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Abstract
Configurable platforms bring a research field to expand the attributes of parallel manipulators. This work is devoted
to investigate the kinematics of a nine-degrees-of-freedom parallel manipulator whose active kinematic pairs are
located near to the fixed platform, and it is equipped with a 6-R configurable platform. The mobility of the pro-
posed 9-UPUR{6R} configurable parallel manipulator is such that it is possible to manipulate the kinematics of a
grasping triangle associated to the configurable platform. The theory of screws is systematically applied to solve
the direct and inverse infinitesimal kinematics of the manipulator. As an intermediate step, the displacement analy-
sis is approached by means of algebraic geometry. The contribution is complemented with numerical examples to
illustrate the versatility of the method of kinematic analysis.

1. Introduction
A typical parallel manipulator is made of a fixed platform and a moving platform in-parallel connection
by several legs or limbs. Due to their closed-loop architectures, only a subset of the mechanism joints is
actuated allowing for a full control of the parallel manipulator. The combination of low inertia, accuracy,
and high stiffness allowed parallel manipulators to be successfully used in several applications ranging
from seminal flight simulators to high-speed pick-and-place and haptic devices. In that concern, the
Adept Quattro, a commercially available four-legged parallel manipulator, is the world’s fastest packag-
ing robot. Despite their successful applications in both academic and industrial sectors, shortcomings of
parallel manipulators such as their limited workspace, poor manipulability, and the presence of recurrent
singularities have been extensively discussed in the literature. Hence, in recent years, parallel manipu-
lators with configurable platforms, a kind of robots closer to the so-called metamorphic or deployable
mechanisms [1, 2, 3], have been introduced as an option to ameliorate the drawbacks of parallel manipu-
lators with rigid moving platforms [4, 5, 6, 7]. Parallel manipulators with configurable moving platforms
are a different type of architecture in which the classical moving platform is replaced by a novel closed-
loop kinematic chain introducing internal o extra degrees of freedom to the parallel manipulator. More
than an academic curiosity, the inclusion of a configurable platform offers interesting advantages, e.g.,
the internal mobility of the configurable platform allows for an interaction with the environment from
multiple contact points. Furthermore, the increased mobility of the configurable platform may be used
to avoid or to escape from singular configurations. The first contribution to glimpse this type of manip-
ulators was published at the beginning of the 21st century [8] where a configurable platform is proposed
as a gripper. Few years later, a generalization of the concept was introduced in ref. [4]. Following these
seminal papers, the concept of configurable platform was applied in well-known parallel manipulators
such as the Delta robot [9] and the Gough-Stewart platform [10].
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Figure 1. Parallel manipulator with configurable platform.

In this work, a nine-legged in-parallel manipulator with configurable platform is introduced with
the purpose to control the position of three points of the configurable platform. The chosen points are
located on different links of the configurable platform, so that the three points form a grasping triangle.
The closure equations of the inverse-forward position analyses are established taking into account the
motion constraints of the configurable platform as well as the symmetric topology of the limbs. While
the inverse position analysis equations lead to a closed form solution that yields a unique solution,
the direct position analysis is a more challenging task which leads to 27 or 18 nonlinear equations that
are solved by means of the Newton-homotopy method. On the other hand, the infinitesimal kinematics of
the proposed robot is approached by means of the theory of screws. Finally, the reliability of the method
of kinematic analysis introduced in the contribution is proved with numerical examples covering most
of the topics treated in the contribution.

2. Description of the parallel manipulator with configurable platform
The proposed robot, see Fig. 1, consists of a fixed platform in-parallel connection with a configurable
moving platform by means of nine limbs with identical topologies. Two architectures are contemplated
for the configurable platform, see Fig. 2. In order to explain the geometry of the robot, let us consider
that O_XYZ is a reference frame attached to the center O of the fixed platform where the Z−axis is
normal to the plane of the fixed platform. The fixed platform shapes a regular nonagon of side a where
their vertices are notated by points Ai that are located by vectors ai. Unless otherwise stated, in the rest
of the contribution i = 1, 2, 3, . . . , 9. The i−th limb is assembled to the fixed platform by means of a
lower universal joint U whose axes intersect at point Ai. Following the lower universal joint, there is an
actuated prismatic joint P which ends in an upper universal joint whose axes intersect at point Bi which
is located by vector bi. With the purpose to simulate a spherical joint, a revolute joint R follows the upper
universal joint. Hence, the legs of the robot are of the UPUR-type. Finally, the limbs of the robot are
connected to the configurable platform by means of revolute joints whose nominal positions are denoted
by points Ci that are located by vectors ci. In order to realize the mechanical assembly, there is an offset h
between the links of the configurable platform and the corresponding upper universal joints. On the other
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Figure 2. Topology of the configurable platform. Bent ternary links and straight ternary links.

hand, the configurable platform shapes an hexagon able to change its contour. That is, unlike the typical
rigid platform, the configurable platform of the robot is able to modify the geometry of its contour. Three
binary links, labeled mi(i = 2, 4, 6), and three ternary links, labeled mi(i = 1, 3, 5), in series connection in
an alternating manner make up the configurable platform. Indeed, the 6R̄ configurable platform provides
three internal degrees of freedom to the robot where R̄ denotes the revolute joint connecting a binary
link with a ternary link of the configurable platform. With this in mind, for brevity, the proposed robot
is designated as a 9-UPUR{6R} parallel manipulator where the braces denote the revolute joints of the
configurable platform.

