
Math. Struct. in Comp. Science (2006), vol. 16, pp. 87–113. c© 2006 Cambridge University Press

doi:10.1017/S0960129505005074 Printed in the United Kingdom

Distributing probability over non-determinism

DANIELE VARACCA† and GLYNN WINSKEL‡

† Department of Computing, Imperial College London, London, U.K.

‡ Computer Laboratory, Cambridge University, Cambridge, U.K.

Received 18 January 2005; revised 25 October 2005

We study the combination of probability and non-determinism from a categorical point of

view. In category theory, non-determinism and probability are represented by suitable

monads. However, these two monads do not combine well as they are. To overcome this

problem, we introduce the notion of indexed valuations. This notion is used to define a new

monad that can be combined with the usual non-deterministic monad via a categorical

distributive law. We give an equational characterisation of our construction. We discuss the

computational meaning of indexed valuations, and we show how they can be used by giving

a denotational semantics of a simple imperative language.

1. Introduction

Non-determinism and probability are computational effects whose semantics has been

thoroughly studied. The combination of the two appears to be essential in giving

models for concurrent processes (Vardi 1985; Hansson 1991; Segala and Lynch 1995).

Denotationally, non-determinism is handled by the notion of powerdomain functor in a

suitable category of domains (Plotkin 1983), while probabilistic behaviour is handled by

the powerdomain of valuations (Jones and Plotkin 1989; Jones 1990; Kirch 1993). They

happen to be monads, thus fitting the general idea, introduced by Moggi, of monads

as models for computational effects (Moggi 1991). As with many other computational

monads, they are freely generated from suitable equational theories (Plotkin and Power

2002).

There are various ways of combining two monads. When they are freely generated

from equational theories, we can first combine the theories in some way and then freely

generate a new monad. In Hyland et al. (2002) three main ways of combining theories

are identified: sum, commutative combination, distributive combination. In the first case,

the two equational theories are combined by joining the operations and the equations,

without adding new equations. In the second case, one adds equations expressing that

every operation of one theory commutes with every operation of the other theory. In the

third case, one adds equations expressing distributivity of every operation of one theory

over every operation of the other theory. This last approach can sometimes be followed

more categorically using the notion of a distributive law (Beck 1969). The leading example

is given by the theory of abelian groups and the theory of monoids. Their distributive

† This work was carried out while the first author was a Ph.D. student at BRICS, Aarhus, Denmark.

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

D. Varacca and G. Winskel 88

combination (distributing the monoid over the group) yields the theory of rings. The free

ring monad can also be obtained by giving a categorical distributive law between the free

abelian group monad and the free monoid monad.

The study of the operational semantics of systems combining probability and non-

determinism suggests that, in some cases, probabilistic choice should distribute over

non-deterministic choice (Morgan et al. 1994; Bandini and Segala 2001). As we will

explain, there is no categorical distributive law between the non-deterministic monad and

the probabilistic monad. Two solutions are possible at this point.

We can still form the distributive combination of the equational theories and generate

a new monad. This is the path followed by Tix (Tix 1999; Tix et al. 2005) and

Mislove (Mislove 2000) who, independently, define the notion of a geometrically convex

powerdomain PTM . When X is a real cone (a structure similar to a vector space), PTM(X)

is, roughly speaking, the set of all convex subsets of X. The non-deterministic choice is

interpreted as union followed by convex closure. We will briefly recall this construction

later.

The other possibility, the one we follow in this work, is to modify the definition of one

of the monads, so as to allow the existence of a categorical distributive law. Analysing

the reasons behind the failure of the distributive law, we are led to define the notion

of an indexed valuation. Mathematically, indexed valuations arise as a free algebra for

an equational theory obtained from the theory of valuations by removing one equation.

In the category of sets, there exists a distributive law between indexed valuations and

the finite non-empty powerset. Moreover, indexed valuations have an interesting concrete

representation. The price we pay is that, since we modify the equational characterisation,

indexed valuations do not satisfy all the laws usually satisfied by probability distributions.

Besides their categorical justification, indexed valuations have a computational meaning,

which we present by giving semantics to an imperative language containing both random

assignment and non-deterministic choice. The operational semantics is given in terms of

probabilistic automata. Such a model comes equipped with a notion of a scheduler for

resolving the non-determinism. In the literature there are two main notions of scheduler:

deterministic and probabilistic. Using indexed valuations, we give a denotational semantics

that is adequate with respect to deterministic schedulers. A semantics in terms of the Tix–

Mislove construction is, by contrast, adequate with respect to probabilistic schedulers.

Finally, we briefly sketch the various possible ways to extend the construction above to

some category of domains.

This work is part of the first author’s Ph.D. thesis (Varacca 2003). An extended abstract

appeared as part of Varacca (2002).

2. Background

In this section we outline some of the mathematical notions we need for our work.

We assume a working knowledge of Category Theory (Mac Lane 1971) and Universal

Algebra (Cohn 1981). All notions we need are dealt with in detail in Chapter 2 of

Varacca (2003). The notation we use should be self-explanatory.

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

Distributing probability over non-determinism 89

2.1. Monads

A monad on a category C is an endofunctor T : C → C together with two natural

transformations, ηT : IdC → T , the unit, and µT : T 2 → T , the multiplication, satisfying

the following axioms:

— µT ◦ TηT = IdT = ηTT ◦ µT

— µT ◦ TµT = µT ◦ µTT .

If T is a monad and if f : X → T (Y), the Kleisli extension f† : T (X) → T (Y) is

defined as T (X)
T (f) ��T (T (Y))

µTY ��T (Y) . The Kleisli Category of the monad T , which

is denoted CT , has the same objects as C, and X
f

−→Y in CT if and only if X
f

−→T (Y) in

C. The identity is the unit of the monad, while composition is defined using the Kleisli

extension. Monads can be defined equivalently using the Kleisli extension as a primitive

notion and deriving the multiplication by µTX := Id†
T (X).

In a category C, an algebra for an endofunctor F is an object A together with a

morphism k : F(A) → A. An algebra for a monad (T , ηT , µT) is an algebra (A, k) for the

functor T satisfying the following compatibility axioms:

— k ◦ ηTA = IdA

— k ◦ T (k) = k ◦ µTA .

Algebras for a monad (T , ηT , µT) in C form a category CT , in which a morphism

(A, k)
φ

−→(A′, k′) is given by a morphism A
φ

−→A′ such that φ ◦ k = k′ ◦ T (φ).

Every adjunction (F,G, η, ε) : C → D generates a monad on GF : C → C, with ηGF := η

and µGF := GεF . Conversely, given a monad T , there is an adjunction FT � UT : C → CT ,

where UT is the forgetful functor sending an algebra to its carrier

UT :

(X, k)

φ

��

X

φ

��
(X ′, k′)

�→

X ′

while FT sends an object to its multiplication (the free algebra)

FT :

X

φ

��

(TX, µTX)

T (φ)

��
X ′

�→

(TX ′, µTX ′).

This adjunction generates precisely the monad (T , ηT , µT).

Suppose we have an adjunction (F,G, η, ε) : C → D generating a monad (T , ηT , µT).

Such a monad generates the adjunction (FT ,UT , ηT , εT). There is a ‘comparison’ functor

K : D → CT defined as

K:

D

f

��

(G(D), G(εD))

G(f)

��
D′

�→

(G(D′), G(εD′))

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

D. Varacca and G. Winskel 90

satisfying UTK = G and KF = FT . An adjunction is monadic if the comparison functor

K defined above is an equivalence of categories. A functor is monadic if it is the right

adjoint of a monadic adjunction.

2.2. Free algebras and monads

Given a category C of algebraic structures defined by an equational theory, the forgetful

functor U : C → SET has a left adjoint F and is monadic. This means that UF supports a

monad structure in SET and that C is equivalent to the category of UF-algebras. In such

a case the monad UF is called the free algebra for the structures in C. It is equivalently

characterised by the following universal property (where, as customary, we omit the

mention of the forgetful functor): there exists a family of functions ηX : X → F(X), such

that for every set X, for every structure Z of C, and for every function f : X → Z , there

exists a unique morphism f : F(X) → Z (the ‘homomorphic extension’) that satisfies

f ◦ ηX = f. We say that F(X) is the free algebra over X (with respect to C).

