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Geostrophic and chimney regimes in rotating
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Convection in a rotating rectangular basin with differential thermal forcing at one
horizontal boundary is examined using laboratory experiments. The experiments have
an imposed heat flux boundary condition, are at large values of the flux Rayleigh
number (RaF ∼ O(1013–1014) based on the box length L), use water with Prandtl
number Pr ≈ 4 and have a small depth to length aspect ratio. The results show
the conditions for transition from non-rotating horizontal convection governed by an
inertial–buoyancy balance in the thermal boundary layer, to circulation governed by
geostrophic flow in the boundary layer. The geostrophic balance constrains mean
flow and reduces the heat transport as Nusselt number Nu ∼ (RaFRo)1/6, where
Ro = B1/2/f 3/2L is the convective Rossby number, B is the imposed buoyancy flux
and f is the Coriolis parameter. Thus flow in the geostrophic boundary layer regime
is governed by the relative roles of horizontal convective accelerations and Coriolis
accelerations, or buoyancy and rotation, in the boundary layer. Experimental evidence
suggests that for more rapid rotation there is another transition to a regime in which
the momentum budget is dominated by fluctuating vertical accelerations in a region
of vortical plumes, which we refer to as a ‘chimney’ following related discussion of
regions of deep convection in the ocean. Coupling of the chimney convection in the
region of destabilising boundary flux to the diffusive boundary layer of horizontal
convection in the region of stabilising boundary flux gives heat transport independent
of rotation in this ‘inertial chimney’ regime, and the new scaling Nu∼ Ra1/4

F . Scaling
analysis predicts the transition conditions observed in the experiments, as well as a
further ‘geostrophic chimney’ regime in which the vertical plumes are controlled by
local geostrophy. When Ro< 10−1, the convection is also observed to produce a set
of large basin-scale gyres at all depths in the time-averaged flow.

Key words: ocean circulation, rotating flows, turbulent convection

1. Introduction
Differential heating applied at the horizontal surface of a basin of water results in

a convective circulation, termed ‘horizontal convection’ (Rossby 1965, 1998; Hughes
& Griffiths 2008). The motion involves a stratified diffusive boundary layer at the
surface and an overturning circulation extending the length of the basin between
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the coldest and hottest parts of the surface. At large geophysical scales Coriolis
accelerations resulting from planetary rotation are expected to have a strong influence,
and several flow regimes have been identified in the case of a rotating annulus with a
radial temperature gradient applied to the base (Hignett, Ibbetson & Killworth 1981).
In particular, under strong rotation the transport is controlled by geostrophic balance
in the thermal boundary layer. In the case of a rotating rectangular box, side wall
boundary layers tend to break the geostrophic constraint and allow greater transport.
However, experimental results with heating and cooling applied to regions of the
base at opposite ends of a box are again somewhat consistent with the geostrophic
boundary layer scaling (Park & Whitehead 1999). Work on the rotating annulus or
re-entrant channel models has considered stability of the flow and the mechanical
energy budget (Quon 1987; Colin de Verdière 1988; Winton 1996; Barkan, Winters &
Llewellyn Smith 2013; Sheard, Hussam & Tsai 2016) and potential vorticity dynamics
(Zhang et al. 2016).

Existing analyses, laboratory experiments and simulations of rotating horizontal
convection have considered only conditions at which the thermal boundary layer
is laminar, excepting recent direct numerical simulations for a rectangular basin
(Vreugdenhil, Gayen & Griffiths 2016). Those simulations, with a temperature
difference applied over two halves of the base, showed flow controlled by a turbulent
thermal boundary layer at large Rayleigh numbers, Ra > 1011, in line with results
for the non-rotating case (Mullarney, Griffiths & Hughes 2004; Hughes et al. 2007;
Gayen, Griffiths & Hughes 2014). They also showed that the vertical heat transport
into the interior takes place in columnar vortices over some of the area of destabilising
boundary flux. The turbulence has implications for the mechanisms for dissipation,
and the columnar vortices potentially imply additional dynamical regimes in which
the heat transport is not controlled by the boundary layer. Here we report laboratory
experiments at similarly large Rayleigh numbers.

Early conceptual formulations of ocean circulation described the subtropical
thermocline and meridional overturning in simple form, for a basin such as the
North Atlantic, in terms of a geostrophic balance within the quasi-horizontal and
strongly stratified upper boundary layer. This was coupled to upwelling of cold
water through the thermocline and matching downward turbulent diffusion of heat
(Robinson & Stommel 1959; Robinson 1960; Bryan 1987; Winton 1996; Park &
Bryan 2000) in order to find a simple scaling for the transport as a function of the
surface temperature difference and vertical diffusivity. The scaling is similar to that
predicted in the geostrophic boundary layer regime of horizontal convection in a
rotating annulus. The closure of the circulation through sinking of cold water into
the abyssal ocean at high latitudes was not included, and this part of the flow has
been treated somewhat separately in other simple theories.

The sinking leg of the ocean overturning occurs at high latitudes, where the
sea surface buoyancy flux is destabilising and produces areas of deep convection,
which cools the water to depths of 1000–2000 m. These areas of convection, termed
‘chimneys’, have been analysed in terms of regional inflow near the surface and
outflow at depths constrained by geostrophic balance, but with the heat transport
enhanced by baroclinic instability. The chimneys are hundreds of kilometres across,
within which vertical convection in the form of cyclonic plumes at the scale of
1–2 km is predicted to be three-dimensional, inertially controlled and free of
geostrophic constraints (Jones & Marshall 1993; Maxworthy & Narimousa 1994;
Send & Marshall 1995; Marshall & Schott 1999). Assuming an inviscid flow forced
by a sustained buoyancy flux B out of the sea surface it was argued that the convection
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Geostrophic and chimney regimes in rotating horizontal convection 59

depends on the convective Rossby number Ro∗= B1/2/f 3/2H∗, where f is the Coriolis
parameter and H∗ is the depth of convection. For Ro∗ > 0.078 experiments suggest
that rotation is unimportant, H∗ constrains the length scale of convective eddies,
and the convection velocity scales as (BH∗)1/3 (Deardorff 1985; Jones & Marshall
1993). For Ro∗ < 0.078 rotation strongly affects the convective plumes, setting their
length scale L∗∼ (B/f 3)1/2 and velocity scale U∗∼ (B/f )1/2, independent of the depth.
The conditions for ocean convection were placed in the non-rotating convection
regime at Ro∗> 0.078 (Klinger & Marshall 1995). The deep convection relates to the
sinking leg of the overturning in that it cools a large fraction of the water column
and produces dense water, which then sinks to larger depths as dense currents on
the sloping bottom. However, these studies do not show how deep convection is
coupled to a large-scale overturning circulation and whether it controls transport.
Although the circulation involves many other factors, including wind stress, Sverdrup
flow, potential vorticity dynamics and the bathymetry, the buoyancy forcing is an
important component (Saenz et al. 2012). In this paper we examine the dynamics of
a buoyancy-driven circulation in a simple rectangular basin.

Boundary layer analysis of non-rotating horizontal convection leads to scaling
that is robust to the strength of the buoyancy forcing. A horizontal momentum
balance between buoyancy and viscous stress, coupled to an advection–diffusion
balance in the vertical (Rossby 1965) gives the non-dimensionalised heat transport,
or Nusselt number, Nu ∼ Ra1/5 (where Ra is the Rayleigh number based on the
applied temperature difference and the horizontal scale over which the temperature
difference is applied). This result has been supported by experimental results and
numerical simulations at Ra 6 109, a range of Prandtl numbers and various imposed
temperature distributions along the base (Rossby 1998; Wang & Huang 2005; Gayen
et al. 2014). At much larger Rayleigh numbers (Ra> 1011), using piecewise uniform
boundary conditions of imposed heat flux on the base of a long box, experiments
show that much of the heated part of the boundary layer is turbulent as a result of
small-scale convection (Mullarney et al. 2004; Stewart, Hughes & Griffiths 2011).
Direct numerical simulations (DNS) of the same arrangement but with imposed
temperature difference show that the flow is governed by a turbulent Reynolds stress
(Gayen et al. 2014). The results again give Nu∼Ra1/5, as predicted by scaling theory
based on an inertial–buoyancy balance in the boundary layer. At the intermediate
Rayleigh numbers there is a stronger dependence of Ra due to a sequence of stability
transitions, and therefore no dynamical similarity regime can be applied.

Analysis of horizontal convection in a rotating annulus also has assumed boundary
layer control and laminar flow. The effects of rotation were delineated in terms of the
ratio Q of the thermal boundary layer thickness to Ekman layer thickness (Hignett
et al. 1981). When rotation is strong the Ekman layer is thin, leaving the bulk
of the thermal boundary layer decoupled from boundary stress and governed by a
geostrophic balance, with velocities U ∼ (κ/L)(RaE)2/3 and boundary layer thickness
δ ∼ L(RaE)−1/3, where L is the basin length scale, E is the Ekman number and κ is
the molecular diffusivity. Although an alternative theory includes a frictional term that
results in scaling more strongly dependent on Coriolis parameter (Stern 1975), the
laboratory experiments with a rectangular basin (adjusted for an imposed heat flux
boundary condition and corrected for Ekman transport) gave results consistent with the
frictionless case (Park & Whitehead 1999). The experiments also showed large-scale
horizontal gyre circulation that extended throughout the depth. Physically, the flow
in the direction of the temperature gradient is inhibited by geostrophic balance,
leading to smaller velocities, thicker boundary layer and smaller heat transport for
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larger rotation rate or smaller buoyancy forcing. Numerical modelling of horizontal
convection in a rotating re-entrant channel with imposed flux showed that heat
transport is primarily by baroclinic eddies (Barkan et al. 2013), which was also found
for the axisymmetric case with side wall forcing (Read 1986, 2003). For very large
Rayleigh numbers, scaling analysis indicates that it is appropriate to use an inviscid
parameter QPr (where Pr is the Prandtl number) in place of Q (Vreugdenhil et al.
2016), and DNS for turbulent conditions has provided the condition (QPr ≈ 10) for
the transition between non-rotating and geostrophic boundary layer regimes. The DNS
also showed that strong rotation does not affect the total dissipation of kinetic energy
in the flow until the conditions are so extreme that Coriolis accelerations change the
turbulent dissipation at scales smaller than the boundary layer thickness. Consistent
with previous work (Sheard et al. 2016) a transition to a conduction-dominated
regime was identified at extremely rapid rotation.

Here we report laboratory experiments with rotation, using a closed rectangular
basin and Rayleigh numbers large enough to ensure turbulent inertial–buoyancy
regimes in both the non-rotating and geostrophic regimes. A heat flux boundary
condition is used, rather than an imposed temperature difference, as the imposed
uniform flux case avoids complicated in situ measurements of heat flux and its
distribution over the heated area, and hence allows more accurate measurements of
the Nusselt number. Perhaps more significantly, the case of imposed temperature
difference with large Rayleigh number can be studied by direct numerical simulation,
whereas the imposed heat flux case (for which the thermal equilibration times are
longer than for the case with an imposed temperature difference by a factor of four)
has proved too demanding for current supercomputer capacities (Gayen et al. 2013a,
2014; Griffiths, Hughes & Gayen 2013; Vreugdenhil et al. 2016). As insights from
both boundary conditions are likely to be relevant to the oceans, the absence of
computer simulations with imposed flux motivate these experiments. In § 2 scaling
analyses are presented for non-rotating, geostrophic boundary layer and ‘chimney
convection’ regimes, and it is argued that the convective Rossby number based on
the imposed buoyancy flux is the most appropriate parameter to use in describing
the changes in flow dynamics from weak rotation to geostrophic regimes. The
apparatus and methods are outlined in § 3, and tests of the approach to thermal
equilibrium and the equilibration time scale are shown in § 4. Observations from
flow visualisation are given in § 5, while § 6 reports measurements of the boundary
layer flow with comparison to the scaling theories, § 7 presents data for the velocity
and overturning transport in the bulk of the fluid, and § 8 gives information on the
frequency spectra of temperature fluctuations. The results are discussed in § 9 with
conclusions in § 10.

2. Theoretical analysis

We consider the flow in a rotating rectangular basin having length L, width W
and height H, with all boundaries no slip. All boundaries excepting the base are
insulating. The base has a uniform heat flux per unit area F, corresponding to a
uniform buoyancy flux per unit area B, applied over half its length (figure 1). The
other half of the base is held at a uniform temperature Tc. The temperatures in the
flow besides those at the cooled boundary are free to adjust until a thermal equilibrium
state is reached, at which time the (time-averaged) heat withdrawn by the cooled
section of the base must be equal to the (constant) heat input.
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FIGURE 1. (Colour online) The laboratory arrangement with heating as a uniform flux
imposed through half of the base and cooling imposed as a uniform temperature over the
other half. The back-drop shows the measured time-averaged (over 12 h) temperature in
the flow at y/W = 0.67 for RaF = 6.5× 1014 and f = 0.4 s−1 (Ro= 5.6× 10−3).

The governing parameters are the flux Rayleigh number, the Prandtl number, the
Ekman number and the vertical and horizontal aspect ratios, respectively

RaF =
BL4

νκ2
, Pr=

ν

κ
, E=

ν

fL2
, A=

H
L
, Ay =

W
L
, (2.1a−e)

where ν is molecular viscosity, κ the thermal diffusion coefficient of the fluid, f is
the Coriolis parameter (assumed uniform here) and where all parameters involving
length scale are defined in terms of the forcing length scale L. Assuming a linear
equation of state B = gαF/ρ0cp where g is the gravitational acceleration, α is the
thermal expansion coefficient, ρ0 is a reference density and cp is the specific heat
capacity. This assumption is a simplifying convenience that ensures that conservation
of heat implies conservation of buoyancy and that there is zero net buoyancy flux in
a thermally equilibrated state.

