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Abstract

For a group G, we define a graph ∆(G) by letting G#
= G \ { 1 } be the set of vertices and by drawing an

edge between distinct elements x, y ∈ G# if and only if the subgroup 〈x, y〉 is cyclic. Recall that a Z-group

is a group where every Sylow subgroup is cyclic. In this short note, we investigate ∆(G) for a Z-group G.
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1. Introduction

The groups under consideration in this note are finite. Let G be a group and define a

graph ∆(G) associated with G as follows. Take G#
= G \ { 1 } as the vertex set. Then

draw an edge between distinct vertices x, y ∈ G# if and only if the subgroup 〈x, y〉 is

cyclic. We shall refer to ∆(G) as the cyclic graph of G, although we note that the

graph ∆(G) has also been called the deleted enhanced power graph. See, for example,

[2]. The enhanced power graph includes the identity element as a vertex and so the

enhanced power graph of a group is always connected. A brief investigation of this

graph was undertaken in [1].

The cyclic graph of a group G was investigated in [4, 5]. In those papers, classifi-

cation results were obtained under the assumption that the connected components of

∆(G) were complete graphs. In our previous paper [3], we studied the cyclic graph of

a direct product.

Next, we mention another graph that can be attached to a group. Let G be a

nonabelian group. The commuting graph of G, denoted by Γ(G), is the graph whose

vertices are the noncentral elements of G and whose edges connect distinct vertices

x and y if and only if xy = yx. The commuting graph of a finite solvable group with

trivial centre was classified in [6].

Recall that a group is called a Z-group if every Sylow subgroup is cyclic. Observe

that a Frobenius complement of odd order is a Z-group and so is any group of

© 2020 Australian Mathematical Publishing Association Inc.

295

https://doi.org/10.1017/S0004972720001318 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972720001318
https://orcid.org/0000-0003-4705-8288
https://orcid.org/0000-0001-9627-6922
https://orcid.org/0000-0003-2757-8251
https://orcid.org/0000-0002-1466-3468
https://orcid.org/0000-0002-0528-874X
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972720001318&domain=pdf
https://doi.org/10.1017/S0004972720001318


296 D. G. Costanzo et al. [2]

square-free order. Our focus in this short note is the graph ∆(G) for a Z-group G.

We have been able to characterise the disconnectedness of ∆(G).

THEOREM 1.1. Let G be a Z-group. Then ∆(G) is disconnected if and only if G is a

Frobenius group.

If the graph ∆(G) is connected for a Z-group G, then a diameter bound follows.

THEOREM 1.2. If G is a Z-group and ∆(G) is connected, then diam(∆(G)) ≤ 4.

The next result describes a relationship between the graph ∆(G) and the subgroup

Z(G) for a Z-group G.

THEOREM 1.3. If G is a Z-group, then diam(∆(G)) ≤ 2 if and only if Z(G) , { 1 }.

Following [2], a vertex z in ∆(G) is called a dominating vertex if z is adjacent to

every vertex in ∆(G) \ {z}. The terms complete vertex, cone vertex and universal vertex

have also been used as synonyms for a dominating vertex. If the graph ∆(G) has a

dominating vertex, we shall say that ∆(G) is dominatable. In the proof of the previous

theorem, we end up establishing the existence of a dominating vertex. We point out

a necessary and sufficient condition for a dominating vertex in ∆(G) to exist, which

answers a request in [2] for a characterisation of a group with a dominatable cyclic

graph.

THEOREM 1.4. Let G be a group, g ∈ G and π = π(o(g)). Write g =
∏

p∈π gp, where

each gp is a p-element for p ∈ π and gpgq = gqgp for all p, q ∈ π. Then g is a

dominating vertex for ∆(G) if and only if, for each p ∈ π, a Sylow p-subgroup P of

G is cyclic or generalised quaternion and 〈gp〉 ≤ P ∩ Z(G).

