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Abstract
The Lee–Carter (LC) model is a basic approach to forecasting mortality rates of a single population.
Although extensions of the LC model to forecasting rates for multiple populations have recently been
proposed, the structure of these extended models is hard to justify and the models are often difficult to cal-
ibrate, relying on customised optimisation schemes. Based on the paradigm of representation learning, we
extend the LCmodel to multiple populations using neural networks, which automatically select an optimal
model structure. We fit this model to mortality rates since 1950 for all countries in the Human Mortality
Database and observe that the out-of-sample forecasting performance of the model is highly competitive.
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1. Introduction
Understanding and quantifying mortality rates are fundamental to the study of the demography
of human populations, and they are a basic input into actuarial calculations involving valuation
and pricing of life insurance products. Since mortality rates have been observed to change over
time, techniques to forecast future mortality rates are important within both demography and
actuarial science. Two well-known examples of these techniques are the Lee–Carter (LC) (Lee &
Carter 1992) and the Cairns–Blake–Dowd (CBD) (Cairns et al. 2006) models, which forecast
mortality rates in two steps: firstly, a low dimensional summary of past mortality rates is con-
structed by fitting statistical models to historical mortality data, and secondly, future mortality
rates are forecasted by extrapolating the summarised mortality rates into the future using time
series models.

The LC and CBDmodels were applied originally to single populations. If forecasts for multiple
populations were required, then the models were fit to each population separately. However, for
several reasons, it seems reasonable to expect that a multi-population mortality forecasting model
would produce more robust forecasts of future mortality rates than those produced by single-
population models. If changes in mortality in a group of countries are due to common factors
such as similar socioeconomic circumstances, shared improvements in public health and medi-
cal technology, then it makes sense to forecast the mortality rates for these countries as a group.
Furthermore, mortality trends that are common to several populations would likely be captured
with more statistical credibility in a model that relies on the experience of many countries, see
Li & Lee (2005). Thus, Li & Lee (2005) recommend that multi-population models should be used
even if the ultimate interest is only in forecasts for a single population. In addition, mortality fore-
casts from separate single-population models may diverge from each other, leading to implausible
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results if used in actuarial and demographic models, whereas a multi-population model can pro-
duce coherent forecasts. To this end, multi-population variants of the LC and CBD models have
recently been developed.

In this work, we concentrate on the LCmodel and its multi-population extensions.We describe
their design and fitting which have caused several challenges in the past. The original LC model
cannot be fit as a regular regression model due to the lack of covariates, and, in the original paper,
a Singular Value Decomposition (SVD) was applied to fit the model. More recently, regression
approaches have been applied (Brouhns et al. 2002; Currie 2016) within the framework of non-
linear regression models. Extending the SVD and regression frameworks to the multi-population
case has proven challenging, and recent studies have resorted to elaborate optimisation schemes
to fit these models, see for example, Danesi et al. (2015) or Enchev et al. (2017), or to rela-
tively less well-known statistical techniques, such as Common Principal Components, as applied
by Kleinow (2015). A further challenge is the significant amount of judgment that needs to be
exercised when choosing the data on which to fit the multi-population models, so that simi-
lar countries are grouped together, in other words, it appears that the multi-population models
developed to this point are not suitable for large scale mortality forecasting. Finally, and most
significantly, the extension of the LC model to multiple populations can be accomplished in sev-
eral ways, which we describe next, and it is not clear which of these extended models is optimal,
or why. For example, Li & Lee (2005) propose to model a common age trend between popula-
tions, and fit a secondary population-specific LC-type model to the residuals of the common age
model. Kleinow (2015) designs a so-called Common Age Effect (CAE) model, where the compo-
nent of the LC model describing the change in mortality with time is held constant, but different
period indices are fit for each population (for more examples of variations on LC models, see
Chen & Millossovich (2018) and Danesi et al. (2015)). In a comparison of these models, and
two other related variations, it was found that the CAE model fits better (Enchev et al. 2017)
than the other models, but no theory seems to have been developed to explain these findings
(we refer the reader to Villegas et al. (2017) for a partial explanation of the success of the CAE
model).

It thus emerges that significant judgment needs to be applied when choosing the form of a
multi-population mortality model, requiring, to borrow terminology from the machine learning
literature, substantial manual “feature engineering”. In contrast, in this paper, we seek to offer an
alternative multi-population mortality forecasting model that requires less manual feature engi-
neering, can be fit to many populations simultaneously and can be fit using relatively standard
optimisation approaches. This model is based on neural networks, which have recently been used
to achieve a number of breakthrough results in the areas of computer vision, speech recogni-
tion and natural language processing tasks, see Bengio et al. (2013). Neural networks have been
shown to automatically learnmeaningful representations of the data to which they are applied, see
for example, Guo & Berkhahn (2015) and Mikolov et al. (2013), and thus, our approach imple-
ments the paradigm of representation learning, which avoids manual feature engineering by using
a neural network to derive automatically an optimal set of features from the input data. Modern
software implementations (Allaire & Chollet 2018; Abadi et al. 2016) of the back-propagation
algorithm (Rumelhart et al. 1986) allow these models to be fit easily in a number of different
open-source software environments. A final advantage of our model is that the forecasts do not
need to be derived using time series models, but are generated implicitly once the model has been
fit to the historical data.

The remainder of this paper is organised as follows. Section 2 reviews the LC model and its
extensions to multiple populations by Li & Lee (2005) and Kleinow (2015). Section 3 covers the
basics of neural networks and shows how the LC model can be described as a neural network and
fit using back-propagation. In particular, we then extend the LC model to the multi-population
case using the deep neural network described in this paper. In Section 4, we fit the models to
all data in the Human Mortality Database (HMD) (Wilmoth & Shkolnikov 2010) for the years
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1950–1999, and forecast mortality rates for both genders up to the year 2016. We compare the
in-sample fit of the neural network model to the variants of the LCmodel discussed above and the
out-of-sample fit to the mortality rates in the years 2000–2016. In Section 5, we discuss strategies
for improving the performance of the neural network approach. Finally, Section 6 concludes with
a discussion and avenues for future research.

