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In this paper, fully nonlinear non-symmetric periodic gravity–capillary waves
propagating at the surface of an inviscid and incompressible fluid are investigated.
This problem was pioneered analytically by Zufiria (J. Fluid Mech., vol. 184, 1987c,
pp. 183–206) and numerically by Shimizu & Shōji (Japan J. Ind. Appl. Maths,
vol. 29 (2), 2012, pp. 331–353). We use a numerical method based on conformal
mapping and series truncation to search for new solutions other than those shown
in Zufiria (1987c) and Shimizu & Shōji (2012). It is found that, in the case of
infinite-depth, non-symmetric waves with two to seven peaks within one wavelength
exist and they all appear via symmetry-breaking bifurcations. Fully exploring these
waves by changing the parameters yields the discovery of new types of non-symmetric
solutions which form isolated branches without symmetry-breaking points. The
existence of non-symmetric waves in water of finite depth is also confirmed, by using
the value of the streamfunction at the bottom as the continuation parameter.

Key words: capillary waves, surface gravity waves, waves/free-surface flows

1. Introduction

It is well acknowledged that a bifurcation can lead to symmetry breaking. Two
typical examples are Hopf bifurcation (see e.g. Moiola & Chen 1996) and Bénard
convection (see e.g. Getling 1999) in physics. The temporal symmetry is destroyed
in a Hopf bifurcation and so is the spatial symmetry in Bénard convection. Symmetry
breaking plays a major role in pattern formation and it can be found in many scientific
disciplines such as biology, chemistry and physics. On the theoretical side, there is an
extensive literature on the analysis of bifurcation and symmetry breaking by using the
group-representation theory, e.g. Sattinger (1980).

The problem of solving the full Euler equations for travelling waves on the
surface of water flows has been widely studied by many authors both analytically
and numerically, however in most works certain symmetry conditions were imposed.
The term ‘symmetric waves’ is applied to those waves whose shape is symmetric
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Symmetry breaking of gravity–capillary waves 623

about the vertical axis. If a wave is symmetric about a vertical line other than
the vertical axis, we call this wave a shifted symmetric wave. Apart from these
two kinds of waves, the others are named non-symmetric waves. Non-symmetric
water waves receive considerable attention not only because symmetry breaking is
of scientific interest as mentioned in the first paragraph but also because it is a
big mathematical challenge to find new types of fully nonlinear solutions in surface
water-wave problems.

For nonlinear capillary waves, Crapper (1957) derived exact symmetric periodic
solutions of explicit form in terms of elementary functions on water of infinite
depth. The wave profile becomes steep as the amplitude increases prior to reaching a
limiting configuration with a trapped bubble at the trough. Beyond that, the profile has
a non-physical self-intersecting structure. Vanden-Broeck & Keller (1980) extended
the family of Crapper’s solutions beyond the limiting configuration by considering
the pressure inside the trapped bubble as part of solutions. Vanden-Broeck (1996)
worked on capillary waves with variable surface tension and found new solutions
by using a collocation method. Okamoto & Shōji (1991) proved the non-existence
of non-symmetric bifurcations from the family in Crapper (1957). This fact implies
that non-symmetric capillary waves are very unlikely since there are no solutions
found other than Crapper’s. Kinnersley (1976) generalised Crapper’s solutions to the
case of capillary waves on fluid sheets of finite thickness. Crowdy (1999) presented
a simple derivation for Kinnersley’s solutions by using complex variables. Blyth &
Vanden-Broeck (2004) found numerically new solutions which have no horizontal
symmetry or anti-symmetry from Kinnersley’s solutions. However these waves are
still symmetric in a sense of ‘symmetric waves’ defined earlier. Whether or not
non-symmetric capillary waves on fluid sheets exist remains an open question.