In the following, we present some relevant examples.

2.3. The non-deterministic monad

Assume that ∪– (formal union) represents some kind of non-deterministic choice operator:

A ∪– B offers to the environment the choice between A and B. Such an operator usually

satisfies the following equations:

A ∪– B = B ∪– A

A ∪– (B ∪– C) = (A ∪– B) ∪– C

A ∪– A = A.

Since ∪– is associative and commutative, we can introduce the following convention. If

X is a set where ∪– is defined, and (xi)i∈I is a finite family of elements of X, we write

	�
⋃
i∈I

xi

to denote the formal union of all xi’s. A similar convention will be used for the operation

⊕ (formal sum), which will also be associative and commutative (but not idempotent).

A model for the above theory is a semilattice. The category of semilattices is denoted

by SLAT. It is well known that the free semilattice functor can be concretely represented

as (is naturally isomorphic to) the finite non-empty powerset functor P : SET → SLAT,

where the symbol ∪– is interpreted as union. If X is a set, Z is a semilattice and f : X → Z

is a function, the unique homomorphic extension f : P (X) → Z is defined by

f(Y) = 	�
⋃
y∈Y

f(y).

The corresponding monad P : SET → SET has the following unit and multiplication

ηPX(x) = {x}
µPX(S) =

⋃
S.

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

Distributing probability over non-determinism 91

2.4. The probabilistic monad

Assume that ⊕p represents a probabilistic choice operator of some programming language:

A ⊕p B is choosing A with probability p and B with probability (1 − p). This operator

comes with an equational theory: for example, it usually satisfies A⊕p A = A, because the

choice between two equivalent possibilities is considered to be the same as not making

any choice at all. Note that this assumes that the act of making the choice is invisible:

the coin is always flipped behind one’s back.

We are going to study a more general equational theory, which subsumes the theory of

probabilistic choice.

Definition 2.1. A real cone is an algebra for the following equational theory in the category

SET (the reason for the numbering will be apparent later).

(1) A ⊕ B = B ⊕ A

(2) A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C

(3) A ⊕ 0 = A

(4) 0A = 0

(5) 1A = A

(6) p(A ⊕ B) = pA ⊕ pB, p ∈ [0,+∞[

(7) p(qA) = (pq)A, p, q ∈ [0,+∞[

(13) (p + q)A = pA ⊕ qA, p, q ∈ [0,+∞[.

We call the category of real cones and homomorphisms RCONE.

In a real cone, the probabilistic choice operator is coded as a convex combination:

pA ⊕ (1 − p)B. We choose to deal with the more general notion of a real cone because its

equational theory is nicer than the theory of probabilistic choice. We are now going to

characterise concretely the free real cone.

Definition 2.2. A discrete valuation on a set X is any function v : X → [0,+∞].

The support of a discrete valuation v on X is the set

Supp(v) := {x ∈ X | v(x) > 0}.

The set of discrete valuations on X is denoted by V∞(X). A discrete valuation v on a set

X is a discrete probability distribution if
∑

x∈X v(x) = 1. The set of discrete probability

distributions on X is denoted by V 1
∞(X). Discrete valuations taking values in [0,+∞[are

called weightings (Jonsson et al. 2001). A finite valuation is a weighting whose support is

finite. The set of finite valuations over a set X is denoted by V (X). For each x ∈ X, the

finite valuation ηx defined by

ηx(y) =

{
1 y = x

0 y �= x

is called a point valuation.

Two operations of sum and scalar product are defined pointwise on V (X):

v ⊕ w(x) = v(x) + w(x)

pv(x) = p(v(x)), p ∈ [0,+∞[.

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

D. Varacca and G. Winskel 92

If X is a set, the set V (X) with the pointwise operations defined above is a real cone.

Moreover, we have the following proposition.

Proposition 2.3. The finite valuations over a set X form the free real cone over X.

Let f : X → R be a function, where R is a real cone. Define the family of functions

ηVX : X → V (X) by ηVX (x) = ηx The unique real cone homomorphism f : V (X) → R that

extends f is defined as follows:

f(ν) =
⊕

x∈Supp(ν)

ν(x)f(x).

The multiplication of the generated monad is defined as:

µVX(Ξ)(x) =
⊕

ν∈Supp(Ξ)

Ξ(ν)ν(x).

2.5. Distributive laws

A general way for combining two monads is by defining a distributive law (Beck 1969).

Suppose we have two monads (T , ηT , µT), (S, ηS , µS) on some category. A distributive law

of S over T is a natural transformation d : ST
·−→TS satisfying the following axioms:

— d ◦ ηST = TηS

— d ◦ SηT = ηTS

— d ◦ µST = TµS ◦ dS ◦ Sd

— d ◦ SµT = µTS ◦ Td ◦ dT .

A distributive law defines a monad on the functor TS . If d : ST
·−→TS is a distributive

law, then
(
TS, ηT ηS , (µTµS) ◦ TdS

)
is a monad.

TSTS
TdS

· �� TTSS
µT µS

· �� TS

A monad morphism between T and S is a natural transformation α : T
·−→S that suitably

commutes with units and multiplications. A lifting of the monad T to the category of

S-algebras is a monad (T̃ , ηT̃ , µT̃) on CS , such that, if US : CS → C is the forgetful

functor, then

— UST̃ = TUS

— USηT̃ = ηTUS

— USµT̃ = µTUS .

Beck has proved the following theorem (Beck 1969).

Theorem 2.4. Suppose we have two monads (T , ηT , µT), (S, ηS , µS) on some category C.

Then the existence of any of the following implies the existence of the other two:

1 A distributive law d : ST
·−→TS .

2 A multiplication µ : TSTS
·−→TS , such that

— (TS, ηT ηS , µ) is a monad;

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

Distributing probability over non-determinism 93

— the natural transformations ηTS : S
·−→TS and TηS : T

·−→TS , are monad

morphisms;

— the following middle unit law holds:

TS
TηSηT S ��

IdTS

���������������� TSTS

µ

��
TS.

3 A lifting T̃ of the monad T to CS .

The way to obtain (2) from (1) has been sketched above. To obtain a lifting from a

distributive law, we define T̃ (A, σ) as the S-algebra

ST (A)
dA �� TS(A)

T (σ) �� T (A) .

Conversely, if we have the multiplication µ we can define d by

ST
ηT STηS �� TSTS

µ �� TS.

If we have a lifting T̃ , we define d by

ST
STηS ��

d
��������������� STS USFSTUSFS USFSUST̃FS

USεT̃FS

��
TS TUSFS UST̃FS

where ε is the counit of the adjunction FS � US .

The correctness of the above constructions is shown by several diagram chases (Beck

1969).

When the two monads involved are the free algebras of some equational theory, an

equational distributive law may or may not correspond to a categorical distributive law.

We discuss this issue in the next section.

3. The failure of the distributive law

Distributing probabilistic choice over non-deterministic choice amounts to the equation

A ⊕p (B ∪– C) = (A ⊕p B) ∪– (A ⊕p C).

Intuitively, this expresses indifference to whether the environment chooses before or after

the probabilistic choice is made. Once we accept the distributive law, the extra convexity

law (Bandini and Segala 2001)

A ∪– B = A ∪– B ∪– (A ⊕p B) ∪– (B ⊕p A)

must also be accepted because

A ∪– B = (A ∪– B) ⊕p (A ∪– B) = (A ⊕p A) ∪– (B ⊕p B) ∪– (A ⊕p B) ∪– (B ⊕p A).

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

D. Varacca and G. Winskel 94

If the equational distributive law corresponded to a categorical distributive law, by

Beck’s theorem (Theorem 2.4) the non-deterministic monad would lift to the category of

algebras for the probabilistic monad. In the category SET this means that the powerset

monad would lift to the category of real cones. The convexity law suggests that this is

not possible, because not all sets satisfy the convexity law. In fact, the following general

theorem says that the obvious definition of the operations for the powerset cannot satisfy

A⊕p A = A. Suppose we have an equational theory. Take a model X for it. We can extend

every operation f of arity n to the subsets of X by

f(X1, . . . , Xn) = {f(x1, . . . , xn) | xi ∈ Xi, i ∈ In}.