2. The LC Model and Extensions
The LC model defines the force of mortality as

log
(
ux,t

) = ax + bxkt (1)

where ux,t is the force of mortality at age x in year t, ax is the average log mortality at age x
measured over the period in which the model is fit, bx is the rate of change of the log mortality
with time at age x and kt is the time index for calendar year t. This model cannot be fit with the
Generalised Linear Model (GLM) framework due to the multiplicative nature of the second term
bxkt , which is comprised of two (latent) variables that must each be estimated from the data. Thus,
two alternative approaches to fit the LCmodel have been developed. The original approach (Lee &
Carter 1992) is to apply a SVD to the matrix of log mortality rates, centred by subtracting the
average log mortality at each age from each row of the matrix. The first left and right vectors from
the SVD provide values for bx and kt . A second approach (Brouhns et al. 2002) (illustrated inmore
detail in Currie (2016)) is to specify the LC model as a statistical model (on the assumption that
log mortality rates are normally distributed, see also Remark 2.1). More specifically, a Generalised
Non-linear Model (GNM) is used (see Turner & Firth (2007)), and then maximum likelihood
method is applied to fit the model. The LC model is generally fit to historical mortality data, and
the time index coefficients kt are then forecast using a standard time series model to produce
forecasts of future mortality rates.

Remark 2.1. The specification in (1) aims to model mortality rates directly. Another approach is
to use Poisson rate regression to model counts of deaths, using the central exposed to risk as the
exposure. For simplicity, we focus on the first case in this research, but note that our approach
carries over to the case of Poisson rate regression.

Extending the LC model to multiple populations generally involves adding terms to (1) that
refer to some combination of the pooled mortality of the entire population and the specific
mortality of each individual population. For example, Li & Lee (2005) model mortality as

log
(
ux,t

) = aix + bxkt + bixk
i
t (2)

where bix and kit are the rate of change of the log mortality with time and the time index, respec-
tively, both for population i, which could, for example, refer to males and females in the same
country, or populations from different countries. Li & Lee (2005) refer to this model as the
Augmented Common Factor (ACF) model, which is fit in three steps – firstly, the population-
specific average mortality aix is calculated and subtracted from the matrix of mortality rates;
secondly, the change with time of the pooled population mortality bxkt is estimated; and, finally,
the change with time of the residual population-specific mortality bixkit is estimated from the
residual matrix μx,t − aix − bxkt .

A variation of this model is the CAE model of Kleinow (2015), which we define in a simplified
manner as follows:

log
(
ux,t

) = aix + bxkit (3)
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where the rate of change of the log mortality with time is pooled (the “CAE”), but the time index is
population specific. This model was fit in Kleinow (2015) using Common Principal Components
and in Enchev et al. (2017) using maximum likelihood techniques.

More terms relating to the change of the log mortality with time could be added to any of the
models (1), (2) or (3). For example, the full CAE model presented in Kleinow (2015) is

log
(
ux,t

) = aix + b(1)xk(1)it + b(2)xk(2)it
where terms in parentheses indicate that, for example, b(1)x is the first change of mortality com-
ponent, and so on. Another variation is the two-tier ACF model of Chen & Millossovich (2018),
who include both gender-specific and gender- and population-specific terms in their model. Also,
the specifications of the ACF and CAE models could be combined by including common factors
and common effects within the same model.

Thus, the LC model can be extended using several different model specifications, but, to date,
no theory has emerged explaining why these specifications may be more or less optimal for a par-
ticular set of mortality rates (though, some partial explanation is found in Villegas et al. (2017)).
Therefore, we conclude that the specification of extended LC models appears somewhat arbitrary
and depends on the judgment of the modeller, leading us to automate this process in the next
section. Also, the extended LC models are not flexible enough to fit mortality data that are dis-
similar from each other; thus, Li & Lee (2005) and Kleinow (2015) are forced to choose mortality
data from regions that, a priori, would seem to have similar mortality experience. On the other
hand, we aim to design a model with sufficient flexibility to model all mortality rates in the HMD
since 1950 simultaneously, and turn specifically to neural networks, which have a sufficiently high
representational capacity for this task.

3. Representation Learning and Neural Networks
We approach the extension of the LC model in (1) from two perspectives. Firstly, the LC model
can be seen as a regressionmodel, where mortality rates (the target or dependent variable) are pre-
dicted using features (independent variables) that, in the case of the original LCmodel, summarise
the mortality rates in an optimal way. In other words, the LCmodel does not directly use the orig-
inal features of the mortality data, such as age and year, but relies on a Principal Components
Regression to derive new features, bx and kt , from the historical data. Similarly, the ACF and CAE
extensions of the LC model rely on specific combinations of features derived from the aggregate,
as well as the population-specific, mortality data. To extend the LC model, instead of subjectively
deriving features from the mortality data, we turn to the paradigm of representation learning
(Bengio et al. 2013), which is an approach that allows algorithms automatically to design a set of
features that are optimal for a particular task. In particular, we utilise deep neural networks, which
consist of multiple layers of non-linear functions that are optimised to transform input features of
a regression model (in this case, age, calendar year, gender and region) into new representations
that are optimally predictive with respect to the target variable.

Secondly, it can be seen that the LC model has the following specific functional form:

log
(
ux,t

) = g(x)+ h(x)i(t)

where we set

g(x)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a1 for x= 1,
a2 for x= 2,
...
aω for x= ω
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for ω being the maximum age considered; and the functions h(x) and i(t) are also discrete func-
tions described by bx and kt , respectively, see (1). Here too, rather than relying on manually
specified features of the extended LC models, and the specific functional form of the LC model,
we instead rely on neural networks to learn the function log (ux,t) directly from the features of the
mortality data, by using age, calendar year, gender and region as predictors in a neural network
(although, we maintain the discrete formulation in the form of embedding layers, which will be
discussed later in this section). Thus, we utilise neural networks as universal function approxi-
mators, and refer the reader to Chapter 5 in Wüthrich & Buser (2016) for more details on the
universality theorems underlying this choice.

