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We discuss some ill-posedness results for solutions arising from the Picard iterations
algorithm (i.e. the Banach fixed-point theorem) in the case of the nonlinear heat
equation, the viscous Hamilton–Jacobi equation, the convection–diffusion equation
and the incompressible Navier–Stokes system.

1. Introduction

Suppose that we try to solve the Cauchy problem for the semilinear evolution
equation

ut = ∆u + F (u), u(0) = u0, (1.1)
where u = u(x, t), x ∈ R

n, t > 0. The usual procedure is as follows. First, we
convert problem (1.1) into the integral equation

u(t) = S(t)u0 +
∫ t

0
S(t − τ)F (u(τ)) dτ, (1.2)

with the heat semigroup S(t) given as the convolution with the Gauss–Weierstrass
kernel G(x, t) = (4πt)−n/2 exp(−|x|2/(4t)). Next, we look for a Banach space
(X , ‖ · ‖X ) and for a closed subset MT ⊂ C([0, T ],X ) such that the right-hand
side of equation (1.2) forms the contraction on MT (usually, either for sufficiently
small T > 0 and arbitrary large u0 or for arbitrary large T and sufficiently small u0).
Finally, the Banach fixed-point theorem gives a solution u ∈ MT of the integral
equation (1.2). Moreover, this fixed point can be obtained as the limit of the Picard
iterations

u0(t) = S(t)u0, uk+1(t) = S(t)u0+
∫ t

0
S(t−τ)F (uk(τ)) dτ for k = 1, 2, 3, . . . .
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The goal of this paper is to present a very simple method of showing that this
procedure may fail if we consider the Cauchy problem (1.1) in some subcritical
spaces. The scaling properties of problem (1.1) and of the norm ‖ · ‖X play an
important role in our reasoning.

Let us be more precise. We shall present a method of finding a sequence of initial
data {uN

0 }∞
N=1, obtained as the rescaling of one function uN

0 (x) = Nβu0(Nx) with
suitably chosen β ∈ R, such that

sup
0�t�T

‖S(t)uN
0 ‖X � C‖u0‖X (1.3)

for a constant C independent of N and u0. However,

sup
0�t�T

∥∥∥∥
∫ t

0
S(t − τ)F (S(τ)uN

0 ) dτ

∥∥∥∥
X

→ ∞ as N → ∞ (1.4)

for every T > 0.
Note that these two conditions imply that there is no estimate of the Picard itera-

tions uk which would imply the convergence of the sequence {uk}∞
k=1. In particular,

(1.4) shows that the nonlinear operator defined by the right-hand side of (1.2) can-
not be a contraction on any bounded subset of C([0, T ],X ). In fact, this nonlinear
operator does not even preserve bounded sets in L∞((0, T ),X ).

Definition 1.1. We shall say that the Picard algorithm for equation (1.2) (or the
problem (1.1)) fails to hold in C([0, T ],X ) for u0 ∈ X if there exists β ∈ R such that
(1.3) and (1.4) are satisfied for the sequence of the rescaled initial data uN

0 (x) =
Nβu0(Nx).

Below, we shall use the Lebesgue space Lp(Rn), 1 � p � ∞, with the usual norm
‖ · ‖p, as the model example of the space X . Note, however, that our method requires
a scaling property of a norm only. Hence, our results can be rewritten directly in the
case of the homogeneous Sobolev spaces Ḣs(Rn) (see the recent paper by Molinet et
al . [18]), the Lorentz spaces Lp,q(Rn), the homogeneous Morrey spaces Ṁp,q(Rn),
etc. We find the range of p for which the Picard algorithm fails to hold in Lp(Rn)
if applied in the case of the nonlinear heat equation, the viscous Hamilton–Jacobi
equation, the convection–diffusion equation and the incompressible Navier–Stokes
system.

Finally, let us also recall that similar ideas have appeared in the work by Tzvetkov
[20], where the Korteweg–de Vries equation was considered in the homogeneous
Sobolev spaces Ḣs(Rn) and in papers by Molinet et al . [16, 17] on the Benjamin–
Ono and the Kadomtsev–Petviashvili equations, respectively.

