
Political Analysis (2019)
vol. 27:281–301
DOI: 10.1017/pan.2019.3

Published
22 March 2019

Corresponding author
Clayton Webb

Edited by
Jeff Gill

c© The Author(s) 2019. Published
by Cambridge University Press
on behalf of the Society for
Political Methodology.

A Bounds Approach to Inference Using the Long

RunMultiplier

ClaytonWebb 1, Suzanna Linn 2 and Matthew Lebo3

1 Department of Political Science, University of Kansas, Lawrence, KS 66045, USA. Email: webb767@ku.edu
2 Department of Political Science, Pennsylvania State University, State College, PA 16802, USA. Email: slinn@la.psu.edu
3 Department of Political Science, Stony Brook University, Stony Brook, NY 11794, USA. Email: matthew.lebo@stonybrook.edu

Abstract
Pesaran, Shin, and Smith (2001) (PSS) proposed a bounds procedure for testing for the existence of long

run cointegrating relationships between a unit root dependent variable (yt ) and a set of weakly exogenous

regressors xt when the analyst does not knowwhether the independent variables are stationary, unit root, or
mutually cointegrated processes. This procedure recognizes the analyst’s uncertainty over the nature of the

regressors but not the dependent variable. When the analyst is uncertain whether yt is a stationary or unit

root process, the test statistics proposedbyPSS are uninformative for inference on the existence of a long run

relationship (LRR) between yt and xt . We propose the long run multiplier (LRM) test statistic as a means of
testing for LRRswithout knowingwhether the series are stationaryorunit roots.Using stochastic simulations,

we demonstrate the behavior of the test statistic given uncertainty about the univariate dynamics of both yt
and xt , illustrate the bounds of the test statistic, and generate small sample and approximate asymptotic
critical values for the upper and lower bounds for a range of sample sizes and model specifications. We

demonstrate the utility of the bounds framework for testing for LRRs in models of public policy mood and

presidential success.

Keywords: time series, unit root test, bounds test, cointegration

The analysis of time series data is often motivated by the desire to test for, and estimate,

long run relationships (LRRs) between some scalar process, yt , and a set of weakly exogenous

regressors, xt . A recent exchange in Political Analysis highlighted some of the challenges analysts
face in pursuit of this goal. Chief among these is that popular approaches assume analysts know

the univariate properties of their data. Yet, if the analyst is uncertain whether their data should

be classified as stationary, unit root, or fractionally integrated, the appropriatemodels, tests, and

critical values are unclear.While this problemwas raised in the exchange, the authors did not offer

clear prescriptions for analysts. Our aim is to provide ameans of testing for LRRs given uncertainty

about univariate dynamics.

Time seriesmodelingemphasizes the importanceof pretesting. This is because theappropriate

hypothesis tests and critical values depend on whether the data are I (0) stationary processes

or I (1) unit root processes. In the case where the time series are all I (1), the analyst proceeds

to test for a long run cointegrating relationship between yt and xt . The Engle–Granger two-step
methodology (Engle and Granger 1987) and the single equation error correction model (ECM)

(Banerjee, Dolado, and Mestre 1998; Ericsson and MacKinnon 2002) are the most common

approaches. If there is evidence of cointegration, the LRR can be estimated in a levels regression

and the short run dynamics, including the rate of return to equilibrium, froman ECM (Pesaran and

Shin 1998). Absent evidence of cointegration, the analyst concludes no LRR exists between yt and

xt , and inference on short run dynamics proceeds from a regression in first differences.

Authors’ note: The authors are grateful to John Freeman and the anonymous reviewers for their thoughtful comments. We

would also like to thank Paul Johnson and Dave Armstrong for their help with computing and feedback on the simulation

designs. We thank the Center for ResearchMethods and Data Analysis and the College of Liberal Sciences at the University

of Kansas for access to their high performance compute cluster on which many of the calculations reported here were

conducted. Replication materials can be found at Webb, Linn, and Lebo (2018).
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In the case where the time series are all I (0), inferences about, and estimation of, the LRRs

proceed in the standard linear regression framework. The analyst may choose to estimate an

autoregressive distributed lag model, a generalized ECM, or restricted versions of either (Hendry

1995).

Generally, however, there is uncertainty in the pretesting process.Weak tests, short time series,

and ambiguous theorymean diagnosing the unseen data generating process (DGP) with certainty

is often impossible and fraught with opportunities for human error. Unit root tests are notorious

for having low power, particularly with samples common in applied political science (Evans and

Savin 1981, 1984; Campbell and Perron 1991; Stock 1991; DeJong et al. 1992; Banerjee et al. 1993;

Elliott, Rothenberg, and Stock 1996; Perron and Ng 1996; Juhl and Xiao 2003; Box-Steffensmeier

et al. 2014; Choi 2015; Lebo andKraft 2017). The choices analystsmake about serial correlation, the

presence of deterministic components in test regressions, and appropriate levels of significance

influence the results of these tests. Timeserieswithupper and lower limits (Cavaliere andXu2014),

fractional integration (Box-Steffensmeier and Smith 1996; Lebo, Walker, and Clarke 2000), and

near-integration (De Boef and Granato 1997) further complicate pretesting. Finally, the arsenal of

pretests often provides inconsistent evidence for and against unit roots. Even when all pretesting

indicates the data are unit root processes, misclassification is a significant risk (Perron and Ng

1996).

The way forward is less clear in these cases. Some uncertainty can be accommodated by

existing methods. If one is certain that yt is a unit root but unsure about xt , Pesaran, Shin, and
Smith (2001) (PSS) offer a framework for testing hypotheses about the existence of a long run

cointegrating relationship between yt and xt . Thus, the model allows for uncertainty about the
dynamic properties of the regressors: xt may be stationary, unit roots, or mutually cointegrated
(see also Pesaran and Shin 1998; Pesaran and Smith 1998).1 The authors derived the limiting

distributions for the ECM t - andWald (F -) statistics used to test the significance of lagged levels in

an ECM for the two polar cases in which (a) all regressors are stationary and (b) all regressors are

unit roots. The results are presented as critical value bounds for the null hypothesis of no long run

cointegrating relationship. If the computed test statistic lies above or below the bounds, inference

on the null is conclusive, regardless of the underlying dynamics, but if it lies between the bounds,

the test is inconclusive because reliable inference depends on knowing the true dynamics of xt .
Grant and Lebo (2016) and Philips (2018) advocate for the PSS approach and the approach

has been used by political scientists (Dickinson and Lebo 2007; Enns and Wlezien 2017). Yet,

the approach’s reliance on the assumption that the dependent variable is a unit root makes it

inflexible. Indeed, Philips (2018) provides a flowchart for analysts (p. 233) where the first question

is: “Is the dependent variable stationary?” and the two branches “yes” and “no” lead researchers

toward solutions. But the third branch, “I am not sure”, does not exist in Philip’s diagram or in the

time series analyst’s toolkit.

As we show below, uncertainty about the univariate dynamics of yt renders cointegration

tests based either on the significance of lagged yt or the joint significance of lagged yt and

lagged xt uninformative. As PSS note, the alternative hypothesis for both tests is consistent with
multiple types of long run behavior, including degenerate equilibria in which yt is stationary and

independent of xt . The problemoccurs because the coefficient on lagged yt diverges from zero as

yt departs from a unit root such that the null of no cointegration will be rejected with increasing

frequency, even if yt is unrelated to xt in the long run.
What, then, should analysts dowhen they are uncertain about the univariate properties ofallof

their data? We propose conducting inference based on the significance of the long run multiplier

(LRM) relating each element of xt to yt by applying a bounds hypothesis-testing framework to

assess the existence of a LRR between yt and xt . The use of critical bounds applied to the LRM

1 In principle, fractionally integrated xt processes are also admitted in this framework.
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t -test allows a more flexible testing framework that accommodates analysts’ uncertainty in the

pretesting phase and, as such, applies whether yt is I (0), I (1), or I (d ) and whether the elements

of xt are individually I (0), I (1), I (d ), or cointegrated.
We begin by identifying themodel and assumptions underlying our analysis. Next, we describe

the null and alternative hypotheses and test statistics underlying the PSS analysis and explicate

their limitations. We show that neither the t -test nor the Wald test presented by PSS discriminate

among a number of alternative long run behaviors.2 We then propose an alternative approach

that uses the LRM t -test. We generate critical value bounds for the test under uncertainty about

univariate dynamics. Finally, we demonstrate the utility of this approach as a test for LRRs in

models of public policy mood and presidential success.