We define our neural network model in two steps. We aim to fit the model to all mortality
rates since 1950 in the HMD, and, therefore, our feature space is comprised of year of death,
age of last birthday before death, region and gender. We model the year of death as a numerical
input to the neural network, which allows us to extrapolate mortality rates beyond the observed
range. The region and gender features are categorical, and we choose to treat the age variable as
categorical as well. We model these categorical variables using an embedding layer (Bengio et al.
2003) (see Section 3 in Richman (2018) for a review). This embedding layer maps each category
in the categorical feature to a low dimensional vector, the parameters of which are learned when
the model is fit. Thus, for example, for the region feature, and similarly for the other categorical
variables, we consider the embedding

f (region)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

region1 for region= region1,
region2 for region= region2,
...
regionn for region= regionn

where we assume to have n regions denoted by REG= {region1, . . . , regionn}, and where
f : REG→R

d is a function that maps a particular region, say region1, to a real-valued
d-dimensional vector region1, with d being a hyper-parameter defining the dimension of each
embedding layer.

Remark 3.1. We note that if the dimension d of the embedding vector is 1, then the embedding
layer reduces to nothing more than the normal treatment of categorical variables, where every
categorical label may have its own parameter. This fact is further exploited below to describe how
the LC model and extensions thereof can be fit using back-propagation, see Remark 3.2 below.

Once embedding vectors have been defined for each categorical variable, these are concatenated
into a single feature vector featuret,x,i,j = (t, age′x, region′

i, gender
′
j)′ which is used as input to the

neural network in order to predict the force of mortality in year t, at age x for region i and gender j.
The basic form of the neural network we propose is a deep feed-forward network given by the

ridge functions

Z1 = σ0(c0 + B′
0 featuret,x,i,j) (4)

Z2 = σ1(c1 + B′
1 Z1) (5)

ux,t = σ2(c2 + B′
2 Z2) (6)

where B0, B1 and B2 are weightmatrices, c0, c1 and c2 are intercepts and σ0, σ1 and σ2 are the (non-
linear) activation functions of the neural network. Note that (4) has to be understood component-
wise, and it describes a hidden layer. That is, Z1 is a vector of intermediate variables calculated by
applying the non-linear activation function σ0 to linear combinations of the input features with
weight matrix B0 and intercepts c0. After calculating another set of intermediate variables, Z2,
mortality rates are calculated using these intermediate variables Z2 as explanatory variables in a
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final regression model (6). Since the weights defining the hidden variables are learned during the
optimisation of the network, optimal combinations of the input features can be learned by the
network. The model has been structured to learn both a representation of the input data using
embedding layers, which have sufficient capacity to incorporate the large number of observations
in the HMD dataset, and interactions between these representations are learned at the next layers
of the network, freeing us from specifying exactly how the region and gender terms interact with
the other terms, and simplifying the model specification compared to the ACF and CAE models
noted above.

The model in (4)–(6) has, to this point, been described in general terms. The specific choices
that we make are choosing a dimension of d = 5 for each of the embedding layers in the feature
vector featuret,x,i,j, and 128 neurons in the intermediate layers of the network. The activation
functions considered for the first two layers of the network are the Rectified Linear Unit (ReLU)
(Nair & Hinton 2010) or the hyperbolic tangent function (tanh), and a sigmoid function σ2 for
the last layer. Between the intermediate layers, we add dropout layers (Hinton et al. 2012) to regu-
larise the network, with the probability of each neuron being switched off set at p= 0.05. We test
variations on this network with extra intermediate layers, as described in Section 4, and, in this
case, also add batch normalisation layers (Ioffe & Szegedy 2015). To fit these models, we rely on
the back-propagation algorithm, as implemented in the TensorFlow software package (Abadi et
al. 2016), accessed via the Keras library in R, we refer to Chollet (2015). The R code for a variation
of this model is provided in Listing 2 in Appendix A.

Remark 3.2. We present the original LC model (1) as a version of a network model similar
to network (4)–(6). To this end, we consider a fixed gender j in a given region i, and, thus,
the regression model only depends on the age feature x and the year feature t. Let yeart ∈ R

denote the one-dimensional embedding vector (d = 1) of the year feature t, and let agex =
(age(1)x, age(2)x)′ ∈ R

2 denote the two-dimensional embedding vector (d = 2) of the age fea-
ture x. Remark that in the network model considered in (7), we interpret the two-dimensional age
embedding as two one-dimensional embeddings. The original LC model is then received as

u(x, t)= exp
{
age(1)x + age(2)x yeart

}
(7)

This model is illustrated in Listing 1: On lines 4–6 we define the one-dimensional embedding
vector for the year feature t, and on lines 8–14 we define the two-dimensional embedding vector
for the age feature x. These two embeddings involve trainable parameters of the same dimen-
sions as kt , ax and bx in (1). Finally, on lines 16–25 we merge all terms to the required network
architecture (7); note that this modelling part does not involve further trainable parameters.

Remark that the ACF and CAE models can be formulated in a similar manner.

Remark 3.3. We close this section by noting that the specification of the neural network could
be extended to include other numerical or categorical features. For example, another embed-
ding layer representing the geographical region of each country could be added. Furthermore,
although we show later that the model specified above succeeds in capturing cohort effects to
some extent, one might choose also to add an explicit cohort effect to the network. This could
be added as another embedding layer; however, one would need then to derive manually values
for the cohorts that are outside of the sample used to fit the network. Another option is to add a
numerical input representing cohort to the network. We leave the implementation of these ideas
for potential future research.

4. Fitting the Models and Results
To fit the models discussed, we divide the data of the HMD into training and test sets, defining the
training set as the mortality rate observations at ages 0–99 occurring in the years before 2000, and
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Listing 1: LCmodel as a network with embeddings.