The Nusselt number, measuring the convective heat transport relative to purely
conductive transfer, is defined as

Nu=
BL

κgα1T
, (2.2)

where 1T = Th − Tc is the temperature difference between the measured highest
temperatures in the heated base and the imposed temperature of the cooling boundary.
An alternative estimate based on the highest temperature measured at mid-depth
and the cooling boundary temperature gave Nusselt number values that were not
significantly different. Thus the Nusselt number serves as a dimensionless expression
of the temperature difference maintained by the flow in providing the buoyancy forces
necessary to achieve the imposed heat transport. The flux Rayleigh number is related
to the Rayleigh number (Ra = gα1TL3/νκ) based on the temperature difference, by
the expression RaF =NuRa.

In this paper we consider only very large Rayleigh numbers (by which we
mean Ra > 1011 or RaF > 1013, for the particular distribution of heating and
cooling considered here) and Pr ≈ 4–5, rather than the moderate Rayleigh numbers
(Ra< 1010 or RaF < 1012) examined in most studies and for which the flow is viscous
(Rossby 1965, 1998; Paparella & Young 2002; Wang & Huang 2005). Non-rotating
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experiments in a box like that described above and with RaF = O(1012–1014)

(Mullarney et al. 2004; Stewart et al. 2011) showed that a stably stratified, cold
boundary layer is maintained adjacent to the cooled boundary. The cold water flows
horizontally in a boundary layer having thickness 0.05–0.1H, to the heated region,
where it warms from the bottom and spatial instability leads to streamwise rolls
near the leading edge of the heated region of the base, developing into small-scale
turbulent convection in the boundary layer after a short distance. The small-scale
convection forms a spatially developing convectively mixed layer, capped over most
of the length of the heated area by the stable density gradient in the remaining upper
region of the cold boundary layer. The thermal boundary layer feeds into an end
wall plume that penetrates the depth of the box and forms a lateral outflow along
the top of the box. Elsewhere in the interior (the bulk of the fluid) the average
flow is a slow downward motion back into the cold boundary layer. When the box
is rotating, the flow involves more complicated horizontal circulations. The Coriolis
accelerations will tend to inhibit flow and heat transport along the box, while the side
boundaries will break that constraint and allow a greater transport than expected in
an annulus.

Predictions for the flow dynamics can be obtained by scaling analysis, working
from the Navier–Stokes momentum equation in a rotating coordinate frame in the
incompressible and Boussinesq approximation, along with conservation of mass and
heat:

Pr−1

(
Dû
Dt̂
+∇p̂

)
=∇

2û+ RaFT̂k− E−1k× û, (2.3)

∇ · û= 0,
DT̂
Dt̂
=∇

2T̂. (2.4a,b)

The bold font signifies vectors, the hats indicate dimensionless variables, û= (û, v̂, ŵ)
is the velocity, t̂ is time, p̂ is the pressure deviation from the hydrostatic, T̂ =
T(κgα/BL) is the temperature deviation and k is the unit upward vector. The
variables have been non-dimensionalised by length L, time L2/κ , mass ρ0L3 and
a scale BL/κgα for the temperature difference.

2.1. Non-rotating scaling
The non-rotating scaling for very large Rayleigh numbers is briefly reviewed here
for the purpose of comparison with rotating cases. After neglecting rotation and
eliminating the pressure in x and z components of the momentum equation (2.3) an
inertial–buoyancy balance gives

∂

∂z
(u · ∇u)∼

∂

∂x
gαT. (2.5)

Taking vertical gradients in the boundary layer much larger than horizontal gradients
and scaling terms in (2.5) with U for horizontal velocity, δm for the turbulent
momentum boundary layer thickness, L for horizontal length and 1T for temperature,
this becomes

U2/δmL∼ gα1T/L. (2.6)

The viscous scaling of Rossby (1965, 1998) was based on momentum and thermal
boundary layers of similar thickness, and we argue that the same result holds for
the turbulent scaling. The stable thermal boundary layer is sustained by diffusion
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over the cooled region, which sets up a horizontal temperature gradient and leads to
advection in the boundary layer towards the heated region of the boundary. In the
turbulent case the drag is dominated by Reynolds stress produced by the small-scale
convective turbulence (Gayen et al. 2013a, 2014), and this is confined to a layer
within, or beneath, the stably stratified thermal boundary layer, growing to the full
thermal boundary layer thickness toward the end of the box. Hence the momentum
boundary layer is within the thermal boundary layer and follows the same scaling,
δ∼ δm. This is strongly supported for the inertial-buoyancy regime by DNS and large
eddy simulations (LES) in the ranges [Ra≈ 1012, 0.056Pr6 5] and [1012<Ra< 1015,
Pr = 5] respectively (Gayen et al. 2014). Matching thermal diffusion in the vertical
within the thermal boundary layer against vertical advection of heat (again as in the
previous viscous scaling), and matching the vertical mass transport to the horizontal
transport by continuity, the heat equation (2.4) gives

U/L∼w/δ ∼ κ/δ2, (2.7)

where w is the mean vertical velocity into the stable regions of the boundary layer.
The flux boundary condition implies

1T/δ ∼ B/gακ. (2.8)

Solving (2.6), (2.7) and (2.8) gives

U0 ∼ (BL)1/3, δ0/L∼ (κ/L)1/2(BL)−1/6, Nu0 ∼ (L/κ)1/2(BL)1/6, (2.9a−c)

where the zero subscript is added to denote the non-rotating case. The Nusselt number
can also be written as Nu0 ∼ L/δ0. As L/δ0� L/H, the Nusselt number is assured to
be large when L/H > 1. The scaling (2.9) can alternatively be expressed in terms of
the external parameters defined in (2.1):

U0L/κ = c1(RaFPr)1/3, δ0/L= c2(RaFPr)−1/6, Nu0 = c3(RaFPr)1/6, (2.10a−c)

where ci are constant prefactors of O(1). There is no dependence on viscosity. The
volume transport in the boundary layer, Ψ0 ∼U0δ0W, becomes Ψ0 ∼ (κL)1/2W(BL)1/6,
or

Ψ0 ∼ κW(RaFPr)1/6. (2.11)

Previous non-rotating laboratory experiments with imposed flux for 1012 < RaF <

1014 and Pr ≈ 4 (Mullarney et al. 2004) are consistent with the inertial scaling
(2.10) and give c1 = 0.29, c2 = 3.3 and c3 = 0.65. The solution (2.10), including a
successful theoretical prediction of the prefactors, was alternatively derived from a
heuristic inviscid model coupling a turbulent plume to the interior through turbulent
entrainment, and assuming a vertical advection–diffusion balance in the interior
throughout the depth (Hughes et al. 2007). Entrainment into the plume increases the
overturning transport by adding to that passing through the boundary layer (2.11).
The inertial–buoyancy scaling (when extended to the case of an applied temperature
difference) is also supported by DNS (Gayen et al. 2014).
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2.2. Geostrophic boundary layer scaling
With background rotation the Coriolis term in (2.3) can be large, causing the boundary
stress to be confined to an Ekman layer of thickness δE. For strong rotation the Ekman
thickness is much less than the thickness of the thermal boundary layer, leaving the
bulk of the thermal boundary layer free of boundary stress and in geostrophic balance
(Hignett et al. 1981). Following derivations by Robinson & Stommel (1959), Robinson
(1960), Bryan (1987) and Winton (1996) we assume a regime in which the mean
horizontal flow (having length scales comparable to the basin length L) within the
thin boundary layer is characterised by a geostrophic, thermal wind balance:

f
∂u
∂z
∼−αg

∂T
∂y
, f

∂v

∂z
∼ αg

∂T
∂x
, (2.12a,b)

where u and v are velocity components in x and y, respectively. In the boundary
layer the strongly stratified flow is then quasi-geostrophic. In the interior the net mass
transport through any vertical plane at a fixed x must be equal and opposite to that
in the thin thermal boundary layer and the interior flow is therefore characterised by
relatively small velocities, for at least the large length scales. We therefore follow
the early geostrophic ocean modelling and assume that the dynamics of the faster
boundary layer flow governs the overall transport. The presence of side walls may play
a significant role in the circulation and heat transport through formation of boundary
currents that allow geostrophic flow along the box (in the x-direction) that would
otherwise be prevented by geostrophy, and temperature gradients to be established in
the y-direction (these would be, respectively, the ‘meridional’ and ‘zonal’ directions
in a planetary context). From (2.12) Vg/Ug ∼W/L and

fUg/δ ∼ αg1T/W, (2.13)

where Ug, Vg characterise the geostrophic velocities in the thermal boundary layer
in the x and y directions, respectively. Previous derivations have proceeded assuming
Vg ∼ Ug, but the effect of the horizontal aspect ratio Ay = W/L is retained in the
following derivation.

Assuming the scalings (2.7) and (2.8) for the vertical advection–diffusion balance in
the stable region of the boundary layer and the boundary flux condition are unchanged
by rotation effects, they are solved with (2.13) to give

Ug ∼ (BL/fW)1/2, δg ∼ (κL)1/2(BL/fW)−1/4, Nu∼ (κL)−1/2(BL/fW)1/4. (2.14a−c)

Rewriting (2.14) in terms of the dimensionless parameters defined in (2.1) yields a
familiar form (Park & Whitehead 1999):

UgL/κ ∼ (RaFE/Ay)
1/2, δg/L= c4(RaFE/Ay)

−1/4, Nu∼ (RaFE/Ay)
1/4, (2.15a−c)

where a dependence on horizontal aspect ratio is retained and the prefactor c4 will be
evaluated from experiments.

Previous work identified dynamical regimes in terms of Q = (δ0/δE)
2. Transition

from the viscous non-rotating regime to the (laminar) geostrophic boundary layer
regime was predicted at Q � 1 (Hignett et al. 1981). A similar boundary layer
control dependent on Q has been shown for rotating Rayleigh–Bénard convection
(King et al. 2009; King, Stellmach & Aurnou 2012). DNS of horizontal convection in
a rectangular basin with very large Rayleigh number and turbulent thermal boundary
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layer (under an applied temperature difference, Vreugdenhil et al. 2016) showed the
transition at QPr ≈ 10, where inclusion of the Prandtl number removes dependence
on viscosity. For the imposed flux case considered here QPr ∼ (RaFPr)−1/3(PrE−1).
However, the decoupling of the thermal boundary layer from boundary friction when
the Ekman layer thickness is very much smaller than the thermal boundary layer
thickness implies that the dynamics in the geostrophic flow is more appropriately
considered in terms of a comparison of the local horizontal advection accelerations
in (2.3) to the Coriolis acceleration, hence in terms of a convective Rossby number
Ro=U/fL, where U is a characteristic convection velocity produced by the buoyancy
forcing. By dimensional analysis the Rossby number can be defined in terms of the
velocity scale (B/f )1/2 (Maxworthy & Narimousa 1994; Klinger & Marshall 1995).
This was also shown to be the case for rotating Rayleigh–Bénard convection in the
geostrophic regime (Boubnov 1984; Boubnov & Golitsyn 1986, 1990), where the
characteristic velocity can be expressed in terms of the rate of dissipation of kinetic
energy, ε = αgF/ρcp, with U ≈ 2(ε/f )1/2. Thus

Ro= B1/2/f 3/2L. (2.16)

In the geostrophic boundary layer regime of horizontal convection this is equivalent
to Ro= (RaFE3)1/2/Pr or Ro= (QPr)−3/2. As the motion is driven by buoyancy, the
Rossby number (2.16) is a measure of the relative importance of buoyancy forcing
and rotation.

The geostrophic boundary layer scaling (2.14) can be rewritten in the form

UgL/κ ∼ A−1/2
y (RaFPrRo)1/3, δg/L∼ A1/4

y (RaFPrRo)−1/6,

Nu∼ A−1/4
y (RaFPrRo)1/6.

}
(2.17)

Focusing on the effect of rotation relative to buoyancy in (2.17), it is useful to
normalise by the corresponding non-rotating solution (2.10):

Ug/U0 = c5A−1/2
y Ro1/3, δg/δ0 = c6A1/4

y Ro−1/6, Nu/Nu0 = c7A−1/4
y Ro1/6. (2.18a−c)

The boundary layer transport Ψg ∼UgδgW becomes,

Ψg/Ψ0 = c8A−1/4
y Ro1/6, (2.19)

where ci are constants that will be evaluated from experimental results.
The transition to the geostrophic boundary layer regime is predicted at

Ro= Rocrit = c−6
7 A3/2

y , (2.20)

or equivalently, at RaF = c−12
7 A3

yPr2E−3.
At Ro � Rocrit and δ � H the Ekman layer is much thinner than the thermal

boundary layer and the thermal boundary layer is thin compared to the depth
of the basin. Geostrophic balance then begins to govern the largest scale L (the
mean flow) and for smaller Ro geostrophic balance extends to smaller scales.
However, for extremely strong rotation the boundary layer is thick (δg > H at
Ro 6 (c2c6/A)6A3/2

y (RaFPr)−1) and the boundary layer analysis does not apply. For
these extreme conditions, DNS for an applied temperature difference has shown that
advection is greatly reduced and heat transport is primarily by conduction (Sheard
et al. 2016; Vreugdenhil et al. 2016). In the following we discuss the potential for
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additional regimes, in which transport is controlled by vertical convection rather than
the boundary layer.