For pure gravity waves, the problem was studied widely in the case of finite and
infinite depth since the pioneering work of Stokes (1847). For classic gravity solitary
waves, a rigorous proof was carried out by Craig & Sternberg (1988) to show that they
can only exist in symmetric form. The research on non-symmetric periodic waves
could be tracked back to 1980 when Chen & Saffman (1980) found bifurcations
to new families of solutions in deep water. They tried to compute non-symmetric
gravity waves but only shifted symmetric waves were found. Zufiria (1987a) derived a
weakly nonlinear Hamiltonian model to find non-symmetric waves with six peaks via
a spontaneous symmetry-breaking bifurcation. Later (Zufiria 1987b) used numerical
approaches to compute non-symmetric waves on water of infinite depth in the full
Euler equations. Qualitatively similar results with six peaks in one wavelength were
produced, but no other solutions were found. It remains unclear whether there exist
non-symmetric progressive gravity waves with peak number other than six in one
wavelength.

In the presence of both gravity and surface tension, there is a very rich structure
of solutions for water waves. Wilton (1915) showed the non-uniqueness of solutions,
even for waves at small amplitude, which are the so-called Wilton’s ripples. The
reader is referred to Vanden-Broeck (2010) for a quick review. Zufiria (1987c) used
again a weakly nonlinear Hamiltonian model to rediscover non-symmetric periodic
gravity–capillary waves with six peaks in the case of finite depth. In addition, he
computed approximate non-symmetric solitary waves. Later, new non-symmetric
periodic waves with two peaks were discovered numerically by Shimizu & Shōji
(2012). All the literature mentioned on non-symmetric waves were carried out by
investigating spontaneous symmetry-breaking bifurcations. Wang, Vanden-Broeck and
Milewski (2014) worked on non-symmetric solitary waves with a quite different
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approach. They began with constructing a special initial guess for Newton’s method
and obtained a convergent solution, then the bifurcation diagram was completed
based on a numerical continuation method. They found that all the non-symmetric
solitary waves finally join the branches of symmetric ones. Despite of a very different
method, their results end up with another example of spontaneous symmetry-breaking
bifurcations.

In the present paper, we aim to discover new non-symmetric periodic gravity–
capillary waves numerically. The problem is formulated in § 2. We state the numerical
scheme in § 3 based on a collocation technique which was originally used by
Vanden-Broeck (1996). The numerical solutions and the global bifurcation diagrams
are presented in full detail in § 4. The concluding remarks are given in § 5.

2. Formulation
We consider a two-dimensional irrotational flow of an inviscid and incompressible

fluid of finite depth h with gravity and surface tension both present. The free surface
(i.e. the upper surface of the fluid) is deformed by a train of waves travelling at a
constant velocity c.

We introduce a two-dimensional Cartesian system with the y-axis pointing upwards.
A frame of reference moving with the waves is chosen so that the flow is steady,
namely, we introduce a mean flow of speed c to arrest the wave. We denote by
y= η(x) the equation of the (unknown) free surface. The acceleration of gravity g acts
in the negative y-direction. We introduce a potential function φ so that the velocity is
defined by (φx, φy), therefore the governing equations are as follows

∇2φ = 0, −h< y<η(x), (2.1)
φy = φxηx, on y= η(x), (2.2)

Pa − P= Tκ, on y= η(x), (2.3)
φy = 0, on y=−h, (2.4)

where P is the fluid pressure, Pa is the atmospheric pressure, T is the surface tension
and κ is the curvature of the free surface. Equations (2.2) and (2.4) are the kinematic
boundary conditions on the free surface and on the bottom respectively. Equation (2.3)
expresses the normal stress balance at the free surface. Applying Bernoulli’s equation
to (2.3) yields the dynamic boundary condition

1
2
|∇φ|2 + gy− T

ρ
κ = B, (2.5)

where g is the gravitational acceleration, ρ is the fluid density and B is called the
Bernoulli constant. It is not difficult to obtain the linear dispersion relation for gravity–
capillary waves, namely,

c2 =
(

g
k
+ T
ρ

k
)

tanh(kh), (2.6)

where k is the wavenumber. For the fluid of infinite depth, the dispersion relation (2.6)
reduces to

c2 = g
k
+ T
ρ

k. (2.7)
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It follows immediately that c in (2.7) admits a global minimum c∗ given by

c∗ =
(

4Tg
ρ

)1/4

. (2.8)

This implies that linear periodic gravity–capillary waves can only exist for c> c∗, but
as shown in Vanden-Broeck & Dias (1992), solitary waves bifurcate from c∗ and exist
at subcritical speeds.