1 Year <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’Year ’)
2 Age <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’Age ’)
3
4 Year_embed = Year %>%
5 layer_embedding(input_dim =50, output_dim=1, input_length=1, name = ’Year_embed ’) %>%
6 keras:: layer_flatten ()
7
8 Age_embed_1 = Age %>%
9 layer_embedding(input_dim =100, output_dim=1, input_length=1, name = ’Age_embed_1 ’) %>%
10 keras:: layer_flatten ()
11
12 Age_embed_2 = Age %>%
13 layer_embedding(input_dim =100, output_dim=1, input_length=1, name = ’Age_embed_2 ’) %>%
14 keras:: layer_flatten ()
15
16 one_init = initializer_ones ()
17
18 Year_effect = list(Age_embed_2 ,Year_embed) %>% layer_multiply ()
19
20 main_output = list(Age_embed_1 , Year_effect) %>% layer_add () %>%
21 layer_dense (1, kernel_initializer = one_init , use_bias = FALSE , trainable = FALSE ,
22 activation = "linear") %>%
23 layer_lambda(function(x) exp(x), name = ’main_output ’)
24
25 model <- keras_model(inputs = c(Year , Age), outputs = c(main_output ))

the test set is chosen as the observations in the years 2000–2016. The models are fit only to those
countries in the HMD that have at least 10 years of data before year 2000; all of the 41 countries
considered are listed in Table A.1 in Appendix A (at the time of performing the analysis, mortality
rates for Korea had not yet been added to the HMD). Of these 41 countries, Croatia (HRV) was
excluded since data were only available after the year 2002, Germany (DEUTNP) was excluded as
data were only available since 1990 (i.e. 1 year of data were missing in the training set) and Chile
(CHL) was excluded since data were only available since 1992. Thus, 38 of the 41 countries are
included in the analysis that follows, and, since observations are for both sexes, we aim to forecast
76 distinct sets of mortality rates.

In cases when particular mortality rates were recorded as zero or were missing, we impute the
missing mortality rate using the average rate at that age across all countries, for that gender, in that
year.

We first describe in the next subsection how the LC, ACF and CAE models are fit, and discuss
the results of each method separately, before comparing these results to those of the deep neural
network approach.

Throughout, we use the (out-of-sample) mean squared error (MSE) as the metric to compare
the fit of the models. As discussed above, the LCmodel was originally fit using the SVD procedure
to perform principal components analysis (PCA). It is well known that PCA can be expressed
as an optimisation problem, in which the MSE between the original data, and the data recon-
structed using an approximating linear sub-space is minimised, see, for example, Chapter 18.3 in
Efron & Hastie (2016); thus, the use of the MSE criterion is consistent with the history of mortal-
ity forecasting. Furthermore, minimising the MSE is equivalent to maximising the likelihood of
a Gaussian distribution (i.e. we assume that conditional on the mean produced by each mortality
model, the forecast mortality rates are Gaussian), and, given the observed regularity of mortal-
ity rates, this distributional assumption appears reasonable. Therefore, in addition to comparing
models using the MSE, we also use the MSE as the optimisation objective of the neural network
models (although other functions, such as the mean absolute error could also be considered).
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Table 1. Out-of-sample performance of three methods of fitting the
Lee–Carter model; MSE values are multiplied by 104

Model Average MSE Median MSE Best performance

1 LC_GNM 7.19 4.51 5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 LC_SVD 5.50 2.48 40
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 LC_BP 5.19 2.60 31

We note that other approaches to comparing mortality models have been proposed, for example,
see Dowd et al. (2010) for a review of recent advances and new approaches for comparing ex-post
density mortality forecasts; however, since our main aim in this work is to introduce a deep neural
network for mortality forecasting, we refrain from giving the other approaches here.

4.1 Baseline models
The basic LC model was fit for each country and gender in the HMD separately, using mortality
rates up to and including the year 1999. Following the literature, we fit the LC models by applying
the SVD procedure (denoted LC_SVD in the following) and using GNMs, which were fit under
the assumption that mortality rates follow a Gaussian distribution (LC_GNM). We found that in
some cases, the GNM models did not converge, and in these cases we do not report the results
of the GNM method. The LC models were also fit via back-propagation (LC_BP), using the code
in Listing 1 to define the network in Keras and using the RMSProp optimiser to minimise the
in-sample MSE of the predicted mortality rates before year 2000. In this case, separate parameters
were fit for each country and gender, but the LC models were fit jointly to the entire dataset at
once. Mortality rates in the years after 1999 were forecast, for each of the three LC models, by
extrapolating kt using a random walk with drift, as determined by the random walk function in
the Forecast package in R (Hyndman et al. 2015).

The out-of-sample performance of these LC models is shown in Table 1. A model is defined
as having the “Best Performance” when it achieves the lowest MSE on the test set for a particular
country and gender. We also report the overall mean and median of the MSEs on the test set for
each model.

We observe that the models fit with GNMs did not perform well out-of-sample, beating those
fit with SVD and back-propagation only in 5 of 76 instances. This may be because the combination
of the relatively inflexible LCmodel specification together with the assumption thatmortality rates
are distributed as Gaussian random variables with constant variance over all ages is too restrictive
for the GNM fitting algorithm to converge; for example, at older ages with fewer lives exposed
to risk we expect a higher variance of the mortality rates than at younger ages. Of the models
shown in Table 1, those fit with SVD have a lower median MSE and outperform those fit with
back-propagation, although we note that the LC models fit with back-propagation produce fewer
extreme outliers compared to those fit with SVD. In what follows, we select the SVDmodel as the
benchmark forecast against which we compare the ACF and CAE models.

Next, we fit the ACF and CAE models. Therefore, we grouped the countries in the HMD sub-
jectively into geographical regions based on proximity, as shown in Table A.1 that appears in
Appendix A. These regions are then used to describe and derive a common mortality trend.

The ACF model was fit according to the method in Li & Lee (2005), as well as using back-
propagation. When using the method of Li & Lee (2005), the ACF model was fit for each region
and gender separately, as follows. The average (log) mortality rate for each region and age was cal-
culated and subtracted from the average regional mortality rates in each year, producing a matrix
of centred regional mortality rates, on which the time effect (kt) of the original LC model was
fit by applying the SVD procedure. These regional LC models were used to produce first mortal-
ity rates after 1999 by forecasting using random walks with drift (denoted ACF_SVD_region in
the following); note that these forecasts do not consider country-specific information, but only
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Table 2. Out-of-sample performance of the Augmented Common Factor (ACF)
model; MSE values are multiplied by 104

Model Average MSE Median MSE Best performance

1 LC_SVD 5.50 2.48 19
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 ACF_SVD_region 3.46 2.50 36
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 ACF_SVD_country 7.30 4.77 9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 ACF_BP 6.12 3.00 12

information at the regional level according to Table A.1. Then, the fitted regional time effects
(bxkt) were subtracted from the mortality rates in each country, producing a matrix of residuals,
on which a second set of country-level LC models were fit, producing a country time effect (kit),
which was forecast again using a random walk with drift (Forecast package in R; Hyndman et al.
2015). Thus, two sets of forecasts were produced for each country using the ACF model, one at a
regional level (ACF_SVD_region) and one adding a country-specific effect to the regional forecast
(ACF_SVD_country).

