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This paper is about a categorical approach for modelling the pure (i.e., without constants)

call-by-value λ-calculus, defined by Plotkin as a restriction of the call-by-name λ-calculus. In

particular, we give the properties that a category Cbv must enjoy to describe a model of

call-by-value λ-calculus. The category Cbv is general enough to catch models in Scott

Domains and Coherence Spaces.

1. Introduction

The call-by-value λ-calculus is a restriction of the classical λ-calculus (λβ-calculus, for

short), based on the notion of value. A value is a term that is either a variable or an

abstraction. In particular, the call-by-value λ-calculus (λβv-calculus, for short) is obtained

from the classical one by restricting the evaluation rule (the β-rule) to those redexes whose

operand is a value. This leads to a call-by-value parameter passing mechanism, which is

a feature present in many real programming languages. We recall that an evaluation is

call-by-value if it evaluates a parameter before it is passed.

The call-by-value parameter passing, and the lazy evaluation, which evaluates the

function bodies only after the parameters have been supplied, were both implemented in

the SECD machine, defined in Landin (1964) for computing λ-terms. The call-by-value

λ-calculus was introduced in Plotkin (1975) to define a paradigmatic language, modelling

the behaviour of SECD.

Here, we deal with the semantics of the pure, that is, without constants, λβv-calculus.

Concerning the denotational semantics, a general definition of models for the λβv-

calculus was given in Egidi et al. (1992), where Hindley–Longo’s approach for defining
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the models for λβ-calculus (Hindley and Longo, 1980) is followed. Any model for the

λβv-calculus is an applicative structure with an interpretation function that maps terms

to elements of the applicative structure such that the map satisfies some constraints,

given an environment to interpret the free variables of the terms. The main difference

between the original definition by Hindley–Longo and the one in Egidi et al. (1992)

is that the existence of a proper subset V of the carrier of the applicative structure

is required. The set V serves to interpret all the values, and we call it the set of

the semantic values. Such a definition is certainly intuitive. However, it does not help

to build models of the λβv-calculus, for it does not characterize the properties that an

applicative structure must enjoy in order to satisfy the constraints about the interpretation

function.

The aim of this paper is to give a categorical description of models for the λβv-calculus,

and to use it for building models in different mathematical structures.

Recall that the models of the λβ-calculus have a very nice categorical characterization:

they are the reflexive objects of a cartesian closed category with enough points. We recall

that an object A is reflexive if and only if A→ A is a retract of it (notation: A . A→ A).

Moreover, the condition of having enough points is a suitable notion of ‘concreteness’

for categories. A categorical characterization of models for the λβv-calculus cannot be

obtained by modifying or restricting the categorical definition for the λβ-calculus, just

recalled. A counterexample is the model in Egidi et al. (1992), built in the category of

Scott Domains and strict continuous functions. We refer to the model that is the initial

solution of: D ≈ [D →⊥ D]⊥, with [D →⊥ D]⊥ the lifted space of strict continuous

functions. Indeed, the category of Scott Domains and strict continuous functions is not

cartesian closed.

We give a categorical description of models for the λβv-calculus, starting from logi-

cal considerations. Our logical intuition is that, while the λβ-calculus is related to the

Intuitionistic Logic through the Curry–Howard Isomorphism, extended to the untyped

case (with reflexive types), the λβv-calculus is related to the Intuitionistic Linear Logic,

where the modality characterizes the values. It turns out that a suitable class of cat-

egories for interpreting the λβv-calculus is a restriction of the one defined in Benton

et al. (1990), where the interpretation of the multiplicative and exponential fragment

of Intuitionistic Linear Logic is given. However, we need to endow the category in

Benton et al. (1990) with a suitable retraction, and to require it to have enough val-

ues. The retraction is D . T (D =⇒ D), where D is the object representing the domain

of interpretation, T is a suitable functor, and =⇒ represents the internalization of

the morphisms in a monoidal closed category. The notion of ‘having enough values ’

is the natural restriction to the λβv-calculus of the notion of ‘having enough points’

for the λβ-calculus. The meaning of this notion is that morphisms are different if

and only if there is at least a value where they behave differently. We call Cbv this

class of category, and, consequently, Cbv-models any model built in a category of this

class.

This class of categories is general enough to catch models in different settings. We

prove that every Scott Domain D, solution of D B [D →⊥ D]⊥, and that every Coherence

Domain D, solution of DB !(D =⇒ D), is a Cbv-model. We should say that Girard
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was the first to conjecture that the Coherence Space D given above is a model of the

λβv-calculus. However, this domain is also a model for λβ-calculus, and it was the leading

idea in Gonthier et al. (1992) for building an optimal reduction machine for β-reduction,

translating λβ-calculus into untyped proof-nets. In this paper, we also show that, despite

our intuition, a model for the λβ-calculus is not necessarily a model for the λβv-calculus

(see Remark 5.1).

Moreover, we study the problem of modelling the call-by-value extensionality. Syntac-

tically, the call-by-value extensionality is expressed by the ηv-rule, which is a restriction

of the classical η-rule. We define a semantic notion of extensionality, suitably restricting

the analogous notion for the λβ-calculus. Namely, a model for the λβv-calculus is ex-

tensional if the equality relation between its elements reflects their extensional functional

behaviour. However, the elements of the model are not seen as total functions. They

are considered as partial functions, having the set of semantic values as domain. The

unexpected consequence is that, unlike the λβ-calculus, a model of the λβv-calculus can

be extensional without modelling the βvηv-equality. As evidence for this, we show that the

Coherence Space that is the least solution of D ≈ !(D =⇒ D) satisfies the βvηv-equality,

while not being extensional. Roughly speaking, to model the βvηv-equality, it is sufficient

that only the elements of the models that are an interpretation of valuable terms have an

extensional behaviour.

The class Cbv is not a complete characterization of the models for the λβv-calculus,

at least with respect to those with an extensional theory. We prove that all Cbv-models

having a βvηv-theory satisfy the equality IM = M, where I is the identity term λx.x, and

M is any term. This equality, which is correct with respect to the operational semantics

of the λβv-calculus, does not belong to all βvηv-theories. For example, it is not in the term

model induced by the βvηv-theory, and it is not in the model of Honsell and Lenisa (1993).

The equality IM = M reflects the substitution property of the Intuitionistic Linear Logic,

which we choose for modelling the typed version of the λβv-calculus.

We leave as an open problem whether the class of Cbv-models not having an extensional

theory is complete or not.

1.1. Structure of the paper

In Section 2 the λβv-calculus and its notion of model are recalled. In Section 3, start-

ing from some logical argumentation, the categorical structure needed for modelling the

λβv-calculus is defined. This categorical structure is used in Sections 4 and 5 to define

a categorical model for the λβv-calculus. Section 6 is about extensionality. Section 7

proves the incompleteness of the subclass of Cbv-models with an extensional theory. In

Section 8 two instances of the categorical model are introduced. In Section 9 we discuss

the relation between Cbv and the models of the λβv-calculus given in Moggi (1991).

Finally, an appendix recalls some of the categorical concepts used in the paper. How-

ever, we assume a basic knowledge of Category Theory, Scott Domains and Coherence

Spaces.

Pravato et al. (1995) was an earlier and partial version of this paper.
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2. Modelling the call-by-value λ-calculus

The call-by-value lambda calculus, or λβv-calculus, is a restriction of the classical λ-calculus,

based on the concept of value. In particular, the restriction concerns the evaluation rule,

namely the β-rule, which is replaced by the βv-rule.

Definition 2.1. Let Var be a denumerable set of variables, ranged over by x, y, z. Let Λ be

the set of pure untyped λ-terms M built from the following grammar:

M ::= x | MM | λx.M.

We use M,N, P , Q to denote terms. Terms of the form MN are called applications while

those of the form λx.M are called abstractions. The set of syntactic values, or simply

values, is the set Val ⊂ Λ defined as

Val = Var ∪ {λx.M | x ∈ Var and M ∈ Λ}.
The call-by-value evaluation rule is given by the following reduction rule:

(βv) (λx.M)N →v [N/x]M if N ∈ Val,

where [N/x]M denotes the substitution of N for every free occurrences of x in M, with

bound variables renamed in M to avoid variable clash. The reflexive, symmetric, transitive

and contextual closure of →v , together with the possibility of renaming bound variables,

lead to an equivalence theory on terms of Λ. Formally, the formal theory λβv is a set of

rules for deriving formulas of the following shape:

M =v N

where both M and N belong to Λ. The rules are

M =v M
(ρ)

M =v N

N =v M
(σ)

M =v N N =v P

M =v P
(τ)

y 6∈ FV(M)

λx.M =v λy.[y/x]M
(α)

N ∈ Val

(λx.M)N =v [N/x]M
(βv)

N =v P

MN =v MP
(µ)

M =v N

MP =v NP
(ν)

M =v N

λx.M =v λx.N
(ξ)

where FV(M) is the set of the free variables of M.

Finally, two terms M and N are said to be βv-equal if the formula M =v N is derivable

in the above system, and is written

λβv `M =v N.

Definition 2.2. A term M ∈ Λ is valuable iff there exists N ∈ Val such that

λβv `M =v N.

Notice that if we take Val to be Λ, the βv-reduction rule becomes the classical β-

reduction rule, and hence the theory λβv becomes the usual theory λβ. That is, the
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classical lambda calculus can be viewed as a variant of the call-by-value lambda calculus

by defining Λ as the set of values.

As far as extensionality is concerned, Plotkin pointed out that the η-rule (λx.Mx→η M

if x 6∈ FV(M)), which makes extensional the classical λ-calculus, is unsound for the

λβv-calculus. The extensionality in λβv-calculus is realized by the restriction of the η-rule,

recalled in the following definition.

Definition 2.3. The ηv-rule is defined as follows:

(ηv) λx.Mx→ηv M if M ∈ Val and x 6∈ FV(M).

Two terms M and N are said to be βvηv-equal if the formula M =v N is derivable in the

system given in Definition 2.1 extended by the rule

(M ∈ Val) and (x 6∈ FV(M))

λx.(Mx) =v M
(ηv)

and is written

λβvηv `M =v N.

An operational semantics can be defined for λβv , which induces the following equiva-

lence: given two terms M and N,

M ∼v N ⇔ (for all context C[ ], such that C[M] and C[N] are closed.

C[M] reduces to a value ⇔ C[N] reduces to a value).

This definition of operational semantics corresponds to the Leibniz principle for programs.

Namely, a program (closed term) is characterized by its observational behaviour, so two

subprograms (terms) are equivalent if they can be substituted for each other in the same

program without changing the global behaviour. In a language without constants, like

λβv , the simplest observational property is termination.

A model for the λβv-calculus is a structure in which a term M ∈ Λ is interpreted. This

interpretation must satisfy two constraints. The first is that two βv-equal terms should

have the same interpretation. The second is that it must be contextual closed, that is, if

two terms M and N have the same interpretation, then for every context C , C[M] and

C[N] must have the same interpretation.