2. Nonlinear heat equation

In this section, we illustrate the ideas described in § 1, using the Cauchy problem
for the nonlinear heat equation

ut = ∆u + a|u|q−1u, x ∈ R
n, t > 0, (2.1)

u(x, 0) = u0(x), (2.2)
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where a ∈ R \ {0} is a constant and q > 1. We immediately convert problem (2.1),
(2.2) into the equivalent integral equation

u(t) = S(t)u0 + a

∫ t

0
S(t − τ)(|u|q−1u)(τ) dτ. (2.3)

The following lemma plays the crucial role in the proof of the our main result.

Lemma 2.1. For every q > 1, p ∈ [1,∞], u0 ∈ Lpq(Rn) and T > 0, the quantity

sup
0�t�T

∥∥∥∥
∫ t

0
S(t − τ)(|S(τ)u0|q−1S(τ)u0) dτ

∥∥∥∥
p

(2.4)

is well defined and finite.

Proof. It follows from the well-known estimates of the heat semigroup that

‖S(t)u0‖r � Ct−(n/2)(1/p−1/r)‖u0‖p (2.5)

for every 1 � p � r � ∞, all t > 0, and C = C(p, r) independent of t and u0.
Hence, a direct computation of the Lp-norm in (2.4) combined with (2.5) (recall
that C(p, p) = 1) gives∥∥∥∥

∫ t

0
S(t − τ)(|S(τ)u0|q−1S(τ)u0) dτ

∥∥∥∥
p

�
∫ t

0
‖S(τ)u0‖q

pq dτ

�
∫ t

0
‖u0‖q

pq dτ

= T‖u0‖q
pq,

for all t ∈ [0, T ].

We are now in a position to prove the main theorem of this section.

Theorem 2.2. Let q > 1 and assume that 1 � p < 1
2n(q − 1). For every u0 ∈

Lp(Rn)∩Lpq(Rn), the Picard algorithm fails to hold for problem (2.1), (2.2) in the
space C([0, T ], Lp(Rn)) for each T > 0.

Proof. Take u0 ∈ Lp(Rn) ∩ Lpq(Rn) from lemma 2.1 as the initial datum. Define
the sequence uN

0 (x) = Nn/pu0(Nx) for N = 1, 2, . . . . It follows from estimates (2.5)
of the heat semigroup and from the scaling property of the Lp-norm that

sup
0�t�T

‖S(t)uN
0 ‖p � ‖uN

0 ‖p = ‖u0‖p. (2.6)

Hence, the first estimate (1.3) required by definition 1.1 is proven.
A direct calculation based on the self-similar form of the heat kernel G(x, t) =

t−n/2G(x/
√

t, 1) and on the change of variables gives

S(t)uN
0 (x) = Nn/p[S(N2t)u0](Nx).

Consequently, a similar reasoning leads to

S(t − τ)[|S(τ)uN
0 |q−1(S(τ)uN

0 )](x)

= Nnq/pS(N2(t − τ))[|S(N2τ)u0|q−1(S(N2τ)u0)](Nx). (2.7)
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Now, the second condition (1.4) required by definition 1.1 results from (2.7)
because, by the change of variables, we obtain the following two equalities:

sup
0�t�T

∥∥∥∥
∫ t

0
S(t − τ)[|S(τ)uN

0 |q−1(S(τ)uN
0 )] dτ

∥∥∥∥
p

= sup
0�t�T

Nnq/p−n/p

∥∥∥∥
∫ t

0
S(N2(t − τ))[|S(N2τ)u0|q−1(S(N2τ)u0)] dτ

∥∥∥∥
p

= N (nq/p)−(n/p)−2 sup
0�t�T

∥∥∥∥
∫ N2t

0
S(N2t − s)[|S(s)u0|q−1(S(s)u0)] dτ

∥∥∥∥
p

.

(2.8)

Note that

N (nq/p)−(n/p)−2 → ∞ as N → ∞

because the inequality (nq/p)− (n/p)− 2 > 0 is equivalent to p < 1
2n(q − 1). More-

over, the second factor on the right-hand side is finite and positive by lemma 2.1.

The supremum in (2.4) in lemma 2.1 may increase to infinity as T ↗ ∞. The
goal of the next lemma is to show that this is not the case for some u0 ∈ S(Rn).