Next, the ACF model was fit using back-propagation, by defining the network version of the
ACF model in Keras and minimising the in-sample MSE of the predicted mortality rates using
the RMSProp optimiser (ACF_BP). In this case, the regional and country effects were optimised
jointly (i.e. the two-step procedure of Li & Lee (2005) was not required), and, in a similar way to
the LC model, the ACF model was fit for all regions and genders simultaneously. The results are
presented in Table 2.

Surprisingly, amongst the ACF models, the relatively simple forecasts produced using mortal-
ity rates at a regional level, which ignore country-specific information, significantly outperform
the rest of the models, including the original LC model. Comparing the MSE of the regional fore-
casts to the LC model, it emerges that the LC models have a lower median MSE, but the regional
forecasts have a much lower average MSE, implying that, for some countries where the original
LC model does not perform well (i.e. produces a high out-of-sample MSE), the regional forecasts
are more accurate, as shown in Figure 1. Similarly, the regional forecasts outperform both of the
full ACF models (i.e. those incorporating country-specific information), although the ACF model
fit with back-propagation appears to be better than the two-step model fit using SVD. Since these
results indicate that only in some instances does the country-specific information incorporated
into the ACF models increase predictive power, a credibility mixture between regional and coun-
try forecasts might produce more robust results than those shown here, but we do not pursue this
further. On the other hand, the good performance of the regional approach may indicate that the
subjective choice of the regions has been done in a reasonable way, providing bigger volumes on
a regional level compared to the country level, and in turn giving more robust models.

Finally, the CAE models were fit. Firstly, a simple optimisation of the regional effects derived
for the ACF model was attempted. As mentioned above, the SVD procedure was applied to the
matrix of centred average regional mortality rates. The first and second left vectors from this SVD
decomposition were used to provide values for the regional rate of change of mortality with time,
b(1)x and b(2)x. Then, country-specific time effects, k(1)it and k(2)it , were derived using a GNM
model, where the regional effects (as well as the country-specific average mortality rates) were
held constant and entered the model as an offset. Mortality forecasts were derived by projecting
the country-specific time effects using a random walk with drift. In the following, we report on
the results of a CAE model with a single time component (CAE_SVD) and two time components
(CAE2_SVD). The CAE models were also fit using back-propagation for all regions and genders
simultaneously, in a similar fashion to that described for the ACF model (CAE_BP).

A comparison of the CAE models is shown in Table 3. We note that the CAE model with two
time components did not produce reasonable forecasts of mortality for males in Eastern Europe,
and these results were excluded from the table. In other words, the CAE2_SVD is less robust than
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Table 3. Out-of-sample performance of the Common Age Effect
(CAE) model; MSE values are multiplied by 104

Model Average MSE Median MSE Best performance

1 LC_SVD 5.50 2.48 33

2 CAE_SVD 4.76 2.35 13

3 CAE2_SVD 12.01 1.79 14

4 CAE2_BP 5.59 3.46 16
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Figure 1. Out-of-sampleMSE for each gender (female: top row;male: bottom row) and country in theHMD for the LC and ACF
models (LC_SVD: first column; ACF_SVD_region: second column; ACF_SVD_country: third column; ACF_BP: fourth column);
the dots give the corresponding errors for the countries (with “TRUE” showing the best models in blue colour).

the other models, which produced reasonable results in all circumstances. This can also be seen
from the relatively high averageMSE of the CAE2_SVDmodel in Table 3 which is being influenced
by cases of very poor performance. However, we also note that the median MSE is the lowest of
the models indicating that this model predicts mortality well in some instances. Unexpectedly,
though, the baseline LC models beat the CAE models 33 of 76 times, indicating that this model
formulation is not particularly competitive.

One might potentially challenge the modelling in this section, where random walks with drift
have been used for forecasting country-specific effects, whereas the literature suggests the use of
a random walk without drift or an AR(1) process, see, for example, Li & Lee (2005), who justify
using these latter models on the grounds that country-specific effects should become less signifi-
cant than regional effects in the long run (since it could be expected that medical technology and
other advances promoting longevity should become available in all countries after several years).
To investigate this, in an additional step, we have modelled the country-specific effects using a
random walk without drift and found that the performance of the models discussed in this sec-
tion was worse (compared to the neural network we discuss in the next section) than if a drift was
included. We show these results in Appendix B. Furthermore, modelling using an AR(1) process
was also attempted, but it was found that some of the time series were non-stationary and fitting
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Figure 2. Five layer deep neural network
depicted graphically. The feature layer con-
sists of five dimensional embeddings for
each categorical variable, and a single
dimension for Year, which is the only numer-
ical variable. Note that for clarity, only some
of the connections between the feature and
intermediate layers have been shown; also,
dropout and batch normalisation layers are
not shown.

the AR(1) process failed. Finally, we note that the random walks used in this section are uncor-
related, and since we only aim to produce best estimate forecasts (i.e. density forecasts are not
addressed in this paper), we do not consider correlated random walks further.

To conclude, for comparison to the neural network models, we pick the best performing
amongst the various LC, ACF and CAE models.