A general definition of a model for the λβv-calculus, following Hindley–Longo’s ap-

proach to defining a lambda calculus model (Hindley and Longo, 1980), has been given

in Egidi et al. (1992). We recall here such a definition in a slightly different form.

Definition 2.4. Let S and V be two non-empty sets such that V ⊂ S , and call V the set

of semantic values. Let Env be the set of environments, where an environment is a map

θ : X → V , where X = dom(θ) is a finite subset of Var.

1 A pseudo-λv-structure is an applicative structure M = 〈S, V , •,I〉 in which we have

• : S × S → S , and I : Env→ Λ→ S is such that Iθ is defined only for terms with

free variables in dom(θ) and satisfies the following conditions:

(var) Iθ[x] = θ(x),

(abs) Iθ[λx.M] ∈ V ,

(app) Iθ[MN] = Iθ[M] • Iθ[N],
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(eval ) Iθ[λx.M] • d = Iθdx[M], for every d ∈ V ,

(ceq) if ∀x ∈ FV(M). θ(x) = θ′(x) then Iθ[M] = Iθ′[M],

(α) if y 6∈ FV(M) then Iθ[λx.M] = Iθ[λy.[y/x]M],

where θdx behaves as θ on every y 6≡ x, while θ(x) = d.

2 A λv-model is a pseudo-λv-structure such that I also satisfies

(ξ) if ∀d ∈ V .Iθdx[M] = Iθdx[N] then Iθ[λx.M] = Iθ[λx.N].

3 Let M,N ∈ Λ. An environment θ is compatible with both M and N iff FV(M) ∪
FV(N) ⊆ dom(θ). Let M = 〈S, V , •,I〉 be a λv-model. The formula M =v N is valid

in M, writing

M |= M =v N,

iff for every θ compatible with both M and N, Iθ[M] = Iθ[N].

Some remarks about the previous definition are now in order. The subset V of S

provides a semantic account of the syntactic values. So, the environments map variables

to V , as variables are values. Moreover, since every abstraction is a value too, we need

Condition abs. Condition app exploits the binary operation over S for modelling the

application. Condition eval is necessary for modelling the substitution mechanism of

values for variables. The context equality condition (ceq) states an obvious requirement:

the interpretation of a term depends only on its free variables. Condition α is the semantic

counter part of the α-conversion.

Definition 2.5. A model M of λβv is adequate with respect to the operational semantics

∼v if and only if

∀M,N.M |= M = N ⇒M ∼v N
Note that the definition of model we have given does not include adequacy, i.e., non-

adequate models can satisfy the definition. But all the models we will show are adequate.

The problem of the semantic interpretation of βvηv-equality, and so the definition of

extensional λβv-model, will be discussed in Section 6.

Remark 2.1. The conditions on I given in Definition 2.4 (1) do not give a definition of

the interpretation function I by standard induction because of condition (abs). Thus,

Condition (ξ) is necessary to make the interpretation contextually closed.

3. The Cbv category

In this section we define a class of categories to model the λβv-calculus. We follow

Scott (1975): the untyped lambda calculus can be considered as the ‘limit’ for the typed

lambda calculus. Thus, first, we consider a full typed version of the λβv-calculus, and we

use the logic behind it to define a category that interprets the language. Then, we extend

this category in order to capture the meaning of the whole untyped language. The idea

is to interpret a lambda term M with a free variables set FV(M) = {x1,. . ., xn} by a

judgment x1 : A1, . . . , xn : An ` M : A proved in the type system we want to start from.

Any judgment becomes a morphism of the category from A1 � · · · � An to A, with every

Ai an object and � a suitable bifunctor.
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The logic behind the usual lambda calculus is the Intuitionistic Logic: the terms of

(simply) typed lambda calculus can be viewed as natural deduction proofs in such a logic.

The β-equality is modelled by the substitution property of derivations. From all this, it

follows that the models of untyped lambda calculus are cartesian closed categories, namely

the models of Intuitionistic Logic, extended with a reflexive object. Our starting point is

the observation that the βv-equality is a restriction of the β-equality. If we want to model

it in terms of the substitution property of a natural deduction, we need a logic where the

substitution property holds only partially.

Let us focus on the type assignment in Figure 1. It is a restriction of the natural deduc-

tion for full Intuitionistic Linear Logic studied in Ronchi della Rocca and Roversi (1997).

Its judgments have the form

TΓ,∆ `M : A.

The symbol A is a type and is generated by the grammar

A,B ::= α, α1, α2, . . . | T (A =⇒ B), (1)

with α, α1, α2, . . . type variables. By TΓ we mean a (possibly empty) set of modal as-

sumptions x1 : TA1, . . . , xn : TAn. In contrast, ∆ is a (possibly empty) set of non-modal

assumptions xn+1 : B1, . . . , xn+m : Bm, that is, every Bi 6≡ TC , for any C . Finally, M is a

term in the language TΛ, generated by the grammar

M,N ::= x | T (λx : A.M) | d(M)N,

where x ranges over a countable set of variables. In particular, we call TV the set

{x, T (λx : A.M) | A is a type} of values on TΛ. The system in Figure 1 gives types to this

language, and a restricted substitution property holds for it as follows.

Property 3.1.

1 If TΓ, x : TA,∆ `M : B and TΓ,6 ` N : TA, then TΓ,∆ `M[N/x] : B.

2 If TΓ,∆1, x : A `M : B and TΓ,∆2 ` N : A, where A is non-modal, then TΓ,∆1,∆2 `
M[N/x] : B.

Thanks to Property 3.1, we can define a rewriting system →T on TΛ:

(d(T (λx : TA.M)))N →T M[N/x] if and only if N (2)

reduces to some P ∈ TV
by one or more steps of →T

(d(T (λx : A.M))N →T M[N/x] with A non-modal (3)

The definition of →T formalizes the substitution property of the system in Figure 1 at

the level of the terms of TΛ. To verify this, it is enough to check that Γ,6 ` M : TA

implies that M reduces to some value N after some steps of →T , that is, M →∗T N, where

N ∈ TV . Observe that Clause (2) recalls βv-reduction: in TΛ the values are the terms

with modal type. Moreover, Clause (3) tells us that, in TΛ, we can replace an arbitrary

term N for a variable x, if x has non-modal type, that is, if x will never be duplicated or

erased during a reduction of M by means of →T . Finally, TΛ is a sub-system of the one
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TΓ, x : A ` x : A
(Id)

TΓ, x : A `M : B

TΓ ` T (λx : A.M) : T (A =⇒ B)
(=⇒ I)

TΓ,∆1 `M : T (A =⇒ B) TΓ,∆2 ` N : A

TΓ,∆1,∆2 ` d(M)N : B
(=⇒ E)

Fig. 1. The typed language TΛ

α♦ 7→ Tα

(σ → τ)♦ 7→ T (σ♦ =⇒ τ♦)

x♦ 7→ x

(λx : σ.M)♦ 7→ T (λx : σ♦.M♦)

(MN)♦ 7→ d(M♦)N♦

Fig. 2. The map from typed βv-calculus to TΛ

introduced in Ronchi della Rocca and Roversi (1997), which was strongly normalizing.

So TΛ is strongly normalizing with respect to →T .

We now look at how the rewriting system→T allows us to simulate the computations of

the typed λβv-calculus, where, by typed λβv-calculus we mean the simply typed λ-calculus

on which βv-equality is used. To make this simulation explicit, it is enough to introduce

the (overloaded) function (.)♦ in Figure 2. The function (.)♦ goes from the types and terms

of typed λβv-calculus to the types and terms of TΛ. Let σ, τ range over simple types. We

say that, in the typed λβv-calculus, a variable x is linear in M if and only if x is free in M

and x occurs once in every M ′ such that M →∗v M ′. Observe that the typed λβv-calculus is

strongly normalizing. So, given a variable x and a term M of typed λβv-calculus, whether

x is linear in M or not is decidable. We have the following property.

Property 3.2. Let M,N be terms of typed λβv-calculus.

1 If (λx : σ.M)N →v M[N/x], then ((λx : σ.M)N)♦ →T (M[N/x])♦.

2 If N is not a value of λβv-calculus and x is not linear in M, then ((λx : σ.M)N)♦ is

not a redex.

3 If x is linear in M, then ((λx : σ.M)N)♦ →T (M[N/x])♦.

Point (1) of Property 3.2 says that the βv-reduction of typed λβv-calculus can be

simulated by →T of TΛ. Point (2) says that TΛ is not enough to model the full call-by-

name lambda calculus. Point (3) says that the system →T contains something more than

the system →v . Indeed, Point (3) holds because →T describes the substitution property

of a fragment of Intuitionistic Linear Logic where substituting any term for a variable

is always legal if the variable is linear (see Property 3.1). So TΛ can be used as a

meta-language for studying the semantics of typed λβv-calculus.
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To interpret TΛ, it is enough to observe that it is typed by a multiplicative and

exponential fragment of Intuitionistic Linear Logic if we think of replacing −◦, and !

for =⇒, and T , respectively. Models of such a fragment were introduced in Benton

et al. (1990), and are symmetric monoidal closed categories endowed with a monoidal

comonad (T , δ, ε), such that

• for every co-free T -coalgebra (TA, δA), there are two monoidal natural transformations

DupA, and EA that form a commutative comonoid and are coalgebra morphisms,

• for every f : (TA, δA)→ (TB, δB), if f is a coalgebra between co-free coalgebras, it is

also a comonoid morphism.

In principle we could require less structure in our model for TΛ than the one given

above, as the logic encoded by TΛ is structurally much simpler than the logic modelled

in Benton et al. (1990). However, we stick to the above class of categories because, as we

shall see in the conclusions, we want exploit other results built on this class.

Now, let us extend the system →v on typed λβv-calculus with the rule

(λx : σ.M)N →l M[N/x] if and only if x is linear in M,

and observe that this extension is still correct with respect to the operational semantics,

introduced in Section 2. By Property 3.2, all models of TΛ are also models of →v ∪ →l if

we use TΛ as a meta-language to compile the extension of typed λβv-calculus given above

using function (.)♦ in Figure 2. Moreover, every model of TΛ is a model of the ηv-rule.

Now that we know the class of categories for interpreting the type system in Figure 1,

and thus TΛ, and, hence, the typed λβv-calculus, we ‘degenerate’ this class to the untyped

case, following the usual pattern to give models to call-by-name lambda calculus. First,

we restrict the language of types in (1) by generating it from a single constant D:

A,B ::= D | T (A =⇒ B).

Second, we consider this new language of types up to the congruence

D = T (D =⇒ D). (4)

This congruence is analogous to D = D → D, used by Scott on call-by-name lambda

calculus to assign the type D to each of its terms. Note that the congruence D = D → D

can be obtained from (4) by Girard’s translation: (D → D)∗ = T (D∗ =⇒ D∗), originally

given in Girard (1987) to translate intuitionistic formulas in intuitionistic linear formulas.

