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Abstract
We develop a Bayesian model for continuous-time incurred but not yet reported (IBNYR) events
under four types of secondary data, and show that unreported events, such as claims, have a Poisson
distribution with a reduced arrival parameter if event arrivals are Poisson distributed. Using
insurance claims as an example of an IBNYR event, we apply Markov chain Monte Carlo (MCMC)
to the continuous-time IBNYR claims model of Jewell using Type I and Type IV data. We illustrate
the relative stability of the MCMC method versus the Gammoid approximation of Jewell by
showing that the MCMC estimates approach their prior parameters, while the Gammoid approxi-
mations grow without bound for Type IV data. Moreover, this holds for any distribution that the
delay parameter is assumed to follow. Our framework also allows for the computation of posterior
confidence intervals for the parameters.
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1. Introduction

We closely follow Jewell (1989) to develop a basic Bayesian model of delayed reporting of events that
occur in a given exposure interval and analysed in any observation interval, when only an incomplete
number of events have been reported. We use an exact, full-distributional Bayesian approach in our
modelling. Using insurance claims as delayed reported events, we then apply Markov chain Monte Carlo
(MCMC) to the continuous-time incurred but not yet reported (IBNYR) claims model of Jewell and
illustrate the relative stability of MCMC methods versus the Gammoid approximation of Jewell (1989)
when the data are claims count only. An IBNYR event is one that occurs randomly during a fixed
exposure interval and incurs a random delay before it is reported. Both the rate at which such events occur
and the parameters of the delay distribution are unknown random quantities. Conditional on the number
of events that have been reported during some observation interval, along with secondary data on the
dates of events, the problem is to estimate the true values of the events generating and delay parameters,
and thereafter, to predict the number of events that are unreported. Typical examples of IBNYR events are
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insurance claims, number of persons infected by an epidemic/disease, the impact of a drug on mortality
rate, products under warranty, murders committed by a serial killer or gang, rapes, financial frauds,
survey sampling by mail and undetected bugs in computer software. In this paper, we focus only on the
number of incurred but unreported events, and not any associated costs. Thus, for example, severity or
sizes of insurance claims are not considered in this paper, and is left for future research.

Reserving for future claims is an important aspect of an insurance company’s operations. However,
in order to plan effectively, there must be some way of obtaining estimates of the number of
outstanding claims and their sizes. Jewell (1989) studies a continuous-time version of this problem
for claims that have IBNYR. These claims occur at random times, but there is also a delay in the
reporting of each occurrence relative to a fixed time horizon, which is usually 1 year. He discusses
parameter estimation for four different scenarios determined by the amount of available data. Type I
data have both known reporting and occurrence dates. Type II data have only reporting date known.
Type III data have only occurrence date known, while Type IV data have neither occurrence nor
reporting dates known, and are therefore very non-informative. Thus, for type IV data, only counts
are available. Jewell (1990) also studies the same problem in discrete time.

As mentioned above, there are many forms of continuous-time IBNYR events. However, we apply
our model only to IBNYR insurance claims as developed by Jewell (1989). We use MCMC methods
to analyse the model when the secondary data are Type I and Type IV. A Gibbs sampling procedure
is used to draw MCMC samples. We then compare our results with those of Jewell (1989) and
discuss how an important limitation of his computational method can be overcome. We first develop
the model for Type I data in detail, and then implement it using MCMC.

Assuming exponential delays, we also demonstrate that our computational methods have a significant
advantage over the Gammoid approximation of Jewell (1989) for Type IV data, which is count data only.
In a Bayesian setting where the likelihood function does not carry much information about the parameters
of interest, the posterior distribution of such a parameter should revert to the prior distribution and should
not become unboundedly large. In particular, we show that whenMCMCmethods are used, the likelihood
function does not become unbounded when the data are Type IV, and hence, also for Type III data.

We illustrate the relative stability of the MCMC method versus the Gammoid approximation of
Jewell (1989) by showing that the MCMC estimates approach the prior parameters, while the
Gammoid approximations grow without bound. Moreover, this holds for any distribution that the
delay parameter follows. However, unlike Jewell (1989), our framework allows for the computation
of posterior confidence intervals for our parameters for both types of secondary data. We also show
that delayed claims have a Poisson distribution with a reduced parameter that nests that of Jewell.

Our primary conclusion is that in the absence of an informative likelihood, the prior distribution
dominates the likelihood function, and that the prior information presents our best available
knowledge about the parameters of interest. Another interesting fact is that, based on the compu-
tation method that we use, these conclusions hold not only for the exponential distribution, but for
any delay distribution including heavy-tailed distributions. Thus, delays following log-logistic,
Weibull, Gamma, Pareto, log-normal, etc., could be appropriate in some applications.