1 The Model and Assumptions
The data generating process and assumptions underlying our analysis are the same used by

PSS. Briefly, we begin with a vector autoregression (VAR) in which each variable in the system

zt is a function of its own lag(s), current and lagged values of all other variables in the system,
a constant, and a trend. We assume the highest order of integration of any of the component

variables is one and that the error in the model is well behaved. We then express the VAR as

a vector error correction model (VECM), which isolates the LRR of interest. We assume a set of

variables, xt , are weakly exogenous for the parameters in a conditional model of yt—the variable
of interest—but these variablesmay be I (0), I (1), or cointegrated. This permits hypothesis testing

based on estimation of the conditional ECM. In the next section we describe the hypothesis tests

recommended by PSS and show these tests fail when one is uncertain whether yt is a unit root or

stationary process.

Our DGP is a VAR of order p (VAR(p)) for {zt }∞t=1, a (k + 1)-vector process. Adopting the notation

in PSS, we write the model using lag operator notation as follows:

Φ(L)(zt − μ − γt ) = εt , (1)

where μ and γ are unknown (k + 1)-vectors of intercept and trend coefficients and Φ(L) is a

(k + 1, k + 1) matrix lag polynomial equal to Ik+1 −∑p
i=1Φi L

i with {Φi }
p
i=1 (k + 1, k + 1) matrices

of unknown coefficients. All variables are at most I (1) (PSS Assumption 1)3 and the vector error

process {εt }
∞
t=1 is N (0,Ω ), with Ω positive definite, allowing for contemporaneous correlations

in zt (PSS Assumption 2).
We reparameterize the VAR as a VECM to isolate the long run levels relationships of interest

among the variables. SettingΦ(L) ≡ −ΠL +Γ (L)(1− L), we can express the VAR as an equivalent
VECM given by

Δzt = a0 + a1t + Πzt−1 + Σ
p−1
i=1 Γi Δzt−i + εt , (2)

where Δ ≡ 1 − L is the difference operator and the matrix of LRMs is given by Π ≡ −(Ik+1 −
Σ

p
i=1Φi ).

4,5

Equations (1) and (2) specify a system of equations such that each variable responds to

all others. Often analysts are only interested in the long run behavior of a single variable,

2 PSS recognize the ambiguity in the alternative hypotheses but note that if yt is known to be a unit root and we adopt a
combination of tests, this ambiguity is of little concern. Given uncertainty over the univariate properties of yt , we show
that the ambiguity is problematic.

3 Formally, the roots of �Φ(L) = Ik+1 −∑p
i=1

Φi z
i � = 0 are either outside or on the unit circle.

4 In order to allow the deterministic components of themodel to contribute to the LRR, wemust restrict μ and γ to be linear
combinations of the elements in the long run (cointegrating) vector. This implies that we must similarly restrict a0 and a1
in the VECM such that a0 ≡ −Πμ + (Γ + Π )γ, a1 ≡ −Πγ.

5 The short runmatrix lag polynomial is given byΓ (L) ≡ Ik+1 −Σp−1
i=1

Γ i L
i , whereΓ i = −Σp

j=i+1
Φj . The sum of the short run

coefficient matrices in equation (2)Γ ≡ Im − Σp−1
i=1

Γ i = −Π + Σ
p
i=1

iΦi .
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yt , in response to a set of exogenous regressors, xt , which themselves may or may not be
endogenously related. In order to estimate a single equation for yt , we assume the elements of xt
are weakly exogenous for the parameters of a conditional model for yt that also accounts for any

contemporaneouscorrelationsamong yt andxt .Wepartition zt = (yt , x′t)
′, theerror, deterministic

components, and coefficient matrices conformably and restrict the k -vector of coefficients on

lagged levels of yt in the equations for each xt to be0,πx y = 0 (PSSAssumption3). This eliminates

the possibility of feedback from yt to xt and guarantees that any long run equilibrium involving

yt is unique. The marginal model for xt is thus given by

Δxt = ax0 + ax1t + Π xxxt−1 + Σ
p−1
i=1 Γ xi Δzt−i + εxt . (3)

After conditioning on any contemporaneous correlations in the errors of yt and xt , we can
specify—and test hypotheses using—an ECM for yt conditional on the xt .6

Δyt = c0 + c1t + πy y yt−1 + πyx .xxt−1 + Σ
p−1
i=1 ψ

′
i Δzt−i +ω

′Δxt + ut , (5)

where πy y is the familiar error correction rate and πyx .x is the vector of coefficients that describe

the net effect of xt on yt after controlling for any LRR among xt and any contemporaneous
correlations in the errors.7 More specifically, πyx .x ≡ πyx − ω ′Π xx where πyx is a vector that

describes thedirect effect ofxt−1 on yt andω describes the contemporaneous correlations among
the variables in the system: ω = cov(ey t , ext )/var(ext ). If the errors are uncorrelated,ω = 0 and

πyx .x = πyx .Π xx specifies the LRRs among the xt .
Consistent with our uncertainty over the dynamics in xt , we wish to allow the xt to be I (0),

I (1) and not cointegrated, or I (1) and cointegrated. Π xx , the long run coefficient matrix for xt ,
may thus have rank 0 � rx � k (PSS Assumption 4). If rx = 0, there are no cointegrating

relationships and the xt are purely I (1) such that Π xx = 0 and πyx .x = πyx . If rx = k (the

number of independent variables in the system), the xt are all I (0). If 0 < rx < k , then there are

rx cointegrating relationships in xt .
Given our assumptions, if there is a LRR between yt and xt it is given by:

LRR = πy y yt−1 + πyx .xxt−1 (6)

= πy y yt−1 + (πyx −ω ′Π xx )xt−1. (7)

Conversely, there is no LRR between yt and xt only if both πy y = 0 and πyx .x = πyx −φ ′Π xx = 0′

for some k -vectorφ, in which case the ECM reduces to a model in first differences.8

6 For estimation of the conditional model to produce the same inferences as the full system, we must condition on any

contemporaneous correlation in the error term εt . Following PSS, let the variance covariancematrix of the errors be given
byΩ as

Ω = �
�
ωy y ωyx

ωx y Ωxx

�
�
.

We can then express εy t in terms of the errors for the marginal model (εxt ) as:

εy t = ωyxΩ
−1
xxεxt + ut , (4)

where ut ∼ I N (0,ωuu ),ωuu ≡ ωy y −ωyxΩ
−1
xxωx y and u is independent of εxt . Substitution of equation (4) into equation

(2) produces the conditional model in equation (5) whereω ≡ Ω−1xxωx y andψ
′
i
≡ γy i −ω′Γ xi , i = 1, . . . , p − 1.

7 The constant and trend terms are nowmodified to:

c0 = −(πy y ,πyx .x )μ + [γyx + (πy y ,πyx .x )]γ, c1 = −(πy y ,πyx .x )γ .

8 Given rank rx , it follows that the rank of the long run coefficient matrix in the full system rankΠ must be at least rx and no
more than rx +1. PSS further specify the conditions thatmust hold to ensure that themaximumorder of integration in the

system is one in each case. See Pesaran, Shin, and Smith (2001) for further details.
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Table 1. The PSS F -test.

Specification Long run relationship Conclusion

H0,F : πy y = 0 and πyx .x = 0 — No equilibrating
relationship, yt ∼ I (1)

HA1,F : πy y = 0 and πyx .x � 0 (πyx −ω ′Π xx )xt−1 Nonsense equilibrating
relationship, yt ∼ I (1)

HA2,F : πy y � 0 and πyx .x = 0 πy y yt−1 Degenerate
equilibrating
relationship, yt ∼ I (0)
or trend stationary

HA3a ,F : πy y � 0 and πyx .x � 0 πy y yt−1 + (πyx −ω ′Π xx )xt−1 Cointegrating
equilibrating
relationship, yt ∼ I (1)

HA3b ,F : πy y � 0 and πyx .x � 0 πy y yt−1 + (πyx −ω ′Π xx )xt−1 Equilibrating
relationship, yt ∼ I (0)
or trend stationary

Note: H0,F is based on the conditional ECM (equation (5)). Table adapted from Eviews (2017).

