
SPECIAL ISSUE ARTICLE

Sample-Selection Biases and the Historical
Growth Pattern of Children
Eric B. Schneider

Economic History Department, London School of Economics and Political Science
Email: e.b.schneider@lse.ac.uk

ABSTRACT
Bodenhorn et al. (2017) have sparked considerable controversy by arguing that the fall in
adult stature observed in military samples in the United States and Britain during indus-
trialization was a figment of selection on unobservables in the samples. While subsequent
papers have questioned the extent of the bias (Komlos and A’Hearn 2019; Zimran 2019),
there is renewed concern about selection bias in historical anthropometric datasets.
Therefore, this article extends Bodenhorn et al.’s discussion of selection bias on unobserv-
ables to sources of children’s growth, specifically focusing on biases that could distort the
age pattern of growth. Understanding how the growth pattern of children has changed is
important because these changes underpinned the secular increase in adult stature and
are related to child stunting observed in developing countries today. However, there
are significant sources of unobserved selection in historical datasets containing children’s
and adolescents’ height and weight. This article highlights, among others, three common
sources of bias: (1) positive selection of children into secondary school in the late nine-
teenth and early twentieth centuries; (2) distorted height by age profiles created by age
thresholds for enlistment in the military; and (3) changing institutional ecology that
determines to which institutions children are sent. Accounting for these biases adjusts
the literature in two ways: evidence of a strong pubertal growth spurt in the nineteenth
century is weaker than formerly acknowledged and some long-run analyses of changes
in children’s growth are too biased to be informative, especially for Japan.

From its birth 40 years ago, anthropometric history, the study of human welfare
through the analysis of body measurements, has grown and developed into a strong
subfield within economic history (Komlos and Baten 2004; Steckel 1995, 2009). It
took the tireless effort of many scholars to convince the wider discipline that heights
proxied people’s welfare. This was especially true when the trends in heights
departed from trends in other measures of living standards such as real wages and
GDP per capita during industrialization in the United States and Britain (Floud
et al. 1990; Komlos 1993, 1998; Margo and Steckel 1983). This divergence in welfare
measures has been explained by the negative health effects of urbanization and by the
cost and availability of food. However, Bodenhorn et al. (2017) have recently called
these trends into question. They argue that because the height trends come from data
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based on military recruits rather than conscripts, unobserved factors leading certain
types of people to join the military bias the trends. When opportunities were difficult
in the civilian labor market, the military was attractive to a wider range of men.
However, when economic conditions improved in the civilian labor market, higher
quality, taller individuals would join the military at lower rates. This mechanism could
explain a decline in heights when economic conditions were improving. Importantly,
Bodenhorn et al. (2017) argue that this selection mechanism is unobservable, that is
not correlated with or captured by the typical controls included in height regressions.

Bodenhorn et al. (2017) sparked tremendous debate among anthropometric
historians about selection bias and what had and could be done to address their
concerns. However, these discussions of selection bias have not been as readily
translated to sources of children’s growth. There has been extensive discussion
about selection bias in the slave manifests used to study the growth pattern of slave
children in the US South (Pritchett and Freudenberger 1992, 2016; Steckel and
Ziebarth 2016). However, selection bias in other sources of children’s growth has
been relatively understudied. As in all cases, the importance of different forms of
selection bias is fundamentally related to the question an author is asking of the
data. Thus, if one were examining how children’s heights changed over time by
analyzing the children at one age over a long period, it would be important to
consider the types of forces that Bodenhorn et al. discuss. This application would
be relatively straightforward, so rather than discussing that in detail, this article will
assess how unobservable selection could lead to biased inferences about the growth
pattern of children.

The growth pattern is the age pattern in height and velocity of height across the
growing years. It is defined by four key characteristics (see figure 1): the final adult
height, the age at peak velocity during the pubertal growth spurt, the growth velocity
during the pubertal growth spurt, and the age when growth stops occurring. In gen-
eral, auxologists and anthropometric historians have found that the growth pattern
has changed in four key ways over the past century: adult height has increased
(Hatton and Bray 2010; NCD Risk Factor Collaboration 2016); the pubertal growth
spurt has occurred at earlier ages; the velocity of growth during puberty has increased;
and the growing years have shortened with people reaching their final adult heights at
earlier ages (Schneider 2017: 23; Steckel 1987; Tanner 1962: 143–55). This pattern seems
fairly universal although there are exceptions and the timing and causes of the shift in
the growth pattern are not clear (Gao and Schneider 2020).

The historical research that traced these changes in the growth pattern has gen-
erally relied upon sources that provide the heights of children at different ages mea-
sured at the same time. Thus, the vast majority of research on children’s growth in
the past is not based on longitudinal height measures of the same children across
their growing years but on the change in height between different groups of children
at adjacent ages (though cf. Gao and Schneider 2020; Komlos et al. 1992; Schneider
2016; Schneider and Ogasawara 2018). These are known as cross-sectional or period
growth curves because they measure an average growth curve across individuals at
one particular point in time (McMurray 1996). Because the height profile is then
strongly influenced by the children who are measured at each age, most of
the potential selection bias is a result of selection on unobservables that changes
at different ages.

418 Social Science History

https://doi.org/10.1017/ssh.2020.10  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/ssh.2020.10


First, I will discuss three sources that have been or could be used to analyze the
growth pattern of children and highlight some of the potential forms of selection on
unobservables that could influence these types of data. This discussion will be
largely hypothetical though there will be some specific examples along the way.
In the second part, I examine how to detect and manage selection bias on unobserv-
ables and other sources of bias and measurement error in actual datasets. I first dis-
cuss the selection bias diagnostics suggested by Bodenhorn et al. (2017) and show
that these are not appropriate for use in sources of children’s height. Then I present
various strategies for detecting selection on unobservables in sources of children’s
growth from Japan, Tasmania, Boston, Massachusetts, and Britain. I also discuss
other sources of bias and measurement error that would influence the growth pat-
tern and make it more difficult to determine whether selection on unobservables
was present in the data.

On the whole, this article shows that selection bias can be a problem in sources of
children’s heights and needs to be considered when analyzing an earlier literature
that did not account for this as carefully as might be desired. However, selection bias
on unobservable characteristics does not render all these sources unusable. With
careful attention to selection processes and analysis of the data, it is possible to
determine which datasets are most problematic and, in some cases, determine ways
to use parts of the data while excluding data subject to bias.
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Figure 1. Characteristics of the growth pattern of boys.
Note: The growth pattern of girls is different than for boys with girls experiencing an earlier and less pronounced
pubertal growth spurt, lower velocity and adult height, and earlier age when growth stops.
Sources: de Onis et al. (2007); data drawn from www.who.int/growthref/en/.
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Historical Sources of Children’s Growth and Potential Selection Bias
Before discussing how to detect selection bias on unobservables with specific data,
it is perhaps helpful to discuss important sources of potential selection bias in the
typical sources used to reconstruct the growth pattern of children: school records,
prison registers, and military enlistment or conscription records.