So, the class of categories we need to interpret untyped λβv-calculus, using the untyped

version of TΛ, restricts to the following definition of Cbv category.

Definition 3.1. Cbv is a call-by-value category if it is symmetric monoidal closed, with �
its monoidal product and =⇒ its Hom-sets internalization, such that

• Cbv has a monoidal comonad (T , δ, ε),

• for every co-free T -coalgebra (TA, δA) of Cbv, there are two monoidal natural trans-

formations DupA : TA
.→ TA � TA and EA : TA

.→ I that form a commutative

comonoid and are coalgebra morphisms,

• for every morphism f : (TA, δA)→ (TB, δB) of Cbv, if f is a coalgebra between co-free

coalgebras, it is also a comonoid morphisms,

https://doi.org/10.1017/S0960129598002722 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002722


A. Pravato, S. Ronchi della Rocca and L. Roversi 626

• Cbv has a model object D, which has T (D =⇒ D) as a retract (written D B T (D =⇒
D)). By this we mean that there exist F :D → T (D =⇒ D) and G : T (D =⇒ D) →
D, such that F ◦ G = idT (D=⇒D).

In particular, we shall denote the object (D =⇒ D) by V.

Clearly, moving from a typed to an untyped λβv-calculus, the definition of →l becomes

undecidable. However, in Section 6 we shall see how to take the behaviour of →l into

account at a pure semantic level.

Remark 3.1. A particular choice for the monoidal functor T of Definition 3.1 is the identity

functor. In this case every object of the category induces a commutative comonoid and it

is easy to check that the category contains a cartesian closed category with a retraction

D B (D =⇒ D). Hence, we have a pseudo-structure, or a combinatory algebra, for call-

by-name lambda calculus. This is not surprising: every formula provable in the theory of

λβv-calculus is also provable in the theory of call-by-name lambda calculus. This implies

that a model of call-by-name lambda calculus is a particular case of a λβv-model. This

is the semantic counterpart to the following statement: syntactically, the call-by-name

lambda calculus can be viewed as a λβv-calculus where the set of values coincides with

the set of all the terms of the calculus.

Remark 3.2. A discussion of the models of typed λβv-calculus, based on translations into

a linear calculus can be found in Benton and Wadler (1996). There the linear calculus

used as a meta-language to give a meaning to typed λβv-calculus is the one in Benton

et al. (1990). The discussion is developed by translating typed λβv-calculus into the linear

calculus by using the, so called, call-by-value translation of intuitionistic formulas to

intuitionistic linear formulas. It is clear that we use a different meta-language from that in

Benton and Wadler (1996). This choice is motivated by our interest in typed λβv-calculus

as just a ‘bridge’ to get to the untyped one. Indeed, untyped λβv-calculus can be obtained

from TΛ, which is typed, by applying a standard erasure function for ruling out the types

of the terms in TΛ. Namely, we do what is usually done with typed call-by-name lambda

calculus to get its untyped version.

4. The categorical pseudo-λv-structure

In this section we will prove that every Cbv category induces a pseudo-λv-structure. First,

let us introduce some useful notation. In the following we refer simply to ‘the category’,

in place of ‘one category belonging to the class Cbv’.

Notation 4.1.

• Let A1, . . . , An be either morphisms or objects of the category. Thanks to the associa-

tivity of � and the Coherence Theorem (Appendix A), A1 � · · · � An can be used as

an abbreviation for A1 � (A2 � · · · (An−1 � An) · · ·) or for (· · · (A1 � A2)� A3) · · · � An,
modulo isomorphisms.

• Let A be either a morphism or an object of the category. We use An to denote the

tensor product A� · · · � A, n times, where A0 = I if A is an object, and A0 = idI if A

is a morphism.
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• For all A1, . . . , An ∈ ObjCbv, let mA1 ,...,An (n > 2) be the generalization of mA,B inductively

defined as mA1 ,...,An = mA1 ,A2�···�An◦(idTA1
�mA2 ,...,An), implicitly exploiting the associativity

of �. We define: mnA : (TA)n → T (An) as

m0A = mI
m1A = idTA
mnA = mA,...,A for n > 1

and mn : (In)→ T (In) as

m0 = m1 = mI
mn = mnI ◦ mnI for n > 1.

We now introduce some morphisms useful for defining the interpretation of a term in a

concise way. Notice that in order to interpret the terms of λβv-calculus, we must be able

to duplicate environments and to project arguments. In the next definition, the structure

of the comonoids in Cbv helps us in the definition of projections and duplications.

For all A1, . . . , An ∈ ObjCbv and for every permutation σ of the sequence 1, . . . , n, we

call ExcA1�···�An
Aσ(1)�···�Aσ(n)

the natural isomorphism between A1 � · · · �An and Aσ(1) � · · · �Aσ(n).

The isomorphism is defined using the symmetry isomorphism γ on Cbv.

Definition 4.1. Let A1, . . . , An ∈ ObjCbv.

Duplications: Let A = TA1 � · · · � TAn. We define duplication ∆A :A→A� A as

ExcA
′

A�A◦(DupA1
�· · ·�DupAn),

where A′ = TA1 � TA1 � · · · � TAn � TAn. In particular, ∆I : I → I � I is defined as

∆I = λ−1
I = ρ−1

I .

Projections: For every 1 6 i 6 n, we define the projection πiA1�···�An : TA1 � · · · � TAn →
TAi as

iso◦(EA1
� · · · � EAi−1

� idAi � EAi+1
� · · · � EAn),

where iso stands for the natural isomorphism between I � · · · � I � Ai � I � · · · � I and

Ai built out of λ and ρ.

We now define the interpretation of the terms of λβv-calculus in Cbv with a model object

D, following Asperti and Longo (1991) and Koymans (1982). Therefore, we interpret a

term M, with free variables {x1, . . . , xn}, as a morphism from Dn to D.

Definition 4.2. Let M ∈ Λ such that FV(M) ⊆ {x1, . . . , xn}. Let C(D) be a Cbv category

with D as a model object. The interpretation function [[.]]C(D) such that [[x1, . . . , xn `
M]]C(D) ∈ Hom(Dn,D) is defined by induction on M as follows (remember thatV denotes

(D =⇒ D)):

[[x1, . . . , xn ` xi]]C(D) = G ◦ πiVn ◦ Fn, (5)

[[x1, . . . , xn `MN]]C(D) = (6)

evD,D ◦ ((εV ◦ F ◦ [[x1, . . . , xn `M]]C(D))� [[x1, . . . , xn ` N]]C(D)) ◦ rn,
[[x1, . . . , xn ` λx.M]]C(D) = (7)

G ◦ T (ΛDn,D,D([[x1, . . . , xn, x `M]]C(D)) ◦ Gn) ◦ sn,
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where

rn = (Gn � Gn)◦∆(TV)n ◦ Fn,
sn = mnTV ◦ δnV ◦ Fn.

Clause (5) defines a projection of the i-th variable in the sequence x1,. . ., xn. The inter-

pretation of MN, defined by Clause (6), is as usual. It exploits the monoidal closure,

namely, evD,D is used for applying the interpretation of M to the interpretation of N. In

particular, εV extracts the functional behaviour of the interpretation of M. Moreover, r

duplicates the environment so that it can be given to both the interpretation of M and

N. Clause (7) interprets λx.M using the monoidal functor of the comonad T . In this way,

the morphism interpreting an abstraction can be both erased and duplicated. Morphism

sn merely serves to compose the interpretation correctly.

Remark 4.1. In Clause (7), if n = 0, we take ΛI,D,D([[x ` M]]C(D) ◦ λD) : I → V, because

[[x `M]]C(D) ∈ Hom(D,D) ≈ Hom(I �D,D) 3 [[x `M]]D ◦ λD.

Now, we are ready to show the following theorem.

Theorem 4.1. Let C(D) be a Cbv category. Then, MC(D) is a pseudo-λv-structure.

The proof of Theorem 4.1 consists of checking that the construction of MC(D), as in

Definition 4.3 given below, yields what we want. Those interested in the complete proof

can find it in Subsection 4.1.

Definition 4.3. Let C(D) denote a Cbv category with a model object D. The Cbv-model

MC(D) built on C(D) is

MC(D) =
〈
SC(D), VC(D), •C(D),IC(D)

〉
,

where:

• SC(D) = Hom(I,D) (notice that Hom(I,D) ≈ Hom(In,D) for all n > 1.)

• VC(D) = {f | f ∈ Hom(I,D) and ∃h ∈ Hom(I,V).f = G ◦ Th ◦ mI},
• f •C(D) g = evD,D ◦ ((εV ◦ F ◦ f)� g), for every pair of morphisms f, g ∈ Hom(I,D),

• IC(D)θ[M] = [[x1, . . . , xn ` M]]C(D) ◦ (θ(x1) � · · · � θ(xn)), where FV(M) ⊆ dom(θ) =

{x1, . . . , xn}. We call every θ(xi) an environment component. Since θ maps variables to

values, every environment component θ(xi) is of the form G ◦ Thi ◦ mI for some hi.

As a consequence of the definition of the set of semantic values VC(D), an interpretation

[[x1, . . . , xn ` M]]C(D) is a value iff IC(D)θ[M] = G ◦ Th ◦mn for each θ and for some

h : In →V.

4.1. From a Cbv category to a pseudo-λv-structure: details

This section is mainly technical in content. It is devoted to showing formally that every

Cbv category induces a pseudo-λv-structure.

Before developing the proof, we need a couple of lemmas.

Lemma 4.1. Let M be a term such that FV(M) ⊆ {x1,. . ., xn}. Let 1 6 i 6 n − 1 and

xn+1 6∈ FV(M). The following equations hold:

(Exchange) [[x1, . . . , xi, xi+1, . . . , xn `M]]C(D)

= [[x1, . . . , xi+1, xi, . . . , xn `M]]C(D) ◦ (idi−1D � γD,D � idn−i−1D ).
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(Weakening) [[x1, . . . , xn, xn+1 `M]]C(D)

= [[x1, . . . , xn `M]]C(D) ◦ ρDn ◦ (idnD � (EV ◦ F)).

Proof. Exchange can be proved by induction on M substantially using the naturality

of γ. Much work must be done to prove weakening. We proceed by induction on M:

Let M = xi, for 1 6 i 6 n− 1.

[[x1, . . . , xn, xn+1 ` xi]]C(D) = G ◦ πiVn+1 ◦ Fn+1

(by naturality of ρ)

= G ◦ πiVn ◦ ρ(TV)n ◦ (idnTV � EV) ◦ Fn+1

= G ◦ πiVn ◦ ρ(TV)n ◦ (Fn � (E ◦ F))

(by naturality of ρ)

= G ◦ πiVn ◦ Fn ◦ ρDn ◦ (idnD � (E ◦ F))

= [[x1, . . . , xn ` xi]]C(D) ◦ ρDn ◦ (idnD � (EV ◦ F)).

Let M = PQ.