The mobility of the mechanism can be explained without necessarily a deep mathematical rigor by
separating the mobility of the robot into the mobility of the configurable platform and adding the mobil-
ity of the manipulator as if it were a conventional 9-UPUR parallel manipulator provided with a rigid
platform. The mobility of the configurable platform is computed taking into account that the revolute
joints lie in the plane of the configurable platform. That is, the axes of the revolute joints are parallel.
It is therefore understandable to assume that the assembly of the links is such that the movement of
the links is limited to being in-parallel planes, to form what is known as a planar coupling. In such a
case, the degrees of freedom of the links of the configurable platform are three instead of six due to the
constraints imposed by the joints. Hence, the mobility Ma of the configurable platform is computed by
resorting to the Chebychev–Grübler–Kutzbach criterion as M = 3(N − 1 − j) + ∑i

i=1 fi where N = 6 is
the number of links, j = 6 is the number of kinematic pairs, and

∑i
i=1 fi = 6 is the sum of the degrees

of freedom of the kinematic pairs. Thus, one obtains Ma = 3. On the other hand, the mobility Mb of
the conventional 9-UPUR parallel manipulator is determined taking into account in this case that the
Chebychev–Grübler–Kutzbach criterion is given by Mb = 6(N − 1 − j) + ∑i

i=1 fi where N = 29, j = 36,
and

∑i
i=1 fi = 54 which yields Mb = 6. Afterward, it concludes that the 9-UPUR{R} parallel manip-

ulator with configurable platform is capable of supporting nine degrees of freedom. This gives us the
opportunity of having nine active kinematic pairs, the prismatic joints are the natural option, with which
it is possible to perform tasks under different operating modes of the robot. For example, one could select
a link of the configurable platform as the end-effector and then one could control the position and ori-
entation of the end-effector and still have three additional degrees of freedom. This concept of extra
freedoms is known as actuation redundancy and was introduced in refs. [11, 12]. Actuation redundancy
does not modify the mobility of the robot but enriches it with more actuators than necessary to carry
out the tasks entrusted to it. The extra motors may be used for instance to reduce the singularities within
the workspace of the manipulator. The idea of the contribution is not to introduce a parallel manipu-
lator with actuation redundancy but to take advantage of the nine degrees of freedom of the robot in a
configurable platform. To this end, the conventional rigid moving platform is replaced by a 6-R planar
closed kinematic chain in which ternary and binary links are articulated alternately. Once the mobility
of the mechanism has been justified, the application of the degrees of freedom and the selection of the
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active kinematic pairs of it are the next natural steps. Undoubtedly, the choice of the nine prismatic pairs
as the active kinematic pairs is the best option. On the other hand, the choice of three points located
in different links of the configurable platform complements this reasonable conjugation of degrees of
freedom and where to apply them. These points form what is called a grasping triangle. Moreover, the
points where motion is shared between ternary and binary links are selected as the vertices of the grasp-
ing. In that sense, it is appropriate to recognize that while it is true that the inverse and direct kinematics
of the triangle are perfectly controllable by the combined action of the prismatic joints, the links of
the configurable platform will undergo parasitic rotations. Owing to the in-parallel arrangement of the
proposed robot, unlike the contribution introduced in ref. [10], conveniently the nine prismatic joints of
the parallel manipulator under study are actuated and therefore all the motors of it are mounted near to
the fixed platform.

3. Displacement analysis
The position analysis of parallel manipulators, especially the direct position analysis, has been a topic
of great relevance for most kinematicians. The subject has attracted the attention of mathematicians
and engineers alike with the aim of developing efficient methods of analysis as well as improving exist-
ing methods. The number of contributions that address the subject is remarkable, yet it remains an
open problem of great interest given its importance in the control of robots with topologically paral-
lel kinematic chains. Given the recent inclusion of parallel manipulators with configurable platforms,
the position analysis of these novel mechanisms will surely be a topic of growing interest owing to
the challenges it represents. In this section, the inverse and forward displacement analyses of the robot
under study are approached by resorting to simple algebraic geometry. The merits of the section can be
summarized in how easy and systematically are obtained the closure equations.

3.1. Inverse position analysis
The inverse position analysis is based on the computation of the generalized coordinates qi(i =
1, 2, 3, . . . , 9) that meet a specific configuration of the grasping triangle �C1C4C7. In other words,
given the coordinates of the vertices of the grasping triangle, the points C1, C4, and C7; it is required
to determine the generalized coordinates qi(i = 1, 2, 3, . . . , 9) that satisfy the given configuration. The
configurable platform composed of bent ternary links is considered first. For this purpose, the inverse
position analysis is based on dividing the geometry of the configurable platform into three polygons.
For example, one polygon is shaped with the points C1, C2, C3, and C4.

As an initial step, it is evident that if the coordinates of the points C1, C4, and C7 are known, then the
unit vector n̂ normal to the plane of the triangle �C1C4C7, named the grasping triangle, is determined
directly as follows:

n̂ = (c4 − c1) × (c7 − c1)

| (c4 − c1) × (c7 − c1) | (1)

The inverse position analysis is first focused on the calculation of the coordinates of points Ci+1 and
Ci+2, see Fig. 3, of each one of the three polygons. From the triangle �CiCi+2Ci+3, two closure equations
are generated as follows:

e2 − c2 − r2
i + 2rili = 0, h2

i − c2 + l2
i = 0 (2)

which allow us to calculate the values of hi and li. Thereafter, the vector hi denoting the position of point
Hi is computed as

hi = ci + (ri − li)r̂i (3)
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Figure 3. Geometry of the i−th polygon of the configurable platform.

where r̂i is a unit vector pointed from point Ci to point Ci+3. Following this natural sequence, the vector
ci+2 turns out to be

ci+2 = hi + hiûi (4)

where ûi is a unit vector normal to the vectors r̂i and n̂. That is,

ûi = r̂i × n̂ (5)

On the other hand, the vector ci+2 is computed taking into account that the vector di is given by

di = (ci + ci+2)/2 (6)

Hence,

ci+1 = di + dŵi (7)

Therein, ŵi is a unit vector normal to the unit vectors v̂i, pointed from point Ci to point Ci+2, and n̂.
That is,

ŵi = v̂i × n̂ (8)

Once the procedure is applied to each one of the three polygons, the vectors bi(i = 1, 2, 3, . . . , 9) are
computed as follows:

bi = ci − hn̂ i = 1, 2, 3, . . . , 9 (9)

Finally, the generalized coordinates qi(i = 1, 2, 3, . . . , 9) meeting the conditions imposed to the
grasping triangle are calculated as follows:

q2
i = (bi − ai) · (bi − ai) i = 1, 2, 3, . . . , 9 (10)

The method outlined in the contribution for solving the inverse position analysis is easy to follow and
allows to obtain a closed-form solution of it with a unique solution. In other words, given the coordinates
of points Ci, there is only one solution for the inverse position analysis of the robot. Furthermore, once
the inverse position analysis of the robot with configurable platform composed of bent ternary links
was achieved, the inverse position analysis of the robot with configurable platform composed of straight
links is straightforward.