2.3. Chimney regimes
The laboratory observations reported in § 5 will show that at sufficiently rapid
rotation rates vertical convection in the area of destabilising boundary buoyancy flux
forms cyclonic vortical plumes that penetrate through any remaining stratification
of the thermal boundary layer. The vortical plumes become more numerous with
increasing f and become columnar structures extending through the full depth of
the laboratory box. We adopt the ocean modelling term ‘chimney’ for this region of
plumes (Marshall & Schott 1999) and aim to describe the way in which the chimney
convection is maintained within, and coupled to, a larger basin-scale circulation.

2.3.1. Inertial chimney regime
The buoyant plumes within the chimney region are assumed to involve small-scale

motions and rapid, large-amplitude fluctuations on time scales comparable to or shorter
than the inertial period, and it is assumed that the momentum equation (2.3) admits a
solution in which a mean flow is dominated by the geostrophic balance but with the
transport governed by fluctuations (or eddy transport). For fluctuations having a large
eddy Rossby number, the dominant balance is taken to be that between buoyancy and
local vertical accelerations associated with vertical convection, which scales as

w2
e/δ ∼ gα1T, (2.21)

where we represents the local vertical plume velocities and 1T represents the
temperature difference driving the plumes as they ascend from the heated boundary
through the cooler boundary layer and into the interior. This amounts to assuming the
chimney is a homogeneous patch of Rayleigh–Bénard convection with the familiar
inertial scaling Nu ∼ (RaFPr)1/4 for imposed flux (or (RaPr)1/3 for the case of
applied temperature difference) and in which the vertical velocity is we ∼ (κB)1/4
independent of the depth of the convection. Thus the chimney region is seen as
dynamically equivalent to rotating Rayleigh–Bénard convection at Rayleigh numbers
large enough and rotation weak enough to place Rayleigh–Bénard convection in the
inertial, effectively non-rotating, regime (Julien et al. 2016; Plumley et al. 2016),
while recalling that in the present problem the vertical motion in the columnar
vortices must penetrate through both the stably stratified thermal boundary layer
stratification and the mean stable stratification of the interior.

In the stable regions of the boundary layer the vertical advection–diffusion balance
is unchanged, as is the balance of the vertical advection and (large-scale) horizontal
advection of heat in the boundary layer (at velocity U), leaving (2.7) unchanged.
Similarly, the scaling for the integral flux boundary condition over the stabilising
region (2.8) remains unchanged. Matching the boundary layer heat transport to
vertical transport in the chimney, under the assumption that the horizontal area of the
chimney scales as LW, gives

weL1T ∼Uδ1T. (2.22)

Solving (2.7), (2.8), (2.21) and (2.22) gives the scaling for the horizontal boundary
layer velocity, boundary layer thickness (in the area of stabilising boundary flux) and
the overall Nusselt number:

U ∼ L(B/κ)1/2, δ ∼ (B/κ3)−1/4, Nu∼ L(B/κ3)1/4. (2.23a−c)
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This will be referred to as the ‘inertial chimney’ regime. The solution gives the
three-dimensional velocity we ∼ (Bκ)1/4 in the chimney. Note that the large-scale
boundary layer velocity U is influenced by both we and the diffusion velocity scale
κ/L stemming from the basin-scale circulation. Expressed in terms of the Rayleigh
number (2.23) becomes

UL/κ ∼ (RaFPr)1/2, δ/L∼ (RaFPr)−1/4, Nu= c9(RaFPr)1/4, (2.24a−c)

and normalising (2.24) by the non-rotating scaling (2.10) gives

U/U0 ∼ (RaFPr)1/6, δ/δ0 ∼ (RaFPr)−1/12, Nu/Nu0 ∼ (RaFPr)1/12. (2.25a−c)

An alternative to (2.21) is to assume the inertial–buoyancy balance scales as
w2

e/H ∼ gα1T , which is equivalent to assuming the ‘ultimate’ state of non-rotating
Rayleigh–Bénard convection within the chimney, in which transport is independent of
diffusivity. The solution for the Rayleigh–Bénard problem gives the plume velocity
we ∼ (gα1TH)1/2 ∼ (BH)1/3, as assumed in Maxworthy & Narimousa (1994). The
coupled horizontal convection solution based on this full-depth scaling becomes
U ∼ (L/κ)(BH)2/3, δ ∼ κ(BH)−1/3 and Nu∼ (ARaFPr)1/3. Although this non-diffusive
scaling of three-dimensional convection was assumed in the previous modelling of
chimney convection, and might prove relevant to large-scale geophysical conditions,
it remains unknown whether such a regime can be realised. In any case, we consider
that it is unlikely to be appropriate for comparison with the laboratory experiments
because the ultimate regime is not achieved at laboratory conditions in experiments
with Rayleigh–Bénard convection. The coupled inertial chimney solution (2.24) is thus
a modification of the inertial geostrophic scaling for deep convection (Maxworthy &
Narimousa 1994; Marshall & Schott 1999), with diffusivity entering indirectly through
boundary layer length scale in (2.21). Dependence on diffusivity and the basin length
scale L also arises from the additional coupling of the vertical convection to the
large-scale, horizontal thermal forcing and the diffusive boundary layer in the region
of stabilising boundary flux.

Transition between the inertial chimney regime (2.24) and the geostrophic boundary
layer regime (2.15) is predicted at

E= (c9/c3c7)
4AyPr. (2.26)

This lies at a fixed rotation rate, given that the dependence of the flow on buoyancy
flux in the inertial chimney regime is the same as in the geostrophic boundary layer
regime. However, the flow becomes independent of further increases in rotation rate
in the chimney regime. Increased vertical convection in vortical plumes represents a
short-circuit of the large-scale mean transport, which is increasingly constrained by
geostrophic balance at larger rotation rates. The plumes and eddies break the mean
flow geostrophic balance. Additionally, the gyre circulations of the mean flow tend to
trap stably stratified boundary layer water in the area of destabilising boundary flux,
keeping it closer to the centre of the basin until the water is hot enough to ascend in
plumes. This represents a ‘preconditioning’ of the water column that enhances vertical
convection and the role of vertical accelerations.

It follows from (2.20) and (2.26) that the geostrophic boundary layer regime does
not occur for values of the flux Rayleigh number greater than RaF ≈ (c3/c9)

12Pr−1

(which will be found in § 9 to be larger than the values of RaF achieved in the
laboratory). At greater RaF a transition directly from the non-rotating regime to the
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chimney regime is predicted. As the chimney regime cannot develop at Ro� 1, we
hypothesise that this transition occurs at a critical Ro of order one, but the condition
remains uncertain.

2.3.2. Geostrophic chimney regime
Under very strong rotation conditions the Coriolis accelerations are expected

to control motion at the relatively small scale of individual vortical plumes and
thereby potentially influence the large-scale transport. Under these conditions the
flow dynamics within the chimney region has similarities to the geostrophic boundary
layer regime of Rayleigh–Bénard convection under rapid rotation conditions (Julien
et al. 2016; Plumley et al. 2016), in which there is a leading-order geostrophic
balance at the plume scale. This is also the dominant balance assumed in the
geostrophic chimney regime for ocean deep convection (Maxworthy & Narimousa
1994). However, it is important to again recall that the mean flow and stable mean
density stratification of the boundary layer and interior in horizontal convection differ
from the zero mean flow and unstable density gradient of Rayleigh–Bénard convection.
The Coriolis accelerations fue produced by horizontal eddy velocities ue are expected
to be comparable to that experienced by the box-scale flow, fU. However, as in the
inertial chimney regime, we assume that instability of the mean geostrophic flow (to
both vertical convection and baroclinic instability) leads to a dominant eddy transport.
If the eddies are assumed to be columnar vortices extending throughout the depth
H with geostrophic balance at the eddy length scale Le, the thermal wind equation
(2.12) scales as

fue/H ∼ gα1T/Le. (2.27)

Matching the rate of heat supply from diffusion into the stable regions of the boundary
layer to the lateral eddy transport of heat in the chimney (using an eddy diffusivity
ueLe) gives

κ1T/δ2
∼ ueLe1T/L2 (2.28)

and matching the heat transport also to the large-scale horizontal advection in the
boundary layer, as in (2.7), yields

κ1T/δ2
∼U1T/L. (2.29)

Solving (2.27)–(2.29) along with the boundary condition (2.8) leads to

U ∼ (κ/L)−1/3(BH/fL)2/3, δ ∼ (κL)2/3(BH/f )−1/3, Nu∼ (BHL/κ2f )1/3, (2.30a−c)

or in terms of Rayleigh and Ekman numbers

UL/κ ∼ (ARaFE)2/3, δ/L∼ (ARaFE)−1/3, Nu∼ (ARaFE)1/3. (2.31a−c)

When expressed in terms of the Rossby number and normalised by the non-rotating
scaling (2.10), (2.31) becomes

U/U0 ∼ A2/3(RaFPr)1/9Ro4/9, δ/δ0 ∼ A−1/3(RaFPr)−1/18Ro−2/9,

Nu/Nu0 ∼ A1/3(RaFPr)1/18Ro2/9.

}
(2.32)

This scaling will be referred to as the ‘geostrophic chimney’ regime. When
compared to the geostrophic boundary layer regime (Nu∼E1/4

∼Ro1/6; (2.15), (2.17)),
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it has a stronger dependence on rotation rate (with Nu∼ E1/3
∼ Ro2/9), as well as a

stronger dependence on buoyancy flux.
Transition from the inertial chimney regime to the geostrophic chimney regime is

predicted at RaF∼ c12
9 Pr3(AE)−4. Alternatively, transition into the geostrophic chimney

regime may, in principle, take place from the geostrophic boundary layer regime
at the boundary RaF ∼ (c3c7)

12A−4A−3
y E−1. However, for the present experimental

arrangement the latter transition would occur only at very small values of RaF,
where effects of viscosity become dominant, and is not relevant to the inertial flows
considered here.

The regime boundaries will be discussed further in § 9 in the light of the experi-
mental results. However, the proposed regimes are most likely to be distinguished
in the laboratory at the largest possible Rayleigh number (and large aspect ratio A).
The thickness of the thermal boundary layer with strong rotation (Ro� 1) increases
throughout the geostrophic boundary layer regime. Hence the boundary layer is thin
relative to the depth of the basin when Ro�A−6A3/2

y (RaFPr)−1. Contrasting this to the
onset of geostrophic flow at Ro�A3/2

y gives the range of conditions that may support
the three rotating regimes: in terms of rotation rates Ra−1/3

F AyPr2/3
� E� Ra−1

F A−4Ay.
This range becomes much wider for increasing buoyancy flux (or larger aspect ratio
A=H/L).

3. Experiments
3.1. Apparatus

The laboratory experiments were carried out with a rectangular acrylic box of
dimensions L × W × H = 1.25 × 0.3 × 0.2 m (figure 1) with a rigid lid. The same
box was used in previous studies (Stewart et al. 2011; Griffiths et al. 2013). Except
for the base, all sides were triple-glazed with argon gas in the gaps minimising heat
loss to the room. When temperatures alone were to be measured, 0.1 m of expanded
polystyrene foam was placed around the box. The base was a 10 mm thick copper
plate, the upper surface of which was levelled, in both the x and y directions, to
within 0.5 mm m−1. One half of the base was heated by an electrical resistance
heater (0.600× 0.305 m2), which was supplied with an electrical power held constant
by a controller to within ±0.1 W. The heater was designed to give a uniform heat
flux. Experiments used three values of the power input (530, 155, and 27 W) giving
the heat fluxes and three Rayleigh numbers 2× 1013

− 6× 1014 listed in table 1. The
other half of the base was cooled using a heat exchanger coupled to a water bath held
at a fixed temperature Tc between 9 and 22 ◦C. Insulation 50 mm wide was placed
between the heat source and cooler to ensure that the heat transfer by conduction
along the base was negligible. Room temperature was held at 26 ◦C (±2 ◦C). Heat
loss from the tank, estimated from calorimetry tests (Stewart et al. 2011; Griffiths
et al. 2013), was 1–4 % of total heat input depending on the bulk temperature in the
box, which in turn was dependent on the applied heat flux. The convecting fluid was
de-aerated water with a small amount of dissolved salt. The Prandtl number listed in
table 1 was based on the molecular values for water at the bulk temperature in the
thermal equilibrium states, with diffusivity κ weakly dependent on water temperature
and viscosity assumed constant at ν = 6.11× 10−7 m2 s−1.