The most prominent set of sources used to reconstruct the historical growth pat-
tern of children are school records. School records have been used to study growth
since 1870s when Roberts in the United Kingdom and Bowditch in Boston collabo-
rated with schools to collect cross-sectional data on children’s heights (Bowditch
1877, 1879; Roberts 1874). These types of studies were replicated across Europe
and North America at the end of the nineteenth and in the early twentieth centuries
(Burk 1898; Tanner 1981). In addition, state and local bureaucracies also began col-
lecting schoolchildren’s height information in a number of countries including the
United Kingdom and Japan in the early twentieth century (Floud et al. 1990: 175–82;
Harris 1994; Saito 2003). These early efforts at data collection have served as impor-
tant sources for long-run studies on changes in children’s growth (Cameron 1979;
Steckel 1987; Tanner 1981).

Unfortunately, the individual-level data underpinning these records are almost
entirely lost (though cf. Roberts andWarren 2017), so most of the time the only data
available is the average heights and weights of boys and girls at one-year age inter-
vals. At times, the nineteenth-century auxologists also broke down their data
according to some characteristics of the children such as their ethnic background
and their fathers’ occupational status. This is especially important considering that
working-class children were far less likely to continue in school at later ages than
their more privileged counterparts. We can see this in the Bowditch data in the
1870s, which was collected largely from public schools in Boston. In his data,
the percentage of children whose father had an unskilled occupation fell from 50
percent at age five to less than 5 percent at age 18 (figure 2A) (Bowditch 1879:
38–43). Because the average heights are given for each subgroup, it is possible to
generate a growth profile and velocity curve that reweights the series for composi-
tional change across observed categories (figure 2B). As we can see, the composition-
adjusted velocity curve is not substantially different from the original curve. However,
the bias from compositional change may be small relative to selection on unobserved
characteristics.

The more troubling question is whether the unskilled working-class children
remaining in the sample at age 18 were still representative of the unskilled working
class more generally. If the working-class children remaining in school tended to be
of higher status or if they were healthier than others in their class, then they would
be taller than their average counterpart at the same age. This would lead to upward
bias in the growth profile and would tend to overestimate the height interval
between adjacent ages as the sample became more positively selected. However,
Bleakley et al. (2013) argue that in the nineteenth-century United States there
was not a strong positive relationship between height and human capital. There
was no relationship because the opportunity cost of schooling was high because
physical labor was important in the economy and men were paid a premium for
their brawn. This would suggest that taller and stronger working-class children
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would be less likely to stay in school, especially as other job opportunities opened up
for them and they were no longer legally required to be in school. If this were true,
then the children remaining in school at later ages would be negatively selected and
the velocity (height intervals at adjacent ages) would be underestimated as the chil-
dren aged. Thus, the effect of children dropping out of school on the growth pattern
is ambiguous and needs to be analyzed empirically. The next section will do this
using the Bowditch data along with data from Japan.

The second set of records that could be used to analyze children’s growth would
be prison or criminal records. Somewhat surprisingly to our modern sensibility,
nineteenth-century prisons housed numerous children; for instance, in the
Wandsworth House of Correction in London in 1860s–1880s, the youngest prisoner
was a seven-year-old English boy, and 10 percent of female and 26 percent of male
prisoners were aged 18 or under (Horrell et al. 2009: 99). In Carson’s (2009) peni-
tentiary sample for the United States covering 14 states, 13.5 and 19.1 percent of
white and black male prisoners, respectively, were in their teens with the youngest
being 12 years old. There were also substantial numbers of adolescent convicts in
Europe and in Commonwealth countries (Depauw 2012; Maxwell-Stewart et al.
2015). Thus, one could reconstruct the growth pattern of children from this data,
and historians have started to do this.
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Figure 2. Occupational structure and the growth pattern of boys in Bowditch’s 1870s Boston data.
Notes: The constant occupational structure line in panel B was calculated by weighting the occupational group
growth profiles with the occupational structure at age eight at all ages. This approach assumes that the occupational
structure for eight-year-olds matched the true population occupational structure, which seems plausible because
enrolment rates in Boston were highest at age eight at nearly 80 percent.
Source: Bowditch (1879: 38–43).
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However, there are a number of sources of selection that could be problematic for
this kind of exercise. Obviously, the first would be whether there were changes in the
selection into committing crime from childhood through to adolescence. This could
be tested on observable characteristics, but we could never entirely rule out all selec-
tion processes, though that does not mean that these would lead to significant bias.
Another problematic source of selection relates to the variety of institutions avail-
able to which children could be sent. In a nineteenth-century British context chil-
dren were sometimes sent to adult prisons after committing crimes though they
were kept separate from the general adult population under the 1823 Gaol Act.
However, there were a host of other institutions that juvenile offenders might find
themselves sent to depending on the severity of their offence including workhouses,
poor law schools, industrial and reformatory schools, and juvenile detention centers
(Godfrey et al. 2017: 24–36). Understanding this ecosystem of institutions is par-
ticularly important when analyzing individual-level information from one institu-
tion because the researcher cannot capture the individuals who were sent to other
institutions. Changes in the de jure or de facto rules regulating where children were
sent could lead to selection bias that might not be clear by looking at observable
characteristics. Thus, it is crucial for historians to learn the finer details of the wider
institutional setting and also be wary of signs of changing institutional structures.

Finally, historians studying criminal records have to be cautious about changes in
the treatment of children by courts at specific age cutoff points. In the United
Kingdom, the judicial process for children changed substantially across the nine-
teenth century. In the early nineteenth century, children under the age of 14 were
tried in the same manner as adults with full jury trials for indictable (serious)
offenses. However, after the 1847 Juvenile Offenders Act and the 1879 Summary
Jurisdiction Act, children under 12 were tried in a summary court without a jury
for all offenses except murder and manslaughter and children under 16 could opt
for the summary option as well. These changes in the age cutoff and method of trial
may have influenced the types of children that ended up in a particular prison and,
therefore, could be an important source of unobserved selection at different ages
(ibid.: 27).