The rest of the paper proceeds as follows. In section 2, we present the model and derive the
likelihood function. The Jewell (1989) model is reviewed in section 3. We implement our model on
insurance claims using MCMC in section 4. A summary and discussion are presented in section 5,
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where we offer suggestions for a possible extension to the model to include a cost (e.g. claim size/
severity) associated with the occurrence of each event.

2. The Model

We adopt the same model as in Jewell (1989), with the assumption that events are generated by a
homogeneous Poisson process with arrival rate λ over some fixed interval (0,T] (Figure 1).

Thus, there are unknown number, N(T), of events occurring at unknown occurrence times s1, s2,… , sn,
given N(T) = n. We exclude the possibility of two or more events occurring at the same time, thus
si ≠ sj, i ≠ j almost surely (a.s.). Each event j is linked with a positive random waiting time (reporting
delay), wj>0, such that its observation epoch (reporting date) is tj = sj +wj. We shall assume a fully
parametric model and that the {wj} are independent and identically distributed random variables
with common distribution function F(w|θ). We also assume F is absolutely continuous with density
f(w|θ) = F′(w|θ) and θ is a delay parameter, possibly vector valued.

Let τ denote the point in time at which we observe the IBNYR event process. For any generic event,
the support of the joint density of the occurrence and reporting times would be the section of the (s, t)
plane for which

0≤ s≤T and s≤ t≤ τ

since all events occur in the interval (0,T] and are then reported after they occur. Conceptually, this
means an event is a point in the plane; the first co-ordinate s(≤T), is the time when the event occurs
and the second co-ordinate t(≥ s) is the time when it is first reported.

We make the assumption that, conditional on the value of θ known, every pair (s, t) is statistically
independent of every other pair, and has common joint density

pðs; t j θÞ=
1
T f ðt�s jθÞ 0< s≤T; s≤ t<1
0 otherwise

(

where f is the density of the waiting time random variable W. The scaling factor 1
T being necessary

since ðT
0

ð1
s
f ðt�s jθÞdt ds=

ðT
0
Fðt�s jθÞjt=1

t= s

� �
ds

=
ðT
0
ds

=T

At time τ, assume that r = r(τ) events have been observed. We shall denote the ordered pair of
occurrence time and reporting time by Dj, that is, Dj = (sj, tj) where j =1,… , r(τ). Also, we shall

Figure 1. Incurred events reporting process. Events occur at some time s and are reported at some
later time t. IBNYR, incurred but not yet reported.
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denote by D(τ) the collective data on all events which are reported at time τ, that is, D(τ) = {D1,… ,
Dr(τ)}. For the degenerate case r(τ) = 0, D(τ) is then the empty set. Clearly, D(τ) are non-decreasing
sets, so that D(τ1)⊂D(τ2) for τ1≤ τ2, which means our knowledge of the process cannot decrease as
time progresses. One of our aims is to predict the number of unreported events u(τ) = N(τ)− r(τ) at
time τ, based on the information in D(τ).

2.1. The likelihood function

Recall that the IBNYR event process occurs in continuous time. We derive the likelihood of the
observed process at time τ by conditioning on there being N(τ) = n events, and that r(τ) of these are
known. Conditional on N(τ) = n, the likelihood for the observed data at time τ, denoted Lτ, is

LτðDðτÞ jθ; nÞ / n !
ðn�rÞ !

Yr
j=1

pðDj jθÞ
" #

1�Πðτ jθÞ½ �n�r (1)

with

pðDj jθÞ= pðsj; tj jθÞ

and

Πðτ jθÞ=
1
T

Ð τ
0Fðw jθÞdw τ≤T

1
T

Ð τ
τ�TFðw jθÞdw τ>T

(
(2)

Note that Π(τ|θ) represents the probability that an event will be reported before its observation time
τ. Thus, 1 −Π(τ|θ) is the probability that an event is unreported at time τ, and therefore, the prob-
ability that u = n − r events are outstanding/unreported at time τ is proportional to [1−Π(τ|θ)]n − r.

Let M = min{τ, T}. Given λ, N(τ) is Poisson(λM) by assumption that events are generated by a
homogeneous Poisson process with rate λ over some fixed interval (0,T]. To see this, note that the
exposure interval is (0,T], and so for τ≤T, N(τ) ~ Poisson(λτ); while for τ>T, N(τ) ~ Poisson(λT),
since no events can occur after T.

We can therefore multiply (1) by a Poisson(λM) density to arrive at

LτðDðτÞ jθ; nÞ ´ pðn jλÞ / n !
ðn�rÞ !

Yr
j=1

pðDj jθÞ
� �½1�Πðτ jθÞ�n�r ´

1
n !

ðλMÞne�λM

After simplification, we have

LτðDðτÞ jλ; n; θÞ / 1
ðn�rÞ !

Yr
j=1

pðDj jθÞ
� �

1�Πðτ jθÞ½ �n�re�λMðλMÞn

=
1

ðn�rÞ !
Yr
j=1

pðDj jθÞ
� �

1�Πðτ jθÞ½ �n�re�λMðλMÞn�rðλMÞr

and substituting u = n − r, yields

LτðDðτÞ jλ; u; θÞ / 1
u !