2 PSS Hypothesis Tests and their Limits
PSS proposed analysts test the null hypothesis of no (cointegrating) LRR between yt and xt
assuming yt is a unit root using a Wald (F -) test, where H0F : πy y = πyx .x = 0. The alternative

hypothesis is that either or both are nonzero: HAF : πy y � 0 or πyx .x � 0 or both. Critical values

for the test are unavailable for an arbitrary mix of I (0) and I (1) regressors. However, two polar

cases establish bounds for the F -test. The lower bound is associated with rx = k , in which case

the elements of xt are I (0). The upper bound is associated with rx = 0, in which case they are

I (1) and not cointegrated. Of course, the truthmay lie between, in which case there is at least one

cointegrating relationship among the elements of xt .
To test for a long run cointegrating relationship, the analyst estimates the conditional ECM,

computes the F -statistic for the lagged level variables, and compares the result to the bounds.9 If

F is below the lower bound, we cannot reject the null regardless of whether xt ∼ I (0), I (1), or is

cointegrated. IfF is greater than the upper bound,we can infer the existence of a LRR regardless of

thedynamicproperties of xt . IfF is between thebounds,without knowing thedynamicproperties
of xt , we cannot determine whether to reject or fail to reject. If we knew the elements of xt were
I (0), thenwewould reject the null. If we knew the elements of xt to be I (1), wewould fail to reject
the null.

Rejection of the null hypothesis does not, however, guarantee a valid long run equilibrium.10

The alternative hypothesis is consistent with four types of LRR. PSS describe two of these as

degenerate: the LRR is either nonsensical or of a simpler class in which yt is independent of

xt . Degenerate equilibria occur when we reject the null hypothesis because either πy y � 0 or

πyx .x � 0 but not both; a nondegenerate relationship requires both πy y � 0 and πyx .x � 0. We

describe each type of LRR permitted under the alternative hypothesis and present the possible

relationships between yt and xt in Table 1.
Alternatives A1 and A2 describe degenerate LRRs. Under A1, πy y = 0 and πyx .x � 0 and the

LRR given in equation (6) reduces to (πyx −ω ′Π xx )xt−1. In this case, yt is a unit root process but
not cointegrated with xt . The xt are either jointly cointegrated or all individually stationary and

9 PSS show different sets of critical values apply given the deterministic relationship specified and allow for constants and

trends to be omitted, unrestricted, or to apply to the LRR. Narayan (2005) derives bounds for smaller samples.

10 PSS acknowledge this possibility on p. 295.
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influence Δyt only in the short run.
11 If A2 holds, πy y � 0 and πyx .x = 0 and the LRR reduces

to πy y yt−1. In this case, yt is stationary and independent of xt in the long run, regardless of the
dynamic properties of xt . Changes in xt may affect changes in yt in the short run but yt returns to
its unconditional mean in the long run.

The remaining specifications characterize nondegenerate long run equilibria between yt and

xt that typically motivate our hypothesis tests. Both πy y � 0 and πyx .x � 0 and the LRR is given

by equation (6). Under alternative A3a , yt is a unit root process and cointegrated with xt . Under
alternative A3b , a second type of nondegenerate equilibrium holds in which yt is stationary and

dependent on xt . The xt may be stationary or cointegrated but in either case their influence on yt
is via a linear combination of the xt that is stationary.12

PSS propose using the familiar ECM test for cointegration, H0t : πy y = 0, to arbitrate among a

subset of the alternatives.13 Like the F -test, critical values for this t -test depend on the nature of

xt and PSS derive bounds for this test as well. If we fail to reject the null, rejection of the F -test
implies HA1,F holds and the long run equilibrium is undefined. If we reject both null hypotheses,

eitherHA2,F ,HA3a ,F orHA3b ,F holds. We can only rule outA2 andA3b whenwe are certain yt is I (1)

(as PSS assume). This presents a dilemma for the analyst who is uncertain of the dynamics of yt .

Researchers frequentlyuse theECMto test for theexistenceof LRRs,primarily relyingon the test

of the null H0 : πy y = 0 and using either MacKinnon critical values (Banerjee et al. 1993; Ericsson

andMacKinnon 2002; Lebo and Grant 2016) or the PSS critical values for inference (Dickinson and

Lebo 2007; Philips 2018). However, a researcher may make an incorrect judgment and yt may

be truly stationary. If so, this presents problems for valid inference and one must appreciate the

different types of long run behavior that may lead to rejection of the null. The above discussion

makes clear that if both theory andunivariate tests are inconclusive as towhether yt is I (0) or I (1),

it is a dangerous strategy to conclude a LRR exists between yt and xt based on either the ECM test
or the F -test proposed by PSS.

3 The LRM Test
What should analysts do if they are uncertain whether yt is a stationary or unit root process and

wish to draw inference about the existence of a valid LRR?We propose a test for the existence of a

valid LRR between yt and xt based on the LRM. To understand the appeal of the LRM, it is helpful
to express the conditional ECM in equation (5) to isolate the LRR:

Δyt = c0 + c1t + πy y

(
yt−1 +

πyx .x

πy y
xt−1
)
+ Σ

p−1
i=1 ψ

′
i Δzt−i +ω

′Δxt + μt , (8)

where (yt−1 + (πyx .x/πy y )xt−1) gives the long run, and possibly cointegrating, relationship, πy y

gives the rate of return to equilibrium, and πyx .x/πy y is the LRM.

As we discussed above, a valid LRR requires both πy y � and πyx .x � 0. This implies πyx .x/πy y

must also be nonzero. In this case πyx .x/πy y describes the links between xt and yt and πy y tells

us how this linkage drives change in yt . In contrast, if πy y = 0 the equilibrium term drops out of

the equation and πyx .x/πy y is undefined. If πyx .x = 0, the LRMs are zero and yt is not a function

of xt . Thus, a nondegenerate, or valid, equilibrium relationship between yt and xt requires the LRM

11 If eitherω = 0 (yt and xt are not contemporaneously correlated) or xt are unit roots but not cointegrated (rx = 0 such that
Π xx = 0), the LRR is given by the coefficients that describe the relationships among the xt−1 and yt , πyx .

12 The distinction between cases 3a and 3b depends on the rank of the rank factorized matrix of LRRs. Specifically, we can

writeΠ = αβ′, whereα give the speed of adjustment to disequilibrium—the error correction coefficient—and β comprise
the vector of LRRs. If rank(β yx , βxx ) = rx , the vector involving yt duplicates the LRRs in xt and all series are stationary. If
rank(β yx , βxx ) = rx+1 then thevector contains independent informationandall series areunit roots and yt is cointegrated
with xt . See Eviews (2017) for further details.

13 Banerjee, Dolado, and Mestre (1998) first developed the test but only considered the case where xt were all unit roots.
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Table 2. The LRM test.

Specification Conclusion Integration order (yt )

H0,LRM
πyx .x

πy y
= 0 No equilibrating relationship yt ∼ I (1) or I (0)

HA1,LRM

πyx .x

πy y
� 0 Nondegenerate cointegrating

equilibrating relationship
yt ∼ I (1)

HA2,LRM

πyx .x

πy y
� 0 Nondegenerate equilibrating

relationship
yt ∼ I (0)

Note: H0,LRM is based on the Bewley instrumental variables regression given in equation (9).

to be nonzero. It follows immediately that inference on the existence of a valid LRR between yt and

xt can bemade based on the hypothesis test H0,LRM : πyx .x/πy y = 0.14

This is true whether yt is I (0) or I (1). If yt is a unit root process, the only way πy y can be

nonzero is if yt is linked to xt in the long run. In other words, it must be the case that πyx .x � 0

andπyx .x/πy y � 0 such that yt has a long run, cointegrating relationship with xt . This is the logic
underlying the ECM test for cointegration (Banerjee et al. 1993; Banerjee, Dolado, andMestre 1998;

Ericsson andMacKinnon 2002). In the stationary case,πy y is, by definition, nonzero: yt will always

return to itsmean in the long run, whether thatmean is conditional on xt or not. Only ifπyx .x , and

thus πyx .x/πy y � 0, will the long run value of yt be conditional on xt .15

We present the null and alternative hypotheses for the LRM test in Table 2. If we cannot reject

the null, then yt does not have a valid equilibrium with xt , regardless of whether the data are
I (1) or I (0) and whether the regressors are cointegrated. If we can reject the null, we infer a

LRR between yt and xt . We cannot, however, distinguish a long run cointegrating relationship,
HA1,LRM , fromaLRRbetweena set of stationary variables,HA2,LRM , using this test. Our contention

is that this uncertainty is an inevitable—and appropriate—consequence of uncertainty in the

pretesting phase. Perhaps analysts can appeal to theory to overcome this bind, but there are few

persuasive theoretical arguments that make this effort in political science (for an example see

Erikson, MacKuen, and Stimson 2002).

The LRMs are not estimated directly in the ECM or the equivalent ADL. While we can calculate

the LRMs from thesemodels, the standard error ismore problematic as there is no simple formula

calculating the standard error of a ratio of coefficients. Various methods exist to approximate the

variance of a quotient of items with known variances. One option is to apply the delta method.