Lemma 2.3. For every p ∈ [1,∞] and q > 1, there exists u0 ∈ S(Rn) such that

0 < sup
t>0

∥∥∥∥
∫ t

0
S(t − τ)(|S(τ)u0|q−1S(τ)u0) dτ

∥∥∥∥
p

< ∞. (2.9)

Proof. We begin with the remark that, given κ > 0, there exists non-trivial u0 ∈
S(Rn) such that

‖S(t)u0‖r � C(1 + t)−κ (2.10)

for every r ∈ [1,∞], all t � 0 and C independent of t. Indeed, it suffices to take
u0 ∈ S(Rn) satisfying û0(ξ) = 0 for |ξ| � 1. Then, all moments of u0 disappear:

∫
Rn

xαu0(x) dx = 0 for every multi-index α,

where, as usual, α = (α1, . . . , αn), αi ∈ {0, 1, 2, . . . } and xα = xα1
1 · · ·xαn

n .
Next, one should use the asymptotic expansion of solutions to the heat equation

proved in [5],

∥∥∥∥S(t)u0 −
∑

|α|�k

(−1)|α|

α!

(∫
Rn

xαu0(x) dx

)
∂|α|

∂xα
G(t)

∥∥∥∥
r

� C(k, n, r)t−(n/2)(1−1/r)−(k+1)/2‖|x|k+1u0‖1. (2.11)

Since ‖S(t)u0‖r � ‖u0‖r, using expansion (2.11) with sufficiently large k, we obtain
inequality (2.10).
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Now, we show (2.9) in the most direct way, using properties of the heat semigroup:
∥∥∥∥

∫ t

0
S(t − τ)(|S(τ)u0|q−1S(τ)u0) dτ

∥∥∥∥
p

�
∫ t

0
‖|S(τ)u0|q−1S(τ)u0‖p dτ

=
∫ t

0
‖S(τ)u0‖q

qp dτ

� C

∫ ∞

0
(1 + τ)−qκ dτ

< ∞

by (2.10) with r = qp and κ > 1/q.

Remark 2.4. Now, it is clear that the bounds in theorem 2.2 imposed on the
exponent p are optimal because, by lemma 2.3, there exist initial data such that
the second factor on the right-hand site of (2.8) tends (as N → ∞) towards

sup
t�0

∥∥∥∥
∫ t

0
S(t − τ)[|S(τ)u0|q−1(S(τ)u0)] dτ

∥∥∥∥
p

,

which is finite and positive.

Remark 2.5. An analogous result in the case of Sobolev spaces Hs(R) for the
one-dimensional problem (2.1), (2.2) was obtained (using a different method) by
Molinet et al . [18]. They show that the Picard algorithm fails for suitably chosen
u0 ∈ Hs(R) (like those in lemma 2.3) for s < −1 if q = 2 and for s < 1/2−2/(q−1)
otherwise.

Let us look at theorem 2.2 from the point of view of what is already known about
problem (2.1), (2.2).

The critical quantity 1
2n(q−1) appeared in the papers by Fujita [7,8], who studied

classical solutions to (2.1) and (2.2). His results are as follows. If 1
2n(q − 1) < 1,

then no non-negative global-in-time solutions exist for any non-trivial initial data.
If 1

2n(q − 1) > 1, then global solutions do exist for any non-negative initial datum
dominated by a sufficiently small Gaussian.

In the context of Lp-spaces, Weissler [21] proved that, for every u0 ∈ Lp(Rn)
with p > 1

2n(q − 1), there exist T > 0 and u ∈ C([0, T ], Lp(Rn)) satisfying (2.1),
(2.2) in a suitable sense (analogous results in the limit case p = 1

2n(q − 1) are also
given in [21]). Moreover, the solution is obtained via the Picard iteration scheme in
a suitable subspace of C([0, T ], Lp(Rn)).