Yr
j= 1

pðDj jθÞ
� �

λMð1�Πðτ jθÞÞ½ �ue�λMðλMÞr
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By rearranging terms, we see that the last part is a Poisson density in terms of u. Thus

LτðDðτÞ jλ; u; θÞ / e�λM
Yr
j= 1

pðDj jθÞ
� �ðλMÞr 1

u !
λMð1�Πðτ jθÞÞ½ �u (3)

Integrating (3) with respect to u and simplifying, yields

LτðDðτÞ jλ; θÞ / e�λMΠðτjθÞYr
j= 1

pðDj jθÞ
� �ðλMÞr (4)

Summarising, u(τ), the number of unreported events at observation time τ, has a Poisson distribution
with parameter λM(1 −Π(τ|θ)). This is not entirely surprising as we could also have derived this result
using the colouring theorem for Poisson processes (see e.g. Kingman, 1993: 53). Note that, as is
expected, the Poisson parameter for unreported events will tend to 0 as the observation time τ

increases. The rate at which the parameter tends to 0, however, will be affected by the size of the
right tail of the delay distribution (Figure 2).

Remark 1 Although some events can remain unreported for very long periods, the delay distribution
is not usually long tailed. For example, asbestos claims can remain latent for decades and clearly, in
this case, the delays are long tailed. However, it is generally accepted in the insurance industry that
claims usually have smaller reporting delays.

The presentation given up to this point makes no restrictions on the delay parameter θ. However, for
illustration purposes, we shall assume exponential delays. Thus, for Type I data

pðDj jθÞ= 1
T
θe�θðtj�sjÞ =

1
T
θe�θwj

while for Type IV data

pðDj jθÞ=Πðτ jθÞ= 1
T

ðτ
ðτ�TÞ +

Fðw jθÞdw

The reported events will be those for which tj≤ τ. For a Bayesian analysis, we place prior distribu-
tions on the parameters λ and θ. At time τ, the posterior density of the parameters λ and θ takes the
form

πτðθ; λ jDðτÞÞ / LτðDðτÞ jλ; θÞpðλÞpðθÞ
where Lτ(D(τ)|λ,θ) will be specified given the assumed data type.

3. The Jewell model

Jewell (1989) formulates a basic, continuous-time Bayesian model for predicting the total number of
unreported IBNYR claims arising in a given exposure interval, when only an incomplete number of
such claims have been reported by some point in time, called the observation time/date. He assumes
that events are generated by a homogeneous Poisson process with rate parameter λ (events/year) over
some fixed exposure interval (0,T]. There is also a delay in the reporting of these events, and the

Figure 2. Claims reporting process. Claims occur at some time s and are reported at some later
time t. IBNYR, incurred but not yet reported.
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waiting time is driven by a continuous distribution with parameter θ, which could be vector valued.
The delay distribution is common to all claims.

In Jewell’s Bayesian formulation, the prior densities of ~λ and ~θ are assumed to be independent, and
the posterior parameter density, p(λ,θ|D), is not very revealing for any choice of priors. Information
about these parameters are obtained through an experiment that observes all reported events r(t) in
some observation interval (0,t], where t is continuous. Jewell therefore focusses on the prediction of
the unreported claim count, u(t) = n(T)− r(t), conditioned on D, the amount of secondary data that
is available, of which there are four types (I–IV) as shown in Table 1.

The unreported claim u has posterior density p(u|D), that takes the form

pðu jDÞ / pλðu jDÞpθðu jDÞ (5)

where pλ(u|D) and pθ(u|D) are occurrence/arrival and delay integrals, respectively, given by

pλðu jDÞ= Tu

u !

ð
λr +ue�λTpðλÞdλ

and

pθðu jDÞ=
ð
Lðθ jDÞ KðθÞ½ �upðθÞdθ

where L θ jDð Þ= Qr
j = 1 p Dj jθ

� �� �
, the Kernel K θð Þ=1� τ

TΠðt jθÞ and τ = min{t,T}.

With the choice of the Gamma (a, b) prior for ~λ, the occurrence integral and predictive density
reduce, respectively, to

hλðu jDÞ= Γða + r + uÞ
u !

T
b +T

� �u

pðu + 1 jDÞ
pðu jDÞ =

a + r + u
u + 1

� 	 T
b +T

� �
hθðu + 1 jDÞ
hθðu jDÞ

� �
which is the predictive density in recursive form. If θ is known exactly, then

pðu jDÞ= Γða + r + uÞ
u !

T�τΠðt jθÞ
b +T

� �u

which is a Pascal predictive density, with respective conditional mean and variance

Eðu jDÞ= ða + rÞT
b

1� τ
TΠðt jθÞ

1 + τ
TΠðt jθÞ

� �

Varðu jDÞ=Eðu jDÞ b +T
b + τΠðt jθÞ
� �

Table 1. Secondary data type.