The final set of sources that could be analyzed to understand the growth pattern
of children are army records. While most enlistment or conscription records would
not include many adolescents under the age of 16 or 17, these records could be used
to understand the growth pattern after the pubertal growth spurt and notably when
individuals stopped growing. A’Hearn et al. (2009b) use Italian military registration
records to trace changes in the growth pattern from age 17 onward for birth cohorts
from 1855 to 1910. In addition, many studies have noted that military recruits
appeared to be growing into their early to mid-twenties suggesting a much longer
growing period than is typical of modern, healthy populations (Beekink and Kok
2017; Cinnirella 2008; Floud et al. 1990: 153–54). The literature on military recruits
has always been concerned about selection into their samples with particular focus
on minimum height requirements (truncation), the rejection of medically unfit indi-
viduals, and the selection of recruits into different units and military services
(Cinnirella 2008; Floud et al. 1990, 30–83, 118–27). However, there are a few ways
in which selection by age might influence the reconstruction of the growth pattern.
First, as we will see, any restrictions placed at specific ages create incentives for men
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to lie about their age. For instance, if there were a minimum age requirement for
enlistment during a period when patriotism was strong, then there would be incen-
tives for men to misrepresent their age to enlist at earlier ages.

In addition, as Bodenhorn et al. (2017: 191–93) point out, there could be bias in
the age pattern of growth in military samples because recruits at earlier ages are
removed from the population at risk of enlistment at subsequent ages. If taller
troops are more likely to be removed in the first rounds of recruitment either
because of a binding minimum height requirement or another selection mechanism
that draws healthier men, then the population at risk of being recruited at later ages
would be of lower quality. This effect is very difficult to test with actual data, but a
simulation exercise illustrates that the bias could be significant.

Existing Approaches for Detecting Selection Bias on Unobservables
Having described the hypothetical potential for selection bias on unobservables in
sources of children’s growth, we can now turn to trying to detect selection bias.
Bodenhorn et al. (2017: 190–200) propose a series of tests to determine whether
selection on unobservables has biased the inferences from a dataset. These stem
from the intuition that in the typical height regression birth year, age, and year
of measurement are perfectly collinear. In the absence of any selection on unobserv-
ables, the predicted height of a single birth cohort should be the same at each age
between 23 and 50, the period when adult height is stable, controlling for all other
observed characteristics. If the predicted heights in that age range were significantly
different from one another, then that would suggest that there was unobserved
selection that could bias the results. Likewise, the predicted final adult height (aged
23–50) of a single birth cohort should not vary based on the year in which the cohort
was measured (year of recruitment, imprisonment, etc.) controlling for all other
observable characteristics. If the predicted height of the cohort changed over mea-
surement years, this would suggest that short-run conditions such as the demands of
the army, the business cycle, or other unobserved factors influenced individuals’
probability of being observed within a cohort. Bodenhorn et al. (2017) propose a
weak and strong test of this selection. The weak test simply adds one-year age or
measured-year dummies to the regression and tests their joint significance. The
stronger test interacts these one-year age or measured-year dummies with all birth
cohort dummies, testing whether the relationship between age or measured-year
and height differs significantly across birth cohorts. Bodenhorn et al. (2017) find
that many of the standard datasets used to analyze trends in adult heights in the
United States and the United Kingdom fail these tests of selection on unobservables.

These diagnostic tests are interesting and useful, but they are also limited in a few
respects. First, although they can provide evidence that selection on unobservables
may be present in a sample, this does not necessarily mean that the selection would
reverse established trends in the data. Zimran (2019) analyzed one potential selec-
tion mechanism into the Union Army and found that while selection on unobserv-
ables was present in the data, it did not explain away the industrial puzzle or
regional pattern in heights in the United States. Komlos and A’Hearn (2019) also
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analyze the Union Army records and show that the Bodenhorn et al. selection
mechanism was not at play in the data. Thus, although some datasets may be subject
to selection on unobservables, that does not mean that all inferences from the data
are wrong, especially when trends and patterns are corroborated in other sources
that have different selection mechanisms.

Second, these tests will be less helpful when there is age heaping or other mea-
surement error in ages in the data.1 Measurement error from age heaping could have
two potentially contradictory effects. The measurement error in age could lead to
attenuation bias in both the birth cohort and age dummy coefficients in the height
regressions. This would, therefore, increase the probability of making type II errors,
that is ruling out selection bias on unobservables when it was important. However, if
people within a birth cohort with heaped ages were systematically of lower human
capital and health “quality” than those who remembered their accurate ages, this
could create the illusion of selection on unobservables because people with rounded
ages would be shorter than their nonrounded counterparts even within the same
cohort. Thus, the effect of age heaping on the Bodenhorn et al. selection bias tests
is ambiguous. In the end, it is possible that many sources of adult height would fail
the strict selection bias tests that Bodenhorn et al. (2017) propose. However, histor-
ians do not have the luxury of returning to the past to collect random samples. Thus,
we need to develop ways of working with data that may have some potential bias
rather than simply scrapping datasets that fail the Bodenhorn et al. tests and reject-
ing all findings based on these datasets.

The Bodenhorn et al. (2017) selection bias diagnostics are also unfortunately
unable to assess selection on unobservables in sources of children’s growth. This
is because we must always include age dummies in the regressions to capture height
differences across ages. Finding a changing age pattern of growth across birth
cohorts could reflect selection on unobservables similar to what Bodenhorn et al.
(2017) suggest, but it could also simply be the result of the well-known change
in the growth pattern mentioned in the preceding text. Converting the children’s
heights to height-for-age Z-scores of modern World Health Organization (WHO)
standards would seem to be an easy way to eliminate the need to include age dummies
in the height regression. However, the pubertal growth spurt occurred at later ages in
historical populations than in modern, healthy populations. Thus, one tends to
observe a decline in height-for-age around age 12 for boys and age 10 for girls as
the modern children enter their pubertal growth spurt with recovery as the historical
children enter their own growth spurt and the modern children grow at lower veloc-
ities. This difference in the growth pattern means that the WHO reference produces
a distorted height-for-age profile for historical populations and would require age
dummies anyway to account for this (Schneider 2016). Thus, we cannot rely on the
diagnostic tests developed for adult height datasets to determine whether samples of
children’s heights may be problematic.