4.2 Deep neural networkmodel
In this section, we describe the fitting of the neural networks in more detail. In total, six networks
were fit to the HMD data. Two networks following equations (4)–(6) consist of two intermediate
layers, the first of these network models using ReLU activations (DEEP1, in what follows), and the
second one using tanh activations (DEEP2). The next two neural network models add three more
intermediate layers to each of these first two networks, bringing the number of intermediate layers
to five (respectively DEEP3 (ReLU) andDEEP4 (tanh)).We depict these deeper neural networks in
Figure 2. Finally, we add a so-called “skip” connection to these deeper networks, by connecting the
feature layer directly to the last intermediate layer, as well as to the first intermediate layer (respec-
tively DEEP5 (ReLU) and DEEP6 (tanh)). Skip connections, in various configurations, have been
used in the computer vision literature to train very deep neural networks successfully, see for
example, He et al. (2015), Huang et al. (2016), and are thought to resolve the vanishing gradient
problem that affects deeper networks (Huang et al. 2016) by shortening the path that the back-
propagation algorithm needs to follow to get back to the first layer of the network. The code for
fitting the DEEP6 network in Keras appears in the appendix in Listing 2.
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Listing 2: Deep neural network model with tanh activations and a skip connection (DEEP6).

1 Year <- layer_input(shape = c(1), dtype = ’float32 ’, name = ’Year ’)
2 Age <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’Age ’)
3 Country <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’Country ’)
4 Gener <- layer_input(shape = c(1), dtype = ’int32 ’, name = ’Gender ’)
5
6 Age_embed = Age %>%
7 layer_embedding(input_dim = 100, output_dim = 5,input_length = 1,name = ’Age_embed ’) %>%
8 keras:: layer_flatten ()
9
10 Gender_embed = Gender %>%
11 layer_embedding(input_dim = 2,output_dim = 5,input_length = 1,
12 name = ’Gender_embed ’) %>%
13 keras:: layer_flatten ()
14
15 Country_embed = Country %>%
16 layer_embedding(input_dim = 41, output_dim = 5,input_length = 1,
17 name = ’Country_embed ’) %>%
18 keras:: layer_flatten ()
19
20 features <- layer_concatenate(list(Year , Age_embed , Gender_embed , Country_embed ))
21
22 middle = features %>%
23 layer_dense(units = 128, activation = ’tanh ’) %>%
24 layer_batch_normalization () %>%
25 layer_dropout (0.05) %>%
26
27 layer_dense(units = 128, activation = ’tanh ’) %>%
28 layer_batch_normalization () %>%
29 layer_dropout (0.05) %>%
30
31 layer_dense(units = 128, activation = ’tanh ’) %>%
32 layer_batch_normalization () %>%
33 layer_dropout (0.05) %>%
34
35 layer_dense(units = 128, activation = ’tanh ’) %>%
36 layer_batch_normalization () %>%
37 layer_dropout (0.05)
38
39 main_output = layer_concatenate(list(features middle)) %>%
40 layer_dense(units = 128, activation = ’tanh ’) %>%
41 layer_batch_normalization () %>%
42 layer_dropout (0.05) %>%
43 layer_dense(units = 1, activation = ’sigmoid ’, name = ’main_output ’)
44
45 model <- keras_model(inputs = c(Year , Age , Country , Gender), outputs = c(main_output ))

When fitting the neural networks, the Adam optimiser (Kingma & Ba 2014) was used, with the
parameter values taken at the defaults. The models were each fit for 50 epochs, and the model with
the best performance during these 50 epochs, as measured by the validation set, was used. A 5%
random sample of the training set was used as a validation set; in other words, the network was
fit on 95% of the training set data, comprising 325,090 samples, and performance was assessed on
5% of the training set, comprising 17,110 samples.

Remark 4.1. The neural network is thus fit on slightly less data than the LC, ACF andCAEmodels
and is, therefore, not on entirely equal footing. Although the validation set could be excluded for
the models fit using GNMs and back-propagation, it cannot be excluded when fitting the models
using SVD (which cannot be applied in the presence of missing values), and, therefore, it was
decided to include the validation set for all of the models except the neural network approach.

Since several different network architectures can be fit to the HMD data, it is necessary to
choose an optimal architecture against which to test themodels mentioned in the previous section;
however, as described next, it is not straightforward to choose the optimal model.
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Figure 3. Boxplot of the results of round 1 of training the neural networks described in text for 10 runs on data from 1950 to
1990: left shows validation losses, right shows losses on test data from 1991 to 1999.

Firstly, we note that the results of training a neural network are somewhat variable (which is due
to the initial value of the optimisation algorithm, the random selection of batches of training data
to calculate the gradients used in back-propagation, as well as due to dropout, which is applied at
random to the neurons of each network), and, therefore, both the in-sample and out-of-sample
performance of a neural network can vary somewhat between training attempts. While we note
that the reproducibility of the results could be guaranteed by setting the seed value of the random
number generator used when fitting the model, there is the possibility that fitting a neural network
only once will produce results that are not representative of the model’s average performance (see
Figure 3 for an illustration of the potential variability of the results run with 10 different seeds).
Thus, in what follows, we fit each network 10 times and take the average MSE to indicate the likely
performance of each architecture.

Secondly, the training, validation and test sets need to be defined. Since we seek the model that
best forecasts the HMD data in the years from 2000 onwards, and we have access to the actual
observations in these years, one might propose to use the mortality rates in these years as the test
set. However, in a realistic forecasting scenario, the data which are being forecast have not yet been
observed, and this approach will not work. Therefore, the training set must be used to determine
an optimal model. We approach this by fitting the networks in two rounds, as described next.

In round 1, we split the training set (consisting of data from 1950 to 1999) into a second train-
ing set (consisting of data from 1950 to 1990) and test set (consisting of data from 1991 to 1999).
We note that in this second training set, three countries have less than 10 years of data (Greece
with 9 years of data and Israel and Slovenia each with 7 years of data), but the available data
should be sufficient for the purpose of determining the performance of each architecture. As just
mentioned, a 5% sample of the training data was taken as a validation set to track when the net-
work has fit the training data appropriately, that is, to indicate over-fitting to the training data.
All six networks were fit on the training data, and then the forecasting performance was assessed
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Table 4. Round 1 of fitting the deep neural networks (1950–1990):
validation and test set MSEs of the six deep neural network architectures
described in the text is shown, averaged over ten training runs; MSE values
are multiplied by 104

Model val_loss test_loss

1 DEEP1 1.94 6.01
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 DEEP2 1.99 6.34
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 DEEP3 1.93 4.96
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 DEEP4 1.91 5.73
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 DEEP5 1.88 4.79
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 DEEP6 1.81 5.00