As a corollary, we offer a generalisation of Theorem 3.2 in [2].

COROLLARY 1.5. For a nilpotent group G, the graph ∆(G) is dominatable if and only

if G has a cyclic or generalised quaternion Sylow subgroup.

Let G be a Z-group and let x, y ∈ G# be distinct. If x is adjacent to y in ∆(G), then

xy = yx. In fact, the converse is true too. So, in particular, if Z(G) = { 1 }, then Γ(G)

and ∆(G) are the same graph. In light of the previous results, we obtain the following

corollary concerning the commuting graph of a Z-group with trivial centre.

COROLLARY 1.6. If G is a Z-group with Z(G) = { 1 } and G is not a Frobenius group,

then Γ(G), the commuting graph of G, is connected with diameter 3 or 4.

2. Notation and preliminaries

Let G be a group and let x, y ∈ G. We write x ≈ y to indicate that the subgroup

〈x, y〉 is cyclic. If n is a positive integer, then π(n) denotes the set of prime divisors

of n. For a group G, set π(G) = π(|G|). Fix a set of prime numbers π. An element

x ∈ G is called a π-element if every prime divisor of o(x) is a member of π. If every
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prime divisor of o(x) lies outside of π, then x is called a π′-element. In the case where

π = {p}, we use the terms p-element and p′-element. The set of prime numbers is

denoted by P.

Let G be a group. Notice that if x, y ∈ G# are commuting elements with coprime

orders, then x ≈ y. This fact gives us a useful way to build paths in ∆(G). We also

mention that conjugation preserves adjacency in ∆(G): specifically, if x, y ∈ G# with

x ≈ y, then xg ≈ yg for each g ∈ G.

A graph related to the cyclic graph is the commuting graph, which is defined as

follows. Let G be a nonabelian group. The commuting graph Γ(G) is the graph whose

vertices are the noncentral elements of G and whose edges connect distinct nonidentity

elements x and y if and only if xy = yx. Taking the noncentral elements of G as the

vertices for Γ(G) is fairly standard, although variations on the vertex set do exist. If G

is a Z-group with a trivial centre, then the vertex set of Γ(G) is the same as the vertex

set of ∆(G). In fact, the edge sets are the same too; the following lemma also appears

as a part of Theorem 30 in [1].

LEMMA 2.1. If G is a Z-group with Z(G) = { 1 }, then ∆(G) = Γ(G).

PROOF. If x, y ∈ G with x ≈ y, then clearly xy = yx. But notice that if xy = yx, then

〈x, y〉 is an abelian Z-group, which is therefore cyclic. Hence, x ≈ y. �

Next, we make a few remarks about Z-groups. Many properties of Z-groups are

known. For example, if G is a Z-group, then G is p-nilpotent for the smallest prime

divisor p of |G|. We also know that Z-groups are solvable. The specific results that we

need in this paper are encapsulated in the following theorem.

THEOREM 2.2 [7, Theorem 10.26]. If G is a Z-group, then the derived subgroup G′ is

cyclic and the factor group G/G′ is cyclic. Moreover, G′ is a Hall subgroup of G.

Finally, we need to make an observation about Frobenius groups. Recall that a group

G is a Frobenius group if G has a nontrivial proper subgroup H such that H ∩ Hg
= { 1 }

for each g ∈ G \ H. The subgroup H is called a Frobenius complement. Now, let G be

a Frobenius group with Frobenius complement H. Frobenius groups are centreless and

so Γ(G) and ∆(G) have the same vertex set. In particular, ∆(G) is a spanning subgraph

of Γ(G). Because CG(h) ≤ H for each h ∈ H#, the graph Γ(G) is disconnected. (This

fact appears as Lemma 3.1 in [6].) Hence, ∆(G) is disconnected as well.