The apparatus was set on a rotating table, with the exception of the constant
temperature water bath, which was connected to the experiment via rotating fluid
connections. Rotation was anticlockwise and rotation rates covered the range
Ω = 0–0.8 rad s−1 and the Coriolis parameter f = 2Ω = 0–1.6 rad s−1 (table 1).
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Exp. F (W m−2) f (s−1) α (K−1) RaF Pr E Ro

1 2896 0 4.47× 10−4 6.2× 1014 4.42 ∞ ∞

2 2896 0.04 4.50× 10−4 6.2× 1014 4.42 9.8× 10−6 1.7× 10−1

3 2896 0.16 4.56× 10−4 6.3× 1014 4.42 2.4× 10−6 2.2× 10−2

4 2896 0.4 4.72× 10−4 6.5× 1014 4.42 9.8× 10−7 5.6× 10−3

5 2896 1.0 4.90× 10−4 6.8× 1014 4.42 3.9× 10−7 1.4× 10−3

6 2896 1.6 4.84× 10−4 6.8× 1014 4.42 2.4× 10−7 7.1× 10−4

7 847 0 3.37× 10−4 1.3× 1014 4.36 ∞ ∞

8 847 0.04 3.41× 10−4 1.3× 1014 4.36 9.8× 10−6 8.1× 10−2

9 847 0.16 3.46× 10−4 1.4× 1014 4.36 2.4× 10−6 1.0× 10−2

10 847 0.4 3.54× 10−4 1.4× 1014 4.36 9.8× 10−7 2.6× 10−3

11 847 1.0 3.59× 10−4 1.4× 1014 4.36 3.9× 10−7 6.7× 10−4

12 847 1.6 3.58× 10−4 1.4× 1014 4.36 2.4× 10−7 3.3× 10−4

13 148 0 3.21× 10−4 2.1× 1013 4.26 ∞ ∞

14 148 0.4 3.26× 10−4 2.1× 1013 4.26 9.8× 10−7 1.0× 10−2

15 148 1.6 3.26× 10−4 2.1× 1013 4.26 2.4× 10−7 1.3× 10−4

TABLE 1. Summary of experimental conditions. The applied heat fluxes F give buoyancy
fluxes B = gαF/ρ0cp (for g = 9.8 ms−2, ρ0 ≈ 1025 kg m−3 and cp = 4179 Jkg−1 K−1).
The properties are from Ruddick & Shirtcliffe (1979) and derived from the polynomial
interpolation of values given in appendix 1 of Batchelor (1967).

This range was limited by the paraboloidal curvature of surfaces of constant
potential resulting from centrifugal acceleration. Isopotential surfaces are of the
form η − η0 = f 2r2/8g, where η0 is the height of a surface at the axis of rotation
and r is the radius about the axis. For illumination purposes described below, the
position of the tank was offset from the axis of rotation by 0.195 m. The across-tank
height difference was in all cases negligible. The difference across the largest radius
(r= L/2) can become significant near the end walls at the largest rotation rates used
and a small correction will be applied (discussed in § 6). However, rotation rates were
kept within the range for which this maximum isopotential surface height difference
was less than the thermal boundary layer thickness, η(x= 0, L)− η0(x= L/2) < δ and
f 2 < (32g/L)(RaFPrRo)−1/6 using (2.17), ensuring that the planar base of the tank
did not act effectively as a topographic barrier to the stably stratified, cold boundary
layer.

The temperature of the hot and cold boundary regions was monitored by
four thermistors set into the copper plate, two near the hot end (x/L = 0.08,
y/W = 0.25, 0.75; of type Thermometrics P60DB163M) and two near the cold end
(x/L = 0.92, y/W = 0.25, 0.75; Thermometrics P60DB472M). In some experiments
the hot plate thermistor at y/W = 0.25 malfunctioned.

Vertical profiles of temperature in the water were obtained from an array of 8–
12 fast response thermistors (Thermometrics Fastip FP07DA103N) that were mounted
on 2 mm diameter rods passing through holes in the lid. The thermistor array was
traversed downward by a SmartMotor through the box at a speed 4 mm s−1 (a 50 s
transit time through the depth) with a sampling time interval 2 × 10−3 s. Readings
were averaged over 20 consecutive samples and values recorded at a time interval
0.04 s. The vertical resolution, limited by the resolution of the SmartMotor output,
was 0.2 mm. In order to protect the thermistors from damage, the temperature profiles
stopped 2 mm from the base, except for one case in which the closest approach to
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the base was set at 1.5 mm. Vertical temperature profiles were generally taken every
2 min for 24 h after the flow had reached thermal equilibrium, and time averaged to
obtain the final profile.

Experiments generally began with a new fill of water at uniform temperature,
spun up to the desired rotation rate and brought to thermal equilibrium. A series of
additional runs (not included in table 1) were designed to examine the equilibration
adjustment in more detail. The convection was first brought to thermal equilibrium
with heat input F = 2623 W m−2 (effectively a 10 % decrease in each RaF for
Experiments 1–6 in table 1) for a certain rotation rate. The heat input was then
increased to F = 2896 W m−2 (corresponding to the stated values of RaF in table 1)
and the adjustment of the interior temperature over more than 12 h was recorded at
x/L= 0.08 and x/L= 0.92, with y/W = 0.5 and z/H = 0.5. Thus the adjustment was
to a modest perturbation of the thermal forcing conditions while the choice of the
largest heat flux afforded maximum temperature differences in the flow.

3.2. Dye visualisation experiments
In separate runs red and blue dyes were released slowly into the tank at selected
locations using 1 mm metal tubes. The locations, shown in figure 3 below, were
chosen such that the tracer advection most effectively revealed the flow patterns. The
releases were generally within 1 mm of the base, in the stably stratified boundary
layer, where the tracer was first carried in the boundary layer flow before entering the
interior in vertical convection above the heated region of the base and subsequently
advected back toward the cooled end in the interior flow. The density of the dye
was carefully matched to that of the boundary layer water by adding salt to the
dye. For these runs the polystyrene insulation around the tank was removed to allow
illumination and visibility. Two Sony HDR-HC7E video cameras (1920× 1080 pixels)
mounted in the rotating reference frame 2 m above the convection box recorded the
tracer motions in planform. Another two video cameras mounted 1 m from the side
wall recorded the flow from the side. Each camera recorded one half the length of
the domain. Given the complex three-dimensional flow the dyes provided qualitative
but invaluable insight into the structure of the convection.

3.3. Particle tracking velocimetry
Horizontal flow velocities relative to the rotating frame were measured in three
horizontal planes using particle tracking velocimetry (PTV). A light emitting diode
(LED) source (1 m long by 0.1 m wide) was placed 1 m away from the side wall
and the light passed through horizontal slits to create a horizontal sheet of light
(10 mm thick in the vertical). The light sheet was adjusted to three different heights,
z/H = 0.15, 0.5 and 0.85. The cameras mounted above the tank were focused on the
height of the light sheet. PTV could not be utilised in the bottom thermal boundary
layer due to uncertainty in the vertical position of illuminated particles, resulting from
the large vertical temperature gradient near the base and strong refraction of light as
rays crossed the relatively large width of the box, as well as from the thickness of
the light sheet. PTV was not possible in the region closest to the walls (5 mm at
y/W = 0, 1 and 12.5 mm at x/L = 0, 1) due to refraction of light near the edges
of the triple-glazed lid. Visibility constraints also prohibited simultaneous use of
temperature profiling and PTV.

The PTV used Pliolite resin particles suspended in the water. In order to make the
particles neutrally buoyant, NaCl was added to achieve a density ρ ≈ 1025 kg m3
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at 21 ◦C. Once thermal equilibrium was reached 10 ml of water containing the
particles was slowly added to the tank at several locations. The system was then left
for 2 h while the convection stirred the particles throughout the box, after which the
flow was recorded for 3 h at one image per second. The population of particles in
suspension decreased over time, limiting the useful measurement period to 3 h. The
particles settled on the top and bottom surfaces decreasing the visibility of suspended
particles and meaning that a fresh fill of water was required for each of the three
light sheet heights. As it took a significant amount of time to refill the tank and
bring the system to a thermally equilibrated state, PTV was reserved for the largest
RaF cases only (Experiments 1–6 in table 1).

The video was processed (using Streams 2.01 software; Nokes (2014)) to obtain
horizontal fields of the horizontal velocity. Instantaneous horizontal velocity fields at
each level were obtained as averages over 10 frames (10 s) with a vector calculated in
each of 4000 windows, each window representing 12.25 mm× 7.25 mm of the area
of the box. This combination ensured an accurate representation of the fluctuating
velocity field for length scales greater than or equal to the PTV window. The 3 h
measurement period proved sufficient for computation of reliable time-averaged
velocity fields that converged with increasing averaging times and captured the
frequencies of significant fluctuations.

4. Thermal equilibration
The discussion of dynamical scaling in § 2 considered flow in a state of thermal

equilibrium, for which there is no net heat input when integrated over the whole
area of the forcing boundary. In the non-rotating case the adjustment of the system
to this equilibrium state provided additional information on the dynamics (Griffiths
et al. 2013), showing that conduction in the stable cold boundary layer is the limiting
process governing the flow adjustment under imposed heat flux boundary conditions,
whereas advection of heat away from the heated boundary by the circulation governs
the flow adjustment under an imposed temperature difference. The equilibration is
also influenced by the sign of the net buoyancy change required between initial
and equilibrium states. In this paper we use only a net warming to approach the
equilibrium states, in which case circulation is maintained throughout the depth of
the box, and we expect that an imposed heat flux boundary condition leads to an
exponential adjustment on a time scale governed by conduction through the stable
boundary layer. The bulk temperature T (the average over the whole volume outside
the thermal boundary layer) changes as(

T − T2

T1 − T2

)
≈ e−t/τ , (4.1)

where T1 and T2 are, respectively, the bulk temperatures at time t= 0 and in the large
time equilibrated state (T1 < T(t) < T2), and τ is the adjustment time scale. For the
non-rotating case a simple theoretical model predicted τ = τ0≈2δH/βκ , where β≈1.4
is a constant evaluated from direct numerical simulations (Griffiths et al. 2013). Using
the scaling (2.10) for boundary layer thickness gives

τ0 ≈ 2c2(RaFPr)−1/6LH/βκ. (4.2)

Importantly, and as confirmed by experiments, the equilibration time scale depends
on δ and is therefore much smaller than the time for diffusion of heat through the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

24
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.249


Geostrophic and chimney regimes in rotating horizontal convection 73

depth H of the box. No further adjustment occurs on the diffusion time scale H2/κ
because the heat transport through the bulk of the domain is by convection, and
interior stratification is maintained in the same manner as the classic ‘filling box’
stratification of Baines & Turner (1969).

Assuming that the stable conductive regions of the boundary layer in strong rotation
cases exercise a similar control on the net rate at which buoyancy is extracted from
the domain, and using the geostrophic boundary layer scaling (2.18) for the boundary
layer thickness, the adjustment time scale in (4.1) for flows in the geostrophic
boundary layer regime becomes

τg/τ0 ≈ c10A1/4
y Ro−1/6, (4.3)

which has been normalised by the non-rotating time scale and where c10 is a constant
prefactor. This prediction assumes that the initial and final states have reasonably
similar conditions such that the boundary layer thickness does not change substantially
during the adjustment.

The adjustment was measured in dedicated experiments, outlined in § 3.1, in
which the flux Rayleigh number was increased by 10 %, from which the boundary
layer thickness predicted by (2.15) would decrease by 2 %. In order to achieve
the most turbulent conditions, as well as maximum dynamic range for temperature
measurements, the detailed equilibration measurements were carried out for only the
largest (final) Rayleigh numbers in table 1.

The temperature equilibration in rotating experiments took the same exponential
form (4.1) as previously found for the non-rotating case (figure 2a). Approximately
99 % of the overall temperature change is shown in figure 2(a), and the exponential
describes more than 95 % of that adjustment. At larger times the difference between
the time-dependent interior temperature T and the final, time-averaged interior
temperature T2 was smaller than the interior temperature fluctuations. The fluctuations
at a single measurement position in the interior in the equilibrium states involved
a spectrum of frequencies (see § 8), with amplitudes approximately 1 %–3 % of the
maximum temperature difference 1T in the final state, and they were largest in the
rotating cases owing to unsteady vortical plumes, geostrophic eddies and basin-scale
gyres.

For strong rotation (Ro< 10−1) the adjustment time scales were larger (figure 2b).
The Rossby number dependence was not as strong as that predicted by the geostrophic
boundary layer scaling (4.3), but the difference can be attributed to the transitional
behaviour of the Nusselt number (i.e. higher interior temperatures) with significant
Ekman transport in the equilibrium states for Ro> 10−3, and a change over to Nusselt
numbers larger than predicted by the geostrophic boundary layer scaling (i.e. smaller
interior temperatures) at Ro< 10−3 (see § 6). As an estimate of the equilibration time
scales, we simply report that a best fit of the geostrophic boundary layer scaling (4.3)
to the data in the range 10−3 < Ro< 10−1 gives the prefactor c10 ≈ 0.9, and note that
all of the measured time scales indicate τ < 0.1H2/κ .