Alternatively, one can use instrumental variables to estimate the Bewley transformation of the

model, which estimates the LRM and its standard error directly (Bewley 1979).16 The Bewley

transformation for the general case with a constant and trend is written as:

yt = φ0 + τt − φ1Δyt +ψ0xt −ψ1Δxt + μt , (9)

where ψ0 = −(πyx .x/πy y ) = LRM , φ0 = −(c0/πy y ), τ = c1/πy y , φ1 = −(πy y + 1/πy y ), ψ1 =

πyx , and μ = −(e/πy y ) in the conditional ECM. A constant, trend, xt , xt−1, and yt−1 are used as
instruments to estimate the model (Banerjee et al. 1993; De Boef and Keele 2008).

14 It is also possible that the LRM is undefined under the null.

15 This is, of course, a common occurrence. But as wewill see below, the appropriate critical values on the hypothesis test on

the LRMwill often be nonstandard, a fact that has eludedmost applied research.

16 Banerjee et al. (1993) prove that estimates of the standard error basedonapproximations suchas thedeltamethodapplied

to either the ADL or ECM are equivalent to that obtained directly from the Bewley transformation using instrumental

variables.
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Because the LRM is a ratio of coefficients and the coefficients are a function of time series with

potentially varying dynamic behavior, the formof the distribution of the LRM t -test is not obvious.

If yt is a unit root, it is likely to have a nonstandard distribution, like the t and F -tests evaluated by

PSS. It is also unclear how the sample size, presence or absence of deterministic components, or

number of regressorswill affect the distribution.17 In the next sectionwe calculate the appropriate

critical values for the LRM test, allowing each of these features of the data andmodel to vary, and

we offer a bounds testing framework for inference.

Before doing so, we summarize three advantages of focusing on the significance of the LRM

as a test for a valid long run equilibrium. First, inferences do not depend on whether any given

time series is I (0) or I (1). Second, the LRM test has a specific advantage over the ECM test for

cointegration when we know yt is I (1) and we havemultiple independent variables in themodel.

While rejecting the null H0 : πy y = 0 implies yt is cointegrated with a vector of xt , it does not tell
us which element(s) of xt contribute to the cointegrating relationship. The LRM test allows us to
draw inferences about whether there is a LRR between yt and any element of xt . Third, rejection
of the null implies a nondegenerate LRR between yt and xt .

4 The Distribution of the LRM t -Test
We compute the distribution of the LRM test by estimating the sampling distribution of the LRM

test statistic in the Bewley IV regression given in equation (9) under the true null hypothesis that

there is no LRR between yt and xt (πyx .x/πy y = 0) under a range of conditions.

4.1 The Importance of Autocorrelation and Existence of Bounds
Our first set of stochastic simulations demonstrates the sensitivity of the test’s behavior to the

strength of autocorrelation in the data and to sample size. We generate critical values for the

LRM t -test for varying degrees of autocorrelation in yt and a single xt for sample sizes of 75 and

1000. The smaller sample size is common in applied work while the larger sample size produces

critical values that approximate the asymptotic distribution. We generate two independent

autoregressive processes, yt = ρy yt−1 + ey t and xt = ρx xt−1 + ext with the errors drawn from

independent standard normal distributions. We vary the values of ρy and ρx from 0 to 0.90 in

increments of 0.10 and from 0.90 to 1.0 in increments of 0.01. For each combination of ρy and

ρx , we simulate the sampling distribution of the LRM t -statistic using 50,000 replications. The

LRM t -value is estimated as the t -value on xt in the Bewley ECM, equation (9), in a model with

an unrestricted constant and no trend. Figure 1 presents the simulated critical values associated

with the 97.5 percentile of the distribution for values of ρx as ρy varies for both sample sizes.
18

We draw three conclusions from our results. First, critical values are approximately standard

normal for both sample sizes when yt is white noise, regardless of the dynamics in xt . However,

as yt becomes more autoregressive, the appropriate critical values fan out based on the degree

of autocorrelation in xt : for smaller ρx they are closer to zero and for larger ρx they are farther

from zero than standard normal critical values.19 Second, patterns are the same in both panels

of the figure, although the range of autocorrelation for which critical values depart from standard

normal is smaller forT = 1000. In fact, the rangeof autocorrelation in yt forwhich standard critical

values are appropriate can be quite small when sample sizes take on values typical in applied

work, suggesting the possibility that our confidence in some published findings regarding the

17 Pesaran and Shin (1998) show that the distribution of the estimate of the LRM itself is mixture normal asymptotically and

that it is super consistent.

18 The data used to produce these figures can be found in the Supplementary Appendix, Section 1. Replication materials are

available at Webb, Linn, and Lebo (2018).

19 The largest value of the t -statistics occurs when ρy = ρx and both are large. This is when the series are most similar and,
therefore, most vulnerable to the spurious regression problem. But, at their peak, these values are smaller than the cases

when both series are unit roots. The similarities of the ρy and ρx create the peak patterns observed in the plots.
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Figure 1. Simulated critical values for the LRM t -test (95th percentile). Note: Critical values are computed via
stochastic simulations using 50,000 replications for the LRM t -statistic in the Bewley instrumental variables
regression in equation (9). The time series yt and xt are generated from: yt = ρy yt−1 + ey t and xt =
ρx xt−1 + ext where the errors are drawn from independent standard normal distributions.

significance of the LRM may be overstated. Third, the results establish lower and upper bounds

that are similar regardless of sample size, about 1.30 and 3.65, respectively. If the LRM t -statistic is

greater than about 3.65, we can infer a LRR between yt and xt . If it is less than about 1.30 we can

infer the absence of a LRR. For t -statistics within the bounds, we need to know sample size and

degree of autocorrelation in each series to draw an inference. Next, we assess how these bounds

behave as more independent variables are added to the model, as the dynamic behaviors of yt

and xt vary, and as the specification of deterministic components varies.

4.2 The Conditions That Set The Bounds
Critical values could be calculated for the LRM t -statistic if we knew the dynamic properties of

the data, but this information is not available in applied settings. We can, however, establish

the lowest and highest critical values associated with the LRM t -statistic under a number of

conditions. Table 3 shows quantiles for the empirical distributions of the ECM t -tests estimated

from amodel with three independent variables (k = 3) and a constant. The rows of the table give

the possible permutations of I (0) and I (1) variables ranging from the case where all the variables

are independent white noise processes, to the case where all the variables are independent unit

roots.We show the 2.5th and 97.5th percentiles for each LRM t -test for eachDGP.We simulated the

sampling distributions using 100,000 replications ofT = 1000.

The first column shows the percentiles for the t -statistic on πy y , the error correction rate. The

percentiles for the t -statistics in the top half provide empirical estimates of the t -test on πy y when

ρy = 0. The null hypothesis is false in these cases: πy y � 0. As such, the magnitudes of the

observed t -statisticsare large. Thesimulatedcritical values reported in thebottomhalf of the table

correspond to those reported by PSS for the ECM t -test under the true null πy y = 0when ρy = 1.

Our bounds (−3.12 and−4.01) are approximately equal to the bounds reported by PSS (−3.13 and
−4.05).20 The lower bound for the t -statistic on πy y is set by the case where all the independent

20 See Pesaran, Shin, and Smith (2001) Table CII(iii) Case III page 303.
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Table 3. The empirical distribution of the ECM t -test and simulated critical values for the LRM t -test:
identifying the bounds conditions.

yt−1 x1,t−1 x2,t−1 x3,t−1
2.5% 97.5% 2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