3.2. Forward position analysis
The direct position analysis consists of determining the coordinates of the points Ci(i = 1, 2, 3, . . . , 9)
of the configurable platform given a set of generalized coordinates qi. To this end, in addition to the
closure equations introduced for the inverse position analysis, it is possible to consider additional closure
equations that allow us to formulate the forward position analysis. The analysis is dedicated first to the
robot with configurable platform composed of bent ternary links. To this end, for simplicity consider
the polygon C1C2C3C4.
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From the parameters c, d, and e, three closure equations will be given by

(c4 − c3) · (c4 − c3) = c2, (c2 − c1) · (c2 − c1) = d2, and (c3 − c1) · (c3 − c1) = e2 (11)

It is straightforward to show that similar expressions to (11) can be obtained from the poly-
gons C4C5C6C7 and C7C8C9C1. On the other hand, since the points Ci lie in the same plane, then
from the orthogonality condition between the vector n and the plane of the configurable platform it
follows that

(ci+1 − ci) · n = 0, i = 1, 2, 3, . . . , 9 (12)

where c10 = c1. Meanwhile, assuming that h = 0, then bi = ci which implies that from the generalized
coordinates qi we obtain that

(ci − ai) · (ci − ai) = q2
i (13)

The algorithm for solving the direct position analysis consists of the following steps:

1. Write the nine points Ci in terms of unknown coordinates wi(i = 1, 2, 3, . . . , 27) to be determined
C1 = (w1, w2, w3), C2 = (w4, w5, w6), · · · , C9 = (w25, w26, w27).

2. Symbolically compute the vector n, e.g., n = (c4 − c1) × (c7 − c1).
3. Generate nine quadratic equations based on expressions (11).
4. Write nine quadratic equations from Eq. (12).
5. Generate nine quadratic equations by resorting to Eq. (13).

Dealing with the robot whose configurable platform is composed of straight ternary links, the
forward displacement analysis can be performed in a simpler way. Indeed, key points C∗ of the con-
figurable platform may be expressed in terms of unknown coordinates w∗ as follows C1 = (w1, w2, w3),
C3 = (w4, w5, w6), C4 = (w7, w8, w9), C6 = (w10, w11, w12), C7 = (w13, w14, w15), and C9 = (w16, w17, w18).
Afterward, the points C2, C5, and C8 located at the middle of their corresponding ternary links can be
expressed as

C2 = (C1 + C3)/2, C5 = (C4 + C6)/2, and C8 = (C7 + C9)/2 (14)

Six closure equations are written based on the separations of the revolute joints as follows:

(c3 − c1) · (c3 − c1) = e2, (c4 − c3) · (c4 − c3) = c2,

(c6 − c4) · (c6 − c4) = e2, (c7 − c6) · (c7 − c6) = c2,

(c9 − c7) · (c9 − c7) = e2, (c1 − c9) · (c1 − c9) = c2, (15)

where the shape of the ternary links e = 2c cos 20◦. Furthermore, due to the planar condition of the
configurable platform, it follows that

(c9 − c1) · n̂ = 0, (c4 − c3) · n̂ = 0, (c7 − c6) · n̂ = 0, (16)

The eighteen closure equations required to find the unknowns wi(i = 1, 2, 3, . . . , 18) may be com-
pleted considering that h = 0. Thereafter, one can resort to Eq. (13) to achieve this task.

Finally, the reduction of the 27 or 18 nonlinear equations generated in the forward position analysis
into a univariate polynomial equation is a formidable and perhaps unrealistic task that beyond the scope
of the contribution. Hence, for the sake of completeness in the contribution, the Newton-homotopy
method [13, 14] is employed to numerically find some solutions of the forward position analysis.

4. Infinitesimal kinematics
The mathematical tool selected to perform the infinitesimal kinematics of the robot is the theory of
screws [15]. The vector properties of velocity of the rigid body can be summarized in the so-called
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Figure 4. Open kinematic chain and its infinitesimal screws.

velocity state or twist about a screw of Ball. This kinematic entity, defined as V∗ =
[
ω

v∗

]
, is a vector

formed by the concatenation of two vectors: the angular velocity vector ω, named the primal part of
V∗, and the velocity vector of a point ∗, named the dual part V∗, of the rigid body. The point O is
designated as the reference pole. On the other hand, the vector properties of acceleration of the rigid
body maybe expressed in the so-called acceleration state A∗ of Brand which is defined according to
the angular acceleration vector α of the body and the acceleration vector a∗ of the reference pole ∗ as

A∗ =
[

α

a∗ − ω × v∗

]
. The vector α is named the primal part of A∗, whereas a∗ − ω × v∗ is named the

dual part of A∗. Both the velocity and acceleration states of the rigid body are governed by the rules of
helicoidal vector fields [16]. Since the representation of the kinematic states is not unique but depends on
the point of the body under consideration then according to the properties of helical fields, it is possible
to relate the kinematic states of two points P and Q of the rigid body as follows:

VQ =
[

P(VP)

D(VP) + P(VP) × rQ/P

]
, AQ =

[
P(AP)

D(AP) + P(AP) × rQ/P

]
(17)

where VP =
[

P(VP)
D(VP)

]
=

[
ω

vP

]
while AP =

[
P(AP)
D(AP)

]
=

[
α

aP − ω × vP

]
. Furthermore, rQ/P is the position

vector of point Q with respect to point P.
Figure 4 shows and open kinematic chain where 0 denotes the fixed link while m represents the

terminal link. The velocity state of body m as measured from body 0 taking point O as the reference
pole may be expressed in screw form as follows:

0Vm
O =

[
0ωm

vO

]

= 0ω1
0$1 + 1ω2

1$2 + · · · + m−2ωm−1
m−2$m−1 + m−1ωm

m−1$m (18)

where kωk+1 is the joint rate velocity between two adjacent bodies k and k + 1. Meanwhile, k$k+1 is the
infinitesimal screw associated to the kinematic pair between adjacent bodies k and k + 1. For brevity, the
reference pole is not indicated on the screw $; however, it is understood that its calculation is achieved
considering point O as the reference pole. Any kinematic pair can be represented either by an infinites-
imal screw or by the conjugate action of a set of screws, hence the universality and versatility of Eq.
(18). After the successful representation in screw form of the velocity state of Ball, the derivation of the
equation in screw form of the acceleration state of Brand took several decades for its correct mathemat-
ical structuring thanks to the contribution of Rico and Duffy [17]. After some anger and resistance in
the kinematic community, this six-dimensional vector was finally established an accepted as follows:

0Am
O =

[
0αm

aO − 0ωm × vO

]

= 0α1
0$1 + 1α2

1$2 + · · · + m−2αm−1
m−2$m−1 + m−1αm

m−1$m + S (19)
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Figure 5. Infinitesimal screws of the robot.

where kαk+1 = d

dt
kωk+1 is the joint rate acceleration between adjacent bodies k and k + 1 of the serial

chain. Meanwhile, S is the so-called Lie screw of acceleration, in honor of Marius Sophus Lie, which
is given by

S = [
0ω1

0$1
1ω2

1$2 + · · · + 1ω2
1$2 + · · · + m−2ωm−1

m−2$m−1 + m−1ωm
m−1$m

]
+ [

1ω2
1$2

2ω3
2$3 + · · · + 1ω2

1$2 + · · · + m−2ωm−1
m−2$m−1 + m−1ωm

m−1$m
]

+ · · · + [
m−2ωm−1

m−2$m−1
m−1ωm

m−1$m
]

(20)

where the brackets
[∗ ∗]

denote the Lie product. The development of the velocity state of Ball and the
acceleration state of Brand in screw form is one of the highlights of screw theory.

Compared with the kinematic analysis of a conventional parallel manipulator, the complexity of a
manipulator with a configurable platform increases considerably. For example, it could be argued that
the manipulator under study consists of nine moving platforms, a situation that requires a systematic
analysis procedure. The strategy proposed in the contribution consists of selecting a link of the config-
urable platform as if it were the moving platform of a conventional parallel manipulator. Without loss
of generality, the ternary link m1 is chosen as the moving platform of the robot.

4.1. Velocity analysis
Figure 5 shows the screws of the configurable platform as well as the screws of the ith limb of the parallel
manipulator.

Let us consider that Vm is a six-dimensional vector that is composed by the passive joint rate velocities
of the configurable platform as follows:

Vm = [
m1ωm2 m2ωm3 m3ωm4 m4ωm5 m5ωm6 m6ωm1

]T (21)

On the other hand, since the ternary link m1 has been chosen as the main body of the kinematic anal-
ysis, the velocity state of body m1 as measured from the fixed platform 0 notated as the six-dimensional

vector 0Vm1
O =

[
0ωm1

0vm1
O

]
in which 0ωm1 denotes the angular velocity vector of body m1 as observed from

body 0 while 0vm1
O denotes the velocity of a point of the body m1 which is instantaneously coincident
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with the origin O of the fixed reference frame, may be expressed in screw form through any of the nine
legs of the robot. Considering the three limbs connecting directly body m1 to body 0 it follows that

0Vm1
O = 0ω

i
1

0$1
i + 1ω

i
2

1$2
i + 2ω

i
3

2$3
i + · · · + 5ω

i
6

5$6
i i = 1, 2, 3 (22)

Expression (22) is insufficient to determine the input–output equation of velocity of m1, but it is a
good beginning. This disadvantage can be ameliorated by resorting to the extremities of link m3. The

velocity state 0Vm3
O =

[
0ωm3

0vm3
O

]
may be written in screw form through any of its extremities as follows:

0Vm3
O = 0ω

i
1

0$1
i + 1ω

i
2

1$2
i + 2ω

i
3

2$3
i + · · · + 5ω

i
6

5$6
i i = 4, 5, 6 (23)

Furthermore, the velocity state 0Vm3
O may be written upon the velocity state 0Vm1

O as
0Vm3

O = 0Vm1
O + m1Vm3

O (24)

where
m1Vm3

O = m1ωm2
m1 $m2 + m2ωm3

m2 $m3

Therefore,
0Vm1

O + m1ωm2
m1 $m2 + m2ωm3

m2 $m3 = 0ω
i
1

0$1
i + 1ω

i
2

1$2
i + 2ω

i
3

2$3
i + · · · + 5ω

i
6

5$6
i i = 4, 5, 6 (25)

Similarly, from the ternary link m5 it follows that the velocity state 0Vm5
O =

[
0ωm5

0vm5
O

]
is given in screw

form as follows:
0Vm5

O = 0ω
i
1

0$1
i + 1ω

i
2

1$2
i + 2ω

i
3

2$3
i + · · · + 5ω

i
6

5$6
i i = 7, 8, 9 (26)

or in terms of the velocity state 0Vm1
O we have

0Vm5
O = 0Vm1

O + 1Vm5
O (27)

where 1Vm5
O = m1ωm2

m1 $m2 + m2ωm3
m2 $m3 + m3ωm4

m3 $m4 + m4ωm5
m4 $m5 . Therefore,

0Vm1
O + m1ωm2

m1 $m2 + m2ωm3
m2 $m3 + m3ωm4

m3 $m4 + m4ωm5
m4 $m5

= 0ω
i
1

0$1
i + 1ω

i
2

1$2
i + 2ω

i
3

2$3
i + · · · + 5ω

i
6

5$6
i i = 7, 8, 9 (28)

Finally, consider that the configurable platform is a closed kinematic chain, then the velocity state of
body m1 as measured from the same body m1 vanishes and may be written in screw form as follows:

m1Vm1
O = m1ωm2

m1 $m2 + m2ωm3
m2 $m3 + m3ωm4

m3 $m4 + m4ωm5
m4 $m5 + m5ωm6

m5 $m6 + m6ωm1
m6 $m1

=
[

0
0

]
(29)

In what follows the input–output equation of velocity of the ternary link m1 is achieved by applying
recursively reciprocal screw theory through the Klein form which is notated as {∗; ∗} [18, 19]. The
cancellation of the passive joint rate velocities of the extremities of the robot is one of the benefits of
this strategy.