Table 5. Round 2 of fitting the deep neural networks (1950–1999):
validation and test set MSEs of the six deep neural network architectures
described in the text are shown; MSE values are multiplied by 104

Model val_loss test_loss

1 DEEP1 2.33 3.29
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 DEEP2 2.31 4.73
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 DEEP3 2.29 3.30
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 DEEP4 2.26 3.07
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 DEEP5 2.23 2.79
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 DEEP6 2.16 2.64

on the test set from 1991 to 1999. These results are shown in Table 4 and Figure 3, where it can
be seen that both DEEP5 and DEEP6 perform well. The optimal forecasting (i.e. out-of-sample
and out-of-time) performance, as measured by the test set loss, is achieved by DEEP5, which is
the five layer network with ReLU activations and a skip connection, which somewhat improves
on the performance of DEEP3, which is a ReLU network without skip connection. However, the
best validation performance, by a substantial margin, is the DEEP6 network which is the five layer
network with tanh activations and a skip connection, the performance of which is improved dra-
matically by the skip connection. As already mentioned, we finally note that the results shown in
Table 4 represent the average of 10 runs of a random training process, and it is possible that train-
ing only a single network will produce less optimal performance, as can be seen by the outliers in
Figure 3.

In a realistic forecasting scenario, we would now refit only the best neural network architecture
(DEEP5) to all of the training data up to year 2000 (unless we wished to use an ensemble of models,
in which case we would use the results of more than one model); however, we wish to confirm in
this work that the proposed model selection strategy is valid. Therefore, in round 2, we fit all six
networks on the full training set (i.e. on the data from 1950 to 1999) and assess the forecasting
performance on the test set (years 2000 onwards). These results are shown in Table 5 and Figure 4.
The best model in round 2, as measured by the MSE is DEEP6, followed closely by DEEP5. Thus,
the results show that the round 1 testing was roughly indicative of the optimal model architecture,
leading us to select the second best model, but, unfortunately, not leading us to select DEEP6,
which has slightly more optimal performance.

Table 6 shows the results of comparing the DEEP5 neural network results to the rest of the
models fit in this section. Note that, for this comparison, we did not average the results of many
training runs, but simply selected the results of the first training run. By a wide margin, the best
performing model is the deep neural network, which is the optimal model based on the three
metrics considered in this section, and produces the best out-of-time forecasts 51 of 76 times
(DEEP6 would increase this to 54 of 76 times). In other words, we conclude that for the purposes
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Table 6. Comparison of the deep neural network approach with the best
models discussed in this section; MSE values are multiplied by 104

Model Average MSE Median MSE Best performance

1 LC_SVD 5.50 2.48 7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 LC_ACF_region 3.46 2.50 10
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 ACF_BP 6.12 3.00 4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 CAE_BP 5.59 3.46 4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 DEEP 2.68 1.38 51
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Figure 4. Boxplot of the results of round 2 of training the neural networks described in text for 10 runs on data from 1950 to
1999: left shows validation losses, right shows losses on test data from 2000 to 2016.

of large scale mortality forecasting, deep neural network architectures dramatically outperform
traditional single and multi-population forecasting models.

We refer the reader to Appendix B where, as noted above, the deep neural network is compared
against the ACF and CAE models, which were modified to use a random walk without a drift
term to forecast the country-specific effects. There we conclude similarly that the deep neural
network dramatically outperforms the other models, and, indeed, the choice of random walk for
forecasting country-specific effects makes little difference to the main conclusion of this section.

5. Discussion and Improving the Neural Network Approach
The previous section has shown that the deep neural network extension of the LC model by far
outperforms all of the other models considered in this paper, for the purpose of producing 15-year
ahead forecasts. Figure 5 shows the average residuals produced by each of these models, for the
ages 0–99 in the period 2000–2016. It can be observed that amongst the models, the deep neu-
ral network achieves the smallest residuals, with the fit for females appearing to be better than
the fit for males, which is an observation that applies equally to the country and regional LC
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Figure 5. Residuals produced by each of the models, for each gender, year and age separately, averaged over the countries
in the HMD.

models. The most significant residuals produced by the neural network are for male teenage and
middle-age mortality, where the model predicts rates that are too high, and an emerging trend of
predicting rates that are too low at the older ages, in the most recent years, which is in line with
recent observations across many countries, see for example, Office for National Statistics (2018).
The LC models appear to predict rates that are too low at all ages older than the teenage years,
while the ACF and CAEmodels display a different pattern of residuals that suggest that the model
specification has failed to capture the evolution of mortality rates appropriately.

A cohort effect can be observed in the residuals for all of the models, besides for the neural
network, suggesting that part of what the neural network has learned is interactions between Year
and Age, which allow the network to model the cohort effect. This observation is confirmed in
Figure 6, which displays the average residual for each cohort. The residuals for the neural network
are smaller than those produced by the other models and display less of a pattern, suggesting
that part of the reason for the out-performance of the neural network is that cohort effects are
captured automatically. Nonetheless, some patterns can be observed in these residuals, suggesting
that including a cohort effect explicitly may improve the model even further; we refer the reader
to the closing remarks of Section 3 for a discussion of how this might be achieved.

To examine the performance of the neural network in more detail, in Figure 7 the learned
parameters of the age embedding are shown, after reducing the dimensionality of the embed-
ding from five dimensions to two dimensions, using PCA. These values do not have an absolute
interpretation, since the intermediate layers of the network shift and scale the embedding value
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Figure 6. Residuals produced by each of the models, for each gender and cohort separately, averaged over the countries in
the HMD.

(indeed, the values shown are multiplied by −1 to produce the familiar orientation of a life table);
however, the values of the embeddings relative to each other are interpretable. The more signifi-
cant component of the embedding has the familiar shape of a life table and is comparable to the
ax component of the LC model, indicating that the network has learned the overall relationship
of mortality rates to each other from the data. The second component appears mainly to capture
the relationship between middle age and old age mortality, with mortality rates increasing more
quickly with age, as middle agemortality falls, as well as several other relationships between infant,
teenage and old age mortality. The learned parameters of the embeddings for age and gender are
less interpretable, probably because these parameters only have a meaning in the context of the
deeper layers of the neural network.