[[x1, . . . , xn, xn+1 ` PQ]]C(D)

= ev ◦ ((ε ◦ F ◦ [[x1,. . ., xn, xn+1 ` P ]]C(D))�
[[x1,. . ., xn, xn+1 ` Q]]C(D)) ◦ rn+1

(by the induction hypothesis)

= ev ◦ ((ε ◦ F ◦ [[x1,. . ., xn ` P ]]C(D) ◦ ρDn ◦ (idnD � (E ◦ F)))�
([[x1,. . ., xn ` Q]]C(D)ρDn ◦ (idnD � (E ◦ F)))) ◦ rn+1

= ev ◦ ((ε ◦ F ◦ [[x1,. . ., xn ` P ]]C(D))�
[[x1,. . ., xn ` Q]]C(D)) ◦ (ρDn ◦ (idnD � (E ◦ F)))2 ◦ rn+1.

To conclude, it is sufficient to show

(ρDn ◦ (idnD � (E ◦ F)))2 ◦ rn+1 = rn ◦ ρDn ◦ (idnD � (E ◦ F)).

Without loss of generality, we proceed for n = 1

(ρD ◦ (idD � (E ◦ F)))2 ◦ r2
= (ρD ◦ (idD � (E ◦ F)))2 ◦ (idTV � γTV,TV � idTV) ◦ Dup2 ◦ F2

(by naturality of γ)

= ρ2D ◦ (idD � γD,I � idD) ◦ (G2 � E2) ◦ Dup2 ◦ F2

(by the comonoid and naturality of λ−1)

= ρ2D ◦ (idD � γD,I � idD) ◦ (G2 � λ−1
I ) ◦ (Dup� E) ◦ F2

(by naturality of ρ and definition of γ)

= G2 ◦ ρ(TV)2 ◦ (Dup� E) ◦ F2

(by naturality of ρ)

= ρD2 ◦ (G2 � idI ) ◦ (Dup� E) ◦ F2

= ρD2 ◦ ((G2 ◦ Dup� F)� (E ◦ F))
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= ρD2 ◦ (r1 � (E ◦ F))

(by naturality of ρ)

= r1 ◦ ρD ◦ (idD � (E ◦ F)).

Let M = λx.P .

[[x1,. . ., xn, xn+1 ` λx.P ]]C(D)

= G ◦ T (Λ([[x1,. . ., xn, xn+1, x ` P ]]C(D)) ◦ Gn+1) ◦ sn+1

(using exchange)

= G ◦ T (Λ([[x1,. . ., xn, x, xn+1 ` P ]]C(D) ◦ (idnD � γD,D)) ◦ Gn+1) ◦ sn+1

(by inductive hypothesis)

= G ◦ T (Λ([[x1,. . ., xn, x ` P ]]C(D) ◦ ρDn+1 ◦ (idn+1
D � (E ◦ F)) ◦

(idnD � γD,D)) ◦ Gn+1) ◦ sn+1

(by naturality of γ)

= G ◦ T (Λ([[x1,. . ., xn, x ` P ]]C(D) ◦ ρDn+1 ◦
(idnD � (γI,D ◦ ((E ◦ F)� idD)))) ◦ Gn+1) ◦ sn+1

(since ρD ◦ γI,D = λD and ρDn+1 = idDn � ρD)

= G ◦ T (Λ([[x1,. . ., xn, x ` P ]]C(D)

◦ (idDn � (λD ◦ ((E ◦ F)� idD)))) ◦ Gn+1) ◦ sn+1

(let us suppose n > 0. If n = 0 the proof is simpler and uses Remark 4.1)

= G ◦ T (Λ([[x1,. . ., xn, x ` P ]]C(D) ◦ ρDn+1 ◦
(idn−1D � ρD) ◦ (idnD � (E ◦ F)� idD)) ◦ Gn+1) ◦ sn+1

= G ◦ T (Λ([[x1,. . ., xn, x ` P ]]C(D) ◦ ρDn+1 ◦
(idn−1D � (ρD ◦ (idD � (E ◦ F)))� idD)) ◦ Gn+1) ◦ sn+1

(by naturality of Λ and functoriality of T )

= G ◦ T (Λ([[x1,. . ., xn, x ` P ]]C(D) ◦ ρDn+1 )) ◦
T (ρDn ◦ (idDn � (E ◦ F)) ◦ Gn+1) ◦ sn+1.

To conclude, it is sufficient to prove that

T (ρDn ◦ (idDn � (E ◦ F)) ◦ Gn+1) ◦ sn+1 = T (Gn) ◦ sn ◦ ρDn ◦ (idDn � (E ◦ F)).

We proceed step by step:

T (ρDn ◦ (idDn � (E ◦ F)) ◦ Gn+1) ◦ sn+1

= T (ρDn) ◦ T (Gn � E) ◦ m(n+1)TV ◦ δn+1 ◦ Fn+1

(by naturality of m�,�)
= T (ρDn) ◦ mDn,I ◦ (mnD � idTI ) ◦ ((TG)n � TE) ◦ δn+1 ◦ Fn+1

= T (ρDn) ◦ mDn,I ◦ (mnD � idTI ) ◦ ((TG ◦ δ)n � (TE ◦ δ)) ◦ Fn+1

(since EA is an element of T -coalgCbv((TA, δA), (I, mI )))

= T (ρDn) ◦ mDn,I ◦ (mnD � idTI ) ◦ ((TG ◦ δ)n � (mI ◦ E)) ◦ Fn+1
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= T (ρDn) ◦ mDn,I ◦ (mnD � idTI ) ◦ ((mnD ◦ (TG ◦ δ)n)� E) ◦ Fn+1

(by monoidality of T )

= ρT (Dn) ◦ ((mnD ◦ (TG ◦ δ)n)� E) ◦ Fn+1

(by naturality of ρ)

= mnD ◦ (TG ◦ δ)n) ◦ Fn ◦ ρDn ◦ (idnD � (E ◦ F))

(by naturality of m�,�)
= T (Gn) ◦ mnTV ◦ δn ◦ Fn ◦ ρDn ◦ (idnD � (E ◦ F))

= T (Gn) ◦ sn ◦ ρDn ◦ (idnD � (E ◦ F)).

Lemma 4.2. Let rn be as in Definition 4.2. The interpretation of the application of a

lambda-abstraction (λx.M) to a generic term N can have one of the forms:

for n > 0:

[[x1, . . . , xn ` (λx.M)N]]C(D) = [[x1, . . . , xn, x `M]]C(D) ◦ (idnD � [[x1, . . . , xn ` N]]C(D)) ◦ rn
for n = 0:

[[` (λx.M)N]]C(D) = [[x `M]]C(D) ◦ [[` N]]C(D).

Proof. We proceed step by step.

For n > 0:

[[x1, . . . , xn ` (λx.M)N]]C(D)

= ev ◦ ((ε ◦ F ◦ [[x1, . . . , xn ` λx.M]]C(D))� [[x1, . . . , xn ` N]]C(D)) ◦ rn
(by Diagram 8 below)

= ev◦((ΛDn,D,D([[x1, . . . , xn, x `M]]C(D))◦Gn ◦ Fn)�
[[x1, . . . , xn ` N]]C(D)) ◦ rn

= ev◦(ΛDn,D,D([[x1, . . . , xn, x `M]]C(D))� id) ◦
((Gn ◦ Fn)� [[x1, . . . , xn ` N]]C(D)) ◦ rn

(by naturality of Λ)

= [[x1, . . . , xn, x `M]]C(D) ◦ ((Gn ◦ Fn)� [[x1, . . . , xn ` N]]C(D)) ◦ rn
(collapsing Gn ◦ Fn in rn, exploiting F ◦ G = id)

= [[x1, . . . , xn, x `M]]C(D) ◦ (idn � [[x1, . . . , xn ` N]]C(D)) ◦ rn
For n = 0 we have:

[[` (λx.M)N]]C(D) = ev ◦ ((ε ◦ F ◦ [[` λx.M]]C(D))� [[` N]]C(D)) ◦ λ−1
I

(by Diagram 9 below)

= ev◦((ΛI,D,D([[x `M]]C(D) ◦ λD))� [[` N]]C(D)) ◦ λ−1
I

= [[x `M]]C(D) ◦ λD ◦ (idI � [[` N]]C(D)) ◦ λ−1
I

(by naturality of λ)

= [[x `M]]C(D) ◦ [[` N]]C(D).
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(TV)n

?

δn

(TV)n D =⇒ D-id -
Λ([[x1 ,...,xn ,x`M]]C(D) )◦Gn

(TTV)n T ((TV)n) TV

6

εV

-
mnTV

-T (Λ([[x1 ,...,xn ,x`M]]C(D) )◦Gn )

(8)

I D =⇒ D-
Λ([[x`M]]C(D) )

I

�
�
�
�
���

id

TI TV

6

εV

-
mI

-T (Λ([[x`M]]C(D) ))

(9)

Diagrams 8 and 9 commute because they are essentially instances of Diagrams 10 and 11

below, which can be proved to commute using the comonad and both the naturality and

the monoidality of ε.

TA� TB

?

δA�δB

TA� TB C-id -g

TTA� TTB
�
�
�
�
�
��3

εTA�εTB

T (TA� TB)

6
εTA�TB

TC

6
εC

-
mTA,TB

-
Tg

(10)

I C-g

I

�
�
�
�
�
��3

id

TI

6
εI

TC

6
εC

-
mI

-
Tg

(11)

Finally, we can now give the proof of Theorem 4.1.

Proof of Theorem 4.1. We shall prove that MC(D) satisfies the first part of Definition 2.4.

We skip the index C(D) for clarity. To prove condition var, we use the definition of π and

both the naturality and the monoidality of E. Condition app comes from the definition of

• using, essentially, the naturality and the monoidality of Dup. Condition eval is proved

as follows. Let FV(λx.M) = {x1, . . . , xn}, and denote every θ(xi) (i = 1, . . . , n) by θi. Also,

let d ∈ V .

Proceeding step by step, we have that

Iθ[λx.M] • d = ev ◦ ((ε ◦ F ◦ [[x1, . . . , xn ` λx.M]]C(D) ◦ (θ1 � · · · � θn))� d)
(by Diagram 8 in the proof of Lemma 4.2 and exploiting

the fact that θi’s have form G ◦ · · · )
= ev◦((ΛDn,D,D([[x1, . . . , xn, x `M]]C(D))◦(θ1�· · ·�θn))�d)
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= ev◦(ΛDn,D,D([[x1,. . ., xn, x `M]]C(D))�id)◦((θ1�· · ·�θn)�d)
= [[x1, . . . , xn, x `M]]C(D) ◦ (θ1 � · · · � θn � d) = Iθdx[M].

