃α : L[Mα, �α � OR]→ L[M∗
α , �

∗
α] is an elementary embedding,

(g) �̃� � lh(E�) = �̃α � lh(E�) for α <T � + 1 ≤T � ,
(h) �̃α ⊃ �α , and
(i) �Tα,� ⊃ �T̄α,� .
Let us present the successor steps of the construction, leaving the limit steps
to the reader’s discretion. Let α = T -prec(� + 1), where � + 1 ∈ Π, and write
F = ET

� = E
T̄
� .

We may define an elementary embedding

�̃�+1 : ult(L[Mα, �α � OR];F )→ V�+1
by setting

�̃�+1([a,f]
MT
α

F ) = [a, u �→ �̃α(f)(�α(u))]MαF .

L[Mα, �α � OR] L[M∗
α , �

∗
α]

L[M�+1, ��+1 � OR] L[M∗
�+1, �

∗
�+1]

Mα

M�+1

∈

∈

�̃α

�Tα,�+1

�̃�+1

�Tα,�+1
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This is indeed well-defined and elementary, aswemay use (�α � [crit(F )]Card(a)) ∈
Mα and compute as follows. Let ϕ be a formula, let us assume for notational
convenience that ϕ has only one free variable, and let a ∈ [lh(F )]<� and
f : [crit(F )]Card(a) → MT

α , f ∈ MT
α .

MT
�+1 � ϕ([a, f]M

T
α )

⇐⇒ {u ∈ [crit(F )]Card(a) :MT
α � ϕ(f(u))} ∈ Fa

⇐⇒ {u ∈ [crit(F )]Card(a) : L[M∗
α , �

∗
α] � ϕ(�̃α(f)(�̃α(u)))} ∈ Fa

⇐⇒ {u ∈ [crit(F )]Card(a) : L[M∗
α , �

∗
α] � ϕ(�̃α(f)((�α � [crit(F )]Card(a))(u)))} ∈ Fa

⇐⇒ a ∈ �T̄α,�+1({u ∈ [crit(F )]Card(a) : L[M∗
α , �

∗
α ] � ϕ(�̃α(f)((�α � [crit(F )]Card(a))(u)))})

⇐⇒ L[M∗
�+1, �

∗
�+1 � ϕ(�T̄α,�+1(�̃α(f))(((�α � [crit(F )]Card(a))(a)))

⇐⇒ L[M∗
�+1, �

∗
�+1 � ϕ(�T̄α,�+1(�̃α(f))((�α(a))).

Notice that �̃�+1 � lh(F ) = �̃α � lh(F ), as required by (g).
The key point is now that

M∗
�+1 ∩ ran(�̃�+1) ∼=MT̄

�+1. (47)

(47) is established by the argument which gave Schlutzenberg’s Lemma 2.15. Let
I denote the class of all Msw-indiscernibles, and let us assume for notational
convenience that all embeddings which we consider fix all the points in I .
In order to show (47), let x ∈ M∗

�+1 ∩ ran(�̃�+1), say x = �̃�+1(x̄) ∈ M∗
�+1.

We have that x̄ ∈ HullM
T
�+1(lh(F ) ∪ I ), so that x ∈ HullL[M

∗
�+1,�

∗
�+1](�̃�+1”lh(F ) ∪

I ) ∩M∗
�+1. By the elementarity of �

T
0,�+1, L[M

∗
�+1, �

∗
�+1] is the Varsovian model

derived from M�+1 which in turn is equal to HODP[h] for all P ∈ FM�+1 and
all h which are Col(�,< κP)-generic over P, cf. Claim 2.12(a). We thus have
x ∈ HullP(�̃�+1”lh(F ) ∪ I ) for all P ∈ FM�+1. By picking P sufficiently far out in
the system, we thus get that

�∗�+1(x) ∈ HullM
∗
�+1(�∗�+1 ◦ �̃�+1”lh(F ) ∪ I ). (48)