In this paper, we focus on periodic waves with wavelength λ. By choosing c and
λ/2π as the reference velocity and length respectively, one can rewrite the dynamic
boundary condition (2.5) as

1
2 |∇φ|2 + py− qκ = B, (2.9)

where the parameters p and q are defined as

p= gλ
2πc2

, q= 2πT
ρλc2

. (2.10a,b)

In addition, we should impose the periodic boundary condition η(x + 2π) = η(x),
which completes the whole system.

We introduce the streamfunction ψ and denotes the complex potential by f =φ+ iψ .
We choose ψ = 0 on the free surface and φ = 0 at x = y = 0 (which is assumed to
be a crest or a trough). We denote by −Q the value of ψ on the bottom. We use
(φ, ψ) as the independent variables and denotes the complex velocity by u− iv. We
then introduce T − iϑ , which is an analytic function of φ + iψ , as the following

u− iv = eT −iϑ . (2.11)

On the free surface, we define τ(φ) , T (φ, 0) and θ(φ) , ϑ(φ, 0). It immediately
follows that

xφ + iyφ = e−τ+iθ , (2.12)

whose real part and imaginary part can be used to calculate x and y respectively
by integrating with respect to φ. We substitute (2.11) and (2.12) into (2.9) and
differentiate the result with respect to φ to get

e2ττφ + pe−τ sin θ − q
d

dφ
(eτθφ)= 0, (2.13)

where we have used κ= eτθφ . An equivalent formulation was used in Shimizu & Shōji
(2012). In the next section, a numerical method based on collocation and truncating
series will be introduced to solve the fully nonlinear steady Euler equations (2.13).

3. Numerical scheme
The flow domain in the complex potential plane is the strip −Q < ψ < 0. The

kinematic boundary condition (2.4) at the bottom can be satisfied by using the method
of images. We have ψ =−2Q on the image of the free surface into the bottom, hence
the extended flow domain is the strip −2Q<ψ < 0. Then we perform the conformal
mapping

t= e−if , (3.1)
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f-plane

O

t-plane

FIGURE 1. The conformal mapping (3.1) maps the strip −2Q< ψ < 0 onto an annulus
r2

0 < |t| < 1 whose outer boundary corresponds to the free surface in the physical plane
and inner boundary to the image of the free surface into the bottom.

where f = φ + iψ is the complex potential. It maps the strip onto the annulus
r2

0 < |t|< 1 (see figure 1), where

r0 = e−Q. (3.2)

It is clear that w is an analytic function of f , and so is τ − iθ . Therefore τ − iθ is an
analytic function of t which can be expressed by the Laurent series

τ − iθ = α0 +
∞∑

n=1

αntn +
∞∑

n=1

βnt−n, (3.3)

where the coefficients αn, βn ∈C except α0 ∈R. Hence we write

αn =−an + ibn, (3.4)

with an, bn ∈R for all n>1. In particular, the coefficients bn are all zero for symmetric
waves. The minus sign in front of an on the right-hand side of equation (3.4) is chosen
so that the definitions of an and bn are in accordance with those presented in Shimizu
& Shōji (2012). Since ψ =−2Q is the image of the surface ψ = 0, we obtain

τ(φ, 0)− iθ(φ, 0)= τ(φ,−2Q)+ iθ(φ,−2Q). (3.5)

Combining (3.3) and (3.5) gives

βn = αnr2n
0 , for n > 1. (3.6)

By substituting (3.4) into (3.3) and truncating after N terms, we obtain

τ = α0 −
N∑

n=1

an(1+ r2n
0 ) cos nφ + bn(1− r2n

0 ) sin nφ, (3.7)

θ =
N∑

n=1

−an(1− r2n
0 ) sin nφ − bn(1+ r2n

0 ) cos nφ. (3.8)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

75
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.751


Symmetry breaking of gravity–capillary waves 627

When the fluid is of infinite depth (i.e. h→∞), the strip in figure 1 becomes the
lower half-f -plane and the annulus extends to a unit disc, i.e. r0 = 0. The Laurent
series (3.3) becomes a Taylor series since all the coefficients βn vanish. The coefficient
α0 is also zero because the velocity at infinite depth equals the phase speed whose
value is 1 under the current scaling.