On the other hand, if 1 � p < 1
2n(q − 1), there exists u0 ∈ Lp(Rn) with u0 �

0 such that no solution u ∈ C([0, T ], Lp(Rn)) exists on any non-trivial interval
[0, T ] (see [21], for details). Finally, let us also recall the result by Haraux and
Weissler [10], who constructed a solution ψ = ψ(x, t) to equation (2.1) such that

lim
t→0

‖ψ(·, t)‖p = 0

when 1 < 1
2n(q − 1) < q + 1 and 1 � p < 1

2n(q − 1). Hence, the uniqueness fails in
the space C([0, T ], Lp(Rn)) in this range of p and q.
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3. Viscous Hamilton–Jacobi equations

Let us now apply the reasoning used in the previous section to the Cauchy problem
for the viscous Hamilton–Jacobi equation

ut = ∆u + a|∇u|q, (3.1)
u(x, 0) = u0(x), (3.2)

with constants a ∈ R \ {0} and q > 1.

Lemma 3.1. For every q > 1, p ∈ [1,∞], u0 such that ∇u0 ∈ Lpq(Rn), and T > 0,
the quantity

sup
0�t�T

∥∥∥∥
∫ t

0
S(t − τ)|∇S(τ)u0|q dτ

∥∥∥∥
p

is well defined and finite.

Proof. Here, the reasoning is similar to that in the proof of lemma 2.1 and we omit
it.

The next lemma is the direct counterpart of lemma 2.3.

Lemma 3.2. For every p ∈ [1,∞] and q > 1 there exists u0 ∈ S(Rn) such that

0 < sup
t�0

∥∥∥∥
∫ t

0
S(t − τ)|∇S(τ)u0|q dτ

∥∥∥∥
p

< ∞.

Proof. It suffices to repeat arguments used in the proof of lemma 2.3 because,
given κ > 0, there exists a non-trivial u0 ∈ S(Rn) such that

‖∇S(t)u0‖r � C(1 + t)−κ (3.3)

for every r ∈ [1,∞], all t � 0, and a constant C. For the proof of inequality (3.3),
we choose u0 from lemma 2.3 and we apply the expansion (2.11) with the Gauss–
Weierstrass kernel G(x, t) replaced by ∇G(x, t) (see [5] for details). Other details
are completely analogous to those from the proof of lemma 2.3.

Theorem 3.3. If 1 < q < 2, we assume that 1 � p < n(q − 1)/(2 − q). Let
p ∈ [1,∞) for q = 2, and p ∈ [1,∞] for q > 2. For every u0 ∈ Lp(Rn) such that
∇u0 ∈ Lpq(Rn), the Picard algorithm for problem (3.1), (3.2) fails to hold in the
space C([0, T ], Lp(Rn)) for each T > 0.

Proof. As in the proof of theorem 2.2 we take the initial datum from lemma 3.1 and
we consider the sequence uN

0 (x) = Nn/pu0(Nx) with N ∈ {1, 2, 3, . . . }. It follows
from (2.6) that sup0�t�T ‖S(·)uN

0 ‖p � ‖u0‖p. Using the self-similar form of the
Gauss–Weierstrass kernel, we obtain

S(t − τ)|∇S(τ)uN
0 |q(x) = Nq(n/p+1)S(N2(t − τ))|∇S(N2τ)u0|q(Nx).
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Next, by the change of variables, we have

sup
0�t�T

∥∥∥∥
∫ t

0
S(t − τ)|∇S(τ)uN

0 |q(x) dτ

∥∥∥∥
p

= Nq(n/p+1)−n/p−2 sup
0�t�T

∥∥∥∥
∫ N2t

0
S(N2t − s)|∇S(N2s)u0|q(Nx) ds

∥∥∥∥
p

.

Finally, observe that, for 1 < q < 2, the inequality q(n/p + 1) − n/p − 2 > 0 is
equivalent to p < n(q − 1)/(2 − q). Moreover, q(n/p + 1) − n/p − 2 > 0 for any
p ∈ [1,∞) if q = 2, and for all p ∈ [1,∞] if q > 2 (here, we put n/p = 0 for
p = ∞).