However, for each ordinal � we may pick some s ∈ [I ]<� such that � ∈ dom(�∗�+1 �
HullM

∗
�+1|max(s)(�

M∗
�+1

s ) ∪ {s−}), i.e., �∗�+1(�) = (�∗�+1 � HullM
∗
�+1|max(s)(�

M∗
�+1

s ) ∪
{s−}))(�), and then

�∗�+1(�) = (�
∗
�+1 � HullM

∗
�+1|max(s)(�

M∗
�+1

s ) ∪ {s−}))(�)

= �T0,�+1(�
∗
0 � HullM

∗
0 |max(s)(�M

∗
0

s ) ∪ {s−}))(�)

= �T0,�+1(�0(�0 � HullM
∗
0 |max(s)(�M

∗
0

s ) ∪ {s−})))(�).

But �0 � HullM
∗
0 |max(s)(�M

∗
0

s ) ∪ {s−}) ∈ HullM0 (I ), hence �0(�0 �
HullM

∗
0 |max(s)(�M

∗
0

s )∪{s−})) ∈ HullM
∗
0 (I ), hence�T0,�+1(�0(�0 � Hull

M∗
0 |max(s)(�M

∗
0

s )

∪{s−}))) ∈ HullM
∗
�+1(I ). This shows that HullM

∗
�+1(�̃�+1”lh(F )∪ I ) is closed under
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� �→ �∗�+1(�) as well as under � �→ (�∗�+1)
−1(�), so that by x ∈ M∗

�+1, (48) is
tantamount to saying that

x ∈ HullM
∗
�+1(�̃�+1”lh(F ) ∪ I ). (49)

We have shown that x ∈M∗
�+1 ∩ ran(�̃�+1) implies (49). This gives (47).

By (47), we may let ��+1 = �̃�+1 �M�+1. It remains to be verified that

�Tα,�+1(�α) = �̃�+1 � OR. (50)

Let � = �Tα,�+1(f)(a), where a ∈ [lh(F )]<� and f : [crit(F )]Card(a) → OR,
f ∈ MT

α . Then

�Tα,�+1(�α)(�) = �
T
α,�+1(�α)(�

T
α,�+1(f)(a))

= �Tα,�+1(�α ◦ f)(�Tα,�+1(a))
= �Tα,�+1(u �→ �̃α(f)((�α � [crit(F )]<�)(u))(a)
= �̃�+1(�Tα,�+1(f)(a))

= �̃�+1(�). �(Theorem 2.17)

The proof of Theorem 2.19 makes use of the following result. We know thatM∞
is an iterate ofMsw via an �-stack of normal trees, (Tn : n < �). The normalizing
procedure which is developed in the articles [16], [17], and [20] produces a normal
iteration tree X (Tn : n < �) onMsw with last modelM∞.

Theorem 2.18 (F. Schlutzenberg, J. Steel) ([16, 17, 20]). M∞ is a Σ-iterate of
Msw via a normal iteration tree onMsw which lives onMsw|� and with iteration map
�Msw,∞.

Theorem 2.19. � is a Woodin cardinal inside L[Msw, � �→ �Msw,∞(�)].

Proof. The proof we are about to present was also found independently by
Farmer Schlutzenberg following a hint by John Steel.
Let T be the (unique) tree on Msw which witnesses the statement of Theorem
2.18. By Corollary 2.16(b), we may construe T as a tree onL[Msw, � �→ �Msw,∞(�)],
and we may lift the iteration map �Msw,∞ to an iteration map

�̃ : L[Msw, � �→ �Msw,∞(�)]→ L[M∞, �],

where � is the image of � �→ �Msw,∞(�) under �̃. However, the same argument as in
the proof of Corollary 2.16(a) shows that

�Msw,∞(�Msw,∞ � �) = �∞0,∞ � �∞. (51)

This is true because if again sn = {ℵ1, . . . ,ℵn+1} for n < �, then �Msw,∞(�Msw,∞ �
�) = �Msw,∞(