Since the symmetry-breaking phenomenon occurs as a bifurcation from symmetric
waves, we start with reproducing the results for symmetric waves. The rescaled
wavelength and the phase velocity are always set to be 2π and 1 respectively. Using
the definition of c,

c= 1
2π

∫ 2π

0
φx dx, (3.9)

we obtain
x= 2π, at φ = 2π. (3.10)

The wave is symmetric in the physical plane with respect to x=π and in the complex
potential plane with respect to φ=π. By imposing the symmetry condition on (3.10),
we immediately obtain

x=π, at φ =π. (3.11)

Then we introduce N collocation points uniformly distributed along φ in (0,π]

φj = 2j− 1
2N

π, j= 1, 2, . . . ,N. (3.12)

The dynamic boundary condition (2.13) is satisfied at these points, which yields N
algebraic equations. The final equation is to fix the value of a specific coefficient, e.g.

am = α, (3.13)

where m and α are suitably chosen. By fixing the values of p and am , the resulting
system with N+ 2 equations and N+ 2 unknowns (α0, a1, . . . , aN, q) can be solved by
Newton’s method. During the numerical calculations, we monitor the converged value
of the determinant of the Jacobian. When the value changes sign, a bifurcation can
occur and a new branch of symmetric waves may emanate. We call this operation the
symmetric Jacobian test to ease referring. We note that (3.13) is particularly useful
for computing the solutions near bifurcation points. For non-symmetric waves, the
coefficients bn are non-zero. We need to introduce another N collocation points in
(π, 2π]

φj = 2j− 1
2N

π, j=N + 1,N + 2, . . . , 2N. (3.14)

The dynamic boundary condition (2.13) is also satisfied on these points, which yields
extra N algebraic equations. Meanwhile, (3.11) is replaced by (3.10). The final control
equation is to fix one of the coefficients bn, e.g.

bm = β, (3.15)

where m and β are suitably chosen. We have a system with 2N + 2 equations and
2N + 2 unknowns (α0, a1, . . . , aN, b1, b2, . . . , bN, q) which can again be solved by
Newton’s method. To avoid small shifted symmetric waves, we replace one of the
algebraic equations associated with the dynamic boundary condition by

N∑
n=1

bn = 0. (3.16)
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FIGURE 2. A non-symmetric wave profile with six peaks in one wavelength with p= 1.41
and q= 0.1376. The dotted lines are used as visual guides for asymmetry.

This condition is to make sure that a crest or a trough lies at the origin as explained
in Shimizu & Shōji (2012). The wave profile can be computed by integrating xφ and
yφ once the Fourier coefficients are obtained. This numerical method was successfully
used in several different problems, e.g. see Blyth & Vanden-Broeck (2004), Shimizu
& Shōji (2012) and Gao & Vanden-Broeck (2014). The accuracy of this numerical
method was discussed in Gao & Vanden-Broeck (2014).

The challenge here is to find suitable initial guesses to jump on branches of non-
symmetric waves. To find a symmetry-breaking point, we interpolate a symmetric solu-
tion (α0, a1, . . . , aN, q) with zero bn coefficients. Then (α0, a1, . . . , aN, q, 0, 0, . . . , 0)
is still an exact solution of a symmetric wave. We perform this operation along the
symmetric branches and evaluate the Jacobian of the enlarged system with an and bn
all involved (see Shimizu & Shōji (2012) for more details). We name this operation
the full Jacobian test. Symmetry breaking takes place when the full Jacobian test
shows the change of sign but the symmetric Jacobian test does not. It is noted that, to
be best of our knowledge, using the sign of the Jacobian to detect bifurcation points
was initially proposed by Keller (1977).