Type Occurrence dates Reporting dates

I Known Known
II Unknown Known
III Known Unknown
IV Unknown Unknown
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3.1. Gammoid approximation and Type III and IV data

When θ is unknown, the computation of the delay integral becomes more complex. Assuming that
delays follow the familiar exponential distribution f(w|θ) = θe − θw, Jewell computes different like-
lihood depending on the type of data.

For example, Type I data have

pðDj jθÞ= 1
T
θe�θw

while for Type IV data

pðDj jθÞ=Πðt jθÞ= τ

T
� 1
θT

e�θðt�TÞ�e�θt
� 	

Jewell estimates the predictive density

pθðu jDÞ=
ð
Lðθ jDÞ KðθÞ½ �upðθÞdθ

using the Gammoid function g(θ) = (Aθ)Γe −Δθ to approximate the first two factors in the integral for
pθ(u|D) above. This is achieved by assuming that the prior on the unknown delay parameter ~θ is
Gamma (c0, d0), which has a mode at θ0 = c0�1

do
. Approximations are centred around the mode of the

integrand. This procedure converts the integral into a Gamma integral that is dependent on u. Jewell
obtains excellent results with c0 = 3 or 4 for Type I or II data. For Type III or IV data, he obtains the
recursive formula for the predictive density as

pðu + 1 jDÞ
pðu jDÞ =

a + r + u
u + 1

� 	 T
b +T

� �
d0 +Δ + δKu

d0 +Δ + δK + δKu

� �c0 +Γ

where Γ and Δ are computed from the number of reported events, and δK � t3
2T2 ; t≤T and

δK � t� T
2 ; t≥T. Jewell’s model works very well for Types I and II. However, using Type IV

data (count data only), a numerical example shows that the model gives a steady and dramatic
increase in all the predictors as r increases (or t increases beyond the exposure interval), and the
point estimators (mean and variance) grow without bound. Jewell posits that this happens
because there is less and less information in Type IV data as t increases. This is also true for
Type III data.

Jewell concludes that if the reporting dates of IBNYR claims are not available then Bayesian pre-
dictions, though mathematically correct, are operationally useless. This is because Type IV (or III)
data are uninformative when the priors on ~λ and ~θ are not sufficiently precise. Satisfactory stability in
estimating the parameters and predicting the unreported claims require the observation of at least the
reporting dates, that is, the time history of the reported claims, r(t).

We will show that when MCMC is applied, no such problems arise for Type III or IV data, which
has the least information. Thus, the problems encountered by Jewell’s Gammoid approximation are
completely circumvented when MCMC methods are used. This affirms Jewell’s claim that the
Bayesian formulation is not the problem. However, we disagree with his conclusion that it is the lack
of information that creates explosions in the estimators, but rather the approximation method that
was employed.
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4. MCMC Implementation

We now apply MCMC to the continuous-time IBNYR claims model of Jewell (1989). A Gibbs
sampling procedure is used to draw MCMC samples. We first develop the model for Type I data in
detail, and implement it using MCMC. We then consider claims count only using Type IV data and
demonstrate that our computational methods have a significant advantage over the Gammoid
approximation of Jewell (1989) for Type IV (or III) data. In a Bayesian setting where the likelihood
function does not carry much information about the parameters of interest, the posterior distribution
of such a parameter should revert to the prior distribution and should not become unboundedly
large. In particular, we show that when MCMC methods are used, the likelihood function does not
become unbounded when the data are Type IV. We illustrate the relative stability of the MCMC
method versus the Gammoid approximation of Jewell (1989) by showing that the MCMC estimates
approach their prior parameters, while the Gammoid approximations grow without bound.
Moreover, this holds for any distribution that the delay parameter follows. Our framework also
allows for the computation of posterior confidence intervals for our parameters.

4.1. Simulations

We implement the model using simulated data. Our data set have known parameters θ = 0.5,
λ = 100 and T = 1, for which the expected number of claims is λT = 100. For this particular
simulated data set, the observed number of claims is 107 and the mean inter-arrival time is
0.432− 1 = 2.315 years (Figures 3 and 4).

Before presenting detailed results for Types I and IV data, note that for 0< τ≤T, we focus on the
number of claims in [0,τ] which are unreported at time τ, while for τ>T, we focus on claims in [0,T]
which are unreported at time τ. This is different from Jewell (1989) who at any observation time
τ> 0 considers only unreported claims in the interval [0,T].