⋃
n<� �

sn
Msw,∞ � �Mswsn ) =

⋃
n<� �Msw,∞(�

sn
Msw,∞ � �Mswsn ) =

⋃
n<� �

∞
0,∞ �

�M∞
sn = �∞0,∞ � �∞.
We therefore have that

�̃ : L[Msw, � �→ �Msw,∞(�)]→ L[M∞, � �→ �∗]

is given by the normal iteration tree T .
Let us now suppose that � is not a Woodin cardinal in L[Msw, � �→ �Msw,∞(�)]
which implies that �∞ is not a Woodin cardinal in L[M∞, � �→ �∗]. Notice that
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T must have length �∞ + 1 = κ+Msw + 1, and T � κ+Msw is guided by ¶-small
Q-structures, so that T � κ+Msw ∈Msw.
Write 	 = κ++Msw , and V = L[M∞, � �→ �∗]. Let g ∈ V be Col(�, 	)-generic
overMsw. InsideMsw[g], let T be a tree of height � searching for a Q and b such
that

(α) Q is a transitive model of ZFC− of height 	 such that � is a cardinal inQ and
HQ
� =Msw|�,

(�) b is a cofinal branch through T � κ+Msw such that when T ′ is T � κ+Msw ,
being construed as a tree on Q,13 then all the modelsMT ′

α , α < κ
+Msw , are

well-founded, and
�T

′

0,b : Q → HV
	 .

T is ill-founded in V , as we may set Q = HL[Msw,�Msw ,∞�OR]
	 and b = [0, κ+Msw)T .

Therefore, T is ill-founded inMsw[g] ⊂ V as well. Let Q and b inMsw[g] be given
by a branch through T . Suppose that b �= [0, κ+Msw)T . As T � κ+Msw is normal, the
“zipper argument,” cf. e.g., [19, p. 1645f.], then shows that �(T � κ+Msw) = �∞ must
be Woodin in HV

	 which is against our current hypothesis.
Therefore, [0, κ+Msw)T = b ∈ Msw[g]. As this was shown to be true for any b
such that Q and b come from a branch through T for some Q, we must have that
[0, κ+Msw)T ∈Msw by the homogeneity of Col(�, 	). But this gives that

�Msw,∞ � � = �T �κ+Msw
0,[0,κ+Msw )T

∈Msw,

which is a map which sends � < κ cofinally into �∞ = κ+Msw . Hence κ+Msw is
singular inMsw. Contradiction! �(Theorem 2.19)
J. Steel observed that if g is Col(�,< κ)-generic overMsw, thenMsw[g] is not a
model of “every OD-set of reals is determined,” so that one cannot use [6] to deduce
the conclusion of Lemma 2.19.

Lemma 2.20. L[M∞, � �→ �∗] = L[M∞|�∞,ΣM∞|�∞ ].

Proof sketch. “⊃”: By Lemma 2.13, ΣM∞ � L[M∞, � �→ �∗] is definable inside
L[M∞, � �→ �∗].
“⊂”: Let us write W for K(M∞|�∞) as being constructed inside
L[M∞|�∞,ΣM∞|�∞ ]. Inside L[M∞|�∞,ΣM∞|�∞ ], W is fully iterable, W satis-
fies weak covering above �∞, and W has a Woodin cardinal. By an unpublished
theorem of Steel,W must then have a strong cardinal above �∞. From the point of
view of L[M∞, � �→ �∗],W must then be a universal weasel.
We thus get an elementary embedding j : M∞ → W . Suppose j �= id.
Using an argument from [11], we may then reconstruct j � M∞|crit(j)+ inside
L[M∞|�∞,ΣM∞|�∞ ] as follows.
Write 	 = crit(j)+M∞ and 	′ = j(	). There are trees T and T ′, both onM∞
and inside L[M∞|�∞,ΣM∞|�∞ ] of length 	+ 1 and 	

′ + 1, respectively, such that
	 = �T0	(�∞) and 	

′ = �T
′

0	′(�∞). j � M∞|crit(j)+ is then the unique map which
sends �T0	”�∞ to �

T ′

0	′”�∞.
Contradiction! �(Lemma 2.20)
13This is possible by item (α).
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In a sequel to this article, cf. [10], we will study Varsovian models in more
generality.
The attentive reader will notice that the preceding arguments actually produced
the following statement.