Let us consider that �i(i = 1, 2, 3, · · · , 9) is the ith line in Plücker coordinates directed from point Ai

to point Bi. The application of the ith line �i with both sides of Eq. (22) after reducing terms leads to{
�i;

0Vm1
O

} = 2ω
i
3 i = 1, 2, 3 (30)

Similarly, from Eq. (25) it follows that{
�i;

0Vm1
O + m1ωm2

m1 $m2 + m2ωm3
m2 $m3

} = 2ω
i
3 i = 4, 5, 6 (31)

Meanwhile upon Eq. (28) we have that{
�i;

0Vm1
O + m1ωm2

m1 $m2 + m2ωm3
m2 $m3 + m3ωm4

m3 $m4 + m4ωm5
m4 $m5

} = 2ω
i
3 i = 7, 8, 9 (32)
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On the other hand, let us consider three lines in Plücker coordinates associated to the configurable
platform. The first one is a line �10 directed from point C1 to point C4, the second one is a line �11 directed
from point C4 to point C7, and the third one is a line �12 directed from point C7 to point C1. Hence, the
systematic application of these lines to both sides of Eq. (29) leads to{

�i; m1ωm2
m1 $m2 + m2ωm3

m2 $m3 + m3ωm4
m3 $m4 + m4ωm5

m4 $m5 + m5ωm6
m5 $m6 + m6ωm1

m6 $m1
} = 0

i = 10, 11, 12 (33)
Casting into a matrix-vector form Eqs. (30)–(33) the input–output equation of velocity of the ternary

link m1 and the configurable platform results in
AV =BQv (34)

where A= [
JT� Mm1

]
while V =

[
0Vm1

O

Vm

]
. Therein,

• J = [
�1 �2 �3 · · · �7 �8 �9 0 0 0

]
is the Jacobian matrix of the robot.

• � =
[

O3×3 I3

I3 O3×3

]
is an operator of polarity.

• Matrix

Mm1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

{L4; m1 $m2} {L4; m2 $m3} 0 0 0 0

{L5; m1 $m2} {L5; m2 $m3} 0 0 0 0

{L6; m1 $m2} {L6; m2 $m3} 0 0 0 0

{L7; m1 $m2} {L7; m2 $m3} {L7; m3 $m4} {L7; m4 $m5} 0 0

{L8; m1 $m2} {L8; m2 $m3} {L8; m3 $m4} {L8; m4 $m5} 0 0

{L9; m1 $m2} {L9; m2 $m3} {L9; m3 $m4} {L9; m4 $m5} 0 0

{L10; m1 $m2} {L10; m2 $m3} {L10; m3 $m4} {L10; m4 $m5} {L10; m5 $m6} {L10; m6 $m1}
{L11; m1 $m2} {L11; m2 $m3} {L11; m3 $m4} {L11; m4 $m5} {L11; m5 $m6} {L11; m6 $m1}
{L12; m1 $m2} {L12; m2 $m3} {L12; m3 $m4} {L12; m4 $m5} {L12; m5 $m6} {L12; m6 $m1}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is the first-order coefficient matrix of body m1.

Furthermore, B is the identity matrix of order 9, whereas Qv = [
2ω

1
3 2ω

2
3 2ω

3
3 · · · 2ω

7
3 2ω

8
3 2ω

9
3 0 0 0

]T

is the first-order driver matrix of the robot.

Forward velocity analysis
The forward velocity analysis consists of computing the velocity of the vertices of the grasping triangle,
the velocity of points C1, C4, and C7 for a given set of generalized coordinates q̇i(i = 1, 2, 3, . . . , 9). The
algorithm to solve the forward velocity analysis consists of the following steps:

1. Determine the vectors 0Vm1
O and Vm computing the vector V by resorting to Eq. (34).

2. Determine the velocity state 0Vm3
O by means of Eq. (24).

3. Determine the velocity state 0Vm5
O by means of Eq. (27).

4. Apply the rules of helicoidal vector fields to obtain the velocity states 0Vm1
C1

, 0Vm3
C4

, and 0Vm5
C7

.

https://doi.org/10.1017/S0263574722001011 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001011


Robotica 4465

5. The dual parts of the velocity states 0Vm1
C1

, 0Vm3
C4

, and 0Vm5
C7

are precisely the velocity of points C1,
C4, and C7, respectively.

It is straightforward to show that following this algorithm, the velocity of any point of the configurable
platform may be computed.

Inverse velocity analysis
The inverse velocity analysis consists of finding the generalized velocities 2ω3

i = q̇i(i = 1, 2, 3, . . . , 9)
for a prescribed set of the velocity of the vertices C1, C4, and C7 of the grasping triangle. The velocity
analysis is achieved following the steps of the forward velocity analysis but in an opposite sequence.
That is, the steps of the algorithm are as follows:

1. Set the velocity states 0Vm1
C1

, 0Vm3
C4

, and 0Vm5
C7

according to the given velocities of points C1, C4,
and C7.

2. Compute the dual parts of the velocity states 0Vm1
O , 0Vm3

O , and 0Vm5
O by applying the rules of

helicoidal vector fields.
3. Compute the velocity state 0Vm1

O and the vector Vm by combining Eqs. (24), (27), and (29).
4. Compute the generalized velocities 2ω3

i(i = 1, 2, 3, . . . , 9) by means of Eq. (34).

Finally, it is noteworthy how the reciprocal screw theory allows to simplify both the direct and inverse
velocity analyses thanks to the cancellation of the passive joint rate velocities of the limbs of the robot.

5. Acceleration analysis
Following the style of the velocity analysis, the acceleration analysis concentrates on the ternary link
m1. Let us consider that Am is a six-dimensional vector, which is composed by the passive joint rate
accelerations of the configurable platform as follows:

Am = [
m1αm2 m2αm3 m3αm4 m4αm5 m5αm6 m6αm1

]T (35)

The acceleration state of body m1 as measured from the fixed platform 0 notated as the six-

dimensional vector 0Am1
O =

[
0αm1

0am1
O − 0ωm1 × 0vm1

O

]
in which 0ωm1 denotes the angular velocity vector of

body m1 as observed from body 0 while 0vm1
O denotes the velocity of a point of the body m1 which is

instantaneously coincident with the origin O of the fixed reference frame, may be expressed in screw
form through any of the nine legs of the robot. Considering the three limbs connecting directly body m1

to body 0 it follows that
0Am1

O = 0α
i
1

0$1
i + 1α

i
2

1$2
i + 2α

i
3

2$3
i + · · · + 5α

i
6

5$6
i + Si i = 1, 2, 3 (36)