By using (3.15) near a symmetry-breaking point, the solution converges after several
iterations and a non-symmetric wave is obtained. Afterwards the whole bifurcation
diagram can be completed by using the continuation method. In this paper, we choose
N = 500 for computing symmetric waves and N = 1000 for non-symmetric waves.
There are no significant changes in solutions by using a larger N. A solution is
considered to be converged if the l∞-norm of the residual error of Newton’s method
is less than 10−9.

4. Numerical results
4.1. Non-symmetric waves in deep water

Shimizu & Shōji (2012) discovered numerically non-symmetric waves with six peaks
and two peaks per wavelength in deep water resulting from the spontaneous symmetry-
breaking bifurcations. As presented in their paper, a branch emanating from a linear
wave solution which satisfies the dispersion relation for some integer wavenumber m
is called a primary branch of mode m. For the branch of mode m, am is the most
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FIGURE 3. (a–d) Non-symmetric waves of two peaks on the branch bifurcating from the
primary branch P2 for q= 0.2208 and p= 1.2, 1.1197, 1.18, 1.12 respectively. (e–h) Non-
symmetric waves of two peaks on the branch bifurcating from S23 for q= 0.2487 and p=
1.2, 1.01, 1.007, 1.006 respectively. The profiles are plotted in the physical x–y plane. The
dotted lines are used as visual guides for asymmetry. As p decreases, the wave profiles
finally become symmetric (d and h).
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FIGURE 4. (a–d) Non-symmetric waves of two peaks on the branch bifurcating from P2
for pq= 0.2782 and p/q= 5.1764, 21, 35, 89 respectively. (e–h) Non-symmetric waves of
two peaks on the branch bifurcating from S23 for pq= 0.2908 and p/q= 4.9527, 8.4527,
11.9527, 79.5 respectively. The profiles are plotted in the physical x–y plane. The dotted
lines are used as visual guides for asymmetry. As p/q increases, the wave profiles finally
become symmetric (d and h).

dominant Fourier coefficient of the periodic solution. If a further bifurcation occurs
on a primary branch, it leads to a new family of solutions and is called a secondary
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FIGURE 5. (a) Bifurcation diagram of non-symmetric waves with three peaks for p= 1.2.
The solid curve is a branch of non-symmetric waves with three peaks in one wavelength.
The dash-dotted curve is a branch of symmetric waves of mode (3, 2) whereas the dotted
curve corresponds to a branch of shifted symmetric waves. (b) Continuation of the dotted
branch of shifted symmetric waves. The solid curve is a branch of non-symmetric waves
with four peaks.

branch of mode (m, n), which means there are two dominant coefficients am and an.
Analogously, a branch bifurcating from a secondary branch is called a tertiary branch.
We denote the primary branch of mode m by Pm, the secondary branch of mode
(m, n) by Smn and the tertiary branch of mode (m, n, j) by Tmnj. The order of the
index essentially shows the solution structure, e.g. a Tmnj bifurcates from a Smn which
originates from Pm (see the following schematic)

Pm→ Smn→ Tmnj. (4.1)

We continue to investigate this problem by reproducing first the results in Shimizu
& Shōji (2012) and then by searching for new types of non-symmetric waves. We
fix the value of p and change q in the continuation method. As described in § 3, we
depart from P6 and perform the symmetric and full Jacobian tests along the branch
at the same time. A S62 is found but there is no non-symmetric branch. We continue
the same process on S62 and find a T621, but still non-symmetric branch is not found.
Finally, on the tertiary branch T621, we manage to find a symmetry-breaking point
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FIGURE 6. Wave profiles for the points indicated in figure 5(a). They are plotted in the
x–y plane where p= 1.2 fixed and q= (i) 0.2160, (1) 0.2289, (2) 0.2756, (3) 0.3285, (4)
0.3082, (ii) 0.2817.

from which a non-symmetric branch emanates. A typical wave profile is shown in
figure 2. The detailed bifurcation diagrams are shown in figures 4 and 5 of Shimizu
& Shōji (2012).