1Age heaping occurs when individuals round their age to the nearest number ending in 0 or 5 rather than
reporting their true age. A substantial fraction of individuals in the past heaped their ages, and the extent of
age heaping has been used as a proxy for the numeracy and level of human capital of populations in the past
(A’Hearn et al. 2009a).
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Discovering Selection Bias on Unobservables
Because more precise statistical tests of selection on unobservables do not work with
sources of children’s heights, we are left with fewer options in attempting to under-
stand selection on unobservables in these samples. Fundamental for understanding
selection bias is to take the time and effort to study the selection mechanisms into a
sample very carefully. This section walks through a series of datasets attempting to
understand whether and to what extent there is selection bias in each case. Each
dataset presents a different method for assessing whether selection bias on unob-
servables distorts the age pattern of growth. Unfortunately, there is no simple check-
list of steps to conduct in order rule out bias. However, I hope that the examples
provided will raise potential issues so that researchers are more aware of these in the
future. I will first discuss examples of potential selection bias in school sources
(which to an extent would also apply to prison samples) before moving on to mili-
tary sources.

School Sources

As mentioned in the preceding text, the most important source of selection bias in
school sources is likely to be the selection into secondary school. Typically, it is very
difficult to assess the extent of selection bias present from this positive selection because
we do not have population parameters with which to compare. However, in the case of
Japan, the population parameters exist to make the comparison. In the early twentieth
century, the Japanese government began recording the heights and weights of school-
children in all schools in the country and reporting national averages of heights and
weights for boys and girls at one-year age intervals. These national-level period growth
curves were reported annually from 1900 to the present and, therefore, serve as an
incredibly detailed set of information on changes in the growth pattern over time
(Ali et al. 2000; Mosk 1996). However, because the survey simply measured children
in school over time, there is potential for the selection bias described previously because
the enrollment rate varied across ages. For children ages 6 to 11 in primary school,
enrollment was universal capturing around 95 percent of the population. However,
enrollment fell dramatically after age 12 and was never above 10 percent for secondary
schools in the early twentieth century. The increase in secondary school enrollment
from 10 percent to near universal coverage across the twentieth century, then, could
substantially distort the observed changes in the pattern of growth.

There is some straightforward evidence that positive selection occurred since the
20-year-old male heights in the school data are substantially higher than the average
heights of 20-year-old men conscripted into the military from the same birth cohort:
the gap was 1.9 cm for soldiers and students measured in 1936 (see figure 3). These
military heights again covered approximately 95 percent of the population. How-
ever, we can see this process more clearly by looking at children in primary and
secondary schools separately. It is not possible to view children in the different
schools in the national data, but from 1929 to 1939, the average heights and weights
of boys and girls at each age are listed for primary and secondary schools separately
at the prefecture level. Thus, it is possible to aggregate up the prefecture level results
to the national level using population size as a weight. Figure 3 presents the results
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for boys measured at various ages in 1936. Clearly, children in secondary school
were positively selected because they are taller at all observable ages than children
in primary school. At the two ages where the largest number of children are in both
schools (12 and 13) the gap in the mean heights is 3.55 cm or 0.48 standard devia-
tions relative to the WHO reference. The growth profile of children in each school is
also influenced by selection at different ages. The first very small group of boys to
enter secondary school at age 11 were tall for their age even relative to boys who
entered secondary school later. We also see that the children remaining in primary
school at ages 14 and 15 became more and more negatively selected as the percent-
age of children in primary schools declined.

Although there is strong evidence of selection bias in the Japanese data, the data
highlights the fact that some signs of selection bias do not necessarily require that an
entire dataset be discarded. The information on children’s heights in primary school
before the age of 14 is of reasonably high quality and could be used to analyze children’s
heights. However, adjusting the secondary school data is much more difficult. The fact
that the height gap is much larger at ages 12 and 13 than at age 20 suggests that the
secondary children were not just taller children growing on the same growth curve as
the average child. Instead, the elite secondary school group had an earlier pubertal
growth spurt and likely grew at higher velocities across the growing years than the aver-
age group. This means that shifting the level of the secondary curve downward to match
the heights of the general population at ages 12 or 13 or age 20 would not account for
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Figure 3. Evidence of positive selection of children into secondary school in Japan, 1936.
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Source: see Schneider and Ogasawara (2018: Appendix B).
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differences in the tempo and velocity of growth between the two groups. Thus, until
better methods are developed or other corroboratory data is found, it may not be pos-
sible to accurately adjust the secondary school growth profile.

Another important source of selection on unobservables for school and prison
data is the institutional ecosystem in which a particular system exists. This may
influence which children enter the sample overall, but it also may lead to changing
bias over time as the institutional ecosystem changes. One example where the
institutional ecosystem influenced the growth profile constructed for children
comes from the Marcella Street Home, which was a residential school in late-nine-
teenth-century Boston. Generally, the Marcella Street Home served pauper children
and children whose parents had neglected them and had been sent to the home by
the courts. However, Schneider (2016: 292) found that between October 1895 and
June 1896 a large number of boys and a smaller number of girls entered the home to
serve sentences for truancy. These children appear to have been sent to the Marcella
Street Home because the city of Boston was attempting to move the location of the
truant school. Until 1895, the Boston Truant School was co-located on Deer Island
with the House of Industry, a jail for people convicted of minor crimes, and the
House of Reformation, which was a juvenile jail. However, the city decided that
the truant children should be located elsewhere to reduce the negative spillovers
from the other institutions, and so they funded the building of a new school called
the Parental School, which opened in late 1895 (Public Institutions Department
1895: 9–19; Public Institutions Department 1897: 14, 18). However, the transfer
was drawn out because of construction problems, and the Parental School was over-
crowded from the moment it was founded (Institutions Commissioner 1898: 18;
Public Institutions Department 1895: 16). Thus, it seems likely that the truant chil-
dren sent to the Marcella Street Home were sent there because there was not space
for them elsewhere in the system of public institutions. The truant children were
substantially older than the typical child in the Marcella Street Home and also taller
for their age (Schneider 2016: 337). Fortunately, there was an indication that these
children were different in the records and the analysis controlled for the truants as a
group. Otherwise, this influx of a separate population of children could have sub-
stantially biased the analysis.