4.2. Claims with full reporting dates

For the Bayesian analysis, we use a Gamma (a1, b1) prior on λ and a Gamma (a2, b2) prior on θ. At
time τ, given r = r(τ) reported claims, the joint posterior of λ and θ is

πðλ; θ jDðτÞÞ /
Y

fj : tj ≤ τg
θe�θwjðλMÞre�λMΠðτjθÞpðλÞpðθÞ

where we have removed the uninformative terms involving T, and

Πðτ jθÞ=
τ
T� 1

θT 1�e�θτ
� �

τ≤T

1� 1
θT e�θðτ�TÞ�e�θτ
� �

τ>T

(

follows from (2) above, given exponential waiting times from occurrence to notification. The pos-
terior conditional of λ is

πτðλ jθ;DðτÞÞ / LτðDðτÞ jλ; θÞpðλÞ

/ λa1 + r�1expf�λðb1 +MΠðτ jθÞÞg ð6Þ
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which is a Gamma (a1 + r, b1 +MΠ(τ | θ))) density. We also determine the posterior of θ at time τ

πτðθ jDðτÞ; λÞ / LτðDðτÞ jλ; θÞpðθÞ

/ θa2 + r�1exp �θ
Xr
j=1

wj + b2

 !
�λMΠðτ jθÞ

( )

which is non-standard and so cannot be sampled from directly.

Remark 2 We note that this resembles a Gumbel distribution which has a long tail; the long-tailed
nature of this distribution may contribute to the failure of the Gammoid approximation used by Jewel.

We propose a Gibbs updating scheme where each parameter is updated at each iteration. The
updating is done via a Gibbs updating scheme with a single update random walk Metropolis sampler

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 4. Step function plot of N(t) against t for our simulated data set.
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Figure 3. QQ plot of the simulated inter-arrival times against the standard exponential. The
dashed line has slope 1/2.
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used for θ. For inference on u(τ), the number of unreported claims at time τ, we note that it is a
Poisson random variable with parameter λM(1 −Π(τ | θ))(see equation (3)). For any time τ, the
updating proceeds as follows, given λ(i) and θ(i):

∙ λði + 1Þ � Gamma a1 + rðτÞ; b1 +Π ðτ jθðiÞÞ� �
∙ θði + 1Þ � πτðθ jλði +1ÞÞ
∙ uði +1ÞðτÞ � Poisson λði +1ÞMð1�Πðτ jθði +1ÞÞÞ� �

.

We follow Jewell (1989) and choose a1 = 2, b1 = 0.02, a2 = 4 and b2 = 6. For our analysis, we do
not estimate the parameters at time τ = 0 since the number of claims at time 0 is 0 a.s.

Remark 3 Generally, we cannot obtain useful posterior estimates until at least one claim is known,
since, in this case, no data are available, and we would simply be sampling from the prior
distributions. If D(τ) is empty the likelihood should be defined to be equal to 1 since we would then
be conditioning on an empty set. In this case, the posterior for λ and θ are their respective priors. So
even though non-observation might have some information we cannot really update our beliefs
about λ, the intensity of claims occurrence, which is not the same as claims observed.

Table 2 shows how the posterior means of the parameters λ, θ and the unreported claims u(τ), change
with time. Confidence intervals are shown in parentheses. The fourth column shows the actual
number of unreported claims. Note that the number of unreported claims can increase or decrease
with time since not all claims occur at time 0.

Table 2. Posterior means of the model parameters as the observation time τ varies.

λ̂τ θ̂τ duðτÞ
τ Mean 95% HPDI Mean 95% HPDI Mean 95% HPDI u(τ) Metropolis rate

0.5 150.3 48.4, 272.8 0.791 0.285, 1.378 69.0 18, 129 49 0.560
1.0 91.2 34.1, 166.3 0.614 0.192, 1.118 70.5 16, 144 87 0.379
1.5 98.6 46.8, 167.6 0.575 0.202, 0.997 59.3 10, 125 69 0.306
2.0 112.0 61.4, 180.4 0.510 0.203, 0.838 57.2 13, 123 52 0.254
2.5 95.2 60.3, 139.5 0.573 0.249, 0.892 33.6 6, 73 46 0.288
3.0 108.1 71.1, 152.8 0.480 0.237, 0.734 36.0 6, 75 35 0.237
3.5 101.1 72.2, 133.7 0.515 0.287, 0.746 23.8 5, 50 30 0.251
4.0 106.2 77.9, 137.7 0.475 0.276, 0.675 22.4 4, 46 23 0.231
4.5 99.7 76.1, 123.9 0.523 0.341, 0.713 13.7 2, 28 21 0.240
5.0 101.6 79.0, 125.3 0.505 0.335, 0.671 11.5 1, 24 17 0.225
5.5 102.8 81.0, 125.5 0.488 0.337, 0.641 9.9 0, 20 14 0.213
6.0 104.8 83.1, 127.4 0.467 0.329, 0.609 8.8 0, 18 11 0.201
6.5 103.4 82.6, 125.0 0.478 0.351, 0.615 6.5 0, 14 10 0.194
7.0 102.8 82.8, 124.0 0.486 0.360, 0.612 4.8 0, 11 9 0.186
7.5 105.9 85.0, 126.9 0.449 0.337, 0.568 5.0 0, 11 6 0.176
8.0 109.0 88.0, 130.6 0.419 0.308, 0.522 5.1 0, 11 3 0.166
8.5 109.1 88.1, 130.2 0.416 0.315, 0.520 4.3 0, 10 2 0.161
9.0 109.4 88.8, 130.6 0.413 0.315, 0.512 3.6 0, 8 1 0.156
9.5 108.5 88.1, 129.4 0.423 0.330, 0.523 2.7 0, 7 1 0.152
10.0 107.9 87.6, 128.5 0.430 0.333, 0.526 2.0 0, 5 1 0.149