On the other hand, the acceleration state 0Am3
O of body m3 as measured from the fixed platform 0

notated as the six-dimensional vector 0Am3
O =

[
0αm3

0am3
O − 0ωm3 × 0vm3

O

]
may be written in screw form as

follows:
0Am3

O = 0α
i
1

0$1
i + 1α

i
2

1$2
i + 2α

i
3

2$3
i + · · · + 5α

i
6

5$6
i + Si i = 4, 5, 6 (37)

Furthermore, the acceleration state 0Am3
O may be written upon the acceleration state 0Am1

O as
0Am3

O = 0Am1
O + m1Am3

O + [
0Vm1

O
m1Vm3

O

]
(38)

Therein,
m1Am3

O = m1αm2
m1 $m2 + m2αm3

m2 $m3 + Sm1m3
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where

Sm1m3 = [
m1Vm2

O
m2Vm3

O

]
Therefore,

0Am1
O + m1αm2

m1 $m2 + m2αm3
m2 $m3 =

0α
i
1

0$1
i + 1α

i
2

1$2
i + 2α

i
3

2$3
i + · · · + 5α

i
6

5$6
i + V i i = 4, 5, 6 (39)

where

V i = Si − Sm1m3 − [
0Vm1

O
m1Vm3

O

]
(40)

Following this trend, the acceleration state 0Am5
O of body m5 as measured from the fixed platform

0 notated as the six-dimensional vector 0Am5
O =

[
0αm5

0am5
O − 0ωm5 × 0vm5

O

]
may be written in screw form as

follows:
0Am5

O = 0α
i
1

0$1
i + 1α

i
2

1$2
i + 2α

i
3

2$3
i + · · · + 5α

i
6

5$6
i + Si i = 7, 8, 9 (41)

Furthermore, the acceleration state 0Am5
O may be written upon the acceleration state 0Am1

O as
0Am5

O = 0Am1
O + m1Am5

O + [
0Vm1

O
m1Vm5

O

]
(42)

Therein,
m1Am5

O = m1αm2
m1 $m2 + m2αm3

m2 $m3 + m3αm4
m3 $m4 + m4αm5

m4 $m5 + Sm1m5

where

Sm1m5 = [
m1Vm2

O
m2Vm3

O

] + [
m2Vm3

O
m3Vm5

O

] + [
m3Vm4

O
m4Vm5

O

]
Therefore,

0Am1
O + m1αm2

m1 $m2 + m2αm3
m2 $m3 + m3αm4

m3 $m4 + m4αm5
m4 $m5 =

0α
i
1

0$1
i + 1α

i
2

1$2
i + 2α

i
3

2$3
i + · · · + 5α

i
6

5$6
i + V i i = 7, 8, 9 (43)

where

V i = Si − Sm1m5 − [
0Vm1

O
m1Vm5

O

]
(44)

Finally, consider that the configurable platform is a closed kinematic chain, then the acceleration
state of body m1 as measured from the same body m1 vanishes and may be written in screw form as
follows:

m1Am1
O = m1αm2

m1 $m2 + m2αm3
m2 $m3 + m3αm4

m3 $m4 + m4αm5
m4 $m5 + m5αm6

m5 $m6 + m6αm1
m6 $m1 + Sm1m1 (45)

where

Sm1m1 = [
m1ωm2

m1 $m2
m2ωm3

m2 $m3 + m3ωm4
m3 $m4 + m4ωm5

m4 $m5 + m5ωm6
m5 $m6 + m6ωm1

m6 $m1
]

+ [
m2ωm3

m2 $m3
m3ωm4

m3 $m4 + m4ωm5
m4 $m5 + m5ωm6

m5 $m6 + m6ωm1
m6 $m1

]
+ · · · + [

m5ωm6
m5 $m6

m6ωm1
m6 $m1

]
In what follows the input–output equation of acceleration of the ternary link m1 is achieved by apply-

ing recursively reciprocal screw theory. The application of the ith line �i with both sides of Eq. (36) after
reducing terms leads to {

�i;
0Am1

O

} = 2α
i
3 + {�i; Si} i = 1, 2, 3 (46)

Similarly, from Eq. (39) it follows that{
�i;

0Am1
O + m1αm2

m1 $m2 + m2αm3
m2 $m3

} = 2α
i
3 + {�i; V i} i = 4, 5, 6 (47)
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Meanwhile upon Eq. (43) we have that{
�i;

0Am1
O + m1αm2

m1 $m2 + m2αm3
m2 $m3 + m3αm4

m3 $m4 + m4αm5
m4 $m5

} = 2α
i
3 + {�i; V i} i = 7, 8, 9 (48)

On the other hand, from the configurable platform, see Eq. (45), it follows that{
�i; m1αm2

m1 $m2 + m2αm3
m2 $m3 + · · · + m6αm1

m6 $m1
} = − {

�i; Sm1m1

}
i = 10, 11, 12 (49)

Casting into a matrix-vector form Eqs. (46)–(49), the input–output equation of acceleration of the
ternary link m1 results in

AA =B(Qa +C) (50)

where A =
[

0Am1
O

Am

]
. Meanwhile, Qa = [

2α3
1

2α3
2

2α3
3 · · · 2α3

9 0 0 0
]T is the second-order driver matrix

of the robot, whereas

C=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{�1; S1}
{�2; S2}
{�3; S3}
{�4; V4}
{�5; V5}
{�6; V6}
{�7; V7}
{�8; V8}
{�9; V9}

− {
�10; Sm1m1

}
− {

�11; Sm1m1

}
− {

�12; Sm1m1

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is called the Coriolis matrix of the ternary link m1.

Forward acceleration analysis
The forward acceleration analysis of the parallel manipulator consists of computing the acceleration
of the vertices of the grasping triangle and the acceleration of points C1, C4, and C7 for a given set of
generalized accelerations q̈i(i = 1, 2, 3, . . . , 9). The algorithm to solve the forward acceleration analysis
consists of the following steps:

1. Determine the vectors 0Am1
O and Am computing the vector A by resorting to Eq. (50).

2. Determine the acceleration state 0Am3
O by means of Eq. (38).

3. Determine the acceleration state 0Am5
O by means of Eq. (42).

4. Apply the rules of helicoidal vector fields to obtain the acceleration states 0Am1
C1

, 0Am3
C4

, and 0Am5
C7

.
5. Upon the dual parts of the acceleration states 0Am1

C1
, 0Am3

C4
, and 0Am5

C7
compute the acceleration of

the corresponding points, e.g., 0am1
C1

= D(0Am1
C1

) + 0ωm1 × 0vm1
C1

.