3. Main results

Our first theorem provides a necessary and sufficient condition for the cyclic graph

of a Z-group G to be disconnected. Additionally, a diameter bound of ∆(G) is available

under the assumption that ∆(G) is connected.

THEOREM 3.1. Let G be a Z-group. Then ∆(G) is disconnected if and only if G is a

Frobenius group. Moreover, if ∆(G) is connected, then diam(∆(G)) ≤ 4.
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PROOF. Frobenius groups have disconnected cyclic graphs. To prove the converse,

assume that G is not a Frobenius group. We shall establish the connectedness of ∆(G).

Abelian Z-groups are cyclic and so we may assume that G is nonabelian. Hence,

{ 1 } < G′ < G. If CG(g) ≤ G′ for each g ∈ (G′)#, then G is a Frobenius group with

kernel G′, contrary to our hypothesis. Hence, there exists some g0 ∈ (G′)# with

CG(g0) � G′. Let H be a complement for G′ in G. Fix x ∈ CG(g0) \ G′ and write

x = yh for y ∈ G′ and h ∈ H. Then g
yh

0
= gx

0
= g0 and so gh−1

0
= g

y

0
= g0. It follows that

h ∈ CH(g0).

Now, let g ∈ G#. If π(o(g)) ∩ π(G′) , ∅, then let p ∈ π(o(g)) ∩ π(G′). For a suitable

integer n, o(gn) = p; hence, gn ∈ G′ and g ≈ gn ≈ g0. Otherwise, π(o(g)) ∩ π(G′)= ∅

and g ∈ Ha for some a ∈ G′. Note that ha ≈ ga
0
= g0 as h ≈ g0 and conjugation

preserves adjacency. Hence, g ≈ ha ≈ g0. The result follows. �

The group SmallGroup(60,7) furnishes an example of a Z-group with connected

cyclic graph of diameter 4 and so the bound in the previous theorem is sharp. The

cyclic graph for SmallGroup(60,7) is displayed in Figure 1. We mention a few more

examples. The group SmallGroup(210,2) is a Z-group with connected cyclic graph

of diameter 3. The cyclic graph for SmallGroup(210,2) is displayed in Figure 2.

Finally, SmallGroup(60,3) provides an example of a Z-group with connected cyclic

graph of diameter 2. The cyclic graph for SmallGroup(60,3) is displayed in Figure

3. These three graphs were computed using GAP [9] and displayed using Mathematica.

The next theorem highlights a connection between the subgroup Z(G) and the graph

∆(G) for a Z-group G.

THEOREM 3.2. If G is a Z-group, then diam(∆(G)) ≤ 2 if and only if Z(G) , { 1 }.

PROOF. Assume that Z(G) , { 1 }. Fix z ∈ Z(G)# with o(z) = p, a prime. Since 〈z〉 is a

normal p-subgroup of G and every Sylow p-subgroup of G is cyclic, 〈z〉 is the unique

subgroup of G with order p. If g ∈ G# and p divides o(g), then 〈z〉 ≤ 〈g〉. Hence, g ≈ z.

FIGURE 1. Cyclic graph of SmallGroup(60,7).
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FIGURE 2. Cyclic graph of SmallGroup(210,2).

FIGURE 3. Cyclic graph of SmallGroup(60,3).

Otherwise, o(g) is a p′-number and so g and z are commuting elements with coprime

orders. Again, g ≈ z.

Assume that diam(∆(G)) ≤ 2. Let H be a complement of G′. Set G′ = 〈x〉. As

G/G′ � H, the subgroup H is cyclic. Set H = 〈h〉. If x ≈ h, then G is abelian and so

Z(G) = G , { 1 }. Otherwise, x ≈ z ≈ h for some z ∈ G#. Now, G′ = 〈x〉 ≤ CG(z) and

H = 〈h〉 ≤ CG(z). It follows that G = G′H ≤ CG(z). Hence, z ∈ Z(G)#. �

Let G be a group and recall that a vertex z in ∆(G) is called a dominating vertex if

z ≈ g for each g ∈ ∆(G) \ {z}. A dominating vertex appears in the previous proof and

the following theorem highlights a necessary and sufficient condition for such a vertex

to exist.