ρy = 0

ρx1 = 0 � ρx2 = 0 � ρx3 = 0 −33.54 −29.61 −1.96 1.97 −1.96 1.97 −1.97 1.97

ρx1 = 1 � ρx2 = 0 � ρx3 = 0 −33.57 −29.65 −1.98 1.98 −1.96 1.97 −1.96 1.96

ρx1 = 0 � ρx2 = 1 � ρx3 = 0 −33.59 −29.63 −1.97 1.96 −1.97 1.97 −1.96 1.97

ρx1 = 0 � ρx2 = 0 � ρx3 = 1 −33.57 −29.63 −1.97 1.96 −1.96 1.98 −1.96 1.98

ρx1 = 1 � ρx2 = 1 � ρx3 = 0 −33.59 −29.68 −1.99 1.98 −1.96 1.97 −1.97 1.97

ρx1 = 1 � ρx2 = 0 � ρx3 = 1 −33.60 −29.67 −1.97 1.98 −1.97 1.96 −1.98 1.97

ρx1 = 0 � ρx2 = 1 � ρx3 = 1 −33.61 −29.67 −1.97 1.97 −1.97 1.98 −1.97 1.98

ρx1 = 1 � ρx2 = 1 � ρx3 = 1 −33.63 −29.69 −1.96 1.97 −1.97 1.97 −1.97 1.96

ρy = 1

ρx1 = 0 � ρx2 = 0 � ρx3 = 0 −3.13 0.24 −1.30 1.30 −1.29 1.29 −1.30 1.29

ρx1 = 1 � ρx2 = 0 � ρx3 = 0 −3.50 0.08 −3.65 3.62 −1.37 1.37 −1.38 1.38

ρx1 = 0 � ρx2 = 1 � ρx3 = 0 −3.49 0.07 −1.38 1.37 −3.63 3.65 −1.38 1.37

ρx1 = 0 � ρx2 = 0 � ρx3 = 1 −3.49 0.07 −1.38 1.38 −1.37 1.37 −3.64 3.67

ρx1 = 1 � ρx2 = 1 � ρx3 = 0 −3.78 −0.13 −3.42 3.46 −3.44 3.42 −1.44 1.43

ρx1 = 1 � ρx2 = 0 � ρx3 = 1 −3.77 −0.13 −3.44 3.43 −1.43 1.43 −3.44 3.38

ρx1 = 0 � ρx2 = 1 � ρx3 = 1 −3.77 −0.13 −1.44 1.43 −3.41 3.43 −3.40 3.46

ρx1 = 1 � ρx2 = 1 � ρx3 = 1 −4.04 −0.33 −3.27 3.32 −3.27 3.29 −3.28 3.27

Note: Critical values are computed via stochastic simulations using 100,000 replications of T = 1000 for
the LRM t -statistic in the Bewley instrumental variables regression in equation (9). A constant xt , xt−1, and
yt−1 are used as instruments. The time series yt and xt are generated from: yt = ρy yt−1 + ey t and xi ,t =
ρxi xi ,t−1 + exi ,t for i = 1, 2, 3, where the errors are drawn from independent standard normal distributions.

variables arewhite noisewhile the upper bound is set by the casewhere all the regressors are unit

roots.

The next three columns show the behavior of the LRM t -statistic. We make four observations.

First, the empirical distributions of the LRM t -statistics are (roughly) symmetric. Second, as in

Figure 1, when ρy = 0 the critical values correspond to the standard t -distribution, regardless of

the dynamics in xt . Third, the critical values are nonstandard for cases where ρy = 1. Finally, the

shapes of these nonstandard distributions changewith the number of I (1) variables in themodel.

Wecanuse these results todetermine the valuesof the LRM t -statistic that establish a lowerbound

below which we fail to reject the null and an upper bound beyond which we can reject the null.

Thesebounds canbeapplied in theabsenceof knowledgeof theautoregressiveproperties of both

xt and yt .

The simulated bounds for the LRM t -statistics are set under different conditions than those for

the t - and F -tests reported by PSS. The lower bound for the LRM test is similarly set by the case

where all the independent variables are white noise and yt is I (1), but the upper bound is set by

the case where yt is I (1) and exactly one independent variable is I (1). For example, in the case

where ρx1 = ρx2 = 0 and ρx3 = ρy = 1, the t -statistics for x1 and x2 are (roughly) equal at 1.38. The

t -statistic for x3 is much higher (3.70). This same pattern exists regardless of which element of xt
is the unit root process. Critical values for all other t -statistics, including the standard t -statistics

in the top half of the table, fall between these bounds.
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Table 4. Upper and lower bounds for the LRM t -test by k andT .

T = 75 T = 150 T = 1000

k
Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

1 1.40 3.69 1.35 3.69 1.29 3.65

2 1.40 3.68 1.34 3.63 1.30 3.60

3 1.40 3.62 1.35 3.63 1.30 3.65

4 1.40 3.61 1.34 3.59 1.30 3.61

Note:Critical values are computedvia stochastic simulationsusing 100,000 replications for the LRM t -statistic
in the Bewley instrumental variables regression in equation (9). A constant xt , xt−1, and yt−1 are used as
instruments. The time series yt and xt are generated from: yt = ρy yt−1 + ey t and xi ,t = ρxi xi ,t−1 + exi ,t for
i = 1, 2, 3, 4, where the errors are drawn from independent standard normal distributions.

Why is the upper bound for the LRM test different from the test statistics considered by PSS?

Recall that the LRM is a ratio. The variance of a ratio may be approximated by

a

b
=

1

b2
Var(a) +

a2

b2
Var(b) − 2 a

b3
Cov(a, b). (10)

The first quantity in equation (10), (1/b2)Var(a), shows that the variance of a ratio increases

with the variance of the numerator, here the coefficient on xt . Spurious correlations among

multiple I (1) independent variables increase the variance of the associated LRM in the same way

correlation among the independent variables in a regressionmodel increases the variances of the

estimated parameters for those variables. This spurious correlation in xt does not affect the ECM
t -statistic, which is not a function of the variance of a or the covariance of a and b in equation (10).

Thus, the largest LRM t -statistic will occur when there is exactly one unit root in xt .21

Table 4 shows how the bounds for the LRM t -statistic change with T and k . The number of

independent variables increases from 1 to 4 along the vertical dimension of the table. The sample

size increases from 75 to 150 to 1000 along the horizontal dimension. We simulated the sampling

distributions of the t -statistics using 100,000 replications of each sample size.

Theboundsare similar across conditions inTable4, butwith somenotablepatterns. Thecritical

value of the LRM t -statistic associatedwith the lower bound is essentially the same as k increases

from 1 to 4, but it slowly declines as the sample size increases from 75 to 1000. The small values

of the lower bound reflect the low probability of finding a relationship between a white noise

variable and a randomwalk, a probability that declines slightly withT . The upper bounds behave

differently. No clear patterns emerge as the sample size changes, but the upper bounds decline

gradually as the number of independent variables increases from 1 to 4.22 The upper bounds for

T = 75,T = 150, andT = 1000 are 3.69, 3.69, and 3.65 when k = 1. These values fall to 3.61, 3.59,

and 3.61 when k = 4.

These results suggest an inferential strategy in which the analyst estimates any completely

specified dynamic regression, calculates the LRM, and obtains the t -statistics for each using either

the deltamethod or the Bewley IV regression. Next, the results are compared to the bounds. If the

LRM t -statistic falls below the upper bound, the null hypothesis cannot be rejected regardless of

whether yt is I (0) or I (1) and regardless of the dynamic behavior of the regressors. If the LRM

t -statistic is above the upper bound, the analyst can reject the null hypothesis and infer a LRR,

21 If one or more independent variables are cointegrated, the linear combination of the cointegrated variables is stationary.

This is equivalent to the case where y is I (1) and xt is stationary.
22 While the upper bounds are not identical across the three sample sizes, given the similarity in the simulated bounds, the

absence of any pattern in their behavior, and the random variation inherent in stochastic simulations, we consider the

upper bounds to be “the same”. Smaller sample sizes may induce different behavior.
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Table 5. Upper and lower bounds for the LRM t -test by k andT and deterministic components.

T = 75 T = 150 T = 1000 T = 75 T = 150 T = 1000

k LB UB LB UB LB UB LB UB LB UB LB UB

Model: c0 � 0.0 c1 = 0.0 Model: c0 � 0.0 c1 � 0.0

DGP: c0 = 0.0 c1 = 0.0 DGP: c0 = 0.0 c1 � 0.0

1 1.40 3.69 1.35 3.69 1.29 3.65 1.05 1.94 1.01 1.89 0.99 1.85

2 1.40 3.68 1.34 3.63 1.30 3.60 1.05 1.99 1.01 1.90 0.99 1.88

3 1.40 3.62 1.35 3.63 1.30 3.65 1.05 1.93 1.01 1.88 0.99 1.86

4 1.40 3.61 1.34 3.59 1.30 3.61 1.05 1.91 1.01 1.89 0.99 1.86

Model: c0 � 0.0 c1 = 0.0 Model: c0 � 0.0 c1 � 0.0

DGP: c0 � 0.0 c1 = 0.0 DGP: c0 � 0.0 c1 � 0.0

1 1.06 3.25 1.01 3.04 0.99 2.89 1.06 1.95 1.02 1.90 0.98 1.86

2 1.06 3.26 1.02 3.04 0.98 2.88 1.05 1.92 1.01 1.91 0.99 1.86

3 1.06 3.24 1.01 3.07 0.98 2.87 1.05 1.97 1.01 1.90 0.98 1.87

4 1.07 3.29 1.01 3.09 0.99 2.90 1.06 1.92 1.02 1.89 0.98 1.87

Note:Critical values are computedvia stochastic simulationsusing 100,000 replications for the LRM t -statistic
in the Bewley instrumental variables regression in equation (9). A constant xt , xt−1, and yt−1 are used as
instruments. The time series yt and xt are generated from: yt = c0 + c1t + ρy yt−1 + ey t and xi ,t =
ρxi xi ,t−1 +exi ,t for i = 1, 2, 3, 4, where the errors are drawn from independent standard normal distributions.

c0 denotes the constant and c1 the trend. The constant in the DGP (c0) took values of 0 and 1.

again regardless of the dynamics of yt or xt . However, if the estimated statistic falls between the
bounds, no conclusion can be drawn absent full knowledge of the dynamic properties of all the

variables in the model.