There are two types of non-symmetric waves with two peaks: (i) those bifurcating
from the primary branch P2; (ii) those bifurcating from the secondary branch S23.
Examples for both types are shown in figure 3. By fixing q and varying p for non-
symmetric waves with two peaks, we observe that the asymmetry vanishes as the value
of p decreases to a certain number. The ratio of gravity to surface tension becomes
smaller along with the decrease of the value of p, since p/q = ρgλ2/(4π2T). This
phenomenon is coincident with the conjecture made by Okamoto & Shōji (1991) (also
emphasised by Shimizu & Shōji 2012) that Crapper’s waves are the only non-trivial
solutions for steady pure capillary waves.

Inspired by the work of Dias (1994) who obtained symmetric capillary–gravity
solitary waves by extending the wavelength of symmetric periodic waves, we perform
the same procedure to see whether it is possible to find non-symmetric solitary waves
from non-symmetric periodic waves. This can be achieved in our problem by fixing
the value of pq and enlarging p/q of a solution. Since in deep water gravity–capillary
solitary waves can only exist below the minimum of the phase speed, i.e. c< c∗ (see
Vanden-Broeck & Dias (1992) for more details), we should choose the parameters p
and q such that

pq= gT
ρc4

>
gT
ρc∗4
= 1

4
. (4.2)
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FIGURE 7. Wave profiles for those points indicated in figure 5(b). They are plotted in the
x–y plane where p= 1.2 fixed and q= (iii) 0.2333, (iv) 0.2156, (v) 0.2027, (vi) 0.1852,
(5) 0.1831, (6) 0.2019, (7) 0.2290, (8) 0.2431.

In figure 4, the numerical experiments show that the asymmetry gradually disappears
as the value of p/q is further increased, and the solution finally ends up with a
shifted depression or elevation solitary wave. However this approach is found to be
extremely useful for discovering new non-symmetric waves with more peaks. This
will be discussed in §§ 4.1.1 and 4.1.2.

4.1.1. New non-symmetric waves
An immediate question arising from the work of Shimizu & Shōji (2012) is: can we

find non-symmetric waves with a number of peaks other than two or six? The answer
is positive. We start with presenting the results for 3 peaks. The symmetry-breaking
point is found to be on an S32 branch (point (i) in figure 5a). By following the solid
curve (i)→(1)→(2)→(3)→(4), the asymmetry gradually fades out after the point (4)
and eventually joins a branch of shifted symmetric waves (dotted line in figure 5a).
A detailed bifurcation diagram is presented in figure 5(a), and typical wave profiles
are shown in figure 6.

By following further the branch of shifted symmetric waves (dotted curves in
figure 5a,b), we discover a new branch of non-symmetric waves with four peaks.
The full bifurcation diagram is shown in figure 5(b) and typical wave profiles are
sketched in figure 7. We notice that the dotted curve in figure 5(b) finally tends to
the origin, which implies that this type of shifted waves with four peaks can only
bifurcate from the uniform stream. This is the reason why one cannot obtain these
results by the approach for the symmetry-breaking study.
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FIGURE 8. (a) Bifurcation diagram of non-symmetric waves with five peaks in one
wavelength and p= 1: the branch of non-symmetric waves with five peaks (solid curve),
part of the S54 branch (dotted curve), part of a branch of shifted symmetric waves (dashed
curve). The sharp nature near the point (i) is shown in more detail. (b) Bifurcation diagram
of non-symmetric waves with seven peaks in one wavelength and p= 1.05: the branch of
non-symmetric waves with seven peaks (solid curve), part of the S76 branch (dashed curve),
part of a branch of shifted symmetric waves (dotted curve).

The bifurcations for non-symmetric waves with five and seven peaks are qualitatively
similar to those with three peaks. They both emanate from a secondary branch (S54
and S76 respectively) and end at a branch of shifted symmetric waves (see figure 8).
Due to large wave amplitudes, overhanging structures (multivalued profiles) are
observed, and the typical waves are shown in figures 9 and 10. On physical grounds,
the overhanging structure in capillary/gravity–capillary waves is of interest due to
its important role in air bubble formation and air–water gas exchanges therefrom
(Longuet-Higgins 1988). The limiting configuration occurs when the profile develops
a point of contact pinching off a ‘trapped bubble’. Further down the bifurcation
curve, the solutions become unphysical since they feature a self-intersecting structure,
though they are admitted mathematically by the full Euler equations. A large number
of collocation points is required to maintain the high accuracy near the dotted curves
in both graphs of figure 8. A typical value for N there is 3000.