Note: The subscript τ, on λ and θ, indicates that the estimate was obtained using data reported up to that time.
HPDI, highest posterior density interval.
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Based on the posterior analysis of the results in Table 2, the estimate of θ is decreasing with time. In
particular, the posterior estimates of θ decreases from 0.791 to 0.430 as time increases. This is
intuitive because claims with smaller delays tend to be reported first, and hence, our initial estimates
of the delay time θ− 1 will be small at first and will increase as time increases and more claims are
reported. The estimate of the parameter θ, at time τ = 10, is 0.430(0.048). This yields an average
delay time of ~ 2.33 years, which is very close to 2.26 years, the average of the observed delay times.

Figure 5 compares the posterior mean of the simulated values of u with the actual values at the times
shown. Both quantities converge as time increases.

4.3. Claims with no reporting dates

In this section, we illustrate the relative stability of the MCMC method versus the Gammoid
approximation of Jewell (1989). For type IV data, we have a count of the number of claims but no
reporting dates. Thus for 1≤ j≤ r(τ), the density of the jth claim is

pðDj jθÞ=Πðτ jθÞ

=
1
T

ðτ
ðτ�TÞ +

Fðw jθÞdw

which is just the probability that a claim is reported without knowing the actual dates. Substituting
the above expression into (4) we get the joint posterior density of λ and θ

πðλ; θ jDðτÞÞ / pðλÞpðθÞe�λMΠðτjθÞðλMÞr
Yr
j=1

Πðτ jθÞ

The posterior conditional density of λ is

πðλ jθ; rÞ / pðλÞLðD jλ; θÞ

/ λa1�1e�b1λλrexpf�λMΠðτ jθÞg

= λa1 + r�1expf�λðb1 +MΠðτ jθÞÞg ð7Þ
which we identify as the density of a random variable with a Gamma distribution. Likewise, θ has
posterior density

πðθ jλ; rÞ / pðθÞLðD jλ; θÞ

/ θa2�1e�b2θ Πðτ jθÞ½ �r expf�λMΠðτ jθÞg

/ θa2�1 Πðτ jθÞ½ �rexpf�ðb2θ + λMΠðτ jθÞg ð8Þ

Remark 4 A representation of equation (8) is displayed in Figure 5 which shows the joint posterior
distribution of (θ,τ). We highlight the posterior density of θ versus τ. As τ increases, the dispersion of
θ decreases markedly, while its mean increases steadily. Moreover, the density of θ is long tailed for
each fixed τ. However, its peakedness increases while the thickness of its tail and skewness decrease
as τ increases.

We agree with Jewell (1989) that there is less and less information in Type IV data as τ increases
(Figure 6). To see this, note that as τ increases Π(τ|θ) → 1 and from (8) we see that π(θ|λ) → p(θ), the
prior density of θ, for any λ. In the next section, we show that whereas the MCMC estimates
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approach the prior parameters, the Gammoid approximations grow without bound! It is interesting
to note that the above argument holds for any inter-arrival distribution that θ is assumed to follow.

4.4. Comparison of results

Setting a1 = 2, b1 = 0.02, a2 = 4, b2 = 6, we run the MCMC algorithm and then compare our
results with those of Jewell (1989). The results for Type IV data are summarised in Tables 3 and 4.
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Figure 6. Plot showing the posterior density of θ as τ increases from τ = 1 to τ = 5. As τ
increases, and more information is contained in the process D(τ), the estimate of θ shows less
dispersion around its mean value.
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Figure 5. Plot of posterior mean of duðτÞ against time (solid line). The figure also shows the actual
number of unreported at the times given (dashed line).
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Here we focus on θ, since from (7), we see that the posterior conditional of λ is the same as for Type I
data given in equation (6).

Our Table 3 is analogous to table 2 in Jewell (1989). Table 3 shows the changes in the parameter
estimates as τ increases. As our previous discussions suggest, as τ increases there is less information
contained in the likelihood function. In this case, the prior dominates and the posterior density of θ
should be asymptotically equal to the prior density. While this is intuitive, the estimates based on
Gammoid approximations grow without bound as τ increases.

Our results are also sensitive to the prior information assumed on the delay parameter θ. Moreover,
they show that with even relatively uninformative priors, our algorithm converges quite easily in

Table 3. τ versus θ, a1 = 2, b1 = 0.01, a2 = 4, b2 = 6.