Condition ceq follows from Lemma 4.1, while condition α is easily satisfied. To show

condition abs, assuming θi = G ◦ Thi ◦ mI (1 6 i 6 n) and

f = ΛDn,D,D([[x1, . . . , xn, x `M]]C(D)) ◦ Gn :

Iθ[λx.M] = G ◦ Tf ◦ mnTV ◦ δnV ◦ Fn ◦ (θ1�· · ·�θn)
= G ◦ Tf ◦ mnTV ◦ ((δV ◦ Th1 ◦ mI )�· · ·� (δV ◦ Thn ◦ mI ))

(by Naturality of δ)

= G ◦ Tf ◦ mnTV ◦ ((TTh1◦δI ◦ mI )�· · ·� (TThn◦δI ◦ mI ))
(by monoidality of δ)

= G ◦ Tf ◦ mnTV ◦ ((TTh1◦ TmI ◦ mI )�· · · � (TThn◦ TmI ◦ mI ))
= G ◦ Tf ◦ mnTV ◦ (T (Th1◦ mI )�· · · � T (Thn◦ mI )) ◦ mnI

(by Naturality of mA,B)

= G ◦ Tf ◦ T ((Th1◦ mI )�· · · � (Thn◦ mI )) ◦ mnI ◦ mnI
(by definition of m)

= G ◦ T (f ◦ ((Th1◦ mI )�· · · � (Thn◦ mI ))) ◦mn,

hence, we have the form of a value.

5. The categorical λv-model

It is well known that a cartesian closed category with a reflexive object, which is a

pseudo-λ-structure, is a λ-model (that is, a model for the untyped call-by-name lambda

calculus) if it has enough points (Koymans 1982). We prove that a similar condition is

required to have a model of λβv-calculus. Namely, a Cbv category, also satisfies Condition

ξ in Definition 2.4 if it has enough values. This means that two morphisms in the model

object D of a pseudo-λv-structure are different only if they have a different behaviour on,

at least, one value. More compactly, we have the following definition.

Definition. A Cbv category C(D) has enough values if and only if

∀f, g : D → D.∃h ∈ HOM(I,D =⇒ D)(f 6= g ⇒ f ◦ (G ◦ Th ◦ mI ) 6= g ◦ (G ◦ Th ◦ mI )).
This property is the natural restriction of ‘having enough points’ to the case where the

β-rule is restricted to arguments that are only values.

In fact, to prove the theorem given below, we need a more general form of the definition

given above, because we manage morphisms from a tensor product of D to D.

Definition 5.1. A Cbv category has enough values if and only if

∀n > 1.∀i 6 n.∀f, g : Ii �D� I (n−i−1) → D.∃h ∈ HOM(I,D =⇒ D).

(f 6= g ⇒ f ◦ idiI � (G ◦ Th ◦ mI )� id(n−i−1)
I 6= g ◦ idiI � (G ◦ Th ◦ mI )� id(n−i−1)

I ).

https://doi.org/10.1017/S0960129598002722 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129598002722


A. Pravato, S. Ronchi della Rocca and L. Roversi 634

Theorem 5.1. Let C(D) be a Cbv category with enough values. The pseudo-λv-structure

MC(D) (as defined in Definition 4.3) is a λv-model.

Proof. We must prove Condition ξ of Definition 2.4. Let M and N be two terms. If

∀d ∈ V .Iθdx[M] = Iθdx[N], this means that, using the notation introduced in Definition 4.3

and in the proof of Theorem 4.1,

[[x1, . . . , xn, x `M]]C(D) ◦ (θ(x1)� · · · � θ(xn)� d)
= [[x1, . . . , xn, x `M]]C(D) ◦ (θ(x1)� · · · � θ(xn)� idD) ◦ (idI � · · · � idI � d)
= [[x1, . . . , xn, x ` N]]C(D) ◦ (θ(x1)� · · · � θ(xn)� idD) ◦ (idI � · · · � idI � d).

Since MC(D) has enough values, we have

[[x1, . . . , xn, x `M]]C(D) ◦ (θ(x1)� · · · � θ(xn)� idD)

= [[x1, . . . , xn, x ` N]]C(D) ◦ (θ(x1)� · · · � θ(xn)� idD). (1)

The thesis, Iθ[λx.M] = Iθ[λx.N], holds as follows:

Iθ[λx.M] = G◦T (Λ([[x1, . . . , xn, x`M]]C(D)◦(θ(x1)�· · ·�θ(xn)� idD))) ◦mk,

Iθ[λx.N] = G◦T (Λ([[x1, . . . , xn, x`N]]C(D)◦(θ(x1)�· · ·�θ(xn)� idD))) ◦mk,

using the same steps in the proof of Theorem 4.1 and the naturality of ΛDn,D,D, that is,

Λ(g ◦ (h� id)) = Λ(g) ◦ h. Then we exploit (1).

Remark 5.1. Remark 3.1 highlights the fact that a cartesian closed category is an instance

of Cbv. This implies that every pseudo-structure for the call-by-name λ-calculus is a

pseudo-λv-structure. However, this does not imply the contrary, namely, that every model

of the call-by-name λ-calculus is a λv-model as well. This is because the condition of

having enough values is stronger than the requirement of having enough points. This

reflects the fact that Condition ξ in Definition 2.4 is stronger than the corresponding

condition defining a model for the call-by-name λ-calculus. For example, let D be the

Scott Domain that is the least solution of

D B (D → D)⊕ {⊥,>},
where ⊕ is the smash sum, ⊥ is smaller than >, and D → D is the domain of the

continuous functions from D to D. The domain D is a cartesian closed category with

enough points, and can be used as a model for the call-by-name λ-calculus. On the other

hand, it does not have enough values to interpret the λβv-calculus, using the domain

V = D → D as the natural choice to represent the set of the semantic values. Indeed, the

two points f and g of D, representing the two step functions

λx ∈ D.if x = > then d1 else d′,

and

λx ∈ D.if x = > then d2 else d′,
respectively, with d1 and d2 incomparable in D, are different, but equal on every value

of V. Of course, this does not say that D cannot yield a λv-model. Indeed, it can be the

case that all the step functions like f and g can never be in the interpretation of any
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terms of λβv-calculus. However, this can only be checked with an ad hoc study of the

interpretation.

6. Extensionality

The notion of extensionality in a given semantics is relative to the extensional behaviour

of the applicative structure. If an applicative structure 〈D, •,I〉 is a model for the classical

lambda calculus, then the extensionality, syntactically corresponding to the η-equality, can

be expressed in the usual way: for all d1, d2 ∈ D, if for all d3 ∈ D we have d1 • d3 = d2 • d3,

then d1 = d2. Recall that the extensional models for the λβ-calculus are all models of the

βη-equality, and the only ones. In a call-by-value setting, instead, the extensionality is a

property concerning the behaviour of a ‘function’ with respect to the values, as given by

the following definition.

Definition 6.1. A pseudo-λv-structure 〈S, V , •,I〉 is extensional iff

∀d1, d2 ∈ S.((∀v ∈ V . d1 • v = d2 • v) =⇒ d1 = d2).

Since the extensionality of a pseudo-λv-structure implies condition ξ of Definition 2.4, we

have the following proposition.

Proposition 6.1. Every extensional pseudo-λv-structure is an extensional λv-model.

Definition 6.2. A λv-modelM = 〈S, V , •,I〉 is a ληv-model if for every pair of terms M,N,

λβvηv `M =v N =⇒ M |= M =v N.

An obvious result is that every extensional λv-model is a ληv-model. In contrast with what

happens for models of the classical lambda calculus, the opposite is not always true: there

are non-extensional ληv-models, as we will see in Example 8.1.

We now prove that the categorical λv-model MC(D) of the previous section, where the

retraction D.T (D =⇒ D) is an isomorphism, namely, G◦F = idD, is, in fact, a ληv-model.

Theorem 6.1. A categorical λv-model MC(D) such that D ≈ T (D =⇒ D), is a ληv-model.

Proof. It is sufficient to prove that Iθ[λx.yx] = Iθ[y] for any θ. Applying the

interpretation function, [[y ` λx.yx]]C(D) = G ◦ T (ΛD,D,D([[y, x ` yx]]C(D)) ◦ G) ◦ δ ◦ F . Let

us look at the form of [[y, x ` yx]]C(D). By Lemma 4.1,

[[y, x ` y]]C(D) = [[y ` y]]C(D) ◦ ρD ◦ (idD � (E ◦ F))

= G ◦ F ◦ ρD ◦ (idD � (E ◦ F))

= ρD ◦ (idD � (E ◦ F)).

[[y, x ` x]]C(D) = [[x, y ` x]]C(D) ◦ γD,D
= ρD ◦ (idD � (E ◦ F)) ◦ γD,D

(by naturality of γ)

= ρD ◦ γI,D ◦ ((E ◦ F)� idD)

= λD ◦ ((E ◦ F)� idD),
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hence, we have

[[y, x ` yx]]C(D)

= ev ◦ ((εV ◦ F ◦ ρD ◦ (idD� (EV ◦ F)))� (λD ◦ ((EV ◦ F)� idD))) ◦ r2
= ev ◦ ((εV ◦ F)� idD) ◦ (ρD � λD) ◦ (idD � (E ◦ F)2 � idD) ◦

(G2 � G2) ◦ (idTV � γTV,TV � idTV) ◦ (Dup� Dup) ◦ F2

(by naturality of γ)

= ev ◦ ((εV ◦ F)� idD) ◦ (ρD � λD) ◦ (G� id2
I � G) ◦

(idTV � γI,I � idTV) ◦ (Dup� Dup) ◦ F2

(by the comonoid and the fact that γI,I = idI�I )
= ev ◦ ((εV ◦ F)� idD) ◦ (ρD � λD) ◦ (G� id2

I � G) ◦ (ρ−1
TV � λ−1

TV) ◦ F2

(by naturality of ρ and λ)

= ev ◦ ((εV ◦ F)� idD) ◦ (ρD � λD) ◦ (ρ−1D � λ−1D ) ◦ G2 ◦ F2

= ev ◦ ((εV ◦ F)� idD).

Substituting:

[[y ` λx.yx]]C(D) = G ◦ T (ΛD,D,D(ev ◦ ((ε ◦ F)� id)) ◦ G) ◦ δ ◦ F
(by naturality of Λ)

= G ◦ T (ε ◦ F ◦ G) ◦ δ ◦ F
= G ◦ T (ε) ◦ δ ◦ F

(by the comonad)

= G ◦ F = [[y ` y]]C(D).

7. Incompleteness of the Cbv models

Recall that the class of models of the λβv-calculus we defined was obtained by starting

from the definition of model for its typed version. We said in Section 3 that every model

for the typed λβv-calculus is closed under the congruence induced by (the typed version

of) the βv-rule, of the ηv-rule, and of the →l . This fact has the following consequence at

the untyped level. Let us consider the term λx.x, which is a term trivially linear, according

to Property 3.2. Proposition 7.1 below tells us that λx.x is interpreted as the identity in

every model of the λβvηv-calculus, no matter what its arguments are.