Theorem 2.21. For a cone of reals x,Ms(x) has a 2-small core modelK = KMs (x)

which in V is an iterate of Msw, and the mantle of Ms (x) is the Varsovian model
L[K,ΣK ], where ΣK is the tail of Σ.

§3. Appendix: Bukovský’s theorem.
Definition 3.1. Let W be an inner model of V . Let 	 be an infinite cardinal.
We say thatW uniformly 	-covers V iff for all functions f ∈ V with dom(f) ∈W
and ran(f) ⊂W there is some function g ∈W with dom(g) = dom(f) such that
f(x) ∈ g(x) and Card(g(x)) < 	 for all x ∈ dom(g).

If there is some poset P ∈W having the 	-c.c. inW and some g which isP-generic
overW such that V =W [g], thenW uniformly 	-covers V . Bukovský’s Theorem
3.5 will say that the converse is true also.
The following is probably part of the folklore.

Theorem 3.2. Let W be an inner model of V , and let 	 be an infinite regular
cardinal. Assume thatW uniformly 	-covers V , and assume also that P(2<	) ∩ V ⊂
W . ThenW = V .

Proof. Let us call any set Γ of functions an antichain iff for all a, b ∈ Γ with
a �= b there is some i ∈ dom(a) ∩ dom(b) with a(i) �= b(i).
It is easily seen that the hypotheses onW give that

2<	W ⊂W. (52)

To verify (52), notice first that by P(2<	) ∩ V ⊂ W , W computes the cardinal
successor of 2<	 correctly and for every � < (2<	)+, P(�) ∩ V ⊂W .
Now let f : 2<	 → OR, f ∈ V . Using the fact that W uniformly 	-covers V ,
let g ∈ W be a function with dom(g) = 2<	 such that g(�) is a set of ordinals,
f(�) ∈ g(�), and Card(g(�)) < 	 for all � < 2<	. Let e : � ∼=

⋃
ran(g) be the

(inverse of the) transitive collapse of
⋃
ran(g), so that e ∈ W and � < (2<	)+.

As P(�) ∩ V ⊂ W , the function e−1 ◦ f : 2<	 → � is in W , which gives that
f = e ◦ (e−1 ◦ f) ∈W . We showed (52).
Assume thatA : α → 2, for some ordinal α, is such thatA ∈ V \W . Let us write

F for the collection of all functions a such that there is some x ⊂ α of size< 	 such
that a : x → 2. Using again the fact thatW uniformly 	-covers V ,14 we may pick a
function g inW such that if Γ ⊂ F is an antichain with Γ ∈W , then
(i) g(Γ) ∈W is a subset of Γ of size < 	 and
(ii) if there is some (unique!) a ∈ Γ with a = A � dom(a), then a ∈ g(Γ).
We call a ∈ F legal iff for no antichain Γ ∈ W , a ∈ Γ \ g(Γ). Notice that being
legal is defined insideW (from the parameter g ∈W ).
Every A � x, where x ⊂ α has size < 	, is legal.