Theorem 3.1 (Gautam 1957). A necessary and sufficient condition for the operations

defined on the powerset of X to satisfy an equation of the theory is that each individual

variable occurs at most once on each side of the equation.

Equations satisfying the above condition are called affine. The equation A⊕p A = A is not

affine, thus cannot be satisfied in the powerset. This would not exclude the possibility of

lifting the operations in a different way, thus obtaining another distributive law. However,

it turns out that there is no distributive law at all between the two monads. If (P , ηP , µP)

is the finite non-empty powerset monad, and (V , ηV , µV) is the finite valuation monad in

the category SET, we have the following proposition.

Proposition 3.2. There is no distributive law of V over P .

Proof. See the Appendix.

Our solution consists in changing the definition of probabilistic monad by removing

the equation A⊕p A = A. In our presentation, the probabilistic monad is generated by the

theory of real cones, and the probabilistic choice A ⊕p B is coded as convex combination

pA ⊕ (1 − p)B. We remove the equation pA ⊕ qA = (p + q)A from the theory of real

cones. In the category SET, the monad freely generated by the new equational theory is

called the finite indexed valuation monad IV . By Theorem 3.1, we can lift the operations

to the powerset, thus obtaining a distributive law. The next section is devoted to this

construction.

4. Indexed valuations

In this section we present the definition of the indexed valuation monad in the category

SET, and we show the existence of the categorical distributive law between indexed

valuations and the finite non-empty powerset.

4.1. Definition

We first introduce the concrete characterisation of our construction.

Definition 4.1. Let X be a set. A discrete indexed valuation (DIV) on X is a pair (Ind , v)

where Ind : I → X is a function and v is a discrete valuation on I , for some set I .

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

Distributing probability over non-determinism 95

Note that we do not require that Ind be injective. This is indeed the main point of

this construction: we want to divide the probability of an element among its indices. One

possible interpretation is that indices in I represent computations, while elements of X

represent observations. The semantics we present in Section 6 will confirm this intuition.

We shall also write xi for Ind (i) and pi for v(i). A discrete indexed valuation ξ := (Ind , v)

will also be denoted as (xi, pi)i∈I .

We are now going to define an equivalence relation on the class of DIVs. Recall that

Supp(v) = {i ∈ I | v(i) > 0}.

Definition 4.2. Let (Ind, v) = (xi, pi)i∈I and (Ind′, w) = (yj , qj)j∈J be two discrete indexed

valuations. We set

(Ind, v) ∼ (Ind′, w)

if and only if there exists a bijection h : Supp(v) → Supp(w) such that

∀i ∈ Supp(v). yh(i) = xi

∀i ∈ Supp(v). qh(i) = pi.

This says that two DIVs are equivalent up to renaming of the indices, and that

only indices in the support matter. Indices are used to distinguish between different

computations, but their precise character is unimportant. What is important is to keep

track of the different computations there are, and how they relate to observations.

Moreover, we may as well ignore computations with probability 0.

From now on we will use the term ‘discrete indexed valuations’ to denote equivalence

classes under ∼.

Given a set X and an infinite cardinal number α we define the set IV α(X) as follows:

IV α(X) := {(xi, pi)i∈I | |I | < α}/ ∼ .

It is easy to see that IV α(X) is indeed a set. For every cardinal number β < α, choose a

set Iβ such that |Iβ | = β. The class {Iβ | β < α} is a set. And IV α(X) is clearly a quotient

of
⋃

β<α X
Iβ × [0,+∞]Iβ . In particular, IV ℵ0

(X) is the set of discrete indexed valuations

whose indexing set is finite.

Definition 4.3. A finite indexed valuation on X is an element of IV ℵ0
(X) for which pi < +∞

for all indices i ∈ I . The set of finite indexed valuations on X is denoted by IV (X).

The construction above can be extended to a functor IV : SET → SET as follows. If

f : X → Y , then

IV (f)([(xi, pi)i∈I]∼) := [(f(xi), pi)i∈I]∼.

It is easy to check that this construction is well defined (that is, does not depend on the

representative).

From now on we will drop the explicit mention of equivalence classes, and work with

representatives to simplify the presentation.

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

D. Varacca and G. Winskel 96

4.2. Equational characterisation

We now define two operations on discrete indexed valuations.

Definition 4.4. Let ν := (Ind , v) = (xi, pi)i∈I , ξ := (Ind ′, w) = (yj , qj)j∈J be two DIVs on

a set X. Assume that I ∩ J = �. This is not restrictive, because we can always reindex.

We define ν ⊕ ξ to be (Ind ∪ Ind ′, v ∪ w). For p ∈ [0,+∞[we define pν to be (xi, ppi)i∈I .

With 0 we denote the DIV whose indexing set is empty.

Note, in particular, that when p∈]0, 1[, we have pν ⊕ (1 −p)ν �∼ ν, because the indexing

sets do not have the same cardinality.

Consider the following equational theory:

(1) A ⊕ B = B ⊕ A

(2) A ⊕ (B ⊕ C) = (A ⊕ B) ⊕ C

(3) A ⊕ 0 = A

(4) 0A = 0

(5) 1A = A

(6) p(A ⊕ B) = pA ⊕ pB p ∈ [0,+∞[

(7) p(qA) = (pq)A p, q ∈ [0,+∞[.

These axioms are almost the ones defining a real cone. The difference is that we have

dropped the equation (p + q)A = (pA ⊕ qA).

Definition 4.5. A real quasi-cone is an algebra for the equational theory (1)–(7) in the

category SET. The category of real quasi-cones is denoted by QCONES.

Proposition 4.6. The finite indexed valuations over a set X form the free real quasi-cone

over X.

Proof. For any set X, it is clear that IV (X) with the operations defined above is a

quasi-cone. Define the family of functions ηIV
X : X → IV (X) by

ηIV
X (x) = (x, 1)∗∈{∗}.

Let Q be a quasi-cone and let f : X → Q be a function. We have to show that there

is a unique quasi-cone homomorphism f : IV (X) → Q such that f(ηIV
X (x)) = f(x). The

homomorphism condition forces us to define

f(xi, pi)i∈I =
⊕
i∈I

pif(xi).

Equations (1)–(4) guarantee that the definition does not depend on the representative

for (xi, pi)i∈I . Equation (5) guarantees that f(x, 1) = f(x). The homomorphism condition

for the sum (and 0) are obvious, while for the scalar product we have to use equations (6)

and (7).

The above proposition tells us that the functor IV extends to a monad. Its multiplication

is as follows:

µIV
X : IV (IV (X)) → IV (X)(

((xiλ , piλ)iλ∈Iλ , πλ)λ∈Λ

)
�→ (xj, qj)j∈J

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

Distributing probability over non-determinism 97

where

J =
⊎
λ∈Λ

Iλ, qj = pjπλ if j ∈ Iλ.

To simplify the definition of µ, recall that a DIV is in fact an equivalence class. We

can therefore assume that Iλ = I for every λ ∈ Λ because we can always reindex and add

indices with probability 0. Therefore

((xiλ , piλ)iλ∈Iλ , πλ)λ∈Λ ∼ ((xλi , p
λ
i)i∈I , πλ)λ∈Λ.

This allows us to use a simpler expression for the multiplication:

µIV
X

(
((xλi , p

λ
i)i∈I , πλ)λ∈Λ

)
= (xλi , πλp

λ
i)(i,λ)∈I×Λ.

4.3. The distributive law

Since all the equations in the theory of real quasi-cones are affine, Gautam’s theorem

guarantees that the operations lift to the powerset. Such a lifting boils down to a lifting of

the finite non-empty powerset monad P to the category of real quasi-cones (IV -algebras).

This, by Theorem 2.4, guarantees the existence of a distributive law d : IV ◦P ·−→P ◦ IV .

We construct this lifting explicitly, in order to show the correspondence of the categorical

distributive law with the equational one. Recall that a semilattice is a model of the

following theory:

(8) A ∪– B = B ∪– A

(9) A ∪– (B ∪– C) = (A ∪– B) ∪– C

(10) A ∪– A = A.