The institutional ecosystem is also important for understanding the reliability of
the Bowditch data collected in Boston public schools introduced previously. One
way to assess whether the children were more positively selected at later ages is
to look at how the total enrollment in public schools changed across the school ages
and compare this to Bowditch’s sample, which was largely drawn from public
schools (Bowditch 1877: 7). Figure 4 shows the number of Boston children at each
age in public primary, grammar, and high schools in 1875. The number of children
in public school peaked at age eight and declined sharply between ages 15 and 16
when most children left grammar schools and far fewer entered high schools. In fact,
there are more children in the Bowditch sample at ages 16, 17, and 18 than were in
all public high schools in Boston, highlighting the fact that Bowditch relied quite
heavily on private high schools at these later ages. The sharp drop in enrollment
between ages 15 and 16 is doubly suspicious because this is the exact point at which
the male velocity curve increases dramatically (figure 2B). Thus, the positive selec-
tion may mislead researchers about the timing of the pubertal growth spurt.
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Staying with the Bowditch data, it is often possible to discover signs of selection
on unobservables by looking carefully at the age pattern of growth across the observ-
able categories. For instance, boys whose parents were born in America of the
professional and mercantile classes were consistently taller than boys of the skilled
and unskilled working classes before the age of 14 (figure 5A). However, from age 16
onward, the unskilled working-class children were either taller than or equal in
height-for-age Z-scores to the mercantile and professional classes. This same
pattern is present though less clear for girls whose parents were born in America
(figure 5B). While this is not incontrovertible proof of selection on unobservables,
it is highly suspicious given the nature of the selection process discussed earlier. This
potential for unobserved selection bias also makes it difficult to determine whether
there is catch-up growth between mid-childhood and adulthood. For both boys and
girls, the average height-for-age Z-score is higher in adulthood than in childhood
before the pubertal growth spurt (age 10 and lower). This could reflect catch-up
growth as children in the past had a longer growing period than children in modern
populations. However, it could also merely reflect the selection bias on unobserv-
ables in the sample where the population of children remaining in school at high
ages was positively selected on health. This example suggests that cliometricians
should look at the age pattern of growth across observable categories either as
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raw averages or by introducing interactions into regression models to check for any
suspicious patterns that might not be readily visible in the data.

Overall, the evidence presented here for Japan and Boston suggests that there was
positive selection on unobservables into secondary school and even into remaining
in primary school rather than the opposite effect as might be predicted by Bleakley
et al. (2013). Thus, cliometricians and human biologists need to be very careful in
using the findings of the nineteenth-century anthropometricians based on school
datasets to make claims about the growth pattern of children. The positive selection
into secondary school gives the appearance of a more accentuated pubertal growth
spurt in these datasets and may distort the age at peak growth velocity during
puberty.

Military Sources

When looking at military sources, other sources of selection on unobservables may
be more important. As described in general terms in the preceding text, minimum
age requirements may lead individuals to systematically misreport their age to enlist
at earlier ages than allowed. This type of selection was present in the Australian
Imperial Force (AIF) during World War I. Beginning in June 1915, the AIF had
strict age restrictions for enlistment. They did not allow soldiers under the age
of 18 to enlist and soldiers enlisting under the age of 21 needed permission from
their parents. Thus, there were incentives for those under the age of 18 to pretend
to be older. These men would likely be taller than the average 17-year-old so that
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they could pass as 18 more easily but shorter than the average 18-year-old. The same
may be true of those under 21. This selection bias, combined with systematic mea-
surement error created by misreporting of ages, would lead to an underestimate of
the average height of 18-year-olds, accentuating the growth still occurring after
that age.

Inwood and Maxwell-Stewart addressed this by linking the AIF enlistees for
Tasmania to their birth records where precise birth date information was available.2

Thus, it is possible to see which soldiers were lying about their age and what the
overall impact of their deception would be on the age pattern of height for the sol-
diers. Across all ages, the reported age and true age were identical for 75.0 percent of
enlistees. There was also considerable random noise in the reporting of age with 17.8
percent of recruits having a random error, that is a difference in reported and true
age that was not consistent with the soldier lying about his age to avoid the age
requirements. A total of 7.2 percent of the sample did systematically misrepresent
their age so that they could join the force before reaching the required age. This 7.2
percent may seem too low to influence the results, but the percentage of people sys-
tematically lying about their age at certain critical ages was much higher: 35.7 per-
cent of 18-year-olds and 18.8 percent of 21-year-olds. Thus, the results could be
altered dramatically at those two ages with important effects on inferences for
the growth pattern.

To test the effect of this selection bias/measurement error, I conduct two sets of
truncated maximum likelihood regressions with the dependent variable (height)
truncated at the minimum height requirement, which was 64 inches for the AIF
between June 1915 and April 1917 (Whitwell et al. 1997: 415). The regressions
include dummy variables controlling for the soldier’s father’s occupation in 12
HISCLASS categories, the soldier’s birthplace within Tasmania, and the unique
month that the soldier enlisted allowing for unobserved changes in recruitment pat-
terns. The variables of interest, however, are the dummies related to age. The first
regression specification includes dummies for reported age whereas the second
reports dummies for the soldiers’ true age. The reference categories for the dummy
variables were held constant so that the age pattern of height would be consistent
across the two estimations. Finally, because there was considerable random error in
the reporting of ages (17.8 percent of the sample), I did not want this random error
to cloud the influence of the systematic selection and error created by people trying
to cheat the system. Therefore, in the regressions I only included the 75.0 percent of
soldiers whose age was accurately reported along with the 7.2 percent who system-
atically lied about their age. Thus, the differences in height between the reported and
true ages reflect solely the influence of the systematic error.

Figure 6 presents the results graphically with the predicted height of soldiers
from the regressions shown by reported age and true age. Clearly, once the 16-
and 17-year-olds pretending to be 18 are given the correct age in the sample, the
predicted height of 18-year-olds increases dramatically by 0.69 cm. The 16- and
17-year-olds are much shorter than their 18-year-old counterparts, but their pre-
dicted heights were still far above the minimum height requirement of 162.56

2Many thanks to Hamish Maxwell-Stewart for providing the data and the idea to look at this particular
selection mechanism.
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cm, so it is plausible that they could pass as 18. The effect of men pretending to be 21
to enlist without the permission of their parents is ambiguous. This may be because
the majority of these men were 20 years old, and there were relatively small differ-
ences in height between 20- and 21-year-olds. However, overall, the selection bias
from people pretending to be 18 drastically changes the way one would interpret the
growth pattern. Based on the reported data, one would argue that there was still
substantial growth of greater than one centimeter (1.22 cm to be precise) between
ages 18 and 19. After the correction, we see that this growth after age 18 is much
smaller (0.55 cm) than we might have otherwise thought. In addition, the height of
18-year-olds is no longer statistically different than the height of 21-year-olds. This
suggests that growth was slowing at earlier ages with final adult height reached
between ages 18 and 19. The estimates for height at ages 16 and 17 may also be
overestimates because presumably taller and more developed 16- and 17-year-olds
could more easily pass for being 18. Thus, this case highlights that whenever there
are age thresholds that could encourage individuals to misrepresent their age, it is
possible to get biased estimates of the growth pattern.3
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3Horrell and Oxley (2016: Appendices A–C) include an extensive discussion of age thresholds and their
influence on the growth pattern of factory children in the 1830s. They do not believe that the Horner (1837)
data is biased.
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Another potential source of selection on unobservables in military data
highlighted by Bodenhorn et al. (2017: 191–93) stems from the fact that recruits,
say, at age 18 are removed from the population at risk of recruitment for a given
cohort at age 19 or later ages because soldiers could only enlist once. The removal of
“high quality” recruits at younger ages could produce real bias in the age pattern of
growth. It is extremely difficult to show this pattern with real data, so I will present
simulation evidence to show how this effect works. For the sake of argument,
assume that men become eligible to enlist in the army at age 17 and there is one
standard and binding minimum height requirement across all ages. The minimum
height requirement is at the 65th percentile of height of 17-year-olds in the popu-
lation and drops 10 percentiles for each year the cohort ages as it grows so that the
minimum height requirement is at the 25th percentile of height for 21-year-olds in
the population. We assume that the experiment is taking place during a major war
where 7.5 percent of men in a given cohort enlist at each age from 17 to 21. Thus,
37.5 percent of the total cohort population enlists, which is somewhat less than the
46 percent of males age 15–49 who enlisted in the army during World War I in
England andWales (Bailey et al. 2016: 43). Enlistment is determined randomly from
men with heights above the minimum height requirement. Once the men have
enlisted, they are no longer at risk for enlisting at subsequent ages and are removed
from the population distribution at risk for enlistment at the next age. With this
information, we can run a simple simulation to see the influence of men enlisting
at earlier ages on the growth pattern.