Proposition 7.1. Let I ≡ λz.z and let M ∈ Λ be a generic term (which may not be valuable)

such that FV(M) ⊆ {x1,. . ., xn}. In the categorical ληv-model MC(D),

[[x1,. . ., xn ` IM]]C(D) = [[x1,. . ., xn `M]]C(D).

Proof. Proceeding step by step:

[[x1,. . ., xn ` IM]]C(D)

(by Lemma 4.2)
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= [[x1,. . ., xn, z ` z]]C(D) ◦ (idnD � [[x1,. . ., xn `M]]C(D)) ◦ rn
= G ◦ πn+1

Vn+1 ◦ Fn+1 ◦ (idnD � [[x1,. . ., xn `M]]C(D)) ◦
◦ (Gn � Gn) ◦ ∆(TV)n ◦ Fn

= G ◦ iso ◦ ((E ◦ F)n � (F ◦ [[x1,. . ., xn `M]]C(D))) ◦
◦ (Gn � Gn) ◦ ∆(TV)n ◦ Fn

= G ◦ iso ◦ (idnI � (F ◦ [[x1,. . ., xn `M]]C(D))) ◦ (En � Gn) ◦ ∆(TV)n ◦ Fn
(Exploiting the technique used in the proof of Theorem 6.1 and the

coherence theorem)

= G ◦ F ◦ [[x1,. . ., xn `M]]C(D) ◦ Gn ◦ Fn
(Since D ≈ TV)

= [[x1,. . ., xn `M]]C(D).

Notice that the preceding property is correct with the operational semantics induced by

the SECD machine, as IM ∼v M, for any M, and has the following important theorem

as its corollary:

Theorem 7.1. The class of Cbv models satisfying βvηv-equality is incomplete with respect

to the class of βvηv-theories.

An example of a model of βvηv-equality for which Proposition 7.1 does not hold is

the model defined in Honsell and Lenisa (1993). It is based on the *-Coherence Spaces,

which are a variant of Girard’s Coherence Spaces. In such a model, IM 6= M if M is not

valuable.

8. Instances of Cbv

The definition of our categorical ληv-model has some models of λβvηv-calculus as its

instances.

8.1. An instance of Cbv in Scott domains

In this subsection we prove that every model of λβv-calculus belonging to the class defined

in Dezani-Ciancaglini et al. (1986) is a categorical ληv-model.

Let CPOS be the category such that:

• the objects are the complete partial orders (cpo) or Scott domains,

• the morphisms are the strict continuous functions, namely those continuous functions

that always take the bottom element of the source object to the bottom element of

the target object.

Let D1, D2 be two cpos. (D1 →⊥ D2) is the cpo of the strict continuous functions from

D1 to D2 ordered point wise. We use ⊥D to denote the bottom element of a cpo D. The

bottom element of (D1 →⊥ D2) is the function constantly equal to ⊥D2
. Moreover, with

D⊥ we denote the cpo (the lifted of D) obtained from D adding a new bottom element ⊥.
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Lemma 8.1. Let CPOSD be the category CPOS equipped with a retraction D.(D →⊥ D)⊥.

The category CPOSD is a Cbv category.

Proof.

• � is the smash product:

D1 � D2 = {〈d1, d2〉 | d1 ∈ D1, d2 ∈ D2, d1 6= ⊥D1
, d2 6= ⊥D2

} ∪ {⊥D1�D2
},

with unit I = {⊥, 1}, with ⊥ smaller than 1, and for any f : D1 → D2, and g : D3 → D4:

f � g(d) =


〈f(d1), g(d3)〉 if d = 〈d1, d3〉 and f(d1) 6= ⊥D2

, f(d3) 6= ⊥D4

⊥ if d = 〈d1, d3〉 and f(d1) = ⊥D2
or f(d3) = ⊥D4

⊥ if d = ⊥
• =⇒ is the strict continuous functions functor →⊥,

• T is the lifting monoidal functor (.)⊥, namely:

– TD = D⊥,

– for any f : D1 → D2, the morphism Tf = f⊥ : D1⊥ → D2⊥ is f⊥(d) = f(d) if

d ∈ D1, while f⊥(⊥) = ⊥,

• εD : D⊥ → D is εD(d) = d if d ∈ D, while εD(⊥) = ⊥D ,

• δD : D⊥ → D⊥⊥′ is δD(d) = d if d ∈ D, while δD(⊥) = ⊥′,
• mD1 ,D2

: D1⊥ � D2⊥ → (D1 � D2)⊥ and mI : I → I⊥ are:

mD1 ,D2
(d) =


〈d1, d2〉 if d = 〈d1, d2〉 and d1 6= ⊥D1

, d2 6= ⊥D2

⊥ if d = 〈d1, d2〉 and d1 = ⊥D1
or d2 = ⊥D2

⊥ if d = ⊥
mI (1) = 1 mI (⊥I ) = ⊥,

• ED : D⊥ → I is ED(d) = 1 if d ∈ D, while ED(⊥) = ⊥I ,
• DupD : D⊥ → D⊥ � D⊥ is DupD(d) = 〈d, d〉 if d ∈ D, while DupD(⊥) = ⊥D⊥�D⊥ ,

• evD1 ,D2
: (D1 =⇒ D2)� D1 → D2 is evD1 ,D2

(〈f, d1〉) = f(d1), while

evD1 ,D2
(⊥(D1→⊥D2)�D1

) = ⊥D2
,

• Λ : Hom((D1 =⇒ D2), D3) → Hom((D1 � D2), D3) is such that Λ(f)(⊥D1
) = ⊥(D2→⊥D3),

while Λ(f)(d1)(d2) = f(〈d1, d2〉) if d2 6= ⊥D2
, and Λ(f)(d1)(⊥D2

) = ⊥D3
.

If, in addition, there is an object D having (D →⊥ D)⊥ as a retract, then it is routine to

prove that all the diagrams for having a Cbv category commute.

At this point we can use the Cbv category just introduced to define a pseudo-λv-structure

as in Definition 4.3. Let us see how the set of semantic values VCPOSD is defined. Starting

from a strict continuous function h : I → (D →⊥ D), we have that this function relates

1 ∈ I to an element d ∈ (D →⊥ D). Furthermore, h⊥ : I⊥ → (D →⊥ D)⊥ is different

from the function constantly equal to ⊥, since h⊥(1) = d 6= ⊥. (Notice that d can be

⊥(D→⊥D), which is different from ⊥.) Hence, the function h⊥ ◦ mI picks out an element

d ∈ (D →⊥ D)⊥, different from ⊥. Finally, from F ◦ G = id((D→⊥D)⊥), we have that a

semantic value G ◦ h⊥ ◦ mI 6= ⊥D. The following remark outlines this point.

Remark 8.1. Assume the pseudo-λv-structure MCPOSD = 〈S, V , •,I〉 is given (see
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Lemma 8.1). The morphisms v : I → D of V are such that:

v(1) = d 6= ⊥D
v(⊥I ) = ⊥D.

Theorem 8.1. Let D be a Scott domain such that D ≈ (D →⊥ D)⊥. Then D gives a

categorical ληv-model.

Proof. By Lemma 8.1 and Definition 4.3, we know how to define a pseudo-λv-structure

MCPOSD = 〈D,V , •,I〉. Moreover, MCPOSD has enough values. Let us take two strict and

different continuous functions f, g : D → D. Now, f, g both strict and different implies

the existence of ⊥D 6= d ∈ D such that f(d) 6= g(d). G is an isomorphism, hence d = G(e),

where e 6= ⊥(D→⊥D)⊥ . So, by Remark 8.1, e can be written as e = (h⊥ ◦ mI )(1). Hence,

f ◦ G ◦ h⊥ ◦ mI 6= g ◦ G ◦ h⊥ ◦ mI , for some h.

By Theorem 4.1, MCPOSD is a λv-model, and, thanks to D ≈ (D →⊥ D)⊥, by

Theorem 6.1, MCPOSD is also a ληv-model.

In Egidi et al. (1992) the initial solution to D ≈ (D →⊥ D)⊥ in the category of Scott

domains is extensively studied.

8.2. An instance of Cbv in Coherence Spaces

In this subsection we show an instance of Cbv in coherence spaces, which was first

presented in Pravato et al. (1995).

8.2.1. Coherence Spaces In this subsection we recall the notions of coherence space and

linear function, together with some of their basic constructions.

Definition 8.1. Let |A| be a set of elements called atoms. Let c|A| ∈ |A|×|A| be a symmetric

and reflexive relation, called the compatibility relation. Given |A| and c|A|, a coherence

space A is the set of all sets of compatible atoms in |A|, in other words, A ⊆ P(|A|) and

α ∈ A⇔ ∀a, b ∈ α.c|A|(a, b).
Note that if A is a coherence space, then 6 ∈ A.

Definition 8.2. Let A and B be two coherence spaces.

1 A function f : A→ B is continuous iff

— f is monotonic, namely,

for every α, α′ ∈ A, if α ⊆ α′, then f(α) ⊆ f(α′),

— if (αi)i∈I is a directed family in A, then

f(
⋃
i∈I
αi) =

⋃
i∈I
f(αi).

2 A continuous function f : A→ B is stable iff

for every α, α′ ∈ A, if α ∪ α′ ∈ A, then f(α ∩ α′) = f(α) ∩ f(α′).

3 A stable function f : A→ B is linear iff f preserves arbitrary unions, namely,

f(
⋃
α∈A

α) =
⋃
α∈A

f(α) for every A ⊆ A.

Notice that every linear function is strict, in the sense that f(6) =6.
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Let A,B be two coherence spaces. (A →s B) denotes the coherence space of the stable

functions from A to B ordered by Berry’s order, in other words, given two stable functions

f, g ∈ (A→s B),

f 6 g iff ∀α, α′ ∈ A.(α ⊆ α′ ⇒ f(α) = g(α) ∩ f(α′)).

(A −◦ B) denotes the coherence space of linear functions from A to B ordered like stable

functions.

Notation 8.1. Let A be a coherence space. Atoms of A will be ranged over by a, b, . . .,

while elements of A (that is, sets of atoms) will be ranged over by α, β, . . .. We use 1 to

denote the unique atom of I , in other words, I = {6, {1}}. c(a, a′) means that a and a′
are compatible. Let ⊗, !, and −◦ be the functors over coherence domains such that:

• |A ⊗ B| = {[a, b] | a ∈ |A| and b ∈ |B|}, where c([a, b], [a′, b′]) iff both c(a, a′) and

c(b, b′).
• |!A| = {d | d is a finite element of A}, where, if d, d′ ∈ |!A|, then c(d, d′) iff d ∪ d′ ∈ A.

• the functor −◦ builds the coherence domain of linear functions, where |A −◦ B| =

{(a, b) | a ∈ |A| and b ∈ |B|}, where c((a, b), (a′, b′)) iff c(a, a′) implies both c(b, b′) and

if b = b′, then a = a′.
The elements of A −◦ B are linear traces of linear functions from A to B. If f : A→ B

is a linear function, then its linear trace is denoted by ltr(f) and it is used as follows:

f({ai | i ∈ I}) = {bi | (ai, bi) ∈ ltr(f)}.