It is straightforward to show that following this algorithm, the acceleration of any point of the
configurable platform may be computed.
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Table I. Inverse position analysis.

i Ai Bi Ci qi

1 (−292.380, 0., 0.) (−187.483, −10.489, 371.392) (−170, 0., 520.0) 386.064
2 (−223.976, −187.938, 0.) (−115.766, −97.478, 369.095) (−98.283, −86.988, 517.703) 395.124
3 (−50.771, −287.938, 0.) (−44.049, −184.466, 366.798) (−26.566, −173.976, 515.406) 381.172
4 (146.190, −253.208, 0.) (72.516, −160.489, 351.392) (90.0, −150.0, 500.0) 370.811
5 (274.747, −100.0, 0.) (108.507, −54.270, 339.660) (125.990, −43.780, 488.267) 380.914
6 (274.747, 100.0, 0.) (144.498, 51.948, 327.928) (161.981, 62.438, 476.535) 356.104
7 (146.190, 253.208, 0.) (62.516, 139.510, 331.392) (80.0, 150, 480.0) 360.207
8 (−50.771, 287.938, 0.) (−48.039, 122.457, 345.602) (−30.556, 132.947, 494.210) 383.187
9 (−223.976, 187.938, 0.) (−158.596, 105.404, 359.812) (−141.113, 115.894, 508.420) 374.902

Inverse acceleration analysis
The inverse acceleration analysis consists of finding the generalized accelerations 2α3

i = q̈i(i =
1, 2, 3, . . . , 9) for a prescribed set of the acceleration of the vertices C1, C4, and C7 of the grasping
triangle. The inverse acceleration analysis is achieved following the steps of the forward acceleration
analysis but in an opposite sequence. That is, the steps of the algorithm are as follows:

1. Set the acceleration states 0Am1
C1

, 0Am3
C4

, and 0Am5
C7

according to the given accelerations of points C1,
C4, and C7.

2. Compute the dual parts of the acceleration states 0Am1
O , 0Am3

O , and 0Vm5
A by applying the rules of

helicoidal vector fields.
3. Compute the acceleration state 0Vm1

O and the vector Am by combining Eqs. (38), (42), and (45).
4. Compute the generalized accelerations 2α3

i(i = 1, 2, 3, . . . , 9) by means of Eq. (50).

Finally, it is noteworthy how the reciprocal screw theory allows to simplify both the direct and inverse
accelerations analyses thanks to the cancellation of the passive joint rate velocities of the limbs of the
robot.

6. Case study: Configurable platform with straight ternary links
This section is devoted to numerically exemplify the method of kinematics analysis of the paral-
lel manipulator introduced in the contribution. To this end, using SI units through the full exercise
the parameters of the mechanism are given by a = 200 mm, c = 120 mm, and h = 150 mm. Hence,
according to the O_XYZ reference frame attached to the fixed platform, see Fig. 1, the coordi-
nates of points Ai are computed as A1 = (−292.380, 0., 0.) mm, A2 = (−223.976, −187.938, 0.) mm,
A3 = (−50.771, −287.938, 0.) mm, A4 = (146.190, −253.208, 0.) mm, A5 = (274.747, −100.0, 0.) mm,
A6 = (274.747, 100.0, 0.) mm, A7 = (146.190, 253.208, 0.) mm, A8 = (− 50.771, 287.938, 0.) mm, and
A9 = (−223.976, 187.938, 0.) mm.

Inverse position analysis
Assume that the pose of the configurable platform is such that the coordinates of the vertices of
the grasping triangle are given by C1 = (−170.0, 0., 520.0) mm, C4 = (90.0, −150.0, 500.0) mm, and
C7 = (80.0, 150.0, 480.0) mm. Applying the formulae developed in Subsection 3.1, Table I shows the
coordinates of key points of the parallel manipulator as well as the corresponding nine generalized coor-
dinates qi meeting the chosen pose of the configurable platform. Furthermore, for clarity, the unique
posture of the robot is depicted in a wire frame model made in Autocad in Fig. 6.
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Figure 6. Wire frame model in Autocad of the parallel manipulator meeting the chosen pose of the
configurable platform.

Let us suppose that starting from the reference configuration sketched in Fig. 6, the grasping
points must reach the points C1 = (−200, 10.0, 700.0) mm, C4 = (70.0, −100.0, 750.0), and C7 =
(120.0, 120, 720.0) mm. The motion of the generalized coordinates must be adjusted in such a way that
the robot starts from rest and after 5 seconds reaches the desired position returning again to rest, both
in velocity and acceleration. It is desired to determine the generalized coordinates qi(i = 1, 2, 3, . . . , 9)
as functions of time t satisfying such conditions.

In the final pose of the robot, one obtains that q1 = 563.941 mm, q2 = 595.428 mm, q3 = 609.445
mm, q4 = 619.443 mm, q5 = 611.522 mm, q6 = 598.307 mm, q7 = 594.210 mm, q8 = 607.433, and q9 =
587.073 mm. According to Craig [20], fifth-order polynomial equations are a viable option to achieve
the assigned task to the grasping points. Hence, by resorting to the inverse position analysis and Craig’s
method, the generalized coordinates result in

q1 = 386.064 + 14.23016000t3 − 4.269048000t4 + .3415238400t5

q2 = 395.125 + 16.02424000t3 − 4.807272000t4 + .3845817600t5

q3 = 381.172 + 18.26168000t3 − 5.478504000t4 + .4382803200t5

q4 = 370.811 + 19.89056000t3 − 5.967168000t4 + .4773734400t5

q5 = 380.914 + 18.44864000t3 − 5.534592000t4 + .4427673600t5

q6 = 356.104 + 19.37624000t3 − 5.812872000t4 + .4650297600t5

q7 = 360.207 + 18.72024000t3 − 5.616072000t4 + .4492857600t5

q8 = 383.187 + 17.93968000t3 − 5.381904000t4 + .4305523200t5

q9 = 374.902 + 16.97368000t3 − 5.092104000t4 + .4073683200t5

For clarity, Fig. 7 shows the temporal behavior of the generalized coordinate q1.
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Figure 7. Time history of the generalized coordinate q1.