We have seen that the finite non-empty powerset is the free semilattice. Consider now the

combined equational theory (1)–(10) augmented with the following equations:

(11) p(A ∪– B) = pA ∪– pB

(12) A ⊕ (B ∪– C) = (A ⊕ B) ∪– (A ⊕ C).

Equations (11)–(12) express the fact that the probabilistic operators distribute over the

non-deterministic one.

Definition 4.7. A quasi-cone semilattice is a model of the theory (1)–(12). The correspond-

ing category is denoted by QCS.

To show that P lifts to a monad in the category of real quasi-cones, we show that it is a

left adjoint of the forgetful functor U : QCS → QCONES. The first observation is that

when Z is a real quasi-cone, then P (Z) is in QCS. By defining sum and multiplication

pointwise, it is not difficult to verify that all the equations (1)–(12) are satisfied. Then

we have to show the following universal property: for every real quasi-cone Z , for every

quasi-cone semilattice W and for every real quasi-cone homomorphism f : Z → W there

exists a unique extension f : P (Z) → W that is a quasi-cone semilattice homomorphism,

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

D. Varacca and G. Winskel 98

and for which f({z}) = f(z).

Z

ηP

��

f

����
��

��
��

�

P (Z)
f

����� W

The homomorphism condition forces us to define, for Y ⊆fin Z ,

f(Y) =
⋃
z∈Y

f(z),

which gives us uniqueness. It is routine to verify that it is well defined and a homomorph-

ism.

Since the extension is defined exactly as the extension of the monad P in the category

of sets, what we have defined is indeed a lifting of P . Using Theorem 2.4, we deduce the

existence of the distributive law.

Concretely, for every set X the component dX : IV (P (X)) → P (IV (X)) is defined as

follows:

dX ((Si, pi)i∈I) = {(h(i), pi)i∈I | h : I → X, h(i) ∈ Si}.
Note, in particular, the use of the ‘choice function’ h.

A direct proof of the fact that the above family of functions is a distributive law can

be found in Varacca (2003).

5. The convex powerset

Another solution for combining the non-deterministic and probabilistic monad consists

in forming the distributive combinations of the theories, thus freely generating a new

monad. The convexity law suggests a way of representing this construction concretely.

This section is inspired by the work of Tix and Mislove, although they are concerned with

DCPOs, while we work here in the category SET.

5.1. Finitely generated convex sets

Recall that a real cone is a real quasi-cone satisfying the extra equation

(13) (p + q)A = pA ⊕ qA.

Definition 5.1. A subset X of a real cone is convex if for every x, y ∈ X, p ∈ [0, 1], we have

px⊕ (1−p)y ∈ X. Given a set X, its convex closure X is the smallest convex set containing

X. A convex set X is finitely generated if there exists a finite set X0 such that X = X0.

Given a finite set I , elements xi, i ∈ I , of a real cone and non-negative real numbers

pi, i ∈ I , such that
∑

i∈I pi = 1, the element
⊕

i∈I pixi is said to be a convex combination of

the xi.

The following result is standard.

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

Distributing probability over non-determinism 99

Proposition 5.2. For a set X, we have that X is the set of convex combinations of elements

of X.

Definition 5.3. For a real cone Z we define

PTM(Z) = {Y ⊆ Z |Y is convex and finitely generated}.

5.2. Equational characterisation

We characterise the functor PTM as a free construction.

Definition 5.4. A real cone-semilattice is a model for the theory (1)–(13). The corresponding

category is called RCS.

Given a real cone Z , we define the following operations on PTM(Z):

— pY := {py | y ∈ Y }
— Y ⊕ Y ′ := {y ⊕ y′ | y ∈ Y , y′ ∈ Y ′}
— 0 := {0}
— Y ∪– Y ′ := Y ∪ Y ′ = {py ⊕ (1 − p)y′ | p ∈ [0, 1], y ∈ Y , y′ ∈ Y ′}.

The above operations are well defined: if Y , Y ′ are convex sets, it is easy to show that

the sets pY , Y ⊕Y ′, Y ∪– Y are also convex; if Y0, Y
′
0 are finite generators for Y , Y ′, then

pY0 is a finite generator for pY , Y0 ⊕ Y ′
0 is a finite generator for Y ⊕ Y ′ and Y0 ∪ Y ′

0 is a

finite generator for Y ∪– Y ′.

The above operations satisfy (1)–(13) so as to make PTM(Z) a real cone-semilattice.

The only non-trivial ones to verify are (12)–(13), and it is here that convexity is needed.

We now show the universal property characterising freeness. For every real cone Z ,

real cone-semilattice H and real cone homomorphism f : Z → H , there exists a unique

RCS-morphism f : PTM(Z) → H such that f({z}) = f(z). For every Y ∈ PTM(Z) let Y0

be one of its finite generators. Then define

f(Y) := 	�
⋃
y∈Y0

f(y).

We need to show that the above definition does not depend on the chosen finite generator.

This requires some lemmas.

Proposition 5.5. In a real cone-semilattice, if w is a convex combination of y, y′, then

y ∪– y′ = y ∪– y′ ∪– w.

Proof. Let w = py ⊕ (1 − p)y′. Then

y ∪– y′ = p(y ∪– y′) ⊕ (1 − p)(y ∪– y′)

= y ∪– y′ ∪– (py ⊕ (1 − p)y′) ∪– (py′ ⊕ (1 − p)y)

= y ∪– y′ ∪– (py ⊕ (1 − p)y′)

as in any semilattice, if x = x ∪– x′ ∪– x′′, then x = x ∪– x′.

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

D. Varacca and G. Winskel 100

Lemma 5.6. Let H be a real cone-semilattice, let Y0, Z0 be finite subsets of H . If Y0 = Z0,

then 	�
⋃
Y0 = 	�

⋃
Z0

Proof. We prove this for the simple case where Y0 = {y, y′}, Z0 = {z, z′}. The general

case can be proved in a similar way. We want to prove that y ∪– y′ = z ∪– z′. It is enough

to prove that y ∪– y′ = y ∪– y′ ∪– z ∪– z′, which, by symmetry, implies our result. Note that,

from the assumption, z, z′ must be convex combinations of y, y′. The statement is thus a

consequence of Proposition 5.5.

Now pick two different finite generators Y0, Y
′
0 for Y . We want to prove that 	�

⋃
f(Y0) =

	�
⋃
f(Y ′

0). Since f is a homomorphism of real cones, we have that f(Y0) = f(Y0) = f(Y).

Therefore f(Y0) = f(Y ′
0). By Lemma 5.6 we have 	�

⋃
f(Y0) = 	�

⋃
f(Y ′

0).

It is easy to verify that f respects the operations, using the equational distributive laws

(11)–(12), and the fact that f is already a homomorphism of real cones. Moreover, the

homomorphism condition implies uniqueness.

We have thus proved the following proposition.

Proposition 5.7. The operator PTM with the operations as above defines a functor

RCONE → RCS that is a left adjoint of the forgetful functor.

The combination of the two adjunctions

SET
��

⊥ RCONE��
��

⊥ RCS��

gives rise to a monad in SET. Note that the monad PTM on RCONE is not a lifting of the

monad P , because, in general, convex sets are not finite. Therefore the monad PTM ◦ V

on SET is not obtained from any distributive law V ◦ P
·−→P ◦ V .

6. Semantics of programs

We give an example of how to use the constructions of the previous sections by giving

a denotational semantics to a simple imperative language with probabilistic and non-

deterministic primitives. We give the language an operational semantics in terms of a

simplified version of probabilistic automata. We present two denotational semantics: one

in terms of indexed valuations and the standard powerset, and the other in terms of

the standard valuations and the convex powerset. We show adequacy theorems relating

the first semantics to deterministic schedulers, and the second semantics to probabilistic

schedulers. Finally, we discuss the computational intuition lying behind the mathematics.

6.1. Probabilistic automata

Probabilistic automata were introduced as such in Segala (1995). Their relationships with

other probabilistic models are well known (Bartels et al. 2003; Stoelinga 2002). We are

going to adapt that general framework to our needs. We recall that if Y is a subset of

V 1
∞(X), we use Y to denote the set of convex combinations of elements of Y .