A further extension is to find non-symmetric waves with more peaks. It can be
achieved by fixing the value of pq and increasing the value of p/q (as seen in
figure 4). We apply the approach to those non-symmetric waves presented above.
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FIGURE 9. Wave profiles for the points indicated in figure 8(a). They are plotted in the x–
y plane with p= 1 fixed and q= (i) 0.2012, (1) 0.2173, (2) 0.2460, (3) 0.3242, (4) 0.3907,
(ii) 0.4424.

We perform our first numerical experiment with the non-symmetric wave given in
figure 7(7), and observe that a large peak evolves to two ripples with a long flat
platform generated in between as shown in figure 11(a). We stop at some value
of p/q and take the solution as the initial guess. Three examples are presented in
figure 11(a–c) for different values of p/q. Then by fixing the value of p and varying
q, some new waves can be found. It is shown in figure 11(d–f ) that as the value of
p/q increases, the number of peaks generated increases. Therefore a further increase
of p/q leads to a new solution with more peaks. We have a reason to believe
that non-symmetric waves can exist with any integer number of peaks. Although
no rigorous proof is provided, the results show very strong numerical evidence. This
approach can also be applied to other non-symmetric waves. We take a non-symmetric
wave with five peaks (figure 12(a), p= 1.3113, q= 0.2110) for example. This wave
bifurcates from a branch of shifted symmetric waves. Here we do not present the
detailed bifurcation structure since it is qualitatively similar to the one with three
peaks. We fix the value of pq and change p/q to 52.3146 as shown in figure 12.
Then we use wave (b) as an initial guess, fix the value of p and vary q to follow
the bifurcation branch where a new non-symmetric wave with nine peaks is obtained
(see figure 12c).

4.1.2. Isolated branches of non-symmetric waves
We now focus on the non-symmetric wave with eight peaks as shown in

figure 11(d). By numerical continuation, we obtain the whole family of solutions
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FIGURE 10. Wave profiles for the points indicated in figure 8(b). They are plotted in the
x–y plane where p= 1.05 and q= (iii) 0.1865, (5) 0.2194, (6) 0.2342, (iv) 0.2573.

and sketch them by using b1 and q as the bifurcation parameters in figure 13. Upon
the branch, the wave tries to balance both sides but fails (see figure 14), as a
consequence, it has no choice but to rejoin its own branch. As shown in figure 13
the branch of non-symmetric waves is found to be a closed loop which is isolated
without the presence of branches of symmetric waves. Several bifurcation points
have been found on this isolated non-symmetric branch, which are marked as (1)–(5)
in figure 15. The new bifurcation branches (dotted and dash-dotted lines shown in
figure 15) are also non-symmetric waves. In particular, a simple closed branch which
bifurcates from the point (4) or (5) has been observed (dashed curve in figure 15).
We have not completed the branches which bifurcate at points (1) and (2) or (3) but
we expect that they will form an isolated branch of non-symmetric waves or join
a branch of (shifted) symmetric waves. Besides we also investigated the branches
arising from the non-symmetric waves with nine and ten peaks (figure 11e,f ). The
solution structures are qualitatively similar, and isolated non-symmetric branches are
also found.

4.2. Non-symmetric waves on water of finite depth
To generalise the results to water of finite depth, we use a solution in deep water as an
initial guess and treat the value of the streamfunction at the bottom Q as a parameter
in the continuation method. Without much effort, many different non-symmetric waves
are obtained. Some typical profiles for Q = 3 are plotted in figure 16, therefore the
existence of non-symmetric periodic gravity–capillary waves in water of finite depth
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FIGURE 11. Examples of extending the non-symmetric wave (7) in figure 7. The value of
pq is fixed to be 0.2847 and p/q is equal to (a) 55, (b) 60, (c) 70. These solutions lead to
non-symmetric waves with (d) eight peaks, (e) nine peaks and ( f ) ten peaks respectively.
The profiles are plotted in the x–y plane.

is confirmed. We apply the same approach to the dotted loop from the bottom right
of figure 15 to obtain the results for different values of Q. They are presented in a
b6–q parametric space in figure 17. As the value of Q decreases, the solution branch
shrinks and eventually vanishes when Q< 2.5. It indicates clearly that the asymmetry
may disappear due to finite-depth effects.