5. Flow visualisation
An example of the flow patterns revealed by the tracer advection in the rotating

cases (and which will be shown to be an example of the geostrophic boundary layer
regime) is shown in figure 3. There are supplementary movies online available at
https://doi.org/10.1017/jfm.2017.249 with a side view of the box for this experimental
run, RaF = 6.5 × 1014 and Ro = 5.6 × 10−3 (Experiment 4; still photos shown in
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FIGURE 2. (Colour online) Thermal equilibration for RaF ≈ 6× 1014. (a) Time records of
bulk temperature (at x/L = 0.92, y/W = 0.5 and z/H = 0.5), where temperature relative
to the final time-averaged interior T − T2 is normalised by the total difference T1 − T2
between final and initial states, and time is normalised by H2/κ . Solid black lines are the
exponential relation (4.1) fitted to the non-rotating ( f = 0; red curve) and the most rapidly
rotating ( f = 1.6 s−1, Ro= 7.1× 10−4; cyan curve) cases, giving time scales τ0 = 1.44×
104 s and τ = 2.71× 104 s, respectively. Broken line indicates the value corresponding to
95 % of the complete adjustment to the final temperature. (b) Rossby number dependence
of measured equilibration time scales normalised by the non-rotating scaling (4.2) with
c2 = 2.0 (from fit of (2.10) to measured boundary layer results over the cooled region
in equilibrium state, see figure 7). The single data point after the axis break shows the
measured adjustment time scale in the non-rotating case. Broken line is the geostrophic
boundary layer scaling (4.3) and solid blue line is the geostrophic boundary layer scaling
with a correction for isopotential curvature (A 3 in appendix A), both with fitted prefactor
c10 = 0.89.

x

y

1

2

3

FIGURE 3. (Colour online) Plan view image showing the positions at which dye tracer
was released on the base, along with an example of the initial paths of the tracer while it
was largely in the bottom boundary layer. The photograph is from Experiment 4 (table 1;
RaF = 6.5× 1014, f = 0.4 s−1, Ro= 5.6× 10−3). Base heating is on the left-hand side and
cooling on the right-hand side. At positions 1 and 2 blue dye was released, at position 3
red dye was released, within 1 mm from the base. System is in the geostrophic boundary
layer regime (as discussed in § 6). See figure 4 for side view.
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x

y

z

(a)

(b)

(c)

FIGURE 4. Side view images from Experiment 4 (as in figure 3) with dye tracer and
showing only the heated half of the box (RaF = 6.5× 1014, f = 0.4 s−1, Ro= 5.6× 10−3)
at (a) 19 mins, (b) 23 mins and (c) 57 mins, respectively, after dye release began. System
is in the geostrophic boundary layer regime (as discussed in § 6). See supplementary
movie 1.

figure 4; movie 1), and at stronger rotation, RaF = 6.8 × 1014 and Ro = 7.1 × 10−4

(Experiment 6; stills in figure 5; movie 2). As shown in figure 3, the blue tracer
released at position 1 (marked on the image), which was on the cooled base, remained
close to the wall (y/W = 1), as it was carried towards the end wall (x/L = 1). It
continued around the box against the end wall to the opposite ‘western’ side wall
(y/W = 0) and then along the wall towards the heated region. (We use the terms
‘western’ or ‘eastern’ here for convenience, and they are based on the northward

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

24
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.249


76 C. A. Vreugdenhil, R. W. Griffiths and B. Gayen

x

y

z

(a)

(b)

(c)

FIGURE 5. Side view images from Experiment 6 with dye tracer and showing only the
heated half of the box (RaF = 6.8 × 1014, f = 1.6 s−1, Ro = 7.1 × 10−4) at (a) 18 mins,
(b) 22 mins and (c) 22 mins 40 s, respectively, after dye release began. System is in the
inertial chimney regime (as discussed in § 6). See supplementary movie 2.

direction of the net boundary layer flow in a northern hemisphere ocean basin, with
west on the left, despite there being no mechanism similar to the planetary β-effect
to provide east–west asymmetry in these experiments.) The dyed water released at
position 2 near the ‘western’ side wall showed the same flow pattern, the tracer
being carried directly along the side wall, with the wall on its left, to the heated
region. Thus the flow in the cooled region of the boundary layer was a large-scale
anticyclonic (clockwise) gyre. The boundary layer flow in this region was always
laminar, and relatively slow compared to that over the heated region of the base.
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Tracer released in the centre of the base at position 3 was carried toward the heated
region. Both the red and blue streams were diverted to the right of their direction
of motion and across to the side wall (y/W = 1) over the heated base. In particular,
the streamlines of cold boundary layer water entering the heated region near the wall
y/W = 0 (with blue dye) crossed the box on average about half-way along the heated
region (under the conditions of this experiment). The boundary layer was unstable,
stream-parallel rolls appearing a short distance from the leading edge of the heated
region of the base and then breaking up into three-dimensional turbulent convection
within the boundary layer approximately 100 mm further along in the direction of flow.
In the region x/L< 1/4 the flow showed large variability. The mean flow tended to
form a cyclonic (anticlockwise) gyre having approximately equal length and width,
filling the width of the box. In this region the boundary layer continued to warm as
it circulated, and the water then ascended into the interior in vertical convection that
appeared to be dominated by cyclonic vortical plumes.

More detail of the three-dimensional flow pattern could be seen in simultaneous
side (or oblique) views such as those shown in figure 4, which are from the same
experiment as that in figure 3. The thin streams of tracer over the cooling region
of the base are testament to the strong density gradient there. The roll instability
and three-dimensional small-scale convection in the boundary layer stir and mix the
tracer through a larger fraction of the boundary layer thickness. The stream of red dye
reveals vertical convection at the end wall under the conditions in this experiment,
particularly at the far corner (x/L = 0, y/W = 1). However, strong vortical plumes
formed elsewhere over the heated region and most commonly in the area where the
stream of cold boundary layer water (with blue dye) crossed the box near x/L≈ 1/4
adjacent to the warming cyclonic gyre. The variability was such that at times the cold
stream warmed sufficiently that the vortical plumes carried only the blue dye upward
out of the boundary layer (figure 4b) and at other times the stream carrying the red
dye along near the far side wall was diverted into the middle of the heated region
of the base and the vortices carried the red dye upward (figure 4c). This fluctuation
in the larger-scale circulation occurred every 20–30 min. There were generally one
or two plumes at a time. Each vortical plume remained coherent for several minutes
before breaking up. The vortical plumes could generally be seen all the way to the lid
of the box. In the interior the tracer carried up by plumes became broadly dispersed
and on average they (and the tracer) migrated toward the cooled end of the box. The
tracer was stirred laterally until it eventually filled the whole of the interior. As a
result of these relatively rapid motions, it was not possible to determine from the dye
any further detail of larger-scale mean horizontal circulation in the interior.

At larger rotation rates some aspects of the flow pattern changed. The strongly
stable boundary layer over the cooled half of the base again formed a large-scale
anticyclonic gyre. As shown in figure 5, the current along the near (western) wall
(y/W = 0) was diverted across the box towards the far wall at a position closer to the
leading edge of the basal heating when compared to smaller rotation rates at around
the same Rayleigh number. Over the heated area of the base the boundary layer was
again unstable to small-scale convection. It tended to flow to the left near the far wall
and there was again a tendency for a cyclonic gyre circulation filling the width of the
box at the heated end. However, under the more rapid rotation there were many more
vortical plumes and these occurred over a larger area. We will refer to this region
of vortical plumes as a convection ‘chimney’, borrowing previous ocean modelling
terminology for regions of open ocean deep convection. In this case less tracer made
it all the way to the end wall (x/L= 0), and there was little evidence of tracer being
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carried upward by vertical convection adjacent to the end wall. Most of the tracer was
instead carried upward in the vortical plumes in the chimney over the central region
of the heated area. The vortical plumes extended through the full depth of the box,
from the base to the lid.

The red dye also revealed the cone-like structure in the right-hand half (x/L= 0.4,
y/W = 0.5) of figure 5(b,c). This cone was at the base of a vortical plume in the
interior, but in this case the tracer did not flow further up through the interior,
implying a persistent stable stratification within that vortical plume, above the
boundary layer. The cone moved with a velocity that was decoupled from the
underlying mean boundary layer flow, and migrated towards the cooled region of the
base where it slowly dispersed.

While convection in the chimney region at small values of the convective Rossby
number involves vortical plumes similar to flow structure seen in rotating convection
above a uniformly heated plate or in rotating Rayleigh–Bénard convection between
two horizontal boundaries (Chandrasekhar 1953; Boubnov 1984; Boubnov & Golitsyn
1986, 1990; Julien et al. 2012; Aurnou et al. 2015), it is important to recall that
the two cases are crucially different. In the state of thermal equilibrium studied
here, horizontal convection must involve a balance between the large-scale lateral
flow and the vertical convection above the heated region that is crucial to the flow
achieving zero net buoyancy flux through any level. This coupling of lateral and
vertical transport leads to a stably stratified thermal boundary layer, as well as to a
gravitationally stable mean stratification throughout the interior volume. Gravitationally
unstable stratification is found only locally in the plumes and in a sublayer at the
heated base (very much thinner than the main thermal boundary layer). In contrast,
Rayleigh–Bénard convection achieves a balance of heat input through the base and
heat withdrawn through the upper boundary, with thermal boundary layers and
interior volume that are gravitationally unstable. Associated with these differences in
buoyancy flux and stratification is a large difference in rates of viscous dissipation, as
previously demonstrated for non-rotating horizontal and Rayleigh–Bénard convection
at large Rayleigh numbers (Gayen et al. 2013a; Gayen, Hughes & Griffiths 2013b;
Hughes, Gayen & Griffiths 2013) and which have been shown to be little affected
by rotation until extreme rotation rates are reached (Vreugdenhil et al. 2016).

6. Scaling comparison

Vertical profiles of temperature, shown for the region above the cooled end of the
base in figure 6(a), reveal a strongly stratified region (the thermal boundary layer) at
the base and a relatively weak stratification through the remainder of the depth. In
the range 10−1 > Ro> 10−3 the interior temperature is larger and the boundary layer
is thicker for larger rotation rates. Noting that T − Tc ≈1T ∼Nu−1 for imposed heat
flux, these changes are consistent with the geostrophic boundary layer regime (2.17).
These trends are also consistent with the laboratory experiments of Park & Whitehead
(1999). The interior temperature remains in the range T − Tc = (0.88–0.95)1T . The
buoyancy frequencies (figure 6b) calculated from the temperature profiles reveal a near-
base portion of the boundary layer in which rotation does not change the stratification,
or slightly reduces it. In contrast, in the outer boundary layer the effects of rotation
increase the buoyancy frequency. The stratification in the bulk of the fluid similarly
increases with increasing rotation rate. Indeed the density gradient in the interior was
almost an order of magnitude greater for weak rotation (Ro = 1.7 × 10−1) than for
the non-rotating case, and was a further order of magnitude greater at rapid rotation
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FIGURE 6. (Colour online) Profiles of (a) temperature and (b) squared buoyancy frequency
N with depth for RaF ≈ 6 × 1014 and different rotation rates. Shown are time-averaged
profiles from the equilibrium state measured above the cooled region of the base (x/L=
0.92, y/W= 0.5). In (a) the profiles are linearly interpolated (broken lines) between z/H=
0.0075 and the temperature Tc measured in the cooled end of the base. Temperatures are
relative to Tc and are normalised by the overall difference 1T0= (Th−Tc)0 along the base
in the non-rotating case; N2 is normalised by the fixed value of N2

0 = gα1T0/H based on
the measured 1T0 in the non-rotating case.

(Ro ≈ 10−3). At Ro < 10−3 the behaviour is different: the boundary layer continued
to thicken with increasing rotation rate, whereas the interior temperature trends are
reversed, with the interior cooling slightly and becoming less stratified for more rapid
rotation. Further details of the boundary layer behaviour, Nusselt number and mass
transport are given below.

6.1. Boundary layer thickness
The boundary layer thickness is defined here as the height from the base containing
90 % of the top-to-bottom buoyancy difference. The thickness varies with location as
a result of geostrophic horizontal flow, including the circulation gyres on the scale of
the box and side wall boundary currents. It also varies with distance from the axis
of rotation due to parabolic curvature of isopotential surfaces (appendix A). Over
the cooled region the boundary layer is thinner for larger Rayleigh numbers and
thicker for more rapid rotation (figure 7a). Rotation begins to influence the boundary
layer at E < 10−5 given the other experimental conditions. The effect of rotation is
seen more clearly in figure 7(b), where all thickness measurements are normalised
by the thickness given by the scaling law (2.10) for the non-rotating case. When
comparing the measured thickness at this location near the ends of the box with
theoretical predictions, a correction is added to the predicted thickness scaling in
order to account for the parabolic curvature of isopotential surfaces (appendix A).
In figure 7(b) the geostrophic boundary layer scaling (2.18) with the correction for
isopotential curvature matches the measured boundary layer thicknesses in the range
Ro< 10−1. The data are consistent with past experimental results at smaller Rayleigh
number (Park & Whitehead 1999). The transition to the geostrophic boundary layer
regime starts at Ro≈ 10−1.
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FIGURE 7. (Colour online) (a) Boundary layer thickness near the cooled end (at x/L=
0.92, y/W = 0.5) against Ekman number and (b) the boundary layer thickness normalised
by the non-rotating scaling against Rossby number for three different RaF. The three
data points after the axis break show the measured boundary layer thicknesses in the
non-rotating cases. In (a) the broken lines are the geostrophic boundary layer scaling
(2.15) and the solid curves are that scaling with a correction for isopotential curvature (A 1
in appendix A), both with c4 = 1.96. The horizontal dotted line indicates the box height.
In (b) the normalisation uses the non-rotating scaling (2.10) for δ0 fitted to the three
non-rotating results, which give c2 = 2.0. The broken line is the normalised geostrophic
boundary layer scaling (2.18) and the solid curves are that scaling with the isopotential
curvature correction (A 2), all with prefactor c6 = 0.97. In (a) the non-rotating RaF ≈

6× 1014(blue circle) case lies underneath the RaF ≈ 1× 1014(red triangle) case.

The boundary layer becomes more variable with increasing rotation rate. Figure 8
shows the normalised boundary layer thicknesses at three locations across the
mid-section (x/L= 0.5) of the box. The boundary layer is asymmetric in the presence
of rotation and the thickness trends depend on the cross-stream location. Near the
‘western’ wall (left-hand side when looking in the direction of net boundary layer
flow; y/W = 0.027) the boundary layer thickness remains unchanged by rotation until
Ro < 10−3, and at stronger rotation it becomes thinner. At the centre point of the
box (y/W = 0.5) the boundary layer is thicker for stronger rotation if Ro> 10−3 but
becomes thinner at Ro < 10−3. Near the ‘eastern’ wall (y/W = 0.973) the thickness
monotonically increases for stronger rotation, in a manner consistent with the
geostrophic boundary layer scaling (2.18). Thus the boundary layer thickness is again
largely consistent with the geostrophic boundary layer scaling at 10−3 < Ro < 10−1,
but there is more complex behaviour at Ro< 10−3.