τ r(τ) θ̂ 95% HPDI û 95% HPDI Metropolis rate

0.5 7 0.807 0.274, 1.447 68.6 17, 129 0.833
1.0 20 0.642 0.177, 1.213 69.6 12, 144 0.709
1.5 38 0.661 0.175, 1.244 54.7 6, 123 0.672
2.0 55 0.681 0.187, 1.297 43.7 1, 105 0.670
2.5 61 0.678 0.175, 1.320 32.8 0, 87 0.683
3.0 72 0.680 0.173, 1.309 26.6 0, 77 0.698
3.5 77 0.681 0.173, 1.329 20.9 0, 64 0.715
4.0 84 0.678 0.161, 1.318 17.3 0, 57 0.731
4.5 86 0.668 0.153, 1.291 14.1 0, 49 0.747
5.0 90 0.675 0.152, 1.309 11.5 0, 42 0.761
5.5 93 0.675 0.143, 1.311 9.5 0, 37 0.774
6.0 96 0.664 0.147, 1.290 8.2 0, 33 0.785
6.5 97 0.669 0.153, 1.292 6.6 0, 28 0.796
7.0 98 0.663 0.155, 1.289 5.7 0, 25 0.805
7.5 101 0.668 0.156, 1.315 4.9 0, 23 0.813
8.0 104 0.666 0.145, 1.302 4.3 0, 20 0.821
8.5 105 0.666 0.140, 1.304 3.8 0, 18 0.827
9.0 106 0.668 0.160, 1.327 3.1 0, 16 0.833
9.5 106 0.667 0.153, 1.307 2.7 0, 14 0.839
10.0 106 0.667 0.142, 1.311 2.4 0, 13 0.843

Note: HPDI, highest posterior density interval.

Table 4. Prior sensitivity, τ = 4T.

a2 b2 θ̂ HPDI û HPDI Metropolis rate

4 6 0.678 0.161, 1.31 17.3 0, 57 0.731
8 14 0.580 0.224, 0.975 17.9 0, 47 0.677
16 30 0.536 0.286, 0.796 18.1 1, 39 0.620
32 62 0.516 0.340, 0.693 18.1 4, 34 0.542
40 78 0.513 0.363, 0.678 18.0 4, 32 0.511
50 98 0.511 0.371, 0.653 17.9 4, 31 0.480
64 126 0.508 0.383, 0.631 17.9 5, 30 0.442
128 258 0.496 0.411, 0.581 18.4 7, 29 0.330

Note: HPDI, highest posterior density interval.
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some cases where the Gammoid approximations give poor estimations. This is contrary to what is
reported in Jewell (1989). In fact, our estimates stabilise as τ increases, whereas those based on the
Gammoid approximations grow without bound. Thus, we see that the MCMC method can offer
computational advantages over the poor approximation of Jewell. Table 4 shows the effect of prior
assumptions on the parameter estimates as a1, b1, a2 and b2 change.

Our results also show that stability is more sensitive to choices of a2 and b2 than on values of a1 and
b1; that is, if p(θ) is informative then p(λ) can be diffuse without affecting the results.

The values of a2 and b2 were chosen so that the mode (a2 − 1)/(b2), of the Gamma prior is the same as
the known value θ, hence the (maximum likelihood) estimates would approach the true value of θ. In
Table 4, we exclude the case where both a2 and b2 are infinitely large.

Another important point to note is that for any choice of inter-arrival distribution time as τ → ∞ Π
(τ|θ) → 1 and thus we are sampling from the prior on θ. This is also the case for Type I and
Type II data.

5. Summary and Discussion

5.1. Motivating the Gammoid approximations

Jewell (1989) shows that there is no maximum likelihood estimator of λ and θ in the case of Type IV
data, and hence no estimator of the number of unreported claims. By assuming a Bayesian formulation
however, a solution in terms of Gammoid functions was shown to be possible. The total number of
unreported claims at time τ has a Poisson distribution with rate parameter λ[T−MΠ(τ|θ)], where
M = min{τ,T}. This rate is bounded above by λT[1−Π(T|θ)] which is the rate used in Jewell (1989)
when the observation time τ≥T. This includes two types of unreported claims; the first being all which
have already occurred and are unreported, and all which are yet to occur. Assuming Gamma priors on
θ and λ, it can then be shown that the posterior marginal distribution of u can be approximated by a
Gamma-type integral. However, some approximation must be made to obtain the parameters of this
Gamma integral. Full details can be found in Jewell (1989).