Let P⊥(X) denote P (X) ∪ {�}. A probabilistic automaton on a set of states X is a

function k : X → P⊥(V 1
∞(X)) together with an initial state x0 ∈ X. We will use the

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

Distributing probability over non-determinism 101

•x0

�����������������

�����������������

◦
1
2

��
��

��
�� 1

2

��
��

��
��

◦
1
3

		
		

		
		

	
1
3

1
3

•y1

�
�
�

•y2
•z1

�
�

�

•z2

�
�
�

•z3

�
�
�

Fig. 1. A probabilistic automaton

notation of Herescu and Palamidessi (2000): whenever ν ∈ k(x) we write

x(
pi−→xi)i∈I

where xi ∈ X, i �= j =⇒ xi �= xj , and ν(xi) = pi. We also write
p

−→x for (
p

−→x)i∈{∗}.

A finite path of a probabilistic automaton is an element in (X × V 1
∞(X))∗X, written as

x0ν1x1 . . . νnxn, such that νi(xi) > 0. The path is deterministic if νi+1 ∈ k(xi). It is probabilistic

if νi+1 ∈ k(xi). The last state of a path s is denoted by l(s). The probability of a path

s := x0ν1x1 . . . νnxn is defined as

Π(s) =
∏

1�i�n

νi(xi).

A probabilistic scheduler for a probabilistic automaton k is a partial function

S : (X × V 1
∞(X))∗X → V 1

∞(X)

such that, if k(l(r)) �= �, then S(r) is defined and S(r) ∈ k(l(r)). Equivalently, a

probabilistic scheduler can be defined as a partial function

S : (X × V 1
∞(X))∗X → V 1(V 1

∞(X)),

where we require that Supp(S(r)) ⊆ k(l(r)).

A deterministic scheduler is a probabilistic scheduler that does not make use of the

convex combinations. That is, for a deterministic scheduler we have S(r) ∈ k(l(r)).

Now given a state x ∈ X and a scheduler S for k, we consider the set B(k,S) of

maximal paths, obtained from k by the action of S. That is, the paths x0ν1x1 . . . νnxn
such that for every i < n, νi+1 = S(x0ν1 . . . xi), and k(xn) = �. A deterministic scheduler

generates deterministic paths; a probabilistic scheduler generates probabilistic paths.

A good way of visualising probabilistic automata is by using alternating trees (Hansson

1991). Figure 1 shows an example of an alternating tree, where black nodes represent

states and hollow nodes represent probability distributions.

The use of trees instead of graphs is a way of keeping track of the paths: a deterministic

scheduler is thus a function that, for every black node, chooses one of its hollow sons.

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

D. Varacca and G. Winskel 102

6.2. A simple imperative language

We now present a small imperative language L. It has the following (abstract) syntactic

categories:

— integers Num, ranged over by n;

— locations Loc, ranged over by X;

— finite probability distributions over integers Prob, ranged over by χ;

— arithmetical expressions Aexp, ranged over by a;

— boolean expressions Bexp, ranged over by b;

— commands Comm, ranged over by c.

The (abstract) BNF for the last three syntactic categories are as follows:

a ::= n | X | a + a | a − a | a ∗ a

b ::= true | false | a � a | ¬b | b ∧ b

c ::= skip | X := a | X := χ| c; c | if b then c else c | c or c.

We also need the notion of state. A state is a function σ : Loc → Num. We call Σ the set

of states. We call any pair 〈c, σ〉 a configuration. We denote the set of all configurations

by Γ. The set Γ is ranged over by γ. To make the notation more uniform, we introduce

(at the metalevel) the empty command ε. We use it with the following meaning:

〈ε, σ〉 ≡ σ, ε; c ≡ c; ε ≡ c.

Consequently, we extend the notion of configuration so that a state σ is a configuration

〈c, σ〉 where c = ε.

It is straightforward to define the value of arithmetic and boolean expressions in a

given state so as to have

[[a]]σ ∈ Num and [[b]]σ ∈ {true, false}.

6.3. The operational semantics

The operational semantics of L is given in terms of probabilistic automata on the

set of configurations. For every configuration γ0 we have the probabilistic automaton

Mγ0 = (Γ, k, γ0) where k is defined inductively using the rules in Figure 2.

Definition 6.1. Let S be a scheduler for M〈c, σ〉. To simplify the notation, we say that S
is a scheduler for 〈c, σ〉. We define B(c, σ,S) to be the set of maximal paths of M〈c, σ〉
generated by S. We define Val (S, c, σ) to be the probability distribution such that

Val (S, c, σ)(σ′) =
∑

s∈B(c,σ,S)
l(s)=σ′

Π(s).

We define Ival (S, c, σ) to be the discrete indexed valuation

(l(s),Π(s))s∈B(c,σ,S).

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

Distributing probability over non-determinism 103

〈skip, σ〉 1−→〈ε, σ〉

〈X := a, σ〉 1−→〈ε, σ[n/X]〉 where n = [[a]]σ

〈X := χ, σ〉(χ(n)−→〈ε, σ[n/X]〉)n∈Num

〈c, σ〉(
pi−→〈ci, σi〉)i∈I

〈c; c′, σ〉(
pi−→〈ci; c′, σi〉)i∈I

〈if b then c0 else c1, σ〉 1−→〈c1, σ〉 if[[b]]σ = false

〈if b then c0 else c1, σ〉 1−→〈c0, σ〉 if[[b]]σ = true

〈c, σ〉(
pi−→γi)i∈I

〈c or c′, σ〉(
pi−→γi)i∈I

〈c′, σ〉(
pj−→γj)j∈J

〈c or c′, σ〉(
pj−→γj)j∈J

Fig. 2. Operational semantics of L

[[skip]]σ = {(σ, 1)}
[[X := a]]σ = {(σ[n/X], 1)} where n = [[a]]σ

[[X := χ]]σ = {(σ[n/X], χ(n))n∈Supp(χ)}
[[c0; c1]] = [[c1]]

† ◦ [[c0]]

[[c0 or c1]]σ = [[c1]]σ ∪ [[c0]]σ

[[if b then c0 else c1]]σ =

{
[[c0]](σ) if [[b]]σ = true

[[c1]](σ) if [[b]]σ = false

Fig. 3. Denotational semantics of L using indexed valuations

The last definition is a formalisation of the intuitive interpretation of indexed valuations.

Here the indexing set is the set of paths (the computations), and the elements considered

are the final states (the observations).

One could prove directly (by structural induction on the commands) that Val (S, c, σ) is

a probability distribution. However, this is also a consequence of the adequacy theorem.

6.4. Two adequate denotational semantics

The denotational semantics

[[c]] : Σ → P (IV (Σ))

is defined in Figure 3. The indexed valuation (σ, p)∗∈{∗} is denoted by (σ, p). If X,Y are

sets and f : X → P (IV (Y)), then f† : P (IV (X)) → P (IV (Y)) is the Kleisli extension of

f for the monad P ◦ IV .

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

D. Varacca and G. Winskel 104

[[skip]]TMσ = {ησ}
[[X := a]]TMσ = {ησ[n/X]} where n = [[a]]σ

[[X := χ]]TMσ = λσ′ ∈ Σ.

{
χ(n) if σ′ = σ[n/X]

0 otherwise

[[c0; c1]]TM = [[c1]]
†
TM ◦ [[c0]]TM

[[c0 or c1]]TMσ = [[c1]]TMσ ∪– [[c0]]TMσ

[[if b then c0 else c1]]TMσ =

{
[[c0]]TM(σ) if [[b]]σ = true

[[c1]]TM(σ) if [[b]]σ = false

Fig. 4. Denotational semantics of L using the convex powerset

There is a very tight correspondence between the denotational and the operational

semantics.

Theorem 6.2 (Adequacy). Let c be a command of L and ν be a finite indexed valuation

in IV (Σ). Then ν ∈ [[c]]σ if and only if there exists a scheduler S for 〈c, σ〉 such that

ν = Ival (S, c, σ).

Proof. See the Appendix.

The main feature of Theorem 6.2 is the use of deterministic schedulers. A semantics in

terms of the convex powerset functor is adequate with respect to probabilistic schedulers.