8.2.2. The Linear Instance of Cbv. Let Lin be the category such that:

• the objects are all coherence spaces,

• the morphisms are all linear functions.

Let the �, =⇒ and T of Definition 3.1 be ⊗, −◦ and !, respectively, as defined in the

previous Subsection 8.2.1.

Lemma 8.2. Let LinD be the category Lin equipped with the retraction D. !(D −◦ D).

The category LinD is a Cbv category.

Proof. We have a Cbv category if we use the following definitions:

• The linear traces of the monoidal closure are

ltr(ΛA,B,C) = {( ([a, b], c) , (a, (b, c)) ) | ([a, b], c) ∈ |(A⊗ B) −◦ C|}
ltr(evB,C) = {([(b, c), b], c) | (b, c) ∈ |B −◦ C|}.

• If f is a linear function from A to B, then

ltr(!f) = {({ai1 , . . . , aik}, {bi1 , . . . , bik}) | (aij , bij ) ∈ ltr(f)

and {ai1 ,. . . ,aik}, {bi1 ,. . . ,bik} are finite (perhaps empty)

sets of compatible elements}.
• The linear traces of the natural transformations for the comonad are

ltr(δA) = {(⋃Ω,Ω) | Ω ∈ |!!A|}, ltr(εA) = {({α}, α) | α ∈ |A|}.
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• The linear traces of the morphisms making ! monoidal are

ltr(mI ) = {(1,6), (1, {1})}
ltr(mA1 ,...,An) = {([α1, . . . , αn], {[a1

1, . . . , a
1
n], . . . , [a

k
1, . . . , a

k
n]}) |

a
j
i ∈ αi, bji ∈ βi}.

Remember that mnA and mn are defined starting from mA1 ,...,An .

• The linear traces of the morphisms giving the comonoid are

ltr(EA) = {(6, 1)}, ltr(DupA) = {(α, [α1, α2]) | α1 ∪ α2 = α ∈ |!A|}.
If, in addition, there is an object D having !(D −◦ D) as a retract, then it is routine to

prove that all the diagrams for having a Cbv (introduced in Definition 3.1) commute.

The Cbv category LinD yields pseudo-λv-structure MLinD = 〈S, V , •,I〉 (Definition 4.3).

Let us see what the set V contains. We start from the following linear function h : I →
(D −◦ D) as an example:

ltr(h) = {(1, (d1, d2)), (1, (e1, e2))}.
In this case we have that h relates {1} ∈ I to the element {(d1, d2)), (e1, e2)} ∈ (D −◦ D).

Furthermore, from:

ltr(!h) = {(6,6), ({1}, {(d1, d2)}), ({1}, {(e1, e2)}), ({1}, {(d1, d2), (e1, e2)})}
and

ltr(!h ◦ mI ) = {(1,6), (1, {(d1, d2)}), (1, {(e1, e2)}), (1, {(d1, d2), (e1, e2)})},
we have

(!h ◦ mI )({1}) = {6, {(d1, d2)}, {(e1, e2)}, {(d1, d2), (e1, e2)}}.
Finally, from F ◦ G = id!(D−◦D) and the linearity of G,

G({6, {(d1, d2)}, {(e1, e2)}, {(d1, d2), (e1, e2)}}) = {6, d′, d′′, d′′′}
for some d′, d′′, d′′′ such that, d′′′ = d′ ∪ d′′. Generalizing this discussion, we get the

following observation.

Remark 8.2. Let MLinD = 〈S, V , •,I〉 be given (Lemma 8.2). The morphisms v : I → D
of V , are such that

v({1}) = P(d)

v(6) = 6,

where P(d) is the power set of a given atom d of D, and G is the embedding function of

Definition 3.1.

Theorem 8.2. Let D be a coherence space such that D ≈ !(D −◦ D). Then D gives a

categorical ληv-model.

Proof. From Lemma 8.2 and Definition 4.3 we know how to build a pseudo-λv-structure

MLinD = 〈D,V , •,I〉. Moreover,MLinD has enough values. Let f, g : D → D be two linear

functions such that f 6= g. This is equivalent to saying that their traces are different.

Hence, we must have f({d}) 6= g({d}) for at least one atom d ∈!(D −◦ D) ≈ D. Notice
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that d is taken as atom of !(D −◦ D), and not as atom of D, that is, d is a finite trace of a

linear function from D to D. Now, let us consider the smaller atom d ∈!(D −◦ D) among

those d ∈!(D −◦ D) such that f({d}) 6= g({d}). Equivalently, d is one of the smallest traces

of linear functions that allow us to distinguish f and g. Now, by linearity,

f(P(d)) = f({d}) ∪X
g(P(d)) = g({d}) ∪ Y

for some X and Y . Hence, f(P(d)) 6= g(P(d)), or, equivalently, f(v({1})) 6= g(v({1})), as

P(d) = v({1}), by Remark 8.2. So, we have concluded the existence of a semantic value

that takes f and g apart each to the other.

By Theorem 4.1,MLinD is a λv-model, and, thanks to D ≈ !(D −◦ D), by Theorem 6.1,

MLinD is also a ληv-model.

Remark 8.3. Let us note that, although D ≈ !(D −◦ D) gives a ληv-model, this model is

not extensional, as the following example clarifies.

Example 8.1. LetMLinD = 〈D,V , •,I〉 be based on LinD. The binary operation •, making

〈D, •〉 an applicative structure, is defined as f • g = evD,D ◦ ((εV ◦ f)⊗ g) for every pair of

morphisms f, g ∈ Hom(I,D). For simplicity, we have omitted F , as it is an isomorphism.

Let us consider the two morphisms f1, f2 ∈ Hom(I,D) with traces

ltr(f1) = {(1,6), (1, {(d1, d2)}), (1, {(e1, e2)}), (1, {(d1, d2), (e1, e2)})}
and

ltr(f2) = {(1,6), (1, {(d1, d2)}), (1, {(e1, e2)})},
where the atoms of D are identified with the atoms of !(D −◦ D). Both f1 and f2 have

the same behaviour, as a consequence of the definition of εV: f1 • g = f2 • g for every

g ∈ Hom(I,D). However, f1 6= f2 because they have different traces.

We conclude this section by giving an example of interpretation in LinD.

Example 8.2. Let ω = (λx.xx)(λx.xx). From Lemma 4.2 we have [[` ω]]C(D) = [[x `
xx]]C(D) ◦ [[` λx.xx]]C(D). Since [[` λx.xx]]C(D) =!(Λ([[x ` xx]]C(D))) ◦ mI , let us see the form

of [[x ` xx]]C(D).

[[x ` xx]]C(D) = ev ◦ ((ε ◦ [[x ` x]]C(D) ⊗ [[x ` x]]C(D)) ◦ Dup

= ev ◦ ((ε ◦ id)⊗ id) ◦ Dup = ev ◦ (ε⊗ id) ◦ Dup.

Since the linear trace of ε⊗ id is of the form {([{(a, b)}, c], [(a, b), c]), . . .}, we have ltr(ev ◦
(ε⊗ id)) = {([{(a, b)}, a], b), . . .}, hence ltr([[x ` xx]]C(D)) = {({(a, b)} ∪ a, b), . . .}. Moreover,

ltr([[` λx.xx]]C(D)) = {(1,6), (1, {({(a, b)} ∪ a, b), . . .}), . . .}, with {({(a, b)} ∪ a, b), . . .} finite.

This finiteness implies that [[` ω]]C(D) =6, hence for every environment we cannot have

a semantic value.

9. Conclusions

This section is a summary of what we have done in this paper and indicates some

relationships with other models of λβv-calculus.
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Fig. 3. Summary of the relationships between the models dealt with in this paper

In this paper we have mainly traced a relationship between two hierarchies of structures

that can be used to model λβv-calculus. Figure 3 provides a useful picture. One is the

set-theoretical hierarchy of pseudo-λv-structures (Definition 2.4), containing λv-models

(Definition 2.4), ληv-models (Section 6), and extensional λv-models (Section 6). The other

hierarchy distinguishes between Cbv categories with model object D. A first distinction

between Cbv categories rests on the property of having or not having enough values. A

second distinction between them relies on having either DBT (D =⇒ D) or D ≈ T (D =⇒
D) as a model object.

Given a Cbv category C(D), we have shown how to build a pseudo λv-structure MC(D)

out of it (Definition 4.3). However, if Cbv has enough values, MC(D) is a λv-model.
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Finally, we have shown that the two instances CPOSD, with D least solution of

D ≈ (D →⊥ D)⊥, and LIND, with D least solution of D ≈!(D −◦ D), of Cbv categories

yields two λv-models (Section 8). In particular, the instance of LIND is an example of a

ληv-model that is not an extensional λv-model (Example 8.1).

The definition of the relationships between the two hierarchies going in the opposite

direction is still an open problem. Just as an example, it is not known how to extract a

category in the class Cbv out of the model H introduced in Egidi et al. (1992) that is

fully abstract with respect to the SECD operational semantics.

Finally, we consider the relationship between our class Cbv of categories and Moggi’s

categorical models (Moggi 1991) for λβv-calculus. First, the existence of D ≈ T (D =⇒ D)

in Cbv induces a suitable cartesian closed category with both a commutative strong monad

and an object to build a model à la Moggi for λβv-calculus. Second, the set of values in

Moggi’s model is isomorphic to the set of values in the λv-model induced by Cbv itself.

This is worth noticing because the set of values of Moggi’s models is an object of the

category he defines. On the other hand, Cbv has no object in it whose elements can be

thought of as values.

The relationship between Moggi’s and our approaches is obtained by ‘lifting’ two

results to the untyped case. The first is in Benton (1995), where a reformulation of the

categorical models for intuitionistic linear logic that we started from is introduced. The

second result is in Benton and Wadler (1996), which shows that the categorical models of

typed λβv-calculus, based both on the categorical models of intuitionistic linear logic and

on cartesian closed categories with a commutative comonad (Moggi 1991) are essentially

the same. Indeed, they correspond through an adjunction. A summary of the details for

lifting this second point to the untyped case is in the following subsection.

9.1. Relationships between Cbv and Moggi’s models: some details

This section summarizes the main details of how to develop the relationship between our

definition of categorical models for λβv-calculus and Moggi’s approach. The relationship

follows from the result that a category like Cbv induces a cartesian closed category with a

commutative strong monad. An extended development of the details of this relationship

can be found in Benton (1995) and Benton and Wadler (1996).

The comonad (T , δ, ε) of Cbv gives rise to the Eilenberg–Moore category CbvT , whose

objects are all T -coalgebras (A, hA : A → TA), and in which all morphisms are T -

coalgebras morphisms. Between Cbv and CbvT there exists an adjunction F a U where:

U(A) = (TA, δA), and F((A, hA)) = A, with, of course, F : CbvT → Cbv, and U : Cbv→
CbvT .