5.2. MCMC

A natural method for the computation of the posterior quantities λ and θ, and hence also the
prediction of unreported claims u, is the MCMC algorithm. In addition to posterior estimates, we are
able to compute posterior confidence intervals and determine how useful the Bayesian formulation is.
We implemented the model assuming all of our data are of type IV (i.e. no reporting dates or
occurrence dates are known) and examined how the choice of the parameters a2 and b2 that generate
the prior θ affects the outcome. When no information is contained in the likelihood function, the
prior should dominate the likelihood. This is clear from our analysis. However, with the Gammoid
approximations this is not the case, except where the priors are very informative. Our primary
conclusion is that in any Bayesian analysis with the absence of an informative likelihood, the prior
distribution dominates the likelihood function; also the prior information presents our best available
knowledge about the parameters of interest. Another interesting fact is that these conclusions hold
for any waiting time/delay distribution. The type of information available does not affect the estimate
of λ, the arrival parameter.
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5.3. Assessing convergence of the MCMC algorithm

All our results are based on running the Gibbs algorithm for 100,000 iterations after a burn in of
100,000. To assess convergence we use the method of Gelman (1996). Since we are looking at a
continuous-time model, we have to assess convergence for each t that we choose to estimate the model
parameters. The last column in each of Tables 2–4 shows the Metropolis acceptance rates for θ.

5.4. Possible extensions to the model

The basic result presented here is that IBNYR events, such as claims, have a Poisson distribution with
a reduced arrival parameter if event arrivals are Poisson distributed. This is not entirely surprising
and we could also have derived the result using the colouring theorem for Poisson processes (see e.g.
Kingman, 1993: 53). There are a plethora of settings where the model can be applied to estimate the
true values of the events generating and delay parameters, and then to predict the number of events
that are unreported. Typical examples are insurance claims, number of persons infected by an
epidemic/disease, the impact of a drug on mortality rate, products under warranty, murders com-
mitted by a serial killer or gang, rapes, financial frauds, survey sampling by mail and undetected bugs
in computer software.

The model could be extended to incorporate event costs such as claim size/severity, and also letting
the parameters θ and λ be time dependent. In this context, let us now introduce a random variable X
for the cost/claim size/severity. Thus, each event is now an ordered triple (s, t, X), where s is the
occurrence time, t the reporting date and X the unreported costs (e.g. claim size). One possible
extension is to model the joint density of (s, t, X) as pðs; t;XÞ / f t�s

κXα jλ; θ; ξ
� �

, where λ, θ and ξ are
unknown model parameters. The development then proceeds analogously: conditional on time and
the model parameters, we derive the likelihood which we can then use for inference. Other forms
might allow for more general inhomogeneous Poisson processes such as Markov-modulated Poisson
processes.

Acknowledgements

Garfield O. Brown would like to acknowledge the financial support of the Cambridge Commonwealth
Trust. Winston S. Buckley would like to thank Nathan Carter, Charles Hadlock and Lucy Kimball for
their support and encouragement.

References
Gelman, A. (1996). Inference and monitoring convergence. In W.R. Gilks, S. Richardson &

D. J. Spiegelhalter, (Eds.) Markov Chain Monte Mario in Practice (pp. 131–144). Chapman
and Hall, London.

Jewell, W.S. (1989). Predicting IBNYR events and delays I. Continuous time. ASTIN Bulletin, 19(1),
25–55.

Jewell, W.S. (1990). Predicting IBNYR events and delays II. Discrete time. ASTIN Bulletin, 20(1),
93–111.

Kingman, J.F.C. (1993). Poisson Processes. Oxford University Press, New York.

Garfield O. Brown and Winston S. Buckley

284

https://doi.org/10.1017/S1748499516000087 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499516000087

	An application of Markov chain Monte Carlo (MCMC) to continuous-time incurred but not yet reported (IBNYR) events
	1.Introduction
	2.The Model
	Figure 1Incurred events reporting process.
	2.1.The likelihood function

	3.The Jewell model
	Figure 2Claims reporting process.
	Table 1Secondary data�type.
	3.1.Gammoid approximation and Type III and IV data

	4.MCMC Implementation
	4.1.Simulations
	4.2.Claims with full reporting dates

	Figure 4Step function plot of N(t) against t for our simulated data�set.
	Figure 3QQ plot of the simulated inter-arrival times against the standard exponential.
	Table 2Posterior means of the model parameters as the observation time &#x03C4; varies.
	4.3.Claims with no reporting dates
	4.4.Comparison of results

	Figure 6Plot showing the posterior density of &#x03B8; as &#x03C4; increases from &#x03C4;��&#x003D;��1 to &#x03C4;��&#x003D;��5.
	Figure 5Plot of posterior mean of u( ) against time (solid line).
	Table 3&#x03C4; versus &#x03B8;, a1��&#x003D;��2, b1��&#x003D;��0.01, a2��&#x003D;��4, b2��&#x003D;��6.
	Table 4Prior sensitivity, &#x03C4;��&#x003D;��4T.
	5.Summary and Discussion
	5.1.Motivating the Gammoid approximations
	5.2.MCMC
	5.3.Assessing convergence of the MCMC algorithm
	5.4.Possible extensions to the model

	ACKNOWLEDGEMENTS
	References