The new denotational semantics [[c]]TM : Σ → PTM(V (Σ)) is defined in Figure 4. Here,

if X,Y are sets and f : X → PTM(V (Y)), then f† : PTM(V (X)) → PTM(V (Y)) is the

Kleisli extension of f for the monad PTM ◦ V .

Theorem 6.3 (Adequacy). Let c be a command of L and ν be a finite valuation in V (Σ).

Then ν ∈ [[c]]TMσ if and only if there exists a probabilistic scheduler S for 〈c, σ〉 such

that ν = Val (S, c, σ)

Proof. See the Appendix.

6.5. Discussion

We have seen the mathematical reasons why there is no distributive law between the

functors P and V . We can exemplify this with a program in our language. Suppose the

denotation of a command c is to be defined as a function [[c]] : Σ → P (V (Σ)). If we want

it to be compositional, we have to define [[c1; c2]] in terms of [[c1]], [[c2]]. The first intuitive

idea would be to define it as

[[c1; c2]](σ) =

{
λσ′.

∑
σ′′∈Σ

ν(σ′′) · h(σ′′)(σ′) | ν ∈ [[c1]](σ), h : Σ → V (Σ), h(σ′′) ∈ [[c2]](σ
′′)

}
.

However, this definition would make sequential composition non-associative. To see this

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

Distributing probability over non-determinism 105

•

◦
1/2

������������ 1/2

������������

•0 •1

◦
1

◦
1

•0

���
��� ���

���
•0

���
��� ���

���

◦
1

◦
1

◦
1

◦
1

•0 •1 •0 •1

Fig. 5. The automaton of c1; c2; c3

with an example, let

— c1 be the command X := χ, where χ(0) = 1/2, χ(1) = 1/2;

— c2 be the command X := 0;

— c3 be the command X := 0 or X := 1;

and consider the program c1; c2; c3.

In this example we can assume there are only two states: Σ = {0, 1}. For i = 0, 1 we

have

— [[c1]](i) = { 1
2
η0 + 1

2
η1}

— [[c2]](i) = {η0}
— [[c1; c2]](i) = {η0}
— [[c3]](i) = {η0, η1}
— [[c2; c3]](i) = {η0, η1}.
If we read c1; c2; c3 as c1; (c2; c3), then [[c1; c2; c3]](i) = {η0,

1
2
η0 + 1

2
η1, η1}.

If we read c1; c2; c3 as (c1; c2); c3, then [[c1; c2; c3]](i) = {η0, η1}.
In the second case the function h (which roughly speaking does the job of the scheduler),

when choosing a valuation in [[c3]](0) does not ‘remember’ that the process has reached

the state 0 by two different paths. Therefore we miss one valuation in the final set. When

the denotation is given in terms of indexed valuations, the function h is given enough

information to remember this. Indeed, in the case of indexed valuations, h chooses with

regard to the paths, rather than just with regard to the states.

However, a memoryless scheduler can simulate the combination of schedulers with

memory by flipping a coin. That is why a semantics that is adequate with respect to

probabilistic schedulers does not need to be given in terms of indexed valuations (see the

proofs in the Appendix for more details). A similar phenomenon was recently observed

in the context of Stochastic Games (Chatterjee et al. 2004).

7. Indexed valuations and domains

In this section, we give a sketch of how to extend the above discussion to domain theory.

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

D. Varacca and G. Winskel 106

Recall that a domain is a partial order with lubs of directed subsets (and some extra

properties). When doing universal algebra on domains, instead of equational theories

we have inequational theories, while operations and homomorphisms are required to be

continuous (Abramsky and Jung 1994).

Consider the equational theory of semilattices. In the category of continuous domains

its free algebra functor is known as the Plotkin powerdomain. However, we can also modify

the equational theory by adding an extra inequation. If we add A � A ∪– B, we obtain

the theory of join-semilattices. The free join-semilattice functor is known as the Hoare

powerdomain. If instead we add the inequality A ∪– B � A, we obtain the theory of meet-

semilattices. The corresponding free algebra functor is known as the Smyth powerdomain.

Being freely generated by a theory, all the above functors give rise to monads.

In the category of continuous domains, the theory of real cones generates the monads of

continuous valuations (Jones and Plotkin 1989; Jones 1990; Kirch 1993). In this category,

we can weaken the theory of real cones by removing the equation pA ⊕ qA = (p + q)A,

or by transforming it into an inequation: pA ⊕ qA � (p + q)A or pA ⊕ qA � (p + q)A.

Also, we can decide whether the scalar multiplication is continuous with respect to the

domain of scalars [0,+∞], or not. All these choices have an important effect on the

corresponding monad. Some results have already been presented in Varacca (2002; 2003),

where the existence of certain distributive laws is shown, and the relation between indexed

valuations and continuous valuations is studied. A recent related work is Mislove (2005).

A detailed study of all the cases, with particular attention to a concrete characterisation

of the monads, is the subject of ongoing work.

Appendix: Proofs

We give here the proofs of three results: Proposition 3.2, which states the lack of a

distributive law between the non-deterministic and the probabilistic monad, and the two

adequacy theorems, Theorem 6.2 and Theorem 6.3.

Proof of Proposition 3.2. The idea for this proof is due to Gordon Plotkin†. Assume that

d : VP
·−→PV is a distributive law in the category SET. Consider the set X := {a, b, c, d}.

Take Ξ := 1
2
η{a,b} + 1

2
η{c,d} ∈ VP (X). We try to find out what R := dX(Ξ) is.

Let Y := {a, b}. Consider:

f : X → Y f :

a �→ a

b �→ b

c �→ a

d �→ b

f′ : X → Y f′ :

a �→ a

b �→ b

c �→ b

d �→ a.

† Personal communication

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

Distributing probability over non-determinism 107

We have that VP (f)(Ξ) = ηY = VP (f′)(Ξ). Consider the naturality diagram for f:

Ξ
� dX ��

�

VP (f)

��

R�

PV (f)

��
ηY

�
dY

�� S

One of the unit laws for d tells us that S := dY (ηY) = {ηa, ηb}. Therefore, considering the

functorial action of PV , we must have that

� �= R ⊆ {pηa + (1 − p)ηc | p ∈ [0, 1]} ∪ {qηb + (1 − q)ηd | q ∈ [0, 1]}.

Consider the same diagram for f′:

Ξ
� dX ��

�

VP (f′)

��

R�

PV (f′)

��
ηY

�
dY

�� S

This tells us that

� �= R ⊆ {p′ηa + (1 − p′)ηd | p′ ∈ [0, 1]} ∪ {q′ηb + (1 − q′)ηc | q′ ∈ [0, 1]}.

Combining these pieces of information, we conclude that R must be a non-empty subset

of {ηa, ηb, ηc, ηd}.
Now let Z := {a, c}. Consider

f′′ : X → Z f′′ :

a �→ a

b �→ a

c �→ c

d �→ c.

We have that VP (f′′)(Ξ) = 1
2
η{a} + 1

2
η{c}. Let us look at the naturality diagram for f′′:

Ξ
� dX ��

�

VP (f′′)
��

R�

PV (f′′)

��
1
2
η{a} + 1

2
η{c}

�
dZ

�� T

Since T = PV (f′′)(R), we have that T must be a non-empty subset of {ηa, ηc}. But the

other unit law for d tells us that T = d(1
2
η{a} + 1

2
η{c}) = { 1

2
ηa + 1

2
ηc}, which gives a

contradiction.

Before proving Theorem 6.2, we need to look concretely at the Kleisli extension of the

monad P ◦ IV generated by the distributive law. Let f : X → P (IV (Y)) be a function.

Consider a finite set of indexed finite valuations A ∈ P (IV (X)). Let f† : P (IV (X)) →
P (IV (Y)) be the Kleisli extension of f. We want to evaluate f†(A).

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

D. Varacca and G. Winskel 108

When A is a singleton {(xi, pi)i∈I}, we have

f†
(

{(xi, pi)i∈I}
)

=
⊕
i∈I

pif(xi).

By induction on the size of I , one can prove that⊕
i∈I

pif(xi) =
{

(yij , piq
i
j)(j,i)∈J×I | h : I → IV (Y), h(i) = (yij , q

i
j)j∈J ∈ f(xi)

}
.