Again, we can observe the perfect agreement of theorem 3.3 with the existing
knowledge on problem (3.1), (3.2) studied in the Lebesgue spaces. Here, the paper
by Ben-Artzi et al . [1] contains the most recent and the most general results. First
of all, using the Picard algorithm, they prove the well posedness of problem (3.1),
(3.2) in Lp(Rn) provided 1 � q < 2 and p � n(q − 1)/(2 − q). In the case a > 0 and
u0 � 0, the existence fails in all Lp-spaces when q � 2. When q < 2, it is shown
in [1] that both the existence and the uniqueness fail if 1 � p < n(q−1)/(2−q). We
refer the reader to [1] for other results on problem (3.1), (3.2) studied in Lp(Rn).

4. Convection–diffusion equations

Here, we apply our method to the Cauchy problem for the convection–diffusion
equation

ut = ∆u + a · ∇(|u|q), x ∈ R
n, t > 0, (4.1)

u(x, 0) = u0(x), (4.2)

where a ∈ R
n \ {0} is a constat vector and q > 1. For simplicity of notation, we

choose the nonlinearity in equation (4.1) to be of the form f(u) = a|u|q; note, how-
ever, that we can consider any sufficiently regular function f(u) = (f1(u), . . . , fn(u))
which is homogeneous of degree q (e.g. any linear combination of |u|q and |u|q−1u).
First, we need counterparts of lemmas 2.1 and 2.3.

Lemma 4.1. For every q > 1, p ∈ [1,∞], u0 ∈ Lpq(Rn) and T > 0, the quantity

sup
0�t�T

∥∥∥∥
∫ t

0
a · ∇S(t − τ)|S(τ)u0|q dτ

∥∥∥∥
p

is well defined and finite.

Proof. The proof is analogous to the proof of lemma 2.1 using the estimates of the
heat semigroup

‖∇S(t)u0‖r � Ct−(n/2)(1/p−1/r)−1/2‖u0‖p (4.3)

for every 1 � p � r � ∞, all t > 0, and C = C(p, r) independent of t and u0. Now,
the counterpart of the main estimate form the proof of lemma 2.1 has the following
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form:∥∥∥∥
∫ t

0
a · ∇S(t − τ)|S(τ)u0|q dτ

∥∥∥∥
p

� C

∫ t

0
(t − τ)−1/2‖S(τ)u0‖q

pq dτ � CT 1/2‖u0‖q
pq for all t ∈ [0, T ].

Lemma 4.2. For every p ∈ [1,∞] and q > 1 there exists u0 ∈ S(Rn) such that

0 < sup
t>0

∥∥∥∥
∫ t

0
a · ∇S(t − τ)|S(τ)u0|q dτ

∥∥∥∥
p

< ∞.

Proof. Here, the reasoning is completely analogous to that used in the proofs of
lemmas 2.3 and 3.2, so we omit the details.

Theorem 4.3. Let q > 1 and assume that 1 � p < n(q − 1). For every u0 ∈
Lp(Rn)∩Lpq(Rn), the Picard algorithm fails to hold for problem (4.1), (4.2) in the
space C([0, T ], Lp(Rn)) for every T > 0.

Proof. In order to apply the reasoning from the proofs of theorems 2.2 and 3.3,
it suffices to take u0 ∈ Lp(Rn) ∩ Lpq(Rn) and the sequence uN

0 (x) = Nn/pu0(Nx).
Next, one should note the following two equalities:

∇S(t − τ)|S(τ)uN
0 |q(x) = N (nq/p)+1∇S(N(t − τ))|S(N2τ)u0|q(Nx)

and their consequence

sup
0�t�T

∥∥∥∥
∫ t

0
a · ∇S(t − τ)|S(τ)uN

0 |q dτ

∥∥∥∥
p

= N (nq/p)+1−(n/p)−2 sup
0�t�T

∥∥∥∥
∫ N2t

0
a · ∇S(N2t − s)|S(s)u0|q ds

∥∥∥∥
p

.

Finally, nq/p + 1 − n/p − 2 > 0 if and only if p < n(q − 1).

It is a completely standard reasoning to show that problem (4.1), (4.2) is well
posed in C([0, T ], Lp(Rn)) for p � n(q − 1). Several results in this direction were
proved by Giga [9], with a further extension by Ribaud [19]. To the best knowledge
of the authors, the only result on the non-well-posedness of problem (4.1), (4.2)
was obtained by Dix [4], who proved that the uniqueness for the Burgers equation,

ut − uxx + uux = 0,

fails in the Sobolev spaces Hs(R) for s < − 1
2 .