14This use is now substantial, in contrast to the previous one.

https://doi.org/10.1017/jsl.2018.5 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.5


VARSOVIANMODELS I 525

If Γ ⊂ F is an antichain with Γ ∈ W , and if every a ∈ Γ is legal, then we must
have g(Γ) = Γ, from which it follows that Γ has size < 	.
Let � >> α be such that �<	 = �. Let

X ≺ (H� ;∈, {A},F , g,H� ∩W )

be such that <	X ⊂ X and Card(X ) = 2<	. By (52), X ∩W ∈W , and of course

X ∩W ≺ (H� ∩W ;∈,F , g) ∈W. (53)

Write � : W̄ ∼= X ∩W for the (inverse of the) transitive collapse of X ∩W , so
that � ∈W . � extends to �̃ : H ∼= X , the (inverse of the) transitive collapse of X .
Notice that P(2<	) ∩ V ⊂ W gives that Ā = �̃−1(A) ∈ W , which in turn yields
that

A � (X ∩ α) = �”Ā ∈W. (54)

We are now going to derive a contradiction from (54).
Using (54), we may work insideW and define a sequence (ai : i < 	) of elements
of F such that ai ∈ X and dom(ai) ⊃ dom(aj) for all j < i < 	 as follows.
Assume (aj : j < i) has already been chosen. Notice that (aj : j < i) ∈ X by
<	X ⊂ X . Write x =

⋃
j<i dom(aj), so that x ∈ X . Clearly, for every � < α there

is some legal a ∈ F such that x ∪ {�} ⊂ dom(a) and a = A � dom(a) (just pick
A � (x ∪ {�})). There must then be some � < α such that there are legal a and b in
F with x ∪ {�} ⊂ dom(a)∩ dom(b) and a(�) �= b(�), as otherwise A would be the
union of all legal a ∈ F with a ⊃ A � x and thus A would be inW .
By (53) we must then have inside X some � < α and some legal a and b in

F with x ∪ {�} ⊂ dom(a) ∩ dom(b) and a(�) �= b(�). By (54), we may then
choose inW some � ∈ α ∩ X and some a ∈ F ∩ X such that x ∪ {�} ⊂ dom(a),
a � x = (A � (X ∩ α)) � x (= A � x), and a(�) �= (A � (X ∩ α))(�) (= A(�)). Let
ai = a.
Writing Γ = {ai : i < 	}, Γ ∈ W , and Γ is an antichain consisting of legal
functions. But this is a contradiction! �(Theorem 3.2)
Let us fixW ⊂ V , an inner model, and let 	 and � be infinite cardinals, 	 ≤ �.
We aim to define a poset in W which will be a candidate for generically adding a
given subset of �.
Working in W , let L be the infinitary language with atomic fomulae “�̌ ∈ ȧ,”
for � < �, and such that the set of formulae is closed under negation and infinite
disjunctions of the form

∨∨
Γ for all well-ordered sets Γ of fomulae with Card(Γ) <

	. Writing �<	 = (�<	)W , L has size �<	.
For A ⊂ �, A ∈ V Col(�,�<	), and ϕ ∈ L, we may define the meaning of “A � ϕ”
in the obvious recursive fashion: A � “�̌ ∈ ȧ” iff � ∈ A, A � ¬ϕ iff A �� ϕ, and
A �

∨∨
Γ iff A � ϕ for some ϕ ∈ Γ. Inside V Col(�,�<	), the relation “A � ϕ” is Borel

in the codes. For Γ ⊂ L,A � ΓmeansA � ϕ for allϕ ∈ Γ. For Γ∪{ϕ} ∈ P(L)∩W ,
we write

Γ � ϕ (55)

iff in W Col(�,�<	), for all A ⊂ �, if A � Γ, then A � ϕ. (55) is thus defined over
W , and inside W Col(�,�<	), (55) is Π11 in the codes By absoluteness, (55) is thus
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equivalent with the fact that in V Col(�,�
<	), for all A ⊂ �, if A � Γ, then A � ϕ. For

Γ ∈ P(L) ∩W , Γ is called consistent iff there is no ϕ ∈ L such that Γ � ϕ and
Γ � ¬ϕ, which in turn is easily seen to be equivalent with the fact that inW Col(�,�<	)

(equivalently, in V Col(�,�
<	)) there is some A ⊂ � with A � Γ.