(Since I and all f(xi) are finite, it is not restrictive to assume that all the valuations

involved are indexed by the same set J .) The functions h above are ‘choice’ functions: for

every i ∈ I , h chooses an indexed valuation in f(xi).

For general A we have

f†(A) =
⋃
ξ∈A

f†({ξ}).

Proof of Theorem 6.2. We use structural induction. The non-trivial case is the sequential

composition. A maximal path of M〈c0; c1, σ〉 is the concatenation of a maximal path r

of M〈c0, σ〉 together with a maximal path t in M〈c1, l(r)〉, renaming the configurations of

the first part. Therefore, a scheduler S for 〈c0; c1, σ〉 can be thought of as a scheduler S0

for 〈c0, σ〉 together with schedulers Sr for 〈c1, l(r)〉 for every maximal path r of M〈c0, σ〉.
By the induction hypothesis, we have (l(r),Π(r))r∈B(c0 ,σ,S0) ∈ [[c0]]σ, and for every r,

(l(t),Π(t))t∈B(c1 ,l(r),Sr) ∈ [[c1]]l(r).

We have to show that

(l(s),Π(s))s∈B(c0;c1 ,σ,S) ∈ [[c1]]
†([[c0]]σ).

Recalling the characterisation of f†, it is enough to show that

(l(s),Π(s))s∈B(c0;c1 ,σ,S) ∈ [[c1]]
† (

{(l(r),Π(r))r∈B(c0 ,σ,S0)}
)
.

Let us define the choice function h : B(c0, σ,S0) → IV (Σ) as

h(r) = (l(t),Π(t))t∈B(c1 ,l(r),Sr) ∈ [[c1]]l(r).

Therefore, by the characterisation of f†,

(l(t),Π(r)Π(t)) r∈B(c0 ,σ,S0)
t∈B(c1 ,l(r),Sr)

∈ [[c1]]
† (

{(l(r),Π(r))r∈B(c0 ,σ,S0)}
)
.

Since a path in B(c0; c1, σ,S) is the concatenation of a path r in B(c0, σ,S0) together

with a path t in B(c1, l(r),Sr), we have

(l(t),Π(r)Π(t)) r∈B(c0 ,σ,S0)
t∈B(c1 ,l(r),Sr)

= (l(s),Π(s))s∈B(c0;c1 ,σ,S).

Conversely, suppose ν ∈ [[c1]]
†([[c0]]σ). By the characterisation of the Kleisli extension,

there exist (σi, pi)i∈I ∈ [[c0]]σ and h : I → IV (Σ), h(i) = (yij , q
i
j)j∈J ∈ [[c1]]σi such that

ν = (yij , piq
i
j)(j,i)∈J×I .

By the induction hypothesis, there exists a scheduler S0 such that

I = B(c0, σ,S0), pr = Π(r), σr = l(r).

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

Distributing probability over non-determinism 109

And for every r ∈ B(c0, σ,S0), there is a scheduler Sr such that

h(r) = (l(t),Π(t))t∈B(c1 ,l(r),Sr).

Combining S0 with the Sr , we obtain a scheduler S for 〈c0; c1, σ〉. In order to obtain an

overall scheduler S, formally we have to define it also for the paths not in B(c0, σ,S0). But

this choice can be arbitrary, because it does not influence the definition of B(c0; c1, σ,S).

Therefore

ν = (yij , piq
i
j)(j,i)∈J×I

= (l(t),Π(r)Π(t)) r∈B(c0 ,σ,S0)
t∈B(c1 ,l(r),Sr)

= (l(s),Π(s))s∈B(c0;c1 ,σ,S).

Before proving Theorem 6.3 we need to look concretely at the Kleisli extension of the

monad PTM ◦ V defined in Section 5.

Take f : X → PTM(V (Y)), say f(x) = Bx. We have that f† : PTM(V (X)) → PTM(V (Y))

is defined as

f†(A) = 	�
⋃
ξ∈A0

⊕
x∈X

ξ(x)Bx.

We have the following characterisation:

f†(A) =
⋃
ξ∈A

⊕
x∈X

ξ(x)Bx =

{⊕
x∈X

ξ(x)h(x) | h : X → V (Y), h(x) ∈ Bx, ξ ∈ A

}
.

In order to prove it, we call

— V :=
⋃

ξ∈A0

⊕
x∈X ξ(x)Bx

— U := 	�
⋃

ξ∈A0

⊕
x∈X ξ(x)Bx

— W :=
⋃

ξ∈A
⊕

x∈X ξ(x)Bx.

Remember that U = V , by definition. We have to prove that U = W .

Clearly, V ⊆ W . Moreover, W is convex:

p
⊕
x∈X

ξ(x)h(x) ⊕ (1 − p)
⊕
x∈X

ξ′(x)h′(x) =
⊕
x∈X

pξ(x)h(x) ⊕ (1 − p)ξ′(x)h′(x).

Define ξ′′ = pξ ⊕ (1 − p)ξ′ ∈ A and h′′(x) = pξ(x)
ξ′′(x)

h(x) + (1−p)ξ′(x)
ξ′′(x)

h′(x). Since Bx is convex,

we have that h′′(x) ∈ Bx. (If ξ′′(x) = 0, then h′′(x) can be set equal to any element of Bx.)

We have

ξ′′(x)h′′(x) = pξ(x)h(x) ⊕ (1 − p)ξ′(x)h′(x).

Therefore U ⊆ W .

For the other direction take
⊕

x∈X ξ(x)h(x). We know that ξ =
⊕

i∈I piξi with ξi ∈ A0.

So ⊕
x∈X

ξ(x)h(x) =
⊕
x∈X

⊕
i∈I

piξi(x)h(x) =
⊕
i∈I

pi
⊕
x∈X

ξi(x)h(x),

which is a convex combination of elements of V .

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

D. Varacca and G. Winskel 110

It is worth making the following observation. Suppose f : X → PTM(V (Y)) is such

that the range of f contains only probability distributions (rather than general finite

valuations). Suppose W is a finitely generated convex set containing only probability

distributions. Then it is not difficult to show that f†(W) contains only probability

distributions. This observation can be used to show that the denotational semantics

of L uses probability distributions only.

Proof of Theorem 6.3. We use structural induction. Note that the probabilistic schedulers

are necessary for the semantics of the non-deterministic choice, because the operator ∪–
is defined as union followed by convex closure.

Again, the non-trivial case is sequential composition. Take a scheduler S for 〈c0; c1, σ〉.
Such an S can be thought of as a scheduler S0 for 〈c0, σ〉 together with schedulers Sr

for 〈c1, l(r)〉 for every maximal path in r of M〈c0, σ〉.
By the induction hypothesis, we have that Val (S0, c0, σ) ∈ [[c0]]TMσ and that for every r,

Val (Sr, c1, l(r)) ∈ [[c1]]TMl(r). We have to show that

λσ′.
∑
l(s)=σ′

s∈B(c0;c1 ,σ,S)

Π(s) ∈ [[c1]]
†
TM([[c0]]TMσ).

Recall the characterisation of the Kleisli extension: if f : X → PTM(V (Y)), then

f†(A) =

{⊕
x∈X

ξ(x)h(x) | h : X → V (Y), h(x) ∈ f(x), ξ ∈ A

}
.

To prove our claim it is then enough to show that

λσ′.
∑
l(s)=σ′

s∈B(c0;c1 ,σ,S)

Π(s) ∈ [[c1]]
†
TM

(
{Val (S0, c0, σ)}

)
.

Let us define h : Σ → V (Σ) as

h(σ′′) =
∑

l(r)=σ′′

r∈B(c0 ,σ,S0)

Π(r)

Val (S0, c0, σ)(σ′′)
Val (Sr, c1, σ

′′).

Remember that, by definition,∑
l(r)=σ′′

r∈B(c0 ,σ,S0)

Π(r) = Val (S0, c0, σ)(σ′′).

Therefore, ∑
l(r)=σ′′

r∈B(c0 ,σ,S0)

Π(r)

Val (S0, c0, σ)(σ′′)
= 1.