Figures 7A–7E show the standardized height distribution of the population with
a mean of zero and standard deviation of one at each age, the dashed gray curve. The
vertical gray line is the minimum height requirement. The black distribution is the
height distribution of the men enlisting at each age. Figure 7A shows that when
the first members of the cohort enlist at age 17, the height distribution of recruits
looks very similar to a truncated version of the population distribution. However, as
more and more men are removed from the population at risk as the cohort ages, the
distribution of recruits shifts to the left of the population distribution and no longer
matches the right tail of the population distribution. Although the population mean
height is zero across all ages, figure 7F plots the mean standardized height for the
population above the minimum height requirement at each age (dashed gray line).
This mean could be corrected to the population mean using truncated maximum
likelihood regressions. The mean standardized heights of recruits are given as the
black line. Both lines fall across ages as the cohort grows and the minimum height
requirement becomes less binding. The two means are the same at age 17 when the
first draw occurs, but by age 21, they are 0.24 standard deviations apart which is a
substantial difference. Thus, the fact that army recruits are removed from the pop-
ulation at risk at later ages could lead to downward bias in the heights of recruits as
the cohort ages, underestimating the growth occurring at later ages.

This simulation shows the potential for bias, but it is extremely difficult to adjust
for this in real data for a number of reasons. First, the percentage of a cohort that
enlisted would not be uniform across ages and would often be lower than 7.5 percent
at each age. If this cohort enlistment rate were very low, then the biases would be
much smaller. However, if say 20 percent of the cohort was recruited at age 18, this
would mean the bias would be even more pronounced at ages 19 and onward.
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Second, minimum height requirements were very rarely as binding as the simulation
assumes with many people below the minimum height being allowed into the mili-
tary. Minimum height requirements were also substantially relaxed during World
War I, which had the high enlistment rates that could produce bias (Bailey et al. 2016:
41; Whitwell et al. 1997: 415). Third, in some cases a large number of men were rejected
for service, so there was selection out of the cohort for rejected service as well, which
would push the mean standardized height upward closer to those for the population.
The biggest problem of testing this with real data, though, is that we do not have the
population height distribution, so it is extremely difficult to truly understand whether
the minimum height requirements were binding enough to produce the stark results
from the simulation. Even if the minimum height requirements were not binding, this
same bias could exist if selection into enlisting favored those in the upper part of the
height distribution. Thus, this source of selection bias is one that researchers working
with military data should consider seriously.

Other Biases and Measurement Error
In addition to the issues related to selection bias previously mentioned, it is also
worth noting a few sources of measurement error that can both hide unobserved
selection bias and create bias in the growth pattern in their own right. This section
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discusses bias introduced by period versus cohort growth curves, truncated samples
of children’s growth, and measurement error in ages.

The first measurement-related issue is the bias associated with mixing many
birth cohorts in the typical period (cross-sectional) growth curve used to study
children’s growth in the past. To illustrate this point, it is easiest to use a real-world
example, so here I use the national records of children’s growth in Japan mentioned
previously for the period before World War II. The records report the average
heights of boys and girls at ages 6 to 20 in every year from 1900 to 1939. This data
can be represented in a lexis diagram to better capture its period-cohort nature. The
gray box in figure 8 shows the age and date range of data that is available. The
accented black lines represent different growth curves that could be taken from
the data. The vertical lines represent the typical period or cross-sectional growth
curves available for historical periods. They reflect children at different ages mea-
sured in the same year, in this case 1922 or 1936. The diagonal lines reflect a birth
cohort moving through the various ages. The black accented diagonal line marks
the 1916 cohort growth curve, which is different than the period growth curve
because it follows the same children, those born in 1916, across their childhood
and adolescence.

The lexis diagram should immediately highlight one of the main problems with
period growth curves: they include children from a very large number of cohorts
who may have faced very different conditions in early life. The oldest children in
the 1922 period growth curve were born in 1902 whereas the youngest were born
in 1916. In a period where heights were increasing over time, this also leads to dis-
tortion in period growth curve. It will tend to flatten the height profile because the
oldest children are relatively shorter for their age than the youngest children.
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Figure 8. Lexis diagram showing the difference between period and cohort growth curves.
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Figure 9A shows the male period growth curves for 1922 and 1936 and the corre-
spondingmale cohort growth curve for 1916 as shown in the lexis diagram (figure 8).
The same figure could be produced for girls, but the patterns are very similar and it
is easier to gauge the magnitude of the selection bias for boys because boys can be
compared with male conscripts in the army. The period profiles are clearly flatter
relative to the cohort profile. All the growth curves have heights at age 20 above the
level for army conscripts measured in 1936 from the 1916 birth cohort, showing the
positive selection of children remaining in school as described in the preceding text.