6. Conclusion and Outlook
This paper has shown how the LC model can be extended to work reliably with multiple pop-
ulations using deep neural networks. Rather than attempting to specify exactly how the inputs
to the model determine mortality, as in the case of the original LC model and its extensions to
multiple populations, the deep neural network successfully learns these relationships and projects
mortality for all countries in the HMD with a high degree of accuracy.

Since many neural network architectures may be chosen, in this study we use a model selec-
tion procedure to choose an optimal architecture that eventually proves to be close to the optimal
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Figure 7. Parameters of the age embedding in the deep neural network, with the dimensionality reduced from 5 to 2 using
Principal Components Analysis.

model, amongst those tested. Future research should examine the model selection process in more
detail, and it may be the case that a less heuristic selection procedure can be proposed. We also
note that an extensive search over neural architectures has not been performed in this study,
and only several models were tested. A more comprehensive search over architectures, includ-
ing models with more layers, difference configurations of skip connections (perhaps following
more closely the architectures in He et al. (2015) and Huang et al. (2016)) and different hyper-
parameter settings for dropout and learning rates, may produce results that are more optimal
than those presented here.

Another avenue for improving forecasting ability is the ensembling together of several neural
networks. Although we do not report these results in detail, forecasting rates as the average of the
predictions of the DEEP5 and DEEP6 networks produces the best forecasts in 56 of 76 countries,
which is better than the results of the DEEP5 and DEEP6 models stand alone. A similar approach
would average the results over several of the same networks, which would help to reduce some of
the variability in the models that we note in section 4.2 (see, for example, Guo & Berkhahn (2015)
who average the results of 5 of the same neural network architecture in an application of deep
networks to structured data).

Other improvements to the model are the inclusion of an explicit cohort effect, as noted in
Section 5 and including regional effects within the neural model, which were shown in Section
4.1 to be an important feature within mortality forecasting models. Another useful extension is to
model mortality rates in smaller geographic areas, such as states and provinces.

Although we have focused on the LC model in this study, the LC model is not fundamental to
the approach that has been proposed, and in future research, one should extend this to other mor-
tality models using neural networks. Finally, an important issue for actuaries and demographers
which we have not addressed is the uncertainty of the predictions of the neural network model,
and future research should consider how this may be derived.
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Appendix A. Allocation of Countries to Regions

Table A.1. Allocation of the countries in the HMD to
regions

Region Country

1 America and Australia AUS
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Western Europe AUT
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Western Europe BEL
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Eastern Europe BGR
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Eastern Europe BLR
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 America and Australia CAN
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 Western Europe CHE
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 America and Australia CHL
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 Eastern Europe CZE
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 Western Europe DEUTNP
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 Scandinavia DNK
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 Southern Europe ESP
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 Eastern Europe EST
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 Scandinavia FIN
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15 Western Europe FRATNP
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

16 Great Britain GBRTENW
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17 Great Britain GBR_NIR
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

18 Great Britain GBR_SCO
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19 Southern Europe GRC
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 Southern Europe HRV
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

21 Eastern Europe HUN
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

22 Great Britain IRL
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23 Scandinavia ISL
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

24 Southern Europe ISR
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25 Southern Europe ITA
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26 Japan and Taiwan JPN
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

27 Eastern Europe LTU
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28 Western Europe LUX
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

29 Eastern Europe LVA
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30 Western Europe NLD
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

31 Scandinavia NOR
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

32 America and Australia NZL_NM
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

33 Eastern Europe POL
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

34 Southern Europe PRT
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

35 Eastern Europe RUS
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

36 Eastern Europe SVK
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

37 Eastern Europe SVN
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

38 Scandinavia SWE
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

39 Japan and Taiwan TWN
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

40 Eastern Europe UKR
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

41 America and Australia USA
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Appendix B. Forecasts using a RandomWalk without Drift
In this appendix, we show the results of forecasting the country-specific time effects of the ACF and
CAE models using a random walk without a drift term.

As shown in Table B.1, we find that of the ACF models, the ACF_SVD_country model per-
forms better than when a drift term was allowed for; therefore, we select this model instead of the
ACF_BP for comparison to the neural network, but we note firstly that the best of these models is
still the ACF_SVD_regionmodel (i.e. the model that does not allow for country-specific effects), and
secondly that the ACF_BP model performs slightly worse with this choice.

Table B.2 shows that amongst the CAE models, the performance of the CAE2_BP model is
enhanced slightly by not allowing for a drift term, but the CA_SVD model performs slightly worse.

Finally, comparing these models to the deep neural network in Table B.3, we see that the conclu-
sion reached above, that the deep neural network outperforms all of the other models, remains the
same, and, indeed, the CAEmodel performs much worse in this comparison than above. This is also
shown by the median MSE of this model, which has worsened compared to when a drift term was
allowed for, see Table 6 above.

Table B.1. Out-of-sample performance of the Augmented Common Factor (ACF)
model where country-specific effects have been fit using a random walk without
drift; MSE values are multiplied by 104

Model Average MSE Median MSE Best performance

1 LC_SVD 5.50 2.48 20
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 ACF_SVD_region 3.46 2.50 33
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 ACF_SVD_country 6.24 4.64 12
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 ACF_BP 6.10 3.37 11

Table B.2. Out-of-sample performance of the Common Age Effect (CAE)
model where country-specific effects have been fit using a random walk
without drift; MSE values are multiplied by 104

Model Average MSE Median MSE Best performance

1 LC_SVD 5.50 2.48 34
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 CAE_SVD 4.93 3.10 11
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 CAE2_SVD 10.84 2.51 14
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 CAE2_BP 5.41 3.61 17

Table B.3. Comparison of the deep neural network approach with the best
models discussed in this Appendix; MSE values are multiplied by 104

Model Average MSE Median MSE Best performance

1 LC_SVD 5.50 2.48 8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 LC_ACF_region 3.46 2.50 11
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 ACF_SVD_country 6.24 4.64 5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 CAE_BP 5.41 3.61 0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 DEEP 2.68 1.38 52
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