6.2. Nusselt number
In the case of imposed heat flux the (inverse) Nusselt number (2.2) serves as the
dimensionless measure of temperature differences in the flow. The Nusselt number is
measured as the time-averaged temperature difference 1T between the heated (where
Th was from the single functioning thermistor) and cooled (where Tc was the mean
of two thermistors) regions of the plate. The Nusselt number, shown normalised
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FIGURE 8. (Colour online) Boundary layer thickness on the mid-section of the domain
(x/L = 0.5) at (a) y/W = 0.027, (b) y/W = 0.5 and (c) y/W = 0.973. Boundary layer
thickness is normalised by the non-rotating scaling (2.10) fitted to the non-rotating results
(the points after the axis break), which give c2 = 1.7 for all cases. The solid line is the
geostrophic boundary layer scaling (2.18) with prefactors (b) c6 = 1.26 and (c) c6 = 1.09.
The averaged thickness across the width at x/L= 0.5 is shown in figure 11(c).

by non-rotating values for each Rayleigh number in figure 9, is smaller for smaller
heat flux or more rapid rotation, and hence for smaller Rossby number. However,
the dependence is weaker than predicted by the geostrophic boundary layer scaling
(2.18). Across the full range of conditions achieved, the dimensionless temperature
difference required to drive the imposed heat flux increased by only 20 %. A similar
trend was found by Park & Whitehead (1999), over a small range of Coriolis
parameter, and it was argued that the simple geostrophic boundary layer scaling
requires a correction to account for the volume and heat transport in the Ekman
layer (which we extend to the present Rossby number expressions in appendix B).
The Ekman transport correction is negligible at very small Ro and becomes large
when the Ekman layer approaches the thickness of the thermal boundary layer (at
Q ≈ 1 or Ro ≈ 10−1) and there is no longer a significant geostrophic part of the
boundary layer. Thus in figure 9 the Ekman corrected geostrophic boundary layer
scaling (B 1) is shown up to Ro≈ 5× 10−2 beyond which its formulation is invalid.
The correction provides an estimate of the expected flow in transitional conditions
(the weak rotation regime of Hignett et al. (1981)) between the non-rotating regime
and the strong rotation (geostrophic) regime. The present results place the transitional
regime at 10−2 < Ro < 10−1, although the magnitude of the Ekman correction to
the scaling remains significant (compared with the data uncertainties) for Ro< 10−3.
A correction for thickening of the thermal boundary layer toward the end of the
box (figure 7) resulting from the curvature of isopotential surfaces decreases the
predicted Nusselt number (as Nu ∼ δ−1 averaged over the area of the cooling
boundary). The results show that the dynamics in the laboratory basin follows the
geostrophic boundary layer scaling over only a small range of Rossby numbers, within
10−3 < Ro< 10−2.

The Nusselt number results become largely independent of Rossby number at
Ro < 10−3, meaning that the temperature difference required to drive the imposed
heat flux was approximately constant at larger rotation rates. For the largest heat
flux the interior temperature was even observed to be smaller at the largest rotation
rate (hence Nu/Nu0 is larger) compared with the second largest f , as is also seen
from the profiles in figure 6. This strong deviation of the Nusselt number from the
geostrophic boundary layer scaling is in the opposite direction from Ekman transport
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FIGURE 9. (Colour online) Nusselt number as a function of Rossby number, where the
Nusselt number is based on 1T and normalised by the non-rotating scaling (2.10) fitted
to the three non-rotating results (the points after the axis break), which gives c3 = 0.47.
Both the broken curve and the dotted curve are the geostrophic boundary layer scaling
(2.18) with different prefactors; the unbroken black curve is the geostrophic boundary
layer scaling corrected for Ekman transport ((B 1); Park & Whitehead 1999); the coloured
solid curves for three different RaF are the stress-free geostrophic boundary layer scaling
corrected for effects of curvature of isopotential surfaces (A 4). The prefactor c7 = 1.6 is
used for all rotating scaling, excepting the dotted curve geostrophic boundary layer scaling
(2.18) which has c7 = 1.45. Error bars are dominated by the heat flux uncertainty, which
is shown as the fraction (at most 4 %) of heat input lost from the box to the room and
is estimated from calibrations of the heat loss (Stewart et al. 2011). Since the error is
always a heat loss, the bars only extend downward. The vertical and horizontal axes are
both logarithmic.

or isopotential curvature effects and inhibits the net transport of heat. These data are,
on the other hand, consistent with the behaviour predicted for the inertial chimney
regime (2.24), (2.25), specifically the absence of a dependence of Nusselt number on
rotation rate. An estimate of the prefactor in (2.24) from the data is c9 ≈ 2 × 10−2.
The deviation from the geostrophic boundary layer scaling at Ro≈ 10−3 is consistent
with the sudden change in behaviour of the boundary layer thickness (figure 8), which
decreased rapidly with further increases in Ro across at least the ‘western’ half of
the box width at the mid-section, leaving only the ‘eastern’ portion of the boundary
layer continuing to increase in the manner predicted by the geostrophic boundary
layer scaling.

6.3. Thermal wind and boundary layer transport

For the rotating cases with Ro< 10−1 a geostrophic balance is assumed to dominate
much of the flow field, especially in regions with a strong vertical buoyancy gradient
that inhibits vertical motion and sustains quasi-horizontal motion. Geostrophy may
break down where convection drives strong vertical motion, in strong vortices having
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large relative vorticity, and at the small scales of turbulence, for which a local
Rossby number is large. Thus the larger scales of the flow in the thermal boundary
layer through the mid-section of the box (x/L = 0.5) are expected to be closely
approximated by geostrophic balance and we use the thermal wind equation to find
the geostrophic velocities and the net boundary layer transport through this section.
This transport serves as a measure of net overturning transport given that all of the
boundary heat input to the box is on one side of this section, and all of the heat
withdrawal is on the other side.

There were five thermistors at x/L= 0.5 spanning the cross-stream y-direction. The
thermal wind equation (2.12) between two adjacent temperature profiles a distance 1y
apart gives

∂u
∂z
=−

αg
f
1T
1y

(6.1)

and profiles of the velocity component u in the x-direction were calculated from

u(z)− u(z0)= (−αg/f )
∫ z

z0

(1T/1y) dz, (6.2)

where z0 is a reference level. A suitable reference level is one for which we have the
best approximation of the velocity u(z0). The no-slip condition at the base was not
useful because temperature profiles stopped at a distance 0.01H (2 mm) from the base,
which was greater than the Ekman layer thickness (δE<0.01H for Ro<10−1). Another
option could be to assume a velocity reversal at the top edge of the thermal boundary
layer, which may apply on average, but a reversal is not required at each location in
the presence of horizontal recirculation and the resulting thermal wind velocities were
not consistent with velocity fields obtained from particle tracking velocimetry (see
§ 7.1). Hence the PTV measurements of horizontal velocities were used to reference
the thermal wind profiles, choosing the PTV velocity field closest to the base (in
the plane z/H = 0.15; see § 7.1), and to obtain the best estimate of the boundary
layer transport. The calculated geostrophic velocities at x/L= 0.5, shown in figure 10
for the largest Rayleigh number and three rotation rates, thus include a reference
velocity u(z0 = 0.15H). The time-averaged temperature profiles were used. The three-
dimensional results are complex. For example, the time-averaged geostrophic velocities
close to the base near the ‘eastern’ side wall (y/W = 0.903) change from negative
(toward to heated end) for weak rotation (figure 10a), to positive for strong rotation
(figure 10b), and then back to negative for extreme rotation (figure 10a). The velocities
near the ‘eastern’ and ‘western’ walls tend to be of opposite sign through most of the
depth of the box, but on average across the transect the boundary layer velocities are
negative and the interior velocities are positive. There is generally no indication of a
decrease in velocity towards zero at the base, consistent with the Ekman layer lying
entirely within the region for which there are no data.

The geostrophic volume transport through each segment, Ψi, was found by
integrating the thermal wind velocity over the (local) boundary layer depth and
multiplying by the separation distance 1yi between each thermistor pair,

Ψi =1yi

∫ δi

0
ui(z) dz, (6.3)

where i= 1, n is the segment number and δi is the average boundary layer thickness
in each segment. The net boundary layer transport through x/L = 0.5 is the sum of
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FIGURE 10. Vertical profiles of horizontal geostrophic velocity u through the mid-section
of the domain (x/L= 0.5) assuming thermal wind balance for RaF ≈ 6× 1014 and three
different rotation rates: (a) f = 0.04 s−1, Ro = 1.7 × 10−1, (b) f = 0.4 s−1, Ro = 5.6 ×
10−3 and (c) f = 1.6 s−1, Ro= 7.1× 10−4. Locations in the key are half-way between the
thermistor profiles. In (c) only four thermistors worked, giving only three velocity profiles.
Positive u indicates movement from the heated end to the cooled end. Uncertainty bars are
propagated from measurement errors σ1T = 0.02 ◦C, σ1y= 0.005 m and σz= 0.001 m. It is
uncertain whether thermal wind approximates the horizontal velocity field in the interior
above the cooled boundary, as vertical and horizontal velocities may be comparable there;
nonetheless the computed profiles are shown through the full depth.

the segment transports Ψ =
∑

i=1,n Ψi. The thermistors closest to the side walls were
at y= 0.0027W and y= (1–0.0027)W (ie. 0.8 mm from the walls) and the transport in
this region was not included. However, this neglects only a very small fraction of the
total width and much of this is expected to be within a viscous side wall boundary
flow with zero velocity at the walls.

The net transport can be written as Ψ =UavδavW, where the average boundary layer
thickness δav across the box width is given by

δav =

∑
i=1,n

(1yiδi)∑
i=1,n

1yi

. (6.4)

The transport in this problem is expressed in terms of the volume flux in preference
over a volume flux per unit width of the box (as commonly used for the non-rotating
horizontal convection problem) in view of both the three-dimensionality of the
circulation and a possible dependence on the aspect ratio W/L (which is not
investigated in the experiments). The average velocity Uav across the section is
Uav =Ψ/δavW, after taking W ≈

∑
i=1,n 1yi.

The calculated thermal wind transport and average velocities in the boundary layer,
and the average boundary layer thickness at the mid-section of the domain are shown
in figure 11, where the uncertainties include propagation of the uncertainties from the
thermal wind profiles (coloured error bounds on figure 10) and allowances for the
missing regions at the base and at the side walls. The transports include a correction
using a simple linear interpolation of the velocity profiles to the base from its value at
z/H = 0.01 to zero at the boundary. The uncertainty estimate includes the difference
in transport between this assumption and an alternative simple linear extrapolation
of the velocity to a maximum at the edge of the Ekman layer (at δE = LE1/2) and
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Ro Ro
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FIGURE 11. (Colour online) (a) The net volume transport (6.3) and (b) average
geostrophic velocity in the x-direction calculated from the thermal wind equation for the
mid-section of the box for RaF ≈ 6× 1014, and (c) average boundary layer thickness (6.4)
across the box at the mid-section (x/L=0.5) for three Rayleigh numbers. The non-rotating
transport used to normalise Ψ in (a) is given by (2.11) with numerical coefficient set
to one given that the actual coefficient has not been evaluated. The velocity in (b) is
normalised by the non-rotating scaling (2.10), with c1 = 0.29 taken from past results
(Mullarney et al. 2004), as the thermal wind balance cannot be used for the non-rotating
case. The boundary layer thickness in (c) is normalised by the non-rotating scaling (2.10)
fitted to the three non-rotating experiments (the data points after the axis break), which
give c2=1.7. The solid lines are the geostrophic boundary layer scaling ((2.19) and (2.18))
with (a) c8 = 0.44, (b) c5 = 0.80 and (c) c6 = 1.09.

a linear decrease through the Ekman layer to zero velocity at the base. In most
cases these extrapolations add to the net transport and therefore the uncertainty is
asymmetric, the upper error bars in figure 11(a,b) being larger than the lower bars.
The result at the smallest Rossby number has a larger uncertainty because this case
had the thinnest Ekman layer and the temperature profiles do not extend as close
to the expected height of the maximum velocity. All of the results are reasonably
described by the geostrophic boundary layer scaling in the range 10−3 < Ro < 10−1.
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As foreseen from figure 11, the average boundary layer thickness at this mid-section
deviates strongly from the scaling at Ro < 10−3. However, the data for geostrophic
transport and velocity were obtained only for a sequence of runs with the largest
heat flux and are not sufficient to determine the behaviour of the average boundary
layer velocity and transport at very small Ro.

7. Interior velocity fields and overturning transport
7.1. Interior horizontal velocities

The PTV velocity fields obtained at 1 s intervals during the thermally equilibrated
state indicated large-amplitude, low frequency fluctuations consistent with those
inferred qualitatively from the dye tracer observations. Time-averaged velocity fields
were obtained by averaging the instantaneous fields over periods of 20, 60 and
180 min after tracer particles were introduced and the results were approximately
independent of the averaging period. As an additional test of whether the length
of the averaging period was sufficient, one experiment (with RaF = 6.5 × 1014 and
Ro= 5.6× 10−3) was repeated with a new fill of the tank and the two time-averaged
velocity fields (from 3 h periods) taken at mid-depth were compared. To quantify the
standard deviation between the two time-averaged velocity fields at mid-depth, we
calculate the spatial average of the difference between the two velocity fields u1(x, y)
and u2(x, y) as a fraction of the maximum speed in the u2 field,

σm =

∑
i,j

|u1i,j − u2i,j|

max|u2i,j|
, (7.1)

where i, j are the PTV windows in the field. The data give σm = 0.1, meaning that
the two fields match to within 10 %. Thus we confidently use averages over 3 h (and
10800 frames) as faithful representations of the time-averaged horizontal flow.