The period distortion becomes clearer when looking at figure 9B. Here the
heights have been expressed as Z-scores of the WHO modern growth reference
including the heights of conscripts at age 20 in 1936. Looking at the two period
growth curves, there is some evidence of positive selection of students into second-
ary school because the height-for-age Z-scores of children are lower in primary
school than at the end of secondary school. However, the full extent of the selection
effect is attenuated by the mixing of birth cohorts because heights were increasing
during this period. Looking at the 1916 cohort growth curve, we can see that the
height-for-age Z-scores of children in primary school (up to age 13) are very similar
to the height-for-age Z-score of military conscripts at age 20 for the same birth
cohort. However, beginning around the time that most children left primary school,
the height-for-age Z-scores of the 1916 cohort increase dramatically. The effect of
children leaving school at these ages also accentuates the pubertal growth spurt
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more fully than would be the case in the absence of the selection bias. In the end, the
actual level of selection bias is far greater in the cohort growth curve (0.5 standard
deviations of the WHO reference) than in either of the period growth curves. This is
especially problematic for historical research because historians often rely on period
growth curves, which may hide the kind of selection bias observed in the Japanese
and Boston data in this article.

Another frequent issue with data on children’s growth is that some institutions
that captured children’s heights also had minimum height requirements like those
discussed for the AIF in the preceding text. Minimum height requirements were
common for training programs for the navy and merchant marine. For instance,
in their study of the Marine Society from the mid-eighteenth to mid-nineteenth centu-
ries, Floud et al. (1990: 164–65) found that the society changed its minimum height
requirement 13 times. The Marine Society set a minimum height requirement irrespec-
tive to age, but the opposite was the case for the training ship Exmouth, which varied its
minimum height requirements by the age of the children entering. It even produced
minimum height requirements by half age from ages 13 to 16 (Thirty-Fifth Annual
Report 1911: 5). However, in both the Marine Society and the training ship
Exmouth, the minimum height requirements were not strictly enforced.

To deal with these minimum height requirements, Floud et al. (1990: 164–65)
used the quantile bend estimator (QBE) developed by Wachter and Trussell
(1982) to adjust for the left-tail truncation. The QBE assumes that the data should
be normally distributed and compares the shape of the sample distribution with a
normal distribution in a quantile-quantile plot, finding the point at which the sam-
ple diverges from the normal distribution and the sample becomes incomplete. The
QBE method works better than the truncated maximum likelihood estimator when
the truncation point is undefined or not strictly enforced, but it does not easily allow
for multivariate analysis, which might be necessary if controlling for observables
were important (A’Hearn et al. 2009b: 2). Another crucial problem with the
QBE estimator is that we would not expect heights to be normally distributed at
each age across adolescence because of individual-level variation in developmental
tempo. At ages 13 and 14, children developing more quickly would experience the
pubertal growth spurt and fill out the right tail of the distribution. At the mid-point
of the pubertal growth spurt, the distribution should look more or less normal again.
Then, toward the end of the pubertal growth spurt, the distribution should look left
skewed as the late developers now stretch the left tail of the distribution. This natural
pattern of changing skewness is still present among healthy modern children but was
exaggerated in the past because of the greater dispersion in the age at peak velocity
during the pubertal growth spurt (A’Hearn et al. 2009b: 2; Gao and Schneider
2020). The fact that we would not expect the distributions to be normal also affects
the truncated maximum likelihood estimation technique that relies on a normal distri-
bution even though it does a much better job of producing smooth trends and plausible
height levels in the Marine Society data (Komlos 2004: 168).

We can see an example of how problematic the normality assumption is by
examining data from the training ship Exmouth. The data include all boys enrolled
on the training ship between 1903 and 1915 when the minimum height require-
ments described in detail in 1910 were in place (Thirty-Fifth Annual Report
1911: 5; Twenty-Ninth Annual Report 1905: 5). Birthdates and admission dates
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were available for all boys so we can be reasonably certain that their ages are pre-
cisely measured. Figure 10 presents the standardized height distributions with the
mean height at zero and a one standard deviation change in the distribution being
equal to a one unit increase of the horizontal axis (Z-scores). These are compared
with gray dashed normal distributions, and the minimum height requirements are
marked by the black dashed vertical lines. Clearly, the minimum height require-
ments were not binding because at some ages the mean height was below the mini-
mum height requirement. We can see some evidence of truncation at ages 11 and 12
before the pubertal growth spurt has begun, but at ages 13 to 14, how is it possible to
distinguish between the truncation effect and the expected right skew as the earliest
developers experience their growth spurt? Some left skew is noticeable by age 15.5
despite the truncation. Clearly, any estimation strategy that imposes normality on
these distributions, such as the QBE or the truncated maximum likelihood estima-
tor, will have difficulty in matching the untruncated distribution. A’Hearn et al.
(2009b) develop a semiparametric approach that does not require the distributions
to be normal, which might be of greater use when dealing with truncated distribu-
tions of children’s heights, if it could be adapted to account for the truncation points
and expected shifting skewness of the distribution.
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mum height requirements were clear and consistent.
Sources: Boys’ Record Books (1876–1915) Training Ship Exmouth, MS MAB/2512, London Metropolitan Archives (LMA),
London. Minimum height requirements from Thirty-Fifth Annual Report of the training ship Exmouth 1910 (1911)
MAB/2554, LMA, London: 5.
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A final source of bias is the misreporting of ages. We have seen in the preceding
text that age thresholds can produce substantial bias in the height profile, but any
misreporting of ages could affect the height profile if it were prevalent enough. Even
random error in ages can significantly affect the growth profile of children. Thus,
historical data must be consistently accurate in reporting ages for the data to be of
value when looking at long-run changes in the growth pattern.

Measurement error in reported age is important because the link between height
and age has long been known. In fact, some of the first systematic and large samples
of height data collected for British children were collected in an effort to enforce age
restrictions on child labor introduced by the Factory Act of 1833. Factory inspectors
tasked with enforcing the law needed a way of verifying the ages of children so that
factory and mill owners could be held accountable for their labor practices.
Therefore, several surgeons began measuring height and tooth eruption as a way
of predicting a child’s age (Horrell and Oxley 2016: 52–53; Kirby 2013: 99–110).
Horrell and Oxley (2016: Appendices A–C) discuss how the legislation may have
created age thresholds in their data but generally find that these were not too prob-
lematic. However, height and age continued to be powerfully linked in the minds of
doctors and medical officers of the period and could introduce bias into growth
profiles measured in nineteenth-century data.

The training ship Exmouth, again, provides useful evidence to test these problems
with real data. For the first few years after the Exmouth opened (1877–81), the offi-
cers recorded up to two ages for each boy. They always included the age reported by
the boy, but for a subsample of boys, the officers also provided their own estimation
of the boy’s age, which they called the “supposed age.” The officers provided esti-
mated ages for 26.7 percent of boys entering the Exmouth during those years almost
always giving the boys a lower estimated age than their reported age.4 Thus, the
officers clearly thought that some children were far too short to be the age that they
reported. However, what is interesting is that the officers did not base their estimations
on a simple height threshold. Figure 11A shows the distribution of height-for-age
Z-scores of boys whose age was accepted by the medical officer as reliable versus those
who were given an estimated age. While the boys who were given an estimated age
were shorter than their counterparts whose age was accepted, the distribution of
height-for-age for boys given an estimated age was quite wide extending beyond
the mean height-for-age Z-score of boys whose age was accepted. Thus, it is not clear
how the officers decided who was misreporting (or misinformed about) their age.