4.3 The Effects of Deterministic Features of y on the Bounds
Changes in the deterministic components in the DGP are more consequential. The bounds

presented in Table 4 were derived assuming a DGP for yt that contained neither a constant nor

a trend (c0 = c1 = 0 in equation (5)).23 The results presented in this section show that the critical

values associated with a 95% confidence interval for the LRM t -test shift toward zero if the DGP

for yt includes a nonzero constant, trend, or both, as long as the estimated model encompasses

the DGP. Omitting a constant or trend from the model when it is a feature of the DGP produces

misspecification bias and renders any tests of the null hypothesis (H0 : LRM = 0) meaningless.

Further, excluding a constant, evenwhen it is zero, produces biased estimates of the effects of the

xt on yt (Greene 2017).
Table 5 presents bounds for the four cases in which the DGP includes (a) neither a constant

nor a trend (c0 = c1 = 0, top left); (b) a constant but no trend (c0 = 1, c1 = 0, bottom left); (c) a

trend but no constant (c0 = 0, c1 = 1, top right); and (d) both a constant and trend (c0 = c1 = 1,

bottom right). The regression model used to estimate the values in the left column includes a

constant. Those in the right column add a trend. For each DGP and regression model, we present

the bounds for k = {1, 2, 3, 4} independent variables (along the vertical dimension) for sample

sizes T = {75, 150, 1000} (along the horizontal dimension). We present values for the 97.5th

percentiles of the sampling distributions of the t -statistics for the LRMs. The distributions are

symmetric. As above, the lower bound for eachmodel is set by the case where yt is I (1) and each

of the independent variables is white noise while the upper bound is set by the case where yt and

exactly one independent variable are I (1).

23 The bounds presented in Table 4 also assume that the DGP for xt does not include a constant or a trend. Along with the

assumptions about the DGP for yt , these assumptions imply a0 = a1 = 0 in equation (2).
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The bounds presented in the upper left of Table 5 correspond to those presented in Table 4 and

have been discussed in detail.24 In all other cases, the bounds shift closer to zero, but maintain

a similar width. The differences can be understood in terms of the spurious regression problem

(Granger and Newbold 1974) where two uncorrelated unit roots appear related more frequently

than chance would predict. The addition of a constant or a trend in the DGP for yt , e.g., c0 � 0

and/or c1 � 0, causes the trajectory of yt to diverge from the trajectory of xt , which contains

neither a constant nor a trend. As a consequence, the dynamics of yt and xt will be more distinct

than in the classic case, pulling the distribution of the t -statistic, and the value of the bounds,

toward zero. As a result, the upper bounds presented in Table 4 and the top left panel of Table 5,

when neither yt nor xt contain a constant or trend, give the limiting case. The results also suggest
that the lowerboundhits a floor.Onceanydeterministic component enters theDGP, thebehaviors

of yt and xt are so different that yt will very seldom appear to be related to mean reverting xt

variables.25

The results presented in Tables 4 and 5 illustrate how the critical values associated with the

bounds for the LRM t -statistic change based on the dynamics of yt . One might conclude that

the changing critical values complicate our proposed hypothesis-testing procedure, that we are

giving up a complicated set of preestimation procedures in exchange for a set of complicated

postestimation procedures. In the next section we show the results above simplify hypothesis

testing, allowing analysts to avoid making tenuous assumptions about the DGP for yt .

5 Inference Using the LRM: A Bounds Approach
The critical values for the LRM t -statistic change based on the dynamics of yt and xt . If yt is white
noise, standard critical values apply. If yt is a unit root, critical values for the LRM t -statistic change

based on the number of I (1) independent variables. The critical values are closer to zero if all the

independent variables arewhite noise, farther fromzerowhenmultiple independent variables are

I (1), and even farther from zero when exactly one the independent variables is I (1). The critical

values change further based on the deterministic features of the DGP. The analyst must know all

of this information to select the correct set of critical values. This would seem to leave the analyst

at an impasse. None of this information can be known. The solution to this problem is to accept

uncertainty associated with the features of xt and yt and use a hypothesis-testing procedure that
acknowledges this uncertainty.

We propose a general bounds testing procedure to accommodate dynamic uncertainty. The

critical values furthest from 0 in Table 5 occur in the cases where neither xt nor yt contain a
constant or a trend (a0 = a1 = 0). These are the caseswhere the series aremost similar and that set

the upper bounds for the procedure. The critical values closest to zero in Table 5 occur in the cases

where yt contains a trend (c1 � 0), constant (c0 � 0), or trend and constant (c0 � 0 and c1 � 0).

These cases set the lower bounds for the procedure. In practical terms, the change in the lower

bound is unimportant for the analyst. Whether the test statistic falls within the bounds or below

the lower bound, one fails to reject the null hypothesis. The only case where one can reject the

null hypothesis while accounting for the uncertainty inherent in the classification of time series,

is the case where the calculated test statistic falls beyond the upper bound. Thus, the upper limit

of the bounds is set by the DGP with no trend and no constant and the lower bound is set by any

of the DGPs that include deterministics. These combined bounds are presented in Table 6.

24 The DGP excludes a constant, but a constant is included in the estimated regression. This is the same DGP used by PSS to

derive the bounds for the ECM t -test and the F -test.
25 The small critical values on the right side of Table 5 are atypical but simply reflect the fact that it is very rare to find evidence

for a LRR when yt is drifting or trending and the elements of xt are not. Given the difficulty of distinguishing drifting and
trending time series, we contend that it would be difficult to justify relying on the bounds that assume a trend in the DGP

for yt .
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Table 6. Bounds given uncertainty about deterministic features of the DGP.

T = 75 T = 150 T = 1000

k
Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

1 1.05 3.69 1.01 3.69 0.98 3.65

2 1.05 3.68 1.01 3.63 0.98 3.60

3 1.05 3.62 1.01 3.63 0.98 3.65

4 1.05 3.61 1.01 3.59 0.98 3.61

Note:Critical values are computedvia stochastic simulationsusing 100,000 replications for the LRM t -statistic
in the Bewley instrumental variables regression in equation (9). A constant xt , xt−1, and yt−1 are used as
instruments. The time series yt and xt are generated from: yt = ρy yt−1 + ey t and xi ,t = ρxi xi ,t−1 + exi ,t for
i = 1, 2, 3, 4, where the errors are drawn from independent standard normal distributions.

The bounds presented in Table 6 facilitate every type of analytical uncertainty that typically

vex time series analysts. One does not need to know whether a series is a stationary or unit root

process. One does not need to knowwhether a series is characterized as a randomwalk, a random

walkwith drift, or a randomwalkwith trend and drift. These bounds allow analysts to focus on the

theoretical questions at the heart of political analysis, the existence of LRRs.

Applying the bounds is simple. The analyst must make a decision about whether to include a

trend in the regression model. This can occur as part of the typical general-to-specific modeling

procedure that shouldgoverndynamic specification (Hendry 1995). Theanalyst includesa trend in

the first model. If the trend is not significant, the trend can be removed. If the analyst is uncertain,

the trend can be left in the model. Including the trend in the regression model when the trend is

not part of the DGP does not affect the bounds. The second step is the estimation of the Bewley

regression or application of the delta method to the estimated model. The t -statistics for the

estimated LRMs can be compared to the bounds presented in Table 6. This allows for inferences

about the LRRs between the outcome and the independent variables that recognize the analyst’s

uncertainty about the dynamics of the data.

The bounds procedure comes at a cost: an area of indeterminacy. There is a real possibility

analysts will find themselves in a situation where they cannot reach a definitive conclusion. This

may seem like a major shortcoming of the procedure. But the uncertainty associated with the

dynamic properties of the variables has always affected applied time series analysis. The benefit

of the bounds procedure is that this uncertainty is reflected in the hypothesis test. In the next

section we demonstrate the utility of our proposed bounds procedure using data from previously

published work.

6 Applications
We demonstrate our approach using two examples. In the first example we analyze the dynamics

of public policy mood in the United States and in the second we look at explanations of

presidential success in Congress.

Public policy mood is conceptualized as the overall predisposition among the public for

an activist government role in solving society’s problems (Stimson 1991, 1998). It is measured

from thousands of survey questions asking about preferences for more or less government in

the domain of social policy. Measures of policy mood have been developed for a multitude of

countries, and efforts to explain the dynamics of policy mood have proliferated to countries

as diverse as Britain (Bartle, Dellepiane-Avellaneda, and Stimson 2011; Green and Jennings

2012), France (Stimson, Tiberj, and Thiébaut 2010; Stimson, Thiebaut, and Tiberj 2012; Brouard

and Guinaudeau 2015), Mexico (Baker 2015), Spain (Bartle, Bosch, and Orriols 2014), Portugal,

Germany, and Japan.
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Table 7. Unit root and stationary tests: public policymood, public policy outcomes, unemployment rate, and

inflation: second quarter 1968 through the fourth quarter 2010 (T = 168).

Policy Unemployment Inflation

Test Mood outcomes rate rate

Dickey–Fuller

ττ −2.95 −1.86 −3.14+ −2.55
φ3 4.70 1.82 5.05 3.34

φ2 3.30 1.23 3.41 2.26

τμ −2.95∗ −1.91 −3.16∗ −1.31
φ1 4.59+ 1.86 5.07∗ 0.91

τ −0.82 0.11 0.04 −0.88
KPSS

τ , long 0.16∗ 0.13+ 0.14+ 0.09

τ , short 0.36∗∗ 0.32∗∗ 0.26∗∗ 0.15∗

μ, long 0.17 0.14 0.15 0.76∗∗

μ, short 0.38+ 0.35+ 0.28 1.63∗∗

Note: Shown are (augmented) Dickey–Fuller (Dickey and Fuller 1979) test results for the null hypothesis that

the series is a unit root (τ) possibly with drift (τμ ) and trend (ττ ). Also reported are tests of the null hypothesis
that the constant, trend, and lagged dependent variable are jointly zero (φ2), that the trend and lagged

dependent variable are jointly zero (φ3), and that the constant and lagged dependent variable are zero (φ1).

The lag length for the test was selected using the AIC (maximum of 12 lags). The KPSS (Kwiatkowski et al.

1992) test is of the null hypothesis that the series is stationary around a trend (τ) or a mean (μ). We present
test results for both a long and short lag truncation. ∗∗p < 0.01, ∗p < 0.05, +p < 0.10.

Durr (1992) was the first to elucidate a theory to explain the dynamics of public policy mood

and model its behavior in the United States. He argued that economic expectations and policy

output exhibit long runequilibriumrelationshipswithpolicymood.According toDurr, perceptions

of economic security pave the way for the implementation of a more expensive liberal domestic

policy agenda “by fostering a willingness among the public to pay for such policies” (Durr 1992,

159). His analysis (and others) also recognizes the “thermostatic” nature of policy preferences:

the more (less) spending on domestic policy, the less (more) Americans demand it (Wlezien

1995). Since Durr’s seminal analysis, many others have extended his work (Erikson, MacKuen, and

Stimson 2002; Enns and Kellstedt 2008; Ellis and Faricy 2011; Ferguson, Kellstedt, and Linn 2013;

Owen and Quinn 2016). Here we reanalyze Ferguson, Kellstedt, and Linn (2013)’s replication and

extension of Durr (1992) and Erikson, MacKuen, and Stimson (2002). We focus on their model of

mood as a function of inflation, unemployment, and policy outcomes from 1968 (second quarter)

through 2010.26

Policymood has been treated as a unit root (Durr 1993) and as a stationary time series (Erikson,

MacKuen, and Stimson 2002; Ferguson, Kellstedt, and Linn 2013), with some noting that “mood

potentially has a unit root” (Owen and Quinn 2016, p. 107) and others omitting any discussion of

the question (Ellis and Faricy 2011). Grant and Lebo (2016) note that, if policy mood is a unit root,

it is a bounded unit root because it has upper and lower limits (Cavaliere and Xu 2014). The nature

of the dynamics of the public policy mood time series is not obvious from the usual battery of

statistical tests. In Table 7 we present the evidence on this score.

26 We use the measure of policy outcomes adopted by Ferguson, Kellstedt, and Linn (2013). The measure is an index that

averages the following four time series: the percentage of total federal outlays dedicated to human resources, 100%minus

the percentage of total federal outlays dedicated to defense, the percentage of total state and local revenues consisting of

federal grants-in-aid, and the topmarginal tax rate for married persons filing jointly.
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We first consider tests of the null hypothesis thatmood contains a unit root.We use theDickey–

Fuller test and adopt an iterative testing procedure, assuming we are agnostic about whether the

series contains a constant or trend under the null (Dickey and Fuller 1979). We beginwith themost

general form of the test, including a constant and trend in the test regression.27 Based on the φ2

andφ3 joint hypothesis tests, we concludemood is not trending and so estimate a test regression

omitting the trend. We then use φ1 to test for the inclusion of a constant in the test regression.

Here the results are ambiguous. If we adopt a 0.05 significance level, we cannot reject the null, in

which case we draw inferences from τ and conclude mood is a unit root. But if we adopt a 0.10

significance level, inference relies on τμ and we thus conclude the series is not a unit root in favor

of the alternative that it is stationary around a long runmean. The KPSS test does not help clarify

our inference (Kwiatkowski et al. 1992). Assuming no trend, the test provides different inferences

for each lag truncation parameter. Unsurprisingly, given the disparate treatment of the dynamic

properties ofmood in the literature,we find that inferences about thedynamicproperties ofmood

vary based on the test used and the level of significance adopted by the analyst.

The dynamic properties of the independent variables also affect inference about LRRs. We

report test results for inflation, unemployment, and policy outcomes in Table 7. Like mood, there

is inconsistent evidence regarding the dynamic properties of policy outcomes. The Dickey–Fuller

test suggests policy outcomes follow a simple randomwalk while the KPSS test (omitting a trend)

provides evidence the series may be stationary. In contrast, test results for unemployment and

inflation are unambiguous: unemployment is stationary around a long run mean, while inflation

is a random walk with neither drift nor trend. Based on the evidence as a whole, we proceed

by assuming none of the series contain a deterministic trend. We are otherwise uncertain about

the dynamics of mood and policy outcomes, but are willing to conclude that unemployment is

stationary and that inflation contains a unit root.

We begin our analysis of public policy mood under the assumption that it is weakly

exogenous28 such that we can estimate the conditional ECM where mt is policy mood, vt

is an intervention for the Vietnam war,29 xt = (inflation, unemployment, policy) and zt =

(mood, Vietnam, inflation, unemployment, policy):

Δmt = c0 + d1vt + πmmmt−1 + πmx ·xxt−1 + Σ
p−1
i=1 ψ i Δzt−1 + δ ′Δxt + μt . (11)

Estimates of the full model and each LRM are reported in Table 8.30 Columns one and two

contain estimates from the Generalized Error Correction Model (GECM), column three presents

estimates of the LRM and their standard errors (equivalently estimated using the delta method

and the Bewley IV regression), and column four presents the resulting test statistic. We focus our

attention on the LRM test of the null hypothesis of no valid LRR. Using standard critical values,

Ferguson et al. reject the null at the 0.05 level for policy outcomes, at the 0.10 level for inflation,

and fail to reject the null for unemployment. However, given our uncertainty about the dynamic

properties of mood and policy outcomes, the LRM statistics should be compared to the critical

bounds given in the top left panel of Table 5 (T = 150: 1.35, 3.70). The resulting inference on

unemployment (t = −0.77) is unchanged, we cannot reject the null hypothesis, regardless of the
dynamic properties of either mood or unemployment. The test statistic on the LRM for inflation

(t = 1.96) and policy outcomes (t = 2.32) are well inside the bounds; unless we can be confident

27 In fact, there is little reason to believe mood contains a deterministic trend, a fact confirmed by the test.

28 Granger causality tests are ambiguous as to the legitimacy of this assumption but for pedagogical purposes we proceed

as such.

29 The Vietnam intervention is coded as zero in the second quarter of 1968, grows exponentially from the third quarter of

1968 until the second quarter of 1970, takes a value of one through 1975, and returns to zero for the remainder of the data.