Forward position analysis
Let us consider that the generalized coordinates qi(i = 1, 2, 3, . . . , 9) are given by the values obtained
in the inverse position analysis that are listed in Table I. That is, the generalized coordinates are given
by q1 = 386.064 mm, q2 = 395.124 mm, q3 = 381.172 mm, q4 = 370.811 mm, q5 = 380.914 mm, q6 =
356.104 mm, q7 = 360.207 mm, q8 = 383.187 mm, and q9 = 374.902 mm. Once the higher nonlinear
system of eighteen equations fi are generated, it is solved by means of the Newton-homotopy method.
To this end, the new equations are formulated as

hi = tfi + (1 − p)gi i = 1, 2, . . . , 18 (51)

where the parameter p must be given in the interval 0 < p < 1. Meanwhile, the auxiliary functions of
homotopy gi are chosen as linear combinations of the unknowns wi(i = 1, 2, 3, . . . , 18). Trying different
values for p with the same initial values for the variables and the same auxiliary functions of homotopy,
ten solutions of the forward position analysis are listed in Table II.

Solution 10 of Table II is precisely the solution of the inverse position analysis listed in Table I where
the corresponding posture of the robot is depicted in Fig. 6. For the sake of completeness, the remaining
unknowns of solution 10 were obtained as

w4 = −34.317, w5 = −185.860, w6 = 366.881, w7 = 80.515, w8 = −154.664, w9 = 351.392,

w10 = 139.966, w11 = 61.552, w12 = 327.362, w13 = 53.208, w14 = 144.392, w15 = 330.549

Infinitesimal kinematics
Let us consider that the reference configuration of the robot is given according to the data provided
in Table I, see Fig. 6. Furthermore, from the reference configuration of the robot, the limbs are con-
ditioned to satisfy length variations given by δqi = δi sin(t) cos(t + π/2) mm where δ1 = 60.0 mm,
δ2 = 55.0 mm, δ3 = 55.0 mm, δ4 = 60.0 mm, δ5 = 70.0 mm, δ6 = 60.0 mm, δ7 = 80.0mm, δ8 = 60.0 mm,
and δ9 = 65.0 mm.

The temporal behavior of the angular velocity and acceleration of the terminal links m1, m3, and m5

is provided in Fig. 8.
On the other hand, Fig. 9 shows the temporal behavior of the velocity and acceleration of point C1.

These plots are compared with plots generated with a different approach that consists of the following
steps: 1) adjust to spline curves the temporal behavior of the coordinates of point C1, 2) compute the
temporal behavior of the velocity of point C1 as the time derivatives of the functions established in
step 1, and 3) compute the temporal behavior of the acceleration of point C1 as the time derivatives of
the functions established in step 2. For example, the spline function associated to the coordinate X of
point C1 was obtained as
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Table II. Ten solutions applying the Newton-homotopy method.

sol. t w1, w2, w3, . . . , w16, w17, w18 error
1 1 e-07 −130.045,−56.238, 0.943e-4,. . .,−579.632,−64.988, 120.043 5.796e-07
2 0.25 −120.954, 24.935, 342.389, . . ., −132.067, 79.413, 336.320 0.283e-3
3 0.7 −171.450,−58.322, 361.338, . . ., −198.140, 50.763, 346.379 0.181e-2
4 0.75 −178.868,−47.144, 365.464, . . ., −188.490), 66.387, 351.648 0.813e-3
5 0.8 −181.604,−41.735, 367.076, . . .,−183.446, 73.571, 353.804 0.142e-2
6 0.85 −183.476,−37.115, 368.241,. . .,−179.267, 79.338, 355.381 0.233e-2
7 0.9 −184.920,−32.591, 369.194, . . ., −175.362, 84.618, 356.679 0.151e-2
8 0.95 −186.109,−27.580, 370.038, . . .,−171.259, 90.037, 357.838 0.288e-2
9 0.97 −186.540,−25.174, 370.368, . . .,−169.365, 92.484, 358.295 0.179e-2
10 0.9999 −187.176,−20.090, 370.909, . . ., −165.503,97.338, 359.059 0.117e-2

Figure 8. Time history of the angular velocity and acceleration of the ternary links (_X, − − −Y ,
− · − · −Z).

X(t) = −169.9999992 + 1.48735000299999998t + 398.224316699999974t3,

t < 0.5235987758e − 1

X(t) = −170.1143275 + 4.76261373100000008t + 62.5529294188796642(t − 0.5235987758e − 1)2

− 101.484673500000000(t − 0.5235987758e − 1)3, t < .1047197551

X(t) = −171.2374786 + 15.6645157800000004t + 52.4345541590447937(t − .1570796327)2

+ 1.51353256800000002(t − .1570796327)3, t < .1570796327

X(t) = −104.7174901 − 10.4785195699999996t + 46.6110707681354556(t − 6.178465554)2+
101.498698899999994(t − 6.178465554)3, t < 6.230825429

...
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using screw theory

using time derivatives of spline curves

Figure 9. Time history of the velocity and acceleration of the grasping point C1.

X(t) = −140.1898644 − 4.76262663300000000t + 62.5544483276969602(t − 6.230825429)2

−398.233975699999974(t − 6.230825429)3, otherwise

7. Conclusions
In this work, the infinitesimal kinematics of a parallel manipulator provided with a 6-R configurable
platform is approached by means of the theory of screws. The input–output equations of velocity and
acceleration of the 9-UPU{6R} robot manipulator are systematically obtained by choosing a link of
the configurable platform as if it was the rigid platform of a conventional parallel manipulator. The
systematic application of reciprocal screw theory allows to cancel the passive joint rate velocities and
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accelerations of the robot simplifying the velocity and acceleration analyses of the robot. As an interme-
diate step, the displacement analysis of the proposed robot is approached by means of simple concepts
of vectorial algebra. The inverse displacement analysis leads to a closed-form solution which yields a
unique solution. On the other hand, the direct position analysis of the robot is more complex due to the
large number of nonlinear equations generated from the closure equations. Then, the Newton-homotopy
method is employed to find some solutions of the forward displacement analysis. The contribution is
accompanied by numerical examples that illustrate the reliability of the method of kinematic analysis
employed. The mobility of the robot allows to control the position of three end-effectors mounted on
different links of the configurable platform which can be employed for instance to execute tasks like
grasping objects and pick-and-place operations with multiple end-effectors.
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