The full sub-category E(CbvT ) of CbvT , having as objects all the exponentiable coalge-

bras, is cartesian closed with the T -coalgebra (I, mI ) as terminal object. Moreover,F a U
induces the strong monad UF on E(CbvT ), and, thanks to the closed structure of Cbv, it

also yields the following isomorphism:

HOME(Cbv
T

)
((I, mI ), (T (A =⇒ B), δA=⇒B))

≈ HOME(Cbv
T

)
((I, mI )× (A, hA), (TB, δB)).
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Now, assume D ≈ T (D =⇒ D) in Cbv, which implies T (D =⇒ D) ≈ T (T (D =⇒
D) =⇒ T (D =⇒ D)). From the naturality of δ, we get (T (D =⇒ D), δD=⇒D) ≈
(T (T (D =⇒ D) =⇒ T (D =⇒ D)), δT (D=⇒D)=⇒T (D=⇒D)) in E(CbvT ), which, using the

isomorphism between the Hom-sets of E(CbvT ), yields

HOME(Cbv
T

)
((I, mI ), (T (D =⇒ D), δD=⇒D))

≈HOME(Cbv
T

)
((I, mI ), (T (T (D =⇒ D) =⇒ T (D =⇒ D)), δT (D=⇒D)=⇒T (D=⇒D)))

≈HOME(Cbv
T

)
((I, mI )× (T (D =⇒ D), δD=⇒D), (TT (D =⇒ D), δT (D=⇒D)))

≈HOME(Cbv
T

)
((I, mI )× (T (D =⇒ D), δD=⇒D),UF(T (D =⇒ D), δD=⇒D)).

So, we can write

(T (D =⇒ D), δD=⇒D) ≈ (T (D =⇒ D), δD=⇒D)→ UF(T (D =⇒ D), δD=⇒D) (12)

with → the arrow of E(CbvT ).

Let us put R = T (D =⇒ D) in (12). We get that (12) is the domain equation that

Moggi requires to exists in E(CbvT ) with the strong monad UF in order to define a

model of λβv-calculus.

The next question is about the relationship between R and and the set VC(D) of values

in the λv-model MC(D) of Definition 4.3. The answer is

R ≈ VC(D).

On one side, if (G ◦ Th ◦ mI ) belongs to VC(D), for any h ∈ HOMCbv(I,D), then

(Th ◦mI ) ∈ HOME(Cbv
T

)
((I, mI ), (V

C(D), δD=⇒D)) follows from naturality and monoidality

of δ. We are interested to the contrary as well. So, we are interested to know if, for every

coalgebra morphism f : I →V, there exists f̂ such that Tf̂ ◦ mI = f, and if f̂ is unique.

The answer is yes, defining f̂ ≡ εD=⇒D ◦ f. The equation Tf̂ ◦ mI = f follows from the

naturality and the monoidality of ε. For the unicity, it is enough to assume the existence

of g 6= εD=⇒D ◦ f such that Tg ◦ mI = f, and we are done.

Appendix A. Categorical tools

This section recalls standard categorical notions that we use to introduce the categorical

λv-model and can be found in the usual reference books about the subject (such as Mac

Lane (1971)).

A symmetric monoidal category is a category C with a bifunctor � : C × C → C, an

object I and, for any A,B, C ∈ ObjC, the natural isomorphisms

αA,B,C : A� (B � C)
.→ (A� B)� C

λA : I � A .→ A ρA : A� I .→ A

γA,B : A� B .→ B � A
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satisfying coherence. Namely,

α(A�B),C,D ◦ αA,B,(C�D) = (αA,B,C � idB) ◦ α−1
A,(B�C),D ◦ (idA � αB,C,D)

(ρA � idC) ◦ αA,I,C = idA � λC λI = ρI
γA,B ◦ γB,A = idB�A ρB = λB ◦ γB,I

αC,A,B ◦ γ(A�B),C ◦ αA,B,C = (γA,C � idB) ◦ αA,C,B ◦ (idA � γB,C) .

Recall also that the Coherence Theorem holds in a symmetric monoidal category. In other

words, two morphisms always coincide if they are built out of α, ρ, λ, id, composition,

and γA,B , with A 6≡ B.

Given a symmetric monoidal category C, an endofunctor T : C→ C is monoidal if, for

every A,B ∈ ObjC, there are a natural transformation mA,B : TA� TB .→ T (A� B) and

a map mI : I → TI such that the following diagrams commute:

TI � TA T (I � A)

?
TλA

TA� TI T (A� I)

?
TρA

-mI,A -mA,I

I � TA

6
mI�idTA

TA TA� I

6
idTA�mI

TA-
λTA

-
ρTA

(TA� TB)� TC T (A� B)� TC T ((A� B)� C)-mA,B�idTC -mA�B,C

TA� (TB � TC)

6
αTA,TB,TC

TA� T (B � C) T (A� (B � C))

6

TαA,B,C

-idTA�mB,C -mA,B�C

The monoidal functor T is symmetric if

TA� TB

?

γTA,TB

T (A� B)

?

T (γA,B )

-mA,B

TB � TA T (B � A)-
mB�A

A natural transformation σ : T1
.→ T2 between two symmetric monoidal functors T1

and T2, is symmetric monoidal if the following diagrams commute:

T1A� T1B

?

σA�σB

T1(A� B)

?

σ(A�B)

I

Q
Q
Q
QQs

m
(T2)
I

T1I

?

σI

-
m

(T1)
A,B -m

(T1)
I

T2A� T2B T2(A� B) T2I-
m

(T2)
A,B

A symmetric monoidal category C is closed if, for every object B, there is a functor

B =⇒ : C→ C such that there exists an isomorphism

ΛA,B,C : HomC((A� B), C))→ HomC(A, (B =⇒ C))

natural in A and C . That is, for all A,C ∈ ObjC there exists the evaluation morphism evB,C :
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(B =⇒ C)�B → C such that, for all the morphisms f : (A�B)→ C , h : A→ (B =⇒ C)

and g : (B =⇒ C)� B → C , there is a unique ΛA,B,C(f) : A→ (B =⇒ C) such that

A� B

?
Λ(f)�idB

C A

?
h

(B =⇒ C)-f -Λ(g◦(h�idB ))

(B =⇒ C)� B
�
�
�
��3

evB,C

(B =⇒ C)

�
�
�
��3

Λ(g)

commute. Recall that in a symmetric monoidal closed category every object A is isomor-

phic to (I =⇒ A). Recall also that, by naturality

ΛA,B,C(evB,C ◦ (h� idB)) = h.

Given a monoidal category C, a comonoid in C is a triple (A, d, e) where A is an object

of C, and the morphisms d : A
.→ (A� A) and e : A

.→ I are such that

A� A

?

idA�d

A A� A

?

d�idA

A

�
�

�
�	

λ−1
A

?

d

@
@
@
@R

ρ−1
A

� d -d

A� (A� A) (A� A)� A I � A A� A A� I-
αA,A,A

�
e�idA

-
idA�e

commute. The comonoid (A, d, e) on it is commutative if d commutes with γ, that is,

γA,A ◦ d = d.

Given a category C (not necessarily monoidal), a comonad over C is a triple (T , δ, ε),

where T : C → C is an endofunctor, and δ : T
.→ T 2 and ε : T

.→ IDC are natural

transformations such that

T 3 T 2 T T 2 T�δT �εT -Tε

T 2

6
Tδ

T

6
δ

T

@
@
@I
idT �

�
��
idT

6
δ

�
δ

commute.

Given an endofunctor T : C→ C, the category of T -coalgebras has both T -coalgebras

(A, ζA) as objects, with A an object of C and ζA : A→ TA, and the morphisms h : A→ A′
such that

A

?

ζA

A′

?

ζ
A′

-h

TA TA′-
Th

commutes as arrows. The set T -coalgC((A, ζA), (A′, ζA′)) denotes such morphisms h. So,

let a symmetric monoidal category C be given with a comonad (T , δ, ε) such that T is

monoidal, and (TA, d, e) is a comonoid. Then the natural transformation d belongs to
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T -coalgC((TA, δ), (TA� TA,mTA,TA ◦ (δ � δ))) if the diagram

TA

?
e

TTA

?
Te

-δ

I TI-
mI

commutes. Analogously, e belongs to T -coalgC((TA, δ), (I, mI )) if the diagram

TA

?

d

TTA

?

Td

-δ

TA� TA T (TA� TA)-
mTA,TA◦(δ�δ)

commutes. Moreover, let f belong to the set T -coalgC((TA, δ), (TB, δ)) of (free) coalge-
bras. The morphism f is a comonoid morphism from (A, d, e) to (B, d, e) if

TA

�
�
�
��+

e

?

d

TA� TA

?

f�f

-d

I

TB

Q
Q
Q
QQk e

TB � TB-d

commutes.

Let C be a symmetric monoidal closed category with a comonad (T , δ, ε) on it. The

natural transformation ε : T
.→ IDC is monoidal if

TA� TB
Q
Q
Q
QQs

εA�εB

T (A� B)

?

εA�B

I

Q
Q
Q
QQs

idI

T I

?

εI

-mA,B -mI

A� B I

commute. The natural transformation δ : T
.→ TT is monoidal if

TA� TB

?

δA�δB

T (A� B)

?

δA�B

I

?

mI

TI

?

δI

-mA,B -mI

TTA� TTB

?

mTA,TB

TI TTI-
TmI

T (TA� TB) TT (A� B)-
TmA,B

commute. Notice that TmA,B ◦ mTA,TB , and TmI ◦ mI are, respectively, mA,B and mI with

respect to the monoidal functor TT .
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The natural transformation E : T
.→ KI is monoidal if

TA� TB

?
EA�EB

T (A� B)

?

EA�B

I

Q
Q
Q
QQs

idI

T I

?
EI

-mA,B -mI

I � I I I-
λI

commute. Moreover, E is an element of T -coalgCbv((TA, δA), (I, mI )) if

TA

?

δA

I

?

mI

-EA

TTA TI-
TEA

commutes. The natural transformation Dup : T
.→ T � T is monoidal if

TA� TB

?

DupA�DupB

T (A� B)

?

DupA�B

I

?

λ−1
I

T I

?

DupI

-mA,B -mI

(TA� TA)� (TB � TB)

?

≈

I � I TI � TI-
mI�mI

(TA� TB)2 (T (A� B))2-
m2
A,B

commute. Notice that naturality of ε, E, Dup, δ and mA,B means that for all f : A → B

and g : C → D

TA

?

Tf

A

?

f

TA

@
@
@@R

EA

?

Tf

TA

?

Tf

TA� TA

?

Tf�Tf

-εA -DupA

TB B TB I TB TB � TB-
εB

-
EB

-
DupB

TA

?
δA

TB

?
δB

TA� TC

?
Tf�Tg

T (A� C)

?
T (f�g)

-Tf -mA,C

TTA TTB TB � TD T (B � D)-
TTf

-mB,D

commute.
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