For ‘weak rotation’ (Ro= 1.7× 10−1) a weak and basin-scale cyclonic gyre (having
circulation in the same sense of the anticlockwise background rotation) occupied much
of the domain, as shown in figure 12(a) (where the u component at mid-depth is
plotted along with contours of the two-dimensional horizontal streamfunction derived
from the horizontal velocity field). At mid-depth the mean velocities on the ‘western’
side of the basin (y/W < 0.5) in this gyre were largely in the opposite direction
to those in the underlying thermal boundary layer (where they are largely negative,
figure 10a), whereas on the ‘eastern’ side of the gyre the velocities were in the same
direction as the boundary layer. However, when averaged across the box width at the
mid-section of the box, the net flow was towards the heated end (in the same direction
as the boundary layer transport). This became a more uniform motion toward the end
wall in the region x/L < 0.2. A nearly uniform velocity u tended to be maintained
up to very close to the end wall, consistent with a significant vertical convection in a
narrow region against the end wall. There was a second but much smaller region of
cyclonic circulation above the ‘western’ corner of the heated region. The magnitude
of the velocities at this Rossby number was everywhere less than 0.1fL, and not
much smaller than the calculated geostrophic boundary layer speeds (figure 10a).
These observations are largely consistent with the (substantially less accurate) thermal
wind calculations for the interior flow in figure 10(a). They are also similar to
the circulation at mid-depth in the non-rotating experiments and in corresponding
direct numerical simulations of the non-rotating case (Gayen et al. 2014). At this
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FIGURE 12. (Colour online) Velocity component u in the x-direction measured by PTV at
mid-depth (z/H= 0.5) and contours of calculated streamfunction for RaF = 6.2× 1014 and
Ro= 1.7× 10−1 ( f = 0.04 s−1): (a) time averaged (u) over 3 h and (b) an instantaneous
field. The velocities are normalised by fL (scale shown by colour bar); positive velocities
(red) indicate flow to the right toward the cooled region. The streamfunction contours have
equal spacing 1ψ = 4 × 10−5 m3 s−1 per unit depth: white contours indicate cyclonic
(anticlockwise) circulation and grey is the zero contour.

moderately large value of the Rossby number, the internal radius of deformation
characterising the boundary layer flow, λ ≈ (gα1Tδ)1/2/f , or the inertial radius
λ=U/f , is of the same order as the domain width (λ/W =RoL/W ≈ 0.7). Hence this
natural length scale is not available to determine the size of geostrophically balanced
flow structures.

In contrast to the flow at mid-depth, the time average near the top of the domain
(z/H = 0.85) shows a net flow through the mid-section directed towards the cooled
end. This is similar to the return flow that closes the overturning circulation through
the upper half of the depth in the non-rotating case. Adapting the measure defined
in (7.1) to compare the time-averaged velocity fields at different depths we set u1 =

u(z/H = 0.85) and u2 = u(z/H = 0.5) and replace σm by σz. We find σz = 0.7 for
Ro = 1.7 × 10−1. Hence the velocities in the upper and mid-depth planes show that
the flow varied substantially with height, although less so than that in the non-rotating
case (in which we find σz = 1.5). The variability in the velocity field under these
conditions is a significant fraction of the time average, but the general characteristics
of the circulation described above reflect the instantaneous flow fields at nearly all
times, as in the instantaneous field shown in figure 12(b). In particular there was no
evidence of vortical plumes extending through the height of the box.

At a small value of the Rossby number (Ro= 5.6× 10−3), for which the boundary
layer data in § 6 place the flow in the geostrophic boundary layer regime, the interior
circulation was more substantially influenced by rotation: there were five basin-wide
gyres along the length of the domain (figure 13a). The time-averaged flow field,
shown here for the PTV plane at mid-depth, in this ‘strong rotation’ case was much
the same at all three PTV levels (σz = 0.13). The mean velocity fields were also
mostly consistent with the time-averaged velocities calculated from thermal wind
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FIGURE 13. (Colour online) Velocity component u from PTV at mid-depth and horizontal
streamfunction contours for RaF = 6.5× 1014 and Ro= 5.6× 10−3 ( f = 0.4 s−1): (a) time-
averaged over 3 h and (b–d) instantaneous fields (time interval from (b) to (c) is 3.7 min;
(c) to (d) is 16.1 min). Velocities are normalised by fL; note that velocity colour scale
is an order of magnitude smaller than in figure 12. Streamfunction contour spacing is
1ψ = 4 × 10−5 m3 s−1 per unit depth: white contours indicate cyclonic (anticlockwise)
circulation, grey is the zero contour and black is anticyclonic circulation.

balance in the interior (figure 10b) (although there were several discrepancies that
may relate to uncertainties in the thermal wind calculation with very small horizontal
temperature differences). Above the cooled region of the base there was a very weak
anticyclonic gyre (indicated here only by the grey Ψ = 0 contour) that was largely
overshadowed by two stronger cyclonic gyres. Above the heated region of the base
there was a weak cyclonic region at the end of the box and a strong anticyclonic
gyre, the latter having circulation comparable to the adjacent cyclonic gyre above the
cooled base. Thus the mean horizontal circulation was concentrated in the central
half of the basin, nearest the imposed gradient of thermal boundary conditions.

Instantaneous interior velocity fields at this small Rossby number (figure 13b–d)
show that the flow above the heated base experienced larger fluctuations compared to
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the ‘weak rotation’ case of figure 12. The strong anticyclonic gyre varied in shape and
maximum transport, but was always present. The weak cyclonic gyre near the heated
end of the basin was more variable, shifting its location and often splitting into two
(cyclonic and anticyclonic) parts. Vertical convection (as seen with tracer advection
in figure 4 and with the advection of fluorescein dye tracer in other runs with the
PTV sheet illumination) can be linked to many of the smaller structures, which were
also relatively short lived. In this experiment the Rossby radius of deformation was
much smaller than the domain width (λ/W ≈ 0.02) and could influence the size of
flow structures, whether they were eddies formed by baroclinic instability or vortical
plumes generated by vertical convection events. Above the cooled base the flow was
less variable, although there was some fluctuations of the gyre structures.

At very strong rotation (Ro=7.1×10−4) the time-averaged velocity fields from PTV
(shown for mid-depth in figure 14a) show only two dominant gyres. The flow was
again approximately independent of depth (σz = 0.07) and mostly consistent with the
interior thermal wind results of figure 10(c). Circulation above the cooled half of the
base was again predominantly cyclonic, but in this case formed a single gyre having
larger lateral extent and smaller transport. The largest time-averaged interior velocities
were associated with a large, strong anticyclonic gyre centred at x/L≈ 0.4 above the
heated base but extending across the mid-section of the box. This anticyclonic gyre
is therefore expected to provide an important contribution to the measured change
in Nusselt number trend, as this mean flow will tend to transport heat more directly
than the time-averaged flow pattern in figure 13. The mean flow was relatively weak
near the end of the box above the heated base, consistent with the hypothesis that
chimney convection above a large area of the heated base shifts the site of vertical
heat transport away from an end wall plume and into an ‘open ocean’ chimney, despite
the uniform heat flux boundary condition.

Instantaneous PTV velocity fields illustrated in figure 14(b–d) show that the strong
anticyclonic gyre at such rapid rotation was present at all times, although it fluctuated
very substantially in position, size and maximum transport (the transport varying in
time by almost 50 %). Associated with these fluctuations were large changes in a
transient, even more variable, cyclonic gyre close to the end wall. The fluctuations
were of relatively high frequency, with time scales of a few minutes or 40–60 inertial
periods. Smaller structures in the velocity field, such as the two or three small cyclonic
eddies and two small anticyclonic eddies in figure 14(b), are consistent with a snap
shot of vortical plumes penetrating through the depth of the box and the very small
deformation radius (λ/W ∼ 2× 10−3). The greater variability and smaller eddy scales
at smaller values of the Rossby number are expected to contribute to lateral heat
transfer in the chimney regime.

7.2. Overturning transport from PTV
An overturning transport was defined in § 6.3 as the net volume transport through
the mid-section x/L= 0.5 in the boundary layer and was estimated from temperature
profiles assuming thermal wind balance. An independent estimate of the overturning
is obtained from the interior velocity measurements, specifically from the horizontal
divergence of velocity on any of the three PTV measurement planes. From the
continuity equation (2.4) the vertical velocity w and horizontal divergence satisfy

∂w
∂z
=−∇h · (u, v) (7.2)
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FIGURE 14. (Colour online) Velocity component u from PTV at mid-depth and horizontal
streamfunction contours for RaF = 6.8 × 1014 and Ro = 7.1 × 10−4 ( f = 1.6 s−1):
(a) time-averaged velocity over 3 h and (b–d) instantaneous fields (time interval from (b)
to (c) is 5.2 min; (c) to (d) is 9.3 min). Velocities are normalised by fL; note the
velocity colour scale is 1/4 of that used in figure 13; streamfunction contour spacing is
1ψ = 4× 10−5 m3 s−1 per unit depth.

and invoking the Taylor–Proudman theorem in the interior for strong rotation, giving
(u, v) independent of depth, equation (7.2) is integrated to find the velocity

w(z)−w(z0)=−(z− z0)∇h · (u, v), (7.3)

where z0 is a reference height. At the edge of the Ekman layer on the upper boundary,
zE =H − δE =H −

√
2ν/f and w(zE) is the Ekman pumping velocity

w(zE)=

(
ν

2f

)1/2

∇h × (u, v). (7.4)
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FIGURE 15. (Colour online) Overturning volume transport calculated from the horizontal
divergence of the horizontal velocity fields from PTV at three vertical levels, normalised
by the non-rotating scaling (2.11) with prefactor of one. The line shows the geostrophic
boundary layer scaling (2.19) with prefactor c8 = 0.44 and is the same line as in
figure 11(a).

Hence we take z0 = zE at the upper boundary (which avoids the stratified bottom
boundary layer) and (7.3) becomes

w(z)= (H − δE − z)∇h · (u, v)+ 1
2δE∇h × (u, v). (7.5)

The vertical velocity was computed using (7.5) and the time-averaged horizontal
velocity field on each of the three PTV measurement planes (z/H=0.15, 0.5 and 0.85)
for each experiment at the largest heat flux (RaF ≈ 6 × 1014). The positive values
of w were integrated over the area of the plane to give a total upward transport
Ψpos =

∫ W
0

∫ L
0 wpos(z) dx dy and separately the negative values of w were integrated to

give a total downward transport Ψneg=
∫ W

0

∫ L
0 wneg(z) dx dy. On figure 15 are plotted the

average of the two Ψvert, and any difference between them is shown as an estimate
of the uncertainty. In order to allow comparison with the boundary layer transport
from thermal wind calculations (figure 11a), Ψvert is again normalised by the scaling
for the boundary layer transport in the non-rotating case (2.11). The values obtained
from PTV on the upper plane are within 10 % of the boundary layer estimates, while
those at mid-depth are approximately twice as large, consistent with a significant
fraction of the vertical transport passing laterally from one end to the other at levels
below z/H= 0.85, or an increased amount of local vertical motion both upwards and
downwards. Much larger vertical transports are estimated from PTV on the lower
plane and this is attributed to some of the boundary layer being included in that
plane of illumination, which can cause the Taylor–Proudman approximation assumed
in the method to break down. The depth dependence of horizontal velocities in the
interior as indicated by the thermal wind calculations in figure 10, suggests that
the approximation may already be inaccurate in the interior. However, the vertical
overturning results are again reasonably described by the geostrophic boundary layer
scaling (2.19) at all vertical levels. At mid-depth the results give a prefactor for (2.19)
of c8 ≈ 0.75.
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A further independent estimate of the overturning transport, which would measure
the same quantity as the net boundary layer transport, could in principle be obtained
by integrating the u component of velocity from PTV over the area of the vertical
mid-section x/L= 0.5. However, this required an extrapolation of the time-averaged u
fields measured at z/H = 0.85 and z/H = 0.5, through the depth of the fluid outside
the boundary layer, given a contamination of the velocities at z/H= 0.15 by boundary
layer flow. The uncertainties in the method proved too large for it to be of use.

8. Temperature fluctuations

Three additional experiments were carried out specifically to measure temperature
fluctuations with high temporal resolution (we used 400 readings per second to give
20 samples per second with each sample being an average over 20 readings) at fixed
positions in the boundary layer and mid-depth interior. Figure 16 shows dimensionless
frequency spectra of the temperature for the largest heat flux and for three rotation
rates. Results for smaller Rayleigh numbers were less useful for frequency spectral
analysis due to a smaller dynamic range of the temperature fluctuations, which meant
that fluctuation amplitude at the smallest RaF was only one order of magnitude
larger than that of the instrumental noise in the thermistor temperature measurements.
In the non-rotating case the scalar frequency spectra are similar in shape to the
spatial wavenumber spectra (taken in the y direction) reported from direct numerical
simulations at a comparable Rayleigh number and an imposed temperature difference
(Gayen et al. 2014). In particular, at frequencies near 10(B/L2)1/3 the spectrum
from the boundary layer in the non-rotating case (black line in figure 16a) has
approximately −5/3 slope, as previously found in direct numerical simulations for
the same problem but with imposed temperature boundary conditions (Gayen et al.
2014; Vreugdenhil et al. 2016) and consistent with an inertial turbulent energy
cascade from large to small length scales. Whereas the interior fluctuations in that
case (black line in figure 16b) show much smaller power throughout the frequency
range, consistent with observations indicating that the small-scale motions in the
interior at this Rayleigh number are relatively weak.