THEOREM 3.3. The cyclic graph of a group G has a dominating vertex if and only if

G has a unique subgroup of order p for some prime p and this subgroup is central.
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PROOF. Let c be a dominating vertex of ∆(G). For suitable integer t, o(ct) = p ∈ P. For

each g ∈ ∆(G) \ {ct},

〈ct, g〉 ≤ 〈c, g〉

and so ct is a dominating vertex as well. Note that 〈ct〉 is a central subgroup of prime

order. Suppose that 〈y〉 has order p. The subgroup 〈ct, y〉 is cyclic and therefore has a

unique subgroup of order p. Hence, 〈ct〉 = 〈y〉.

Conversely, suppose that 〈z〉 is a central subgroup of order p ∈ P and, further, that

〈z〉 is the unique subgroup of order p. If g ∈ G is a p′-element, then z ≈ g since z and

g are commuting elements with coprime orders. If p divides o(g), then |〈gt〉| = p for

a suitable integer t. Our uniqueness hypothesis forces 〈z〉 = 〈gt〉. Again, z ≈ g. The

element z is a dominating vertex. �

The relationship between the existence of a dominating vertex for the cyclic graph

of a group and the Sylow subgroup structure of the group can be developed a bit

further. Let G be a group, g ∈ G and π = π(o(g)). Using Theorem 5.1.5 in [8], write g =
∏

p∈π gp, where each gp is a p-element for p ∈ π and gpgq = gqgp for all p, q ∈ π. Then

g is a dominating vertex for ∆(G) if and only if, for each p ∈ π, a Sylow p-subgroup

P of G is cyclic or generalised quaternion and 〈gp〉 ≤ P ∩ Z(G). We remark that this

result strengthens Theorem 3.3 and has essentially the same proof.

Bera and Bhuniya [2] showed that if G is abelian, then ∆(G) is dominatable if and

only if G has a cyclic Sylow subgroup. We generalise this result.

COROLLARY 3.4. If G is a nilpotent group, then ∆(G) is dominatable if and only if G

has a cyclic or generalised quaternion Sylow subgroup.

PROOF. If ∆(G) has a dominating vertex, then, by Theorem 3.3, G has a unique

subgroup 〈x〉 of prime order, say p, that is contained in Z(G). It is easy to check that

if P is the Sylow p-subgroup of G, then 〈x〉 is the unique subgroup of P of order p;

hence, P is cyclic or generalised quaternion.

Conversely, suppose that G has a Sylow p-subgroup P that is cyclic or generalised

quaternion. Let 〈z〉 be the unique subgroup of G of order p. Let g ∈ G#. If o(g) is

a p′-number, then z ≈ g as z and g are therefore commuting elements with coprime

orders. If p divides o(g), then |〈gs〉| = p for a suitable integer s. Hence, 〈z〉 = 〈gs〉 and

so z is a power of g. Again, z ≈ g. We conclude that z is a dominating vertex. �

As mentioned previously, if G is a Z-group with Z(G) = { 1 }, then Γ(G) = ∆(G). We

now obtain information about the commuting graph Γ(G) of a Z-group G with trivial

centre.

COROLLARY 3.5. Let G be a Z-group with Z(G) = { 1 }. If G is not a Frobenius group,

then Γ(G) is connected with diam(Γ(G)) ∈ {3, 4}.

PROOF. By Lemma 2.1, Γ(G) = ∆(G). Since G is not a Frobenius group, Theorem 3.1

yields that Γ(G) is connected. Theorem 3.2 gives us that diam(Γ(G)) ≥ 3. Finally, an

application of Theorem 3.1 implies that diam(Γ(G)) is either 3 or 4. �
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