Now let

g : [L]	 ∩W → [L]<	 ∩W , g ∈W
be a function such that

(i) g(Γ) ⊂ Γ and
(ii) Card(g(Γ)) < 	

for all Γ ∈ [L]	 ∩W . Let us call ϕ ∈ L illegal iff there is some Γ ∈ [L]	 ∩W such
that ϕ ∈ Γ \ g(Γ), and let us write Tg for the set of all formulae of the form15

ϕ →
∨∨
g(Γ), (56)

where ϕ is illegal, Γ ∈ [L]	 ∩W , and ϕ ∈ Γ \ g(Γ).
Let us write Pg for the set of all ϕ ∈ L such that Tg ∪ {ϕ} is consistent. We also
write

ϕ ≤Pg ϕ
′ (57)

for Tg ∪ {ϕ} � ϕ′.

Claim 3.3. Pg has the 	-c.c. insideW .

Proof. Let Γ ∈ [Pg ]	 ∩W . Let ϕ ∈ Γ \ g(Γ). By (56), ϕ ≤Pg

∨∨
g(Γ), so that Γ

cannot be an antichain. �(Claim 3.3)
For an arbitrary choice of g, wemight have thatPg is quite trivial, or evenPg = ∅.
Let A ⊂ �, A ∈ V . We set

GA = {ϕ ∈ Pg : A � ϕ}.

Claim 3.4. Assume that A � Tg . Then GA ⊂ Pg is a Pg -generic filter overW and

A = {� < � : “�̌ ∈ ȧ” ∈ GA} ∈W [GA].

Proof. If ϕ, ϕ′ ∈ Pg , A � ϕ, and ϕ ≤Pg ϕ
′, then A � ϕ′ using absoluteness. If

ϕ, ϕ′ ∈ Pg , A � ϕ, and A � ϕ′, then A � ϕ ∧ ϕ′,16 ϕ ∧ ϕ′ ∈ Pg by A � Tg , and
clearly ϕ ∧ ϕ′ ≤Pg ϕ and ϕ ∧ ϕ′ ≤Pg ϕ

′. Hence GA is a filter.
Now let Γ ∈ W be a maximal antichain in Pg . By Claim 3.3, Γ ∈ [Pg ]<	. If
GA ∩ Γ = ∅, then A � ¬

∨∨
Γ. By A � Tg , ¬

∨∨
Γ ∈ Pg , and

Γ ∪ {¬
∨∨
Γ} � Γ

is an antichain. Contradiction!
The rest is easy. �(Claim 3.4)

15ϕ → ϕ′ is short for
∨∨

{¬ϕ, ϕ′}.
16ϕ ∧ ϕ′ is short for ¬

∨∨
{¬ϕ,¬ϕ′}.
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Theorem 3.5 (Lev Bukovský). Let W ⊂ V be an inner model, and let 	 be an
infinite regular cardinal such thatW uniformly 	-covers V . Let e : 22

<	 → P(2<	) be
a bijection, and let

A = {2<	 · � + � : � < 22<	 ∧ � ∈ e(�)}.

There is then some poset P ∈W such that
(a) P has the 	-c.c. inW ,
(b) P has size 22

<	

inW ,
(c) A is P-generic overW , and
(d) V =W [A].

Proof. Let us write
� = 22

<	

,

as being computed in V .
By the fact thatW uniformly 	-covers V , we may find a function

g : [L]	 → [L]<	, g ∈W

such that for all Γ ∈ [L]	 ∩W ,
(i) g(Γ) ⊂ Γ,
(ii) Card(g(Γ)) < 	, and
(iii) if A � ϕ for some ϕ ∈ Γ, then A �

∨∨
g(Γ).

For this choice of g, A � Tg . Hence by Claim 3.4, GA is Pg -generic over W , and
A ∈ W [GA]. This gives (a), (b), and (c). Clearly,W [GA] inherits fromW the fact
that it uniformly 	-covers V , so that (d) is given by Theorem 3.2. �(Theorem 3.5)
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