Under strong rotation (Ro= 5.6× 10−3, in the geostrophic boundary layer regime;
blue lines in figure 16) the frequency spectrum in the boundary layer on the heated
region of the base shows greater power at low frequencies ω < (B/L2)1/3 (which
in this experiment corresponds to ω < 0.03f ), implying either an increased input of
kinetic energy directly from available potential energy to motion at larger scales or
an upscale transfer of kinetic energy from small to large length scales. There is also
a decrease of power in the range 1<ω(L2/B)1/3 < 30 (0.03f <ω< f ). The spectrum
at ω < 30(B/L2)1/3 (or ω < f ) has slope close to −5/3. From figure 16(a) the power
in the boundary layer fluctuations at ω > 30(B/L2)1/3 (which is also ω > f ), and
hence in small length scales, is not affected by rotation. In contrast, the spectrum
of interior fluctuations above the heated base (figure 16b) is greatly influenced by
rotation, the power at frequencies less than 30(B/L2)1/3 increasing by three orders
of magnitude at this Rossby number. Thus the geostrophic boundary layer regime
involves a turbulent boundary layer in which only scales of motion much larger
than the boundary layer thickness are controlled by rotation, along with an interior
flow in which essentially all scales of variability are controlled by rotation. The
temperature variability in the interior can be attributed largely to unsteadiness of the
gyre circulations and to intermittent and migratory vortical plumes, which lead to
much greater temperature variability in the interior in the rotating case, although the
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FIGURE 16. (Colour online) Dimensionless frequency spectra of temperature for RaF ≈

6 × 1014 in (a) the thermal boundary layer above the heated base (at x/L = 0.012,
y/W = 0.5, z/H = 0.025) and (b) the interior at mid-depth above the heated base (at
x/L = 0.24, y/W = 0.9, z/H = 0.5). Spectra are shown for f = 0 (black), f = 0.4 s−1

(Ro = 5.6 × 10−3, blue) and f = 1.6 s−1 (Ro = 7.1 × 10−4, cyan). Vertical broken lines
show the rotational frequency f /2 for the two rotating cases (colour-coded to the data).
Frequencies are normalised by (B/L2)1/3 for buoyancy-driven advection and the power
spectrum is normalised by 1T2(L2/B)1/3. The black lines show a −5/3 power law fitted to
the boundary layer (solid line) and interior (broken line) spectra for the case with largest
rotation rate, and the two lines are shown in (b) to assist comparison of the boundary
layer and interior data.

power remains approximately 30–50 times smaller than in the boundary layer. The
−5/3 spectrum at low frequencies suggests upscale transfer of kinetic energy.

For the strongest rotation rate used in the experiments (Ro = 7.1 × 10−4, in the
chimney regime; cyan lines in figure 16) there was only a small additional increase
in scalar fluctuation power in the boundary layer (somewhat uniformly by a factor
of two at ω < 30(B/L2)1/3, or ω < 0.1f ) relative to the rotating case discussed above.
The increase is likely due to the greater number of unsteady vortical plumes in the
chimney regime, and to stronger coupling of the boundary layer and interior in the
convective vortex flow. The boundary layer spectrum is again well described by the
−5/3 power law over two orders of magnitude in frequency (in this case at ω< 0.1f ).
In the interior above the heated base (figure 16b) the spectrum for very strong rotation
shows no significant difference from the geostrophic boundary layer regime excepting
a small decrease of power at the largest frequencies. The data for the different rotation
rates show that the temperature fluctuation statistics scale with the buoyancy frequency
rather than with the inertial frequency.

9. Discussion
The regime diagram (figure 17) is created by matching the Nusselt number scalings

across each of the transitions between the regimes outlined in § 2, except for the
transition into the conduction regime, which is delineated by the disappearance of
the thermal boundary layer, δ =H. The numerical prefactors for the transitions from
non-rotating to geostrophic boundary layer and from geostrophic boundary layer to
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FIGURE 17. (Colour online) Regime diagram based on the scaling solutions in § 2 plotted
for Pr= 4.4, A= 0.16 and Ay= 0.24. The experimental conditions from table 1 are shown
(black circles) with non-rotating runs on the left-hand axis. For the two key transitions
(non-rotating to geostrophic boundary layer to inertial chimney) the loci are plotted with
numerical prefactors evaluated from the experiments. Transitions indicated with a broken
line are less certain as a result of one or more unknown numerical prefactors (which
are therefore set to one), and the dotted line indicates that the condition for transition is
uncertain. Prefactors taken from § 6 are c3 = 0.47, c6 = 0.97, c7 = 1.45 and c9 = 2× 10−2.

inertial chimney regimes were calculated from the fits of the scaling solutions to
the experimental data in those regimes. As no empirical prefactors are available for
the geostrophic chimney and conduction regimes, the prefactors have been set to
one (transitions shown as broken lines). The locus of the transition from viscous
to inertial non-rotating convection is similarly uncertain and is estimated from both
the experiments of Mullarney et al. (2004) and conversion of the transition found
for the case of applied temperature difference (Gayen et al. 2014). We also regard
the condition for transition from the non-rotating to the inertial chimney regime as
uncertain, but hypothesise that it lies near the conditions for the horizontal flow to
become organised into basin-scale gyres that promote formation of vortical plumes
over much of the region of destabilising boundary flux, and therefore near the critical
Rossby number Rocrit (2.20; dotted line).

The experimental data span the non-rotating, geostrophic boundary layer and
inertial chimney regimes. No empirical evidence is available for the geostrophic
chimney regime (predicted to appear only at rotation rates beyond the practical
limits set by curvature of the isopotential surfaces in the experiments), nor for the
conduction regime predicted for very much faster rotation. The predicted regime
boundaries are also dependent on the aspect ratios and Prandtl number, a factor
to be considering when extrapolating the results to ocean parameter values. The
boundary conditions too are likely to influence the regime boundaries, noting that
the appropriate boundary conditions at the sea surface are a combination of imposed
buoyancy flux (the radiative heat input), and temperature-dependent evaporative and
sensible heat fluxes, all having smoother latitude dependence than the piecewise
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uniform conditions used in the experiments, along with a fixed minimum temperature
due to freezing.

Rotating horizontal convection in the chimney regimes involves vortical convection
within the chimney region and we have proposed (following Maxworthy & Narimousa
1994) that the two dominant regimes found in rotating Rayleigh–Bénard convection
(Calkins et al. 2015; Julien et al. 2016; Plumley et al. 2016) have relevance to the
chimney dynamics. At weak rotation or large Rayleigh numbers both Rayleigh–Bénard
and the convection within the chimney region are dominated by local accelerations,
with the heat transport independent of rotation, despite the columnar vortex structure.
Under rapid rotation both Rayleigh–Bénard and the chimney in horizontal convection
are dominated by geostrophic control at the plume scale. However, details such as
the roles of Ekman pumping and the interaction of the plumes with the stable
density stratification and mean flow warrant further investigation using direct
numerical simulations of horizontal convection, allowing comparison with rotating
Rayleigh–Bénard and the convection under temperature boundary conditions.

Finally, some comparison can be made with previous DNS of a rotating rectangular
basin with an imposed temperature difference, in which heating and cooling
temperatures were each uniform over one half of the base (Vreugdenhil et al. 2016).
The observed flow structure is qualitatively the same, showing basin-scale gyres
and cyclonic vertical plumes in a chimney region associated with the destabilising
boundary heat flux. The chimney convection in both systems becomes a more
prominent feature for larger rotation rates. The DNS results are also consistent with
the geostrophic boundary layer scaling solution at Ro� 1 (or QPr� 1) and give a
consistent condition for the non-rotating to geostrophic transition. However, in that
study the geostrophic boundary layer scaling appears to hold even for very small
values of the Ekman number (E ≈ 6 × 10−8) with no evidence of transition to the
chimney regime at conditions where that regime is predicted by the equivalent scaling
analysis for the case of applied temperature difference. Hence it is not clear whether
the chimney-dominated regime occurs for piecewise uniform applied temperatures,
and the existing DNS results are too sparse to resolve the question.

10. Conclusions

Laboratory experiments with horizontal convection in a rotating rectangular box,
along with theoretical scaling, provide the condition for transition from the effectively
non-rotating convection regime, for imposed buoyancy flux and basin scales large
enough that the thermal boundary layer is turbulent, to a geostrophic boundary
layer regime. This regime is equivalent to that previously predicted for a rotating
annulus and utilised in an early conceptual description of circulation in an ocean
basin. Measurements of the boundary layer thickness, volume transport, temperature
differences and adjustment times in the geostrophic boundary layer regime are
consistent with the scaling solution for convection dominated by geostrophic
constraints on the basin-scale horizontal circulation within the thermal boundary
layer. The regime is re-interpreted here as that in which the convection is controlled
by the relative magnitude of horizontal advective and Coriolis accelerations. Under
strong rotation, where the Ekman boundary layer transport becomes small, there
is a simple dependence of the flow and temperature differences on the convective
Rossby number Ro (over the range 10−1 > Ro> 10−3) and the dynamics is no longer
influenced by viscous stress or determined by the relative thickness of the Ekman
and thermal boundary layers. Geostrophic flow inhibits transport, which becomes
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restricted to boundary currents and eddies, and gives Nusselt number values relative
to the non-rotating case Nu/Nu0 ∼ Ro1/6. While the transport is governed by the
thermal boundary layer dynamics the time-averaged circulation throughout the box
takes the form of a set of large gyres extending throughout the depth and having
horizontal scales comparable to the box width.

When E< 10−6 (corresponding to Ro< 10−3) for the value of Prandtl number and
the basin geometry used here, the experiments show evidence for an inertial chimney
regime, as is predicted for convective circulation controlled by vertical accelerations
in a field of vortical plumes over the region of destabilising boundary heat flux. In
this regime the local plume dynamics is similar to that predicted to hold in oceanic
deep convection chimneys, with no dependence on rotation and boundary stress.
Coupling of the non-rotating chimney dynamics to the basin-scale circulation and the
diffusive boundary layer produced in the region of stabilising boundary heat flux does
not change these aspects of the solution. We speculate that observed gyre structures
in the measured circulation contribute to holding stable boundary layer water adjacent
to the destabilising boundary flux for longer, and further from the end wall of the
box, at larger rotation rates, thereby promoting stronger chimney convection removed
from the end wall and side boundaries. The experiments do not reach conditions,
at even stronger rotation relative to buoyancy forcing, for which a further chimney
regime is predicted to involve convection controlled by geostrophic flow at the plume
scale and heat transport returning to a dependence on rotation rate.
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Appendix A. Effects of curvature of isopotential surfaces
Surfaces of constant potential owing to the centrifugal acceleration are paraboloidal

surfaces centred on the axis of rotation. The surfaces are described by η−η0= f 2r2/8g,
where η0 is the height of a potential surface at the axis and r is the radius about
the axis. The height differences across the box width W are small compared to those
along the length of the box and the maximum difference is characterised by η(r =
L/2)− η(0)= f 2L2/32g.

Through buoyancy-driven flow the top of the thermal boundary layer tends to relax
toward an isopotential surface (a planar and horizontal surface in the non-rotating
case). Geostrophic balance maintains lateral gradients in boundary layer thickness.
However, if it is assumed that on averaging across the box width W the top of the
boundary layer remains approximated by an isopotential surface, then the parabolic
shape of the surface represents a physical barrier to flow of the coldest boundary
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layer water, equivalent to the bottom boundary being higher at the mid-section of
the box (x= 0) than at the ends. The coldest water will tend to accumulate near the
cooled end, and the boundary layer will be thicker near the cooled end and thinner
at the mid-section.

The measured boundary layer thickness can be expressed as δ(x) = δn + f 2(x −
L/2)2/8g, where the geostrophic boundary layer scaling (2.15) gives δn/L ∼
(RaFE/Ay)

−1/4. Writing the centrifugal term as a function of the Ekman number
gives for the geostrophic boundary layer regime

δg(x)/L≈ c4(RaFE/Ay)
−1/4
+ (ν2/8gL3)(x/L− 1/2)2E−2. (A 1)

Normalising (A 1) by the non-rotating scaling (2.10) and expressing the result in terms
of the Rossby number,

δg(x)/δ0 ≈ c6A1/4
y Ro−1/6

+ c−1
2 (ν

2/8gL3)(x/L− 1/2)2(Ra5
FPr−7Ro−8)1/6. (A 2)

The adjustment time scale (4.3) is predicted to be dependent on the average boundary
layer thickness over the cooled region. Hence a correction to (4.3) for isopotential
curvature gives

τg/τ0 ≈ c10A1/4
y Ro−1/6

+ c−1
2 (ν

2/96gL3)(Ra5
FPr−7Ro−8)1/6. (A 3)

The heat transport through the boundary layer is fixed by the imposed boundary flux
and the Nusselt number is given by Nu∼ L/δ, where δ is the thermal boundary layer
thickness averaged over the cooled region. For the geostrophic boundary layer regime
the predicted Nusselt number (2.18) with centrifugal correction becomes

Nu/Nu0 ≈ c7/(A1/4
y Ro−1/6

+ c3c−1
7 (ν

2/96gL3)(Ra5
FPr−7Ro−8)1/6). (A 4)

Appendix B. Ekman correction to the geostrophic boundary layer
With rotation the boundary friction at the base is apparent only within an Ekman

layer, which is thinner than the thