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I consider the hydrodynamic stability of imploding ideal gases as an idealized model
for inertial confinement fusion capsules, sonoluminescent bubbles and the gravitational
collapse of astrophysical gases. For oblate modes (short-wavelength incompressive
modes elongated in the direction of the mean flow), a second-order ordinary
differential equation is derived that can be used to assess the stability of any time-
dependent flow with planar, cylindrical or spherical symmetry. Upon further restricting
the analysis to homologous flows, it is shown that a monatomic gas is governed by
the Schwarzschild criterion for buoyant stability. Under buoyantly unstable conditions,
both entropy and vorticity fluctuations experience power-law growth in time, with a
growth rate that depends upon mean flow gradients and, in the absence of dissipative
effects, is independent of mode number. If the flow accelerates throughout the
implosion, oblate modes amplify by a factor (2C)|N0|ti , where C is the convergence
ratio of the implosion, N0 is the initial buoyancy frequency and ti is the implosion time
scale. If, instead, the implosion consists of a coasting phase followed by stagnation,
oblate modes amplify by a factor exp(π|N0|ts), where N0 is the buoyancy frequency
at stagnation and ts is the stagnation time scale. Even under stable conditions,
vorticity fluctuations grow due to the conservation of angular momentum as the gas
is compressed. For non-monatomic gases, this additional growth due to compression
results in weak oscillatory growth under conditions that would otherwise be buoyantly
stable; this over-stability is consistent with the conservation of wave action in the
fluid frame. The above analytical results are verified by evolving the complete set of
linear equations as an initial value problem, and it is demonstrated that oblate modes
are the fastest-growing modes and that high mode numbers are required to reach this
limit (Legendre mode `&100 for spherical flows). Finally, comparisons are made with
a Lagrangian hydrodynamics code, and it is found that a numerical resolution of ∼30
zones per wavelength is required to capture these solutions accurately. This translates
to an angular resolution of ∼(12/`)◦, or .0.1◦ to resolve the fastest-growing modes.

Key words: compressible flows, instability, sonoluminescence

† Email address for correspondence: johnson359@llnl.gov

c© Cambridge University Press 2015 774 R4-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

30
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:johnson359@llnl.gov
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.309&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.309&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.309&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.309&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.309&domain=pdf
https://doi.org/10.1017/jfm.2015.309


B. M. Johnson

1. Introduction

Examples of imploding gases include inertial confinement fusion (ICF) capsules
(Atzeni & Meyer-ter-Vehn 2004), sonoluminescent bubbles (Suslick & Flannigan
2008) and core-collapse supernovae (Janka 2012). The hydrodynamic stability
of these flows is an important issue, as perturbations of sufficient amplitude can
drain the energy driving the implosion, and the breakdown of symmetry, even for
small amplitudes, can have important diagnostic/observational effects (e.g. Murphy
2014). Stability analyses of an imploding gas are significantly complicated by the
time-dependent mean flow, and homologous flow (i.e. flow in which fluid elements
share a common time-dependent scaling, the Hubble flow being a prime example) is
a useful idealization that allows some analytical progress to be made. Such a study
was performed for core-collapse supernovae by Goldreich & Weber (1980), who
claim stability, but their results have recently been revisited by Cao & Lou (2009,
2010), who claim instability. Chu (1996) applied the analysis of Goldreich & Weber
(1980) to a sonoluminescing bubble and also claimed stability. The extensive body of
work on the stability of ICF implosions has focused almost exclusively on interfacial
instability, with little attention being given to the stability of the gas (see, however,
Greenspan & Benney 1963; Mjolsness & Ruppel 1978; Cook et al. 2000). At the
same time, hot-spot turbulence has recently received attention as a potential source of
yield degradation in ICF capsules (Thomas & Kares 2012; Cerjan, Springer & Sepke
2013; Clark et al. 2013; Gatu et al. 2013), and the origin of these vortical flows,
if present, remains unclear. Basko & Murakami (1998) considered the possibility of
buoyancy instability in self-similar implosions but did not perform a formal stability
analysis.

The purpose of this work is to clarify some of these issues by performing a stability
analysis that complements previous work. By solving the initial value problem (Lai
& Goldreich 2000), rather than decomposing perturbations into radial modes, I am
able to obtain results that are more physically transparent than those of previous
authors, including a precise stability criterion. The following assumptions are made:
(i) the implosion is externally driven rather than driven by gravity; (ii) dissipative
effects are ignored (this is almost certainly unrealistic for ICF capsules and bubbles,
but it permits isolation of the instability driving mechanism); and (iii) perturbations
are assumed to be short-wavelength, incompressive and elongated in the direction
of the implosion. I shall refer to this final approximation as the oblate limit, and
it is perhaps the most useful new result to come out of this work, as it allows for
significant analytical progress to be made in a problem that must otherwise be treated
numerically. Under these assumptions, I demonstrate that homologously imploding
ideal gases are essentially governed by the Schwarzschild criterion for buoyant
stability (Schwarzschild 1992), with a slight modification due to compression.

The basic equations and mean flow are outlined in § 2, the stability analysis is given
in § 3, and § 4 summarizes and discusses applications.

2. Basic equations and mean flow

The fundamental equations used are the continuity equation, Euler’s equation and
the first law of thermodynamics for adiabatic flow:

dρ
dt
+ ρ∇ · v = 0, ρ

dv

dt
+∇p= 0,

ds
dt
= 0. (2.1a−c)
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Buoyancy instability of homologous implosions

Here ρ, v, p and s are the mass density, velocity, pressure and entropy of the gas
and d/dt = ∂/∂t + v · ∇ is the Lagrangian derivative following a fluid element (e.g.
Landau & Lifshitz 1987). I will assume throughout an ideal-gas equation of state, p=
(γ −1)ρCvT , where γ , Cv and T are the adiabatic index, specific heat and temperature
of the gas. For this equation of state, s = ln(pρ−γ ) to within a constant factor; this
expression will be used in what follows to define the entropy.

Fluid elements in a homologous flow obey the relationship r(t, a) = r(0, a)h(t) =
ar01h(t), where r is the spatial coordinate in the direction of the mean flow and the
Lagrangian label for a fluid element is a≡ r(0, a)/r01. For a spherical flow, r(0, a) is
the field of radial positions for all the fluid elements at t= 0 and r01 ≡ r(0, 1) is the
outer radius of the gas at t = 0; this implies that the scale factor h(t) is normalized
to unity at t = 0, i.e. h(0) ≡ 1. The velocity field associated with homologous flow
is vr(t, a) = ar01ḣ(t) = r(t, a)ḣ/h, where an overdot denotes a time derivative. Mass
and entropy conservation under spherical adiabatic homologous flow imply ρ(t, a)=
ρ0(a)/h3 and p(t, a) = p0(a)/h3γ , where a zero subscript denotes a spatial profile at
t= 0, and Euler’s equation becomes

h3γ−2ḧ=− 1
ρ0r2

01a
∂p0

∂a
≡± 1

t2
c

, (2.2)

where the plus (minus) sign is associated with a decelerating (accelerating) implosion
and tc is a characteristic time scale.

For γ = 5/3 and ḣ0 = 0, the time-dependent portion of expression (2.2) yields the
well-known Kidder implosions (Kidder 1974; Atzeni & Meyer-ter-Vehn 2004)

h(t)=
√

1±
(

t
tc

)2

. (2.3)

For ḣ0 6= 0, an additional solution to (2.2) valid for any γ is (Goldreich & Weber
1980)

h(t)=
(

1−
√
[3γ − 1]2
6[γ − 1]

t
tc

)2/(3γ−1)

. (2.4)

This solution, while valid only for accelerating implosions, is useful for assessing
the impact of the gas equation of state. Following Atzeni & Meyer-ter-Vehn (2004),
accelerating solutions are defined as starting out from t= 0, so that they evolve from
h=1 to h=C−1, where C≡ rinitial/rfinal is the convergence factor, i.e. the ratio of initial
to final sizes. The decelerating solution, on the other hand (the Kidder implosion with
the + sign), is defined as stagnating at t= 0, so that its implosion phase evolves from
h=C to h= 1.

Aside from the equation of state, the space-dependent portion of (2.2) is the
only constraint on the spatial profile of the mean gas quantities. This allows for a
significant amount of flexibility in setting up various mean flow profiles. An analytical
model that mimics the hot spot of an ICF implosion during deceleration (this is likely
to be a good approximation for a collapsing bubble as well) is given by

ρ0 = ρ0p e(a
2−a2

p)/2σ
2

exp(1− e(a
2−a2

p)/2σ
2
), (2.5)

T0 = T0p e−(a
2−a2

p)/2σ
2
, p0 = p0p exp(1− e(a

2−a2
p)/2σ

2
), (2.6a,b)
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FIGURE 1. Profiles of density (solid), temperature (dotted), pressure (dashed) and the
negative portion of N2

0 (dot-dashed) for expressions (2.5)–(2.8) with σ = 0.2 and ap= 0.9.
All quantities have been normalized to their peak magnitude.

where the gas quantities have been normalized to their value at ap (the location of
the density peak; see figure 1). Both ap and σ can be regarded as free parameters of
the model, and can be alternatively expressed in terms of ratios of physical quantities.
The characteristic time scale in this case is tc =√γ r01σ/c0p, where c0p is the sound
speed at ap. The square of the Brunt–Väisälä, or buoyancy, frequency,

N2 ≡− 1
γρ

∂p
∂r
∂s
∂r
, (2.7)

is useful for assessing buoyant stability (Johnson & Gammie 2005). For homologous
flow, N2 =N2

0 h1−3γ , and for the hot-spot configuration described above,

N2
0 t2

c =−
a2

σ 2

(
1− γ − 1

γ
e(a

2−a2
p)/2σ

2

)
. (2.8)

Mean flow profiles for the hot-spot configuration are shown in figure 1.

3. Stability analysis

For an equilibrium configuration (v= 0), it is well known that the local dispersion
relation for short-wavelength incompressive modes governed by (2.1a−c) is

ω2 = k2
⊥

k2
r + k2

⊥
N2, (3.1)

where ω is the wave frequency and k⊥ and kr are wavenumbers perpendicular and
parallel to the mean gradients (see e.g. Johnson & Gammie 2005). It can be seen from
expression (3.1) that N2 < 0 denotes instability; N2 > 0 is the Schwarzschild criterion
for buoyant stability (Schwarzschild 1992). The buoyancy frequency can be rewritten
as

N2 = g
γ

∂s
∂r
=−g

(
g
c2

s

+ 1
ρ

∂ρ

∂r

)
= g
γ

(
1
T
∂T
∂r
− γ − 1

ρ

∂ρ

∂r

)
, (3.2)
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Buoyancy instability of homologous implosions

where g≡ dvr/dt is the acceleration and cs is the mean sound speed. It can be seen
from this expression that configurations with ‘order-over-disorder’ (∂s/∂r < 0) are
buoyantly unstable. If density gradients dominate, a ‘heavy-over-light’ configuration
is unstable (∂ρ/∂r > 0), whereas if temperature gradients dominate, a ‘cold-over-hot’
configuration is unstable (∂T/∂r< 0). The former situation represents Rayleigh–Taylor
instability, and the latter represents thermal convection; in general, buoyancy instability
depends upon the mean entropy gradient. Because fluid elements evolve adiabatically,
and the relationship between entropy and density depends upon γ , the stability
criterion in general depends upon the compressibility of the fluid. Notice that, in
the limit gLρ � c2

s , where Lρ = (∂ ln ρ/∂r)−1 is the density gradient length scale,
the growth rate is independent of γ and reduces to the short-wavelength limit of the
classical Rayleigh–Taylor growth rate when the effects of density gradient stabilization
are included (e.g. Betti et al. 1998). For the hot-spot configuration described above,
it can be seen from figure 1 that the entire gas region and most of the shell is
buoyantly unstable during deceleration.

For a spherically symmetric mean flow (v= vr r̂), perturbations can be decomposed
into spherical harmonics Y`m(θ, φ), and the resulting equations are

dρ ′

dt
=− 1

r2

∂

∂r
(r2vr)ρ

′ − 1
r2

∂

∂r
(ρr2v′r)+

`(`+ 1)
r

ρv′⊥, (3.3)

dv′r
dt
=−∂vr

∂r
v′r +

1
ρ2

∂p
∂r
ρ ′ − 1

ρ

∂p′

∂r
, (3.4)

dv′⊥
dt
=−vr

r
v′⊥ −

p′

ρr
,

ds′

dt
=−∂s

∂r
v′r, (3.5a,b)

where a prime denotes a fluctuation, v′⊥ is the component of the velocity fluctuation
parallel to ∇Y`m, s′ = p′/p − γρ ′/ρ is the entropy fluctuation, and ` is a Legendre
mode number (Lai & Goldreich 2000). The third velocity component decouples from
the other variables and will not be considered here. Short-wavelength, low-frequency
fluctuations satisfy ∇ · v′ ≈ 0 and s′ ≈ −γρ ′/ρ (the Boussinesq approximation
for buoyancy-driven flows (Johnson & Gammie 2005)). This reduces the perturbed
continuity equation to the incompressive condition. It is important to note that the gas
remains compressible; the incompressive condition applies only to the fluctuations.

Notice from expression (3.1) that the growth rate of local modes in an equilibrium
configuration is largest for modes with kr � k⊥. This suggests the additional
approximation of restricting the analysis to modes with ∂/∂r � `/r, i.e. modes
that are sufficiently elongated in the radial direction that their radial variation can be
neglected. I shall refer to this (along with the incompressive condition) as the oblate
limit, and the modes thus isolated as oblate modes. This approximation considerably
simplifies the analysis while retaining the essential physics. In the oblate limit, which
amounts to neglecting the pressure perturbation in (3.4), the linear equations reduce
to the set of coupled ordinary differential equations

dv′r
dt
=−∂vr

∂r
v′r +

1
ρ2

∂p
∂r
ρ ′,

ds′

dt
=−∂s

∂r
v′r, (3.6a,b)

with s′ =−γρ ′/ρ. The first term on the right-hand side of (3.6a) represents angular
momentum conservation: vortical modes spin faster (slower) under compression
(expansion). The second term represents the baroclinic production of vorticity: entropy
fluctuations spin up due to the baroclinic torque applied to them by the mean pressure
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B. M. Johnson

gradient. The perturbed entropy equation represents the fact that, in the presence of
a mean entropy gradient, entropy fluctuations evolve to compensate for mean entropy
changes. An entropy fluctuation that moves up the mean entropy gradient, for example
(to a region of higher mean entropy), must decrease in magnitude in order for total
entropy to be conserved. This can increase or decrease the magnitude of the baroclinic
term in the perturbed Euler equation.

One can see the connection between (3.6a) and the vorticity equation as follows.
The dominant vorticity component for oblate modes is the one perpendicular to both
r̂ and ∇Ylm; in axisymmetry, it is the only non-zero component and is given by

ωφ = (∇× v′)φ =
(
v′⊥ − v′r

r
+ ∂v

′
⊥

∂r

)
∂P`(cos θ)

∂θ
≈−v

′
r

r
∂P`(cos θ)

∂θ
, (3.7)

where the approximation is valid for oblate modes and P` is a Legendre polynomial.
The non-radial velocity of an oblate eddy is much smaller than its radial velocity
fluctuation (this follows from ∇ · v′ ≈ 0 and `/r � ∂/∂r), which implies that its
vorticity is dominated by radial motion in a frame moving with the mean flow.
Appendix A of Johnson (2014) derives the perturbed vorticity equation under the
Boussinesq approximation; in spherical geometry and axisymmetry, the φ component
of expression (A4) of Johnson (2014) (there is a sign error in front of the baroclinic
term in that reference) is

dωφ
dt
=−

(
vr

r
+ ∂vr

∂r

)
ωφ − 1

ρ2r
∂p
∂r
∂P`(cos θ)

∂θ
ρ ′. (3.8)

Using the approximation in (3.7), one can readily show that (3.8) is equivalent
to (3.6a).

Using the mean flow expression d ln(ρr2)/dt = −∂vr/∂r and recalling that
the Lagrangian derivative commutes with a derivatives but not r derivatives,
equations (3.6) can be combined to give

d2s′

dt2
+ 2

∂vr

∂r
ds′

dt
+N2s′ = 0. (3.9)

The only assumptions regarding the mean flow that have been made in deriving this
equation are an ideal-gas equation of state and radial adiabatic flow. This equation
therefore governs oblate modes in any flow satisfying these conditions. It is shown in
appendix A that (3.9) also applies to flows with cylindrical and planar symmetry. For
vr = 0, it reduces to the dispersion relation (3.1) with kr = 0.

For Kidder implosions, the solutions to (3.9) have the form s′∝ exp(−i
∫
ω dt), with

ω2 =N2; this demonstrates that the stability of Kidder implosions is governed by the
Schwarzschild criterion. The full solution is given by

ρ ′

ρ
= ρ

′
0

ρ0
cosh φK + v′r0

γLs0

√−N2
0

sinh φK, (3.10)

v′r
cs
= v

′
r0

cs0
cosh φK + ρ

′
0

ρ0

γLs0

√−N2
0

cs0
sinh φK, (3.11)

where

φK ≡
∫ t

0

√−N2
0

h(t′)2
dt′ =

√
−N2

0

∫ t

0

dt′

1± (t′/tc)2
(3.12)
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Buoyancy instability of homologous implosions
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FIGURE 2. Growth factor as a function of mode number for the profile shown in figure 1
and a stagnating Kidder implosion/explosion (with C= 10), showing results from the full
linear code (solid) and the analytical oblate limit (dotted).

and Ls0 ≡ r01(∂s0/∂a)−1 is the entropy gradient length scale at t = 0. In these
expressions, all quantities with a zero subscript can be regarded as functions of a,
since for oblate modes each fluid element evolves with time independently of all the
others. For N2

0 = 0, entropy fluctuations are conserved and v′r = v′r0/h (for ρ ′0 = 0),
reflecting the conservation of angular momentum as the gas is compressed.

An implosion takes place over a finite time scale, such that the impact of unstable
fluctuations on the mean flow depends upon both their initial amplitude and how much
they are amplified over the course of the implosion. Expression (3.10) or (3.11) can
be used to obtain an estimate of the growth factor when N2

0 < 0:

G ≡ (ρ ′/ρ)final

(ρ ′/ρ)initial
∼
{
(2C)|N0tc| (accelerating),
eπ|N0tc| (decelerating).

(3.13)

The growth factor for the decelerating solution takes into account the explosion phase
that follows the implosion phase in the Kidder stagnating solution (i.e. h evolving
from C to 1 and then back to C), since the gas is unstable both before and after
stagnation. The same expressions apply to the amplification of vorticity fluctuations.

Growth factors for a representative fluid element (a= 0.7) undergoing a decelerating
Kidder implosion/explosion are shown in figure 2 as a function of Legendre mode
number `. These results were obtained with a Lagrangian code that solves the full set
of linear equations (3.3)–(3.5), where the radial profile of the initial entropy fluctuation
was a Gaussian with a width 10 % of the outer radius. It can be seen from figure 2
that oblate modes are the fastest-growing modes and that fairly large values of ` are
required to reach the oblate limit (` & 100). Figure 3 shows the evolution of the
peak vorticity for ` = 30 in both the linear code and a two-dimensional version of
the Lagrangian hydrodynamics code Kull (Rathkopf 2000) at various grid resolutions.
These results indicate that a resolution of ∼30 zones per wavelength is required to
accurately capture the amplification of vorticity under an implosion in a numerical
simulation.
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FIGURE 3. Peak vorticity as a function of time for the profile given by expressions (2.5)–
(2.6) (with σ = 0.25 and ap = 1), a stagnating Kidder implosion/explosion (with C = 10)
and ` = 30. Shown are results from two-dimensional Kull calculations at several grid
resolutions (solid, labelled by zones per wavelength), along with results from the linear
code (dotted).

For implosions whose trajectory is given by expression (2.4), the solutions to (3.9)
again have the form s′ ∝ exp(−i

∫
ω dt), where here

ω2 + 5− 3γ
2

i Dω−N2 = 0 (3.14)

and D ≡ ∂vr/∂r is the dilatation. These solutions can equivalently be expressed as
s′ ∝ hβ , where

β =− iω
D
=−5− 3γ

4
±
√
∆2, ∆2 ≡

(
5− 3γ

4

)2

− Ric, (3.15a,b)

where Ric≡N2/D2 is a compressive Richardson number. It can be seen that instability
(ωi > 0, where ωi is the imaginary part of ω) corresponds to βr < 0, where βr is the
real part of the negative branch of β (for an implosion, a quantity that grows with
time decays with h).

For γ = 5/3, β =±√−Ric=±
√−N2

0 t2
c , which is real for N2

0 < 0. For a monatomic
gas, then, the stability of these implosions is also governed by the Schwarzschild
criterion. For γ < 5/3, however, the system is unconditionally unstable as a result
of the additional growth due to compression. For ∆2 < 0, i.e. Ric > ([5 − 3γ ]/4)2,
the fluctuations have an oscillatory component with an amplitude that increases slowly
with time. For ∆2 > 0, the growth is purely a power law in time, and increases with
decreasing Ric. The critical Ric above which oscillations appear varies between 0 for
γ = 5/3 and 1/4 for γ = 1. This is reminiscent of the Richardson criterion for the
stability of a stratified shear flow (Miles 1961; Chimonas 1970), with shear replaced
by dilatation. In this case the transition is not between stability and instability, but
rather simply between the presence and absence of oscillations.
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Buoyancy instability of homologous implosions

The complete linear solution for oblate modes under implosions satisfying
expression (2.4) is

ρ ′

ρ
= h−(5−3γ )/4

(
ρ ′0
ρ0

[
cosh φ + 5− 3γ

4∆
sinh φ

]
− v

′
r0

vr0

2Ric

3[γ − 1]∆ sinh φ
)
, (3.16)

v′r
vr
= h−(5−3γ )/4

(
v′r0

vr0

[
cosh φ − 5− 3γ

4∆
sinh φ

]
+ ρ

′
0

ρ0

3[γ − 1]
2∆

sinh φ
)
, (3.17)

where φ ≡ √∆2 ln h. For ∆2 < 0, these solutions become oscillatory, and it is
straightforward to show that the amplitude of the oscillations is consistent with the
conservation of wave action in the fluid frame (Whitham 1965), i.e.

d
dt

(
E

ωr

)
= 0, E ≡ 1

2
v′2r +

1
2

N2ξ ′2r , (3.18a,b)

where E is the specific energy of the fluctuations (kinetic plus potential), ξ ′r =−Lss′
is the fluctuating radial fluid displacement, ωr is the real part of ω, and an overbar
denotes an angular average. An estimate of the growth factor for the fluctuations in
this case can be made from (3.16) or (3.17):

G ∼C−βr ∼


C
√−Ric for Ric�−1,

C(5−3γ )/2 for Ric = 0,
C(5−3γ )/4 for Ric > 0.

(3.19)

4. Summary and discussion

By isolating incompressive modes that are elongated in the direction of the mean
flow (oblate modes), the following conclusions are drawn regarding the stability
of homologously imploding ideal gases: (i) monatomic gases are governed by
the Schwarzschild criterion for buoyant stability; (ii) owing to the time-dependent
nature of the mean flow, the growth is power law rather than exponential in time;
(iii) additional growth occurs due to the conservation of angular momentum as
vortices are compressed; and (iv) gases with γ < 5/3 are weakly unstable due to this
additional growth mechanism even when the flow is otherwise buoyantly stable. As
pointed out by Cao & Lou (2009), the reason that Goldreich & Weber (1980) and
Chu (1996) do not find instability is that they assume an isentropic background and
ignore vorticity and entropy fluctuations; either of these assumptions precludes the
development of buoyancy instability.

The short-wavelength nature of the most unstable modes coupled with the
compression of the mean flow makes this instability challenging to capture in
numerical calculations. Figure 3 indicates that accurately capturing the growth of
vorticity under an implosion requires a resolution of the order of 30 zones per
wavelength; this translates to an angular resolution of 360◦/(30`)= 12◦/`. Capturing
the fastest-growing modes (` & 100) therefore requires an angular resolution .0.1◦.
For an Eulerian code, high convergence ratios impose severe constraints on the
resolution in the direction of the mean flow. Seeding buoyancy instability in the gas
can occur in two ways: vorticity fluctuations can be transported there by shocks
rippled from drive asymmetry or interfacial perturbations, or small-amplitude entropy
fluctuations can be present initially in the gas. Even a sufficiently resolved calculation
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that is initialized without ambient density or temperature fluctuations may not capture
this instability properly.

Finally, for ICF implosions and sonoluminescent bubbles, the growth at large ` is
likely to be reduced by conduction and viscosity (Atzeni & Meyer-ter-Vehn 2004;
Weber et al. 2014). These effects have been neglected here for several reasons. (i) As
with classical stability analyses, a better understanding is gained if the effects driving
the instability are isolated first, and stabilizing effects are added afterwards. (ii) There
are uncertainties associated with conduction and viscosity models, and it is useful
to know what instabilities are lurking in the background in their absence. (iii) The
analytic results obtained here in the adiabatic limit provide physical insight and are
useful for code verification. Self-similar solutions have been obtained previously
with non-adiabatic effects (Basko & Murakami 1998; Sanz et al. 2005), although
the adiabatic profiles in figure 1 are remarkably similar to the actual profiles in
an ICF implosion (compare figure 1 with figure 3.11 of Atzeni & Meyer-ter-Vehn
(2004)). Dissipation affects small scales; in reality the amplification in figure 2 will
fall off at high mode numbers. At the same time, figure 2 indicates that potentially
significant growth can occur even for moderate `. Definitive conclusions regarding
the application of this analysis to ICF and sonoluminescent bubbles will require a
more faithful representation of both the mean flow and the dissipation. This, as well
as application to astrophysical gases, will be pursued in future studies.
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Appendix A. Results for cylindrical and planar symmetry

A complete set of homologous solutions can also be derived for flows with
cylindrical and planar symmetry. In general, mass and entropy conservation for
homologous adiabatic flow imply ρ(t, a) = ρ0(a)/hn and p(t, a) = p0(a)/hnγ , where
n = 1, 2 or 3 for planar, cylindrical or spherical symmetry, and the time-dependent
portion of (2.2) is hnγ−n+1ḧ = ±t−2

c . All of the above results for the mean spatial
profiles remain valid if r is interpreted as the spatial coordinate in the direction
of the mean flow. Expression (2.3) for the Kidder implosion remains valid for
γ = 1+ 2/n, and the generalization of (2.4) is

h(t)=
(

1− nγ − n+ 2
2

√
2

nγ − n
t
tc

)2/(nγ−n+2)

, (A 1)

valid for ḣ0tc =−√2/(nγ − n). Both the buoyancy frequency and the dilatation have
the time dependence N ∝D∝ h(n−nγ−2)/2.

Equations (3.6) for the perturbations remain valid in all three geometries, and imply

d2s′

dt2
=−∂s

∂r
dv′r
dt
− d

dt

(
ρrn−1

ρ0rn−1
0

∂s
∂r0

)
v′r, (A 2)

where r0 = r(0, a). Using the mean flow relation d ln(ρrn−1)/dt = −∂vr/∂r, this
leads to (3.9). The solutions for a Kidder implosion, equations (3.10) and (3.11), are
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therefore valid for all three geometries (provided γ = 1 + 2/n). Expressions (3.16)
and (3.17) generalize to

ρ ′

ρ
= h−(2+n−nγ )/4

(
ρ ′0
ρ0

[
cosh φ + 2+ n− nγ

4∆
sinh φ

]
− v

′
r0

vr0

2Ric

n[γ − 1]∆ sinh φ
)
, (A 3)

v′r
vr
= h−(2+n−nγ )/4

(
v′r0

vr0

[
cosh φ − 2+ n− nγ

4∆
sinh φ

]
+ ρ

′
0

ρ0

n[γ − 1]
2∆

sinh φ
)
, (A 4)

with ∆2= (2+n−nγ )2/16−Ric, so that oscillations appear for Ric>(2+n−nγ )2/16.
For Ric = 0, ρ ′0 = 0 and γ = 5/3, expression (A 4) reduces to v′r/vr = (v′r0/vr0)hn/3−1,
which implies that the growth due to compression in a monatomic gas can impact
the mean flow for planar and cylindrical implosions, but not for spherical implosions.
In the latter case, the velocity fluctuations grow at the same rate as the mean and
therefore never become large enough to drain energy from it.
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