5. Conclusion
We started by reproducing the non-symmetric, deep-water, gravity–capillary waves

of two peaks and six peaks in one wavelength, in excellent agreement with the results
of Shimizu & Shōji (2012), confirming the validity and capability of our numerical
procedure. By using the same mechanism for symmetry-breaking investigation, we
have found new branches of non-symmetric waves with three, four, five and seven
peaks. These waves are in general of large amplitudes, and all appear, via spontaneous
symmetry-breaking bifurcations. Furthermore, an approach which is equivalent to the
method of extending the wavelength is introduced to discover more new solutions.
Besides, we have found isolated closed branches of non-symmetric waves without
symmetry breaking involved. It illustrates the fact that the presence of non-symmetric

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

75
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.751


Symmetry breaking of gravity–capillary waves 637

–0.4

–0.2

0

0.2

0.4

–0.05

–0.10

0

0.05

0.10

0.15

–0.05

–0.10

0

0.05

0.10

0.15(a) (b) (c)

FIGURE 12. Example of extending a non-symmetric wave with five peaks. (a) p= 1.3113,
q= 0.2110, (b) p= 3.8045, q= 0.0727, (c) p= 3.8045, q= 0.0660. The profiles are plotted
in the x–y plane.
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FIGURE 13. The isolated branch of a family of non-symmetric waves plotted in the b1–q
plane. The value of p is fixed to be 3.7560. All the waves from this branch are non-
symmetric. Some typical wave profiles are sketched in figure 14.

waves cannot only be from symmetry breaking but also in the form of isolated loops.
Finally, the numerical results were generalised to the finite-depth case, where the
existence of non-symmetric solutions were also confirmed, as well as the isolated
bifurcation branches.
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FIGURE 14. Wave profiles for the points indicated in figure 13. They are plotted in the
physical x–y plane with p = 3.7560 fixed and q = (1) 0.0922, (2) 0.0794, (3) 0.0704,
(4) 0.0772, (5) 0.0764, (6) 0.0808, (7) 0.0716, (8) 0.0841, (9) 0.0981, (10) 0.0876, (11)
0.0693, (12) 0.0832.

The stability of all these solutions is an interesting question, for both physical
and theoretical reasons. Symmetric periodic gravity–capillary waves were found to be
unstable (see e.g. Deconinck & Trichtchenko 2014), so we conjecture that asymmetric
solutions are unstable as well, and we leave this as the subject for a future study.
Of course, numerical evidence cannot replace the mathematical proof, therefore
it is of interest to rigorously prove the existence of asymmetric periodic/solitary
gravity–capillary waves.

Three-dimensional fully localised solitary waves, which are commonly referred to
as ‘lumps’, were observed recently in the experiments by Diorio et al. (2009, 2011).
Therefore the results presented in this paper naturally bring up the question of the
possible existence of non-symmetric progressive waves in three dimensions. In fact,
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FIGURE 15. Other bifurcations occurring on the isolated non-symmetric branch which was
presented in figure 13. We plot in the a5–a6 plane instead of the b1–q plane to make the
bifurcations easier to view.
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FIGURE 16. Non-symmetric waves in water of finite depth for Q= 3 where (1) p= 1.2,
q = 0.3274, (2) p = 1.2, q = 0.2218, (3) p = 1.2, q = 0.2711, (4) p = 1.2, q = 0.1861,
(5) p= 1, q= 0.2038, (6) p= 1.41, q= 0.1422.
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FIGURE 17. Branches of non-symmetric solutions for p= 3.7560 and Q=∞, 3, 2.6, 2.55,
2.53, 2.525 respectively (from outside to inside).

non-symmetric gravity–capillary lumps have been found in a reduced model by Wang
& Vanden-Broeck (2015), however, it is more interesting to investigate the problem in
the three-dimensional full Euler equations.
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