The pattern of estimated ages also does not suggest that children were lying to
enroll on the ship at earlier ages. Although the admission criteria on the Exmouth
are far from clear in these early days, the ship’s administrators took children with
reported ages under 12 and the percentage who were given an estimated age
increased with the age reported (figure 11B). Thus, it does not seem that children
were misrepresenting their ages to enroll on the ship at earlier ages than regulations
allowed. There were no minimum height requirements in place during this period,
so that could not have influenced decisions about age reporting. The only criteria

4The officers gave a higher estimated age than reported age in only 0.6 percent of cases in which an
estimated age was given.
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might be related to the time spent on the ship before being sent to the navy or mer-
chant marine. Boys entering the ship at later ages spent substantially fewer months
on the Exmouth, and so would be able to join a merchant ship or the navy more
quickly than children entering at younger ages. However, when we compare the
time children with reliable ages spent on the ship with those where an estimated
age was given (figure 11C), we see that the ship required the children with estimated
ages to remain on the ship for much longer. Thus, there were few benefits for the
children from misreporting their ages.

However, this does raise real issues about what a researcher should do with this data.
Should the reported ages or the estimated ages be used when comparing these children
over time or to other children? Figure 11D shows two growth curves: one based on
the reported ages given to all children and another that corrects the reported age
to the estimated age for children with an estimated age. Clearly, the average heights
of the children increased substantially when conducting this age correction. The
average height-for-age Z-score increases from –3.14 to –2.89. So which age measure
is correct? On what basis would a researcher make that decision?
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This issue also raises questions about how the institution’s record-keeping prac-
tice changed over time. The captain-superintendent of the Exmouth first recom-
mended that the ship introduce minimum height requirements in the annual
report of 1880 in part because of the supposed error in the reported ages on the
ship (Fifth Annual Report 1881: 24–25). If we look at the height distribution of boys
reported at age 12 during the period in which estimated ages were listed (1877–81)
and the period shortly thereafter (1882–86), the height distribution in the later
period shifts substantially to the right (figure 11E). This could have been driven
in part by the introduction of minimum height requirements, which would have
encouraged all involved to report ages correctly. However, these minimum height
requirements were not remotely followed during the later period. Figure 11E shows
that the minimum height requirement (vertical line) was substantially above the mean
and median of the height distribution (1882–86). Thus, it is unclear whether the
reported ages became more accurate after 1881 or the person measuring the children’s
height simply started listing their estimated age as their reported age in the records. This
problem becomes less of an issue when birth dates are recorded for the Exmouth later in
the nineteenth century, but it does raise serious questions about how to interpret
changes in mean height and the height distribution between the two periods.

Although this case was specific to the Exmouth, this example of potentially mis-
reported ages suggests how important it is to take the time to understand historical
height datasets very carefully. It is often possible to detect how the records are subtly
changing over time, but this is not possible if all datasets are transcribed by research
assistants with little input from the principal investigator. Measurement error in
ages may not be detectable at all in some cases, highlighting the importance of tri-
angulating key results with multiple datasets.

In sum, there are a number of potential sources of bias and measurement error
not directly related to selection on unobservables that could still influence the growth
pattern and diminish a researcher’s ability to detect selection bias. Researchers need to
consider the potential biases introduced by using period growth curves, truncated sam-
ples, and samples with measurement error in ages and weigh the strengths of the dataset
relative to the potential biases. Unfortunately, this will mean that some datasets are very
difficult to work with and may need to be abandoned.

Conclusion
This article has shown how sample-selection bias and other sources of measurement
error and bias could substantially distort inferences about the growth pattern of
children. The most important sources of bias raised here are the positive selection
of children at later ages into remaining in secondary school, individuals lying about
their age around age thresholds, the institutional ecosystem that determines the
institutions in which children end up, and soldiers enlisting at younger ages falling
out of the population at risk for enlistment at subsequent ages. Measurement error
can also bias the growth pattern, so researchers need to understand the biases that
arise from period versus cohort growth curves, truncation created by minimum
height requirements, and systematic measurement error in ages.

However, the selection biases discussed in this article do not require substantial
changes to the current state of the field for two reasons. First, the changing growth
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pattern of children is relatively understudied compared with trends in adult stature,
so there are fewer studies that could have fallen into these errors. Second, anthro-
pometric historians tend to be fairly careful in their research, so many of the poten-
tial issues with existing datasets have already been discussed at length (Horrell and
Oxley 2016; Schneider 2016). Instead, I hope that this article can serve as a guide for
those approaching the topic in the future, which should help prevent larger critiques
from accumulating as in the industrialization puzzle.

Having said this, there are three ways in which this article should lead to revisions
or at least inquisitive skepticism toward the existing literature. First, the data that
Roberts (1874) and Bowditch (1877, 1879), along with the other anthropometricians
at the end of the nineteenth century, used to establish a strong pubertal growth spurt
are often flawed. Because they drew mostly from public schools, it is very difficult to
rule out the positive selection discussed at length in this article. This does not mean
that the pubertal growth spurt did not exist in this earlier period, but we must be
incredibly cautious about how we interpret their data. Thus, further analysis using
longitudinal microdata is necessary to truly understand the growth pattern of
children in the nineteenth century (Gao and Schneider 2020).

In addition, studies of the change in the growth pattern of Japanese children
using the height data collected by the Ministry of Education over the twentieth cen-
tury suffer from serious bias as discussed in the preceding text (Ali et al. 2000; Mosk
1996). Because the percentage of the population attending secondary school rose
from less than 10 percent to near universal rates, the amount of positive selection
into secondary school has changed dramatically over time. Most studies using this
data have not taken this into account, though those looking at the postwar period or
using the National Nutritional Surveys (Cole and Mori, 2017) may not suffer to the
same extent. Finally, papers that have used truncated maximum likelihood or quan-
tile bend estimation to deal with minimum height requirements for boys during the
adolescent years are very likely to produce biased results because we would not
expect boys’ heights to be normally distributed at these ages (Floud et al. 1990:
164–65; Komlos 2004: 168). Thus, it seems at the moment that anthropometric his-
torians are ill-equipped to deal with truncated samples of adolescent heights. We
will need new statistical techniques to overcome these challenges.
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