30 This specification assumes the disturbances are uncorrelated. Breusch-Godfrey tests indicate that we cannot reject the

null hypothesis that the residuals are uncorrelated.
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Table 8. Amodel of domestic policy mood: second quarter 1968 through fourth quarter 2010.

zi t−1 Δxi t LRM xi t LRM t -statistic

Policy mood −0.229
(0.050)

Inflation −0.120 −0.118 −0.522 −1.96
(0.066) (0.208) (0.266) (Between)

Unemployment −0.082 0.925 −0.360 -0.77

(0.104) (0.488) (0.469) (Below)

Policy outcomes −0.103 −0.170 −0.449 −2.23
(0.046) (0.204) (0.201) (Between)

Vietnamwart−1 1.802

(0.652)

Constant 19.35

(4.17)

Breush–Godfrey (8 lags) 0.13

RMSE 1.96

R̄ 2 0.11

T 168

Note: The LRM, LRMSE , and t -LRM, are equivalently estimated using the delta method and the Bewley
instrumental variables regression. Standard errors in parentheses. The t -statistics are reported as “Below”
when �t � < 1.35, “Between” when 1.35 < �t � < 3.70, and “Beyond” when �t � > 3.70.

mood is a stationary series, wemust admit our uncertainty about whether there is a LRR between

either of these variables and mood. The ambiguity of these latter inferences is consistent with

Ferguson et al.’s findings that Durr’s original results are not robust over time or across alternate

measures of economic performance.

Our second application examines presidential success in Congress, the percentage of times

a president wins on votes on which he took a position in the House of Representatives each

year, from 1953 to 2006 (Ornstein, Mann, and Malbin 2008). A long and old debate examines the

importance of presidential approval to presidential success. For Neustadt (1960), the power of

the president is the power to persuade, which might lead us to expect that political capital—

in the form of public support—will lead to legislative accomplishments. Empirical studies have

sometimes found support for the approval-success link (Bond and Fleisher 1984; Ostrom, Jr and

Simon 1985). InTheStrategic President, however, George Edwards argues that high approval levels

might sometimesmatter but that “presidential legislative leadership operates in an environment

largely beyond thePresident’s control” (Edwards 2009, p. 150). Lebo andO’Geen (2011) investigate

several of these relationships including the effects of institutional factors, specifically, thepartisan

and ideological divisionswithin Congress. Tests of LRRswill help us identify the factors that shape

the legacies of successes and failures of modern presidents.

It is unclear whether presidential success is a stationary or unit root process, however, and

pretesting does not clear up our questions about univariate dynamics. Using the Dickey–Fuller

tests we cannot reject the null hypothesis that presidential success is a unit root (with neither

drift nor trend) but this result is contradicted by the KPSS μ test. Unless we rely on the short lag

truncationparameterandanα = 0.10,wecannot reject thenull that theseries is stationaryaround

a long runmean. The question of whether presidential success is a unit root or a stationary series

over this period has no definitive answer.

Pretests for the explanatory variables indicate that we can reject the unit root null hypothesis

for President’s party’s seat share in the House of Representatives and presidential approval. The
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Table 9. Amodel of presidential success, 1953–2006.

zi t−1 Δxi t LRM xi t LRM t -statistic

Presidential success −0.58
(0.12)

Conditional party government 7.51 11.14 12.96 3.17

(2.90) (2.76) (4.08) (Between)

President’s party house share 1.35 1.96 2.33 5.38

(0.38) (0.27) (0.43) (Beyond)

Presidential approval 0.09 0.30 0.15 0.53

(0.17) (0.18) (0.29) (Below)

Constant −34.77
(18.56)

Breush–Godfrey (8 lags) 0.43

RMSE 10.84

R̄ 2 0.61

T 54

Note: The LRM, LRMSE , and t -LRM, are equivalently estimated using the delta method and the Bewley
instrumental variables regression. Standard errors in parentheses. The t -statistics are reported as “Below”
when �t � < 1.40 , “Between” when 1.40 < �t � < 3.62 and “Beyond” when �t � > 3.62.

KPSS test supports this inference for the president’s House share but for presidential approval it

suggestswe can reject thenull of stationarity arounda trendbut not arounda long runmean. Both

the Dickey–Fuller and KPSS test results for the conditional party government index (CPG) (Aldrich,

Berger, and Rohde 2002) suggest that the series is stationary. (See the Supplementary Appendix,

Section 2 for full results.)

We incorporate the uncertainty in the pretesting stage in our tests of the null hypothesis of no

valid LRRbetweenpresidential success andeachof our three independent variables by comparing

the LRM t -statistics from a GECM of presidential success to the critical bounds given in the top left

panel of Table 5 (T = 75: 1.40, 3.62). Columns one and two of Table 9 contain estimates from

the GECM, column three presents estimates of the LRM and their standard errors (equivalently

estimated using the delta method and the Bewley IV regression), and column four presents the

resulting test statistic. Our results indicate that there is ambiguity as to the existence of a valid

LRR between CPG and presidential success: the LRM t -statistic for CPG (3.17) lies between the

bounds.Withoutknowledgeof theunivariatepropertiesofbothseries,wecannotdrawadefinitive

conclusion. Inferenceonbothpresidential approval and thepresident’sHouse shareare, however,

conclusive. We cannot reject the null that a president’s approval is unrelated to his success in the

House: the LRM t -statistic (0.53) lies below the bounds. The test statistic for the president’s House

share (5.38) is above both bounds and supports the existence of a valid LRR in which each point

increase in the president’s party’s share of the House of Representatives increases his success

rate by just over 2.3 points in the long run. Both conclusions hold regardless of what the dynamic

properties of the individual series might be.

These applications illustrate how applying a bounds hypothesis-testing framework to the

LRM t -test allows us to be transparent about how the uncertainty in pretesting translates into

uncertainty about LRRs between time series. Is an area of indeterminacy in hypothesis testing

unsatisfying? Yes, but it also reduces the risk of type I errors. A bounds framework also provides

a firmer foundation for conclusions under the alternative hypothesis. Put differently, when the

LRM t -statistic is above the bounds, we can be more confident in the reliability of our findings,

independent of any conclusions wemight draw when pretesting.
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7 Conclusion
Time series analysis typically begins with the analyst conducting pretests designed to determine

the dynamic properties of one’s data. Such tests, one is led to believe, produce clear diagnoses

that neatly dictate appropriate modeling and hypothesis-testing strategies. But classification is

complicated. Most theories are ambiguous about the univariate properties of data,many political

time series are short, and tests often produce conflicting results. When analysts are uncertain

whether their time series are I (0), I (1)—or some combination of both—the textbook strategies

for inference regarding LRRs are untenable. If one can convincingly establish that the dependent

variable contains a unit root, PSS’s hypothesis-testing framework is a workable alternative for

inference that has become extremely popular in economics with over 8,000 citations on Google

Scholar. But if, as in our examples above, the dynamic properties of the dependent variable are

uncertain, this strategy, too, is untenable and we caution political scientists against the PSS tests.

Instead we offer the following suggestions for empirical researchers uncertain about the

dynamics of their data. First, analysts should admit the uncertainty that hypothesis tests often

conducted behind closed doors suggest. Second, analysts should adopt a modeling strategy and

hypothesis-testing framework that account for that uncertainty. The LRM test combined with

the bounds testing framework we recommend here generalizes and improves upon the strategy

advocated by PSS by not insisting on certainty over the univariate characteristics of any of the

variables in themodel. Third, analysts should accept the possibility that inference will not permit

a definitive conclusion on a hypothesis test. If analysts follow these guidelines we will be more

transparent about uncertainty, reduce the false discovery rate, and increase the likelihood that

significant findings are reproducible (Esarey 2017).31

The procedurewe advocate sacrifices the power of the test, increasing the risk of a type II error.

The likelihood analysts find themselves in this position will depend on the strength of any LRR,

the length of the time series, and the similarity in the dynamics of yt and xt . This fact suggests
that analystsmay need larger samples to identify LRRs but it should also push analysts to develop

stronger theories aboutboth theunivariatedynamicsof their data and thenatureof LRRsbetween

them. This, in turn, might be used to justify the use of a particular test statistic and critical values.

Out of sample forecasting presents another tool for assessing the performance of models when

the LRM test statistic falls between the bounds.

In all, classifying political time series typically involves too much guesswork and time series

analysts spend much too much time sparring over the nature of their data. Our work provides a

way forward that recognizes that uncertainty. Further, when the LRM test statistic is above both

bounds, one can reject the null hypothesis, learn about important dynamic relationships, and

be believed. Taking uncertainty seriously and following a method that does not rely on tenuous

conclusions from pretesting is the best way forward.

Supplementarymaterial
For supplementary material accompanying this paper, please visit

https://doi.org/10.1017/pan.2019.3.
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