Remark 4.4. In particular, theorem 4.3 gives the failure of the Picard algorithm
in L1(Rn) for any u0 ∈ L1(Rn)∩Lq(Rn). However, it is well known that the Cauchy
problem (4.1), (4.2) is well posed in C([0,∞), L1(Rn)) (see, for example, [6]). The
proof of this fact uses essentially several additional properties of the problem (4.1),
(4.2), such as the maximum principle and the conservation in time of the inte-
gral

∫
Rn u(x, t) dx.
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5. Navier–Stokes system

The Navier–Stokes equations, describing the evolution of the velocity field u =
u(x, t) and the scalar pressure p = p(x, t) in the whole R

n are given by

ut − ∆u + (u · ∇)u + ∇p = 0, x ∈ R
n, t > 0, (5.1)

∇ · u = 0, (5.2)
u(x, 0) = u0(x). (5.3)

Let us recall the projection P of L2(Rn)n onto the subspace

L2
σ(Rn)n ≡ P[L2(Rn)n]

of solenoidal vector fields (i.e. those characterized by the divergence condition (5.2)).
It is known that P is a pseudodifferential operator of order 0. In fact, it can be
written as a combination of the Riesz transforms Rj with symbols ξj/|ξ|,

P(v1, . . . , vn) = (v1 − R1ω, . . . , vn − Rnω),

where ω = R1v1 + · · · + Rnvn. This explicit formula for P allows us to define this
operator on Lp(Rn)n for every 1 < p < ∞.

Using this projection, one can remove the pressure from the model (5.1)–(5.3)
and obtain an equivalent Cauchy problem

ut − ∆u + P∇ · (u ⊗ u) = 0, x ∈ R
n, t > 0, (5.4)

u(0) = u0. (5.5)

We study solutions to problem (5.4), (5.5) rewritten as the integral equation

u(t) = S(t)u0 −
∫ t

0
S(t − τ)P∇ · (u ⊗ u)(τ) dτ. (5.6)

Lemma 5.1. For every p ∈ [1,∞], u0 ∈ L2p(Rn)n and T > 0, the quantity

sup
0�t�T

∥∥∥∥
∫ t

0
S(t − τ)P∇ · (S(τ)u0 ⊗ S(τ)u0) dτ

∥∥∥∥
p

is well defined and finite.

Proof. Here, we proceed as in the proof of lemma 4.1. Indeed, it is well known (see,
for example, [13]) that the operator S(t)P∇ is realized as the convolution with the
Oseen kernel K = K(x, t), which is a bounded and integrable function in x such
that ‖K(·, t)‖1 � Ct−1/2 for all t > 0. Hence, using the Young inequality for the
convolution, we find that
∥∥∥∥

∫ t

0
S(t − τ)P∇ · (S(τ)u0 ⊗ S(τ)u0) dτ

∥∥∥∥
p

� C

∫ t

0
(t − τ)−1/2‖S(τ)u0‖2

2p dτ � CT 1/2‖u0‖2
2p for all t ∈ [0, T ].
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Lemma 5.2. For every p ∈ (1,∞) there exists a vector field u0 ∈ S(Rn)n satisfying
∇ · u0 = 0 such that

0 < sup
t�0

∥∥∥∥
∫ t

0
S(t − τ)P∇ · (S(τ)u0 ⊗ S(τ)u0) dτ

∥∥∥∥
p

< ∞ for every T > 0.

Proof. First, consider non-trivial ϕ ∈ S(Rn) satisfying ϕ̂(ξ) = 0 for |ξ| � 1. Next,
define û0(ξ) = (ξ1ϕ̂(ξ),−ξ2ϕ̂(ξ), 0, . . . , 0), which guarantees that ∇ · u0 = 0. As in
the proofs of lemmas 2.3 and 3.2, we show that, given κ > 0, there exists C > 0
such that

‖S(t)u0‖r � C(1 + t)−κ and ‖∇S(t)u0‖r � C(1 + t)−κ (5.7)

for every r ∈ [1,∞], all t � 0 and a constant C. Since the projection P (as the
combination of Riesz transforms) is bounded on Lp(Rn)n, 1 < p < ∞, we obtain

‖S(t − τ)P∇ · (S(τ)u0 ⊗ S(τ)u0)‖p � C‖∇ · (S(τ)u0 ⊗ S(τ)u0)‖p

� C‖∇S(τ)u0‖1/2
2p ‖S(τ)u0‖1/2

2p

� C(1 + τ)−κ,

by (5.7) with r = 2p. We now choose κ > 1 to complete the proof.