Since [[c1]]TMσ′′ is convex, h(σ′′) ∈ ([[c1]]TMσ′′). Therefore, by the characterisation of the

Kleisli extension, ∑
σ′′∈Σ

Val (S0, c0, σ)(σ′′)h(σ′′) ∈ [[c1]]
†
TM

(
{Val (S0, c0, σ)}

)
.

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

Distributing probability over non-determinism 111

But ∑
σ′′∈Σ

Val (S0, c0, σ)(σ′′)h(σ′′)(σ′)

=
∑
σ′′∈Σ

 ∑

l(r)=σ′′

r∈B(c0 ,σ,S0)

Π(r)

 ∑

l(r)=σ′′

r∈B(c0 ,σ,S0)

Π(r)

Val (S0, c0, σ)(σ′′)
Val (Sr, c1, σ

′′)(σ′)

=
∑
σ′′∈Σ

 ∑

l(r)=σ′′

r∈B(c0 ,σ,S0)

Π(r)

Val (S0, c0, σ)(σ′′)

 ∑

l(r)=σ′′

r∈B(c0 ,σ,S0)

Π(r) Val (Sr, c1, σ
′′)(σ′)

=
∑
σ′′∈Σ

 ∑

l(r)=σ′′

r∈B(c0 ,σ,S0)

Π(r)

Val (S0, c0, σ)(σ′′)

 ∑

l(r)=σ′′

r∈B(c0 ,σ,S0)

Π(r) Val (Sr, c1, σ
′′)(σ′)

=
∑
σ′′∈Σ

 ∑

l(r)=σ′′

r∈B(c0 ,σ,S0)

Π(r) Val (Sr, c1, σ
′′)(σ′)

=
∑
σ′′∈Σ

 ∑

l(r)=σ′′

r∈B(c0 ,σ,S0)

Π(r)

 ∑

l(t)=σ′

t∈B(c1 ,σ′′ ,Sr)

Π(t)

=
∑

r∈B(c0 ,σ,S0)

Π(r)

 ∑

l(t)=σ′

t∈B(c1 ,l(r),Sr)

Π(t)

=
∑
l(s)=σ′

s∈B(c0;c1 ,σ,S)

Π(s),

and the claim is proved. For the last step, note that a path s ∈ B(c0; c1, σ,S) is the

concatenation of a path r ∈ B(c0, σ,S0) with a path t ∈ B(c1, l(r),Sr).

Conversely, suppose that ν ∈ [[c1]]
†
TM([[c0]]TMσ). Then there exist ξ ∈ [[c0]]TMσ and

h : Σ → V (Σ) such that h(σ′′) ∈ [[c1]]TMσ′′ and ν =
∑

σ′′ ξ(σ′′)h(σ′′). By the induction

hypothesis, there exist schedulers S0, Sσ′′ such that ξ = Val (S0, c0, σ), and h(σ′′) =

Val (Sσ′′ , c1, σ
′′). Again, as with deterministic schedulers, we combine them to get a

scheduler S such that ν = Val (S, c0; c1, σ). Notice that in this case the combined

scheduler has some memoryless character: it behaves the same for every subautomaton

starting at a configuration 〈c1, σ
′′〉, regardless of the previous history.

Acknowledgments

Thanks are due to Andrzej Filinski who showed us how the non-deterministic and

probabilistic monads are combined in ML. Thanks are also due to Michael Mislove,

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

D. Varacca and G. Winskel 112

Gordon Plotkin, Luigi Santocanale and Zhe Yang for useful discussions. Daniele Varacca

acknowledges the contribution of the Danish National Research Foundation, and of

the EPSRC grant GR/T04724/01. Glynn Winskel acknowledges the contribution of the

EPSRC grant GR/T22049/01.

References

Abramsky, S. and Jung, A. (1994) Domain theory. In: Handbook of Logic in Computer Science 3,

Clarendon Press.

Bandini, E. and Segala, R. (2001) Axiomatizations for probabilistic bisimulation. In: Proceedings of

28th ICALP. Springer-Verlag Lecture Notes in Computer Science 2076 370–381.

Bartels, F., Sokolova, A. and de Vink, E. (2003) A hierarchy of probabilistic system types. Electronic

Notes in Theoretical Computer Science 82.

Beck, J. (1969) Distributive laws. In: Seminar on Triples and Categorical Homology Theory.

Springer-Verlag Lecture Notes in Mathematics 80 119–140.

Chatterjee, K., de Alfaro, L. and Henzinger, T.A. (2004) Trading memory for randomness. In:

Proceedings of first QEST 206–217.

Cohn, P.M. (1981) Universal Algebra, Reidel.

Gautam, N. (1957) The validity of equations of complex algebras. Archiv für Mathematische Logik

und Grundlagenforschung 3 117–124.

Hansson, H. (1991) Time and Probability in Formal Design of Distributed systems, Ph.D. thesis,

Uppsala University.

Herescu, M. and Palamidessi, C. (2000) Probabilistic asynchronous π-calculus. In: Proceedings of

3rd FoSSaCS. Springer-Verlag Lecture Notes in Computer Science 1784 146–160.

Hyland, M., Plotkin, G.D. and Power, J. (2002) Combining computational effects: Commutativity

and sum. In: Proceedings of IFIP TCS, Kluwer 474–484.

Jones, C. (1990) Probabilistic Non-determinism, Ph.D. thesis, University of Edinburgh.

Jones, C. and Plotkin, G.D. (1989) A probabilistic powerdomain of evaluations. In: Proceedings of

4th LICS, IEEE Computer Society 186–195.

Jonsson, B., Larsen, K. and Yi, W. (2001) Probabilistic extensions of process algebras. In: Handbook

of Process Algebras, Elsevier.

Kirch, O. (1993) Bereiche und Bewertungen. Master’s thesis, Technische Hochschule Darmstadt.

Mac Lane, S. (1971) Categories for the Working Mathematician, Springer.

Mislove, M. (2000) Nondeterminism and probabilistic choice: Obeying the law. In: Proceedings of

11th CONCUR. Springer-Verlag Lecture Notes in Computer Science 1877 350–364.

Mislove, M. (2005) Discrete random variables over domains. In: Proceedings of 32nd ICALP.

Springer-Verlag Lecture Notes in Computer Science 3580.

Moggi, E. (1991) Notions of computation and monads. Information and Computation: 93 (1) 55–92.

Morgan, C. C., McIver, A., Seidel, K. and Sanders, J.W. (1994) Refinement-oriented probability for

CSP. Technical Report PRG-TR-12-94, Oxford University Computing Laboratory.

Plotkin, G.D. (1983) Domains, University of Edinburgh.

Plotkin, G.D. and Power, J. (2002) Notions of computation determine monads. In: Proc of 5th

FOSSACS. 2303 342–256.

Segala, R. (1995) Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D.

thesis, M.I.T.

Segala, R. and Lynch, N. (1995) Probabilistic simulations for probabilistic processes. Nordic Journal

of Computing 2 (2) 250–273. (An extended abstract appears in: Proceedings of 5th CONCUR.

Springer-Verlag Lecture Notes in Computer Science 836 481–496.)

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

Distributing probability over non-determinism 113

Stoelinga, M. (2002) An introduction to probabilistic automata. Bulletin of the European Association

for Theoretical Computer Science 78 176–198.

Tix, R. (1999) Continuous D-Cones: Convexity and Powerdomain Constructions, Ph.D. thesis,

Technische Universität Darmstadt.

Tix, R., Keimel, K. and Plotkin, G.D. (2005) Semantic domains for combining probability and

non-determinism. Electronic Notes in Theoretical Computer Science 129 1–104.

Varacca, D. (2002) The powerdomain of indexed valuations. In: Proceedings of 17th LICS, IEEE

Computer Society.

Varacca, D. (2003) Probability, Nondeterminism and Concurrency. Two Denotational Models for Pro-

babilistic Computation, Ph.D. thesis, BRICS – Aarhus University. (Available at www.brics.dk/

DS/03/14.)

Vardi, M.Y. (1985) Automatic verification of probabilistic concurrent finite-state programs. In:

Proceedings of 26th FOCS 327–338.

https://doi.org/10.1017/S0960129505005074 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505005074