Theorem 5.3. For every 1 < p < n and

u0 ∈ Lp
σ(Rn)n ∩ L2p

σ (Rn)n,

the Picard algorithm fails to hold for the Navier–Stokes system (5.4), (5.5) in the
space C([0, T ], Lp

σ(Rn)n) for every T > 0.

Proof. For u0 ∈ Lp
σ(Rn)n ∩ L2p

σ (Rn)n and the sequence uN
0 (x) = Nn/pu0(Nx), we

obtain

S(t − τ)P∇ · (S(τ)uN
0 ⊗ S(τ)uN

0 )(x)

= N (2n/p)+1S(N2(t − τ))P∇ · (S(N2τ)u0 ⊗ S(N2τ)u0)(Nx).

Here, we have used the fact that P is the pseudo-differential operator of order 0.
Consequently,

sup
0�t�T

∥∥∥∥
∫ t

0
S(t − τ)P∇ · (S(τ)uN

0 ⊗ S(τ)uN
0 ) dτ

∥∥∥∥
p

= N (2n/p)+1−(n/p)−2 sup
0�t�T

∥∥∥∥
∫ N2t

0
S(N2t − s)P∇ · (S(s)u0 ⊗ S(s)u0) ds

∥∥∥∥
p

.

Finally, the inequality
2n

p
+ 1 − n

p
− 2 > 0

is equivalent to p < n.
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Given u0 ∈ Lp
σ(Rn)n and a neighbourhood Vu0 ⊂ Lp

σ(Rn)n of u0, we define the
flow-map u0 �→ u(u0) from Vu0 to C([0, T ], Lp

σ(Rn)n). If the Cauchy problem (5.1)–
(5.3) is well posed in Lp

σ(Rn)n, this flow-map is well defined. The continuous depend-
ence on initial conditions means the continuity of the flow-map. Moreover, it is
relatively easy to prove that the solutions obtained via the Picard algorithm for
p > n (see, for example, [2, 3, 11–13]) depend analytically on initial data.

In the subcritical case, the regularity of the flow-map changes drastically.

Theorem 5.4. There is no application of class C2 at the point u0 ≡ 0 that asso-
ciates a (mild or weak) solution u ∈ C([0, T ); Lp

σ(Rn)n), p < n, for the system
(5.4), (5.5) to the corresponding initial datum u0 ∈ Lp

σ(Rn)n.

This result was originally obtained by Y. Meyer and announced at the Conference
in honour of Jacques-Louis Lions held in Paris in 1998. The full proof will appear
in detail in [15]. Note that p = 2 < n = 3 corresponds to the most interesting case
of weak solutions by Leray [14]. In particular:

(1) There is no application of class C2 that associates Leray’s weak solution
u ∈ L∞((0, T ); L2

σ(R3)3) with the initial datum u0 ∈ L2
σ(R3)3.

(2) If a mild solution exists in the subcritical case (2 � p < 3), it does not arise
from the Picard algorithm.

The proof of theorem 5.4 is the simple consequence of theorem 5.3 and is based
on a contradiction argument. Briefly stated, it is assumed that for the initial data
λu0, the solution uλ(x, t), whose existence is supposed in theorem 5.4, could be
written in the form λu(1)(x, t) + λ2u(2)(x, t) + o(λ2), where ‘o’ corresponds to the
norm L∞([0, T ); Lp

σ(Rn)n) and λ → 0. We then observe that u(1) and u(2) are
equal to the Picard iterations u0(t) and u1(t). Hence, theorem 5.3 implies that the
second-order Taylor expansion of uλ(x, t) as the function of λ is impossible. This
is a standard argument (see, for example, [15, 18, 20]). Hence, we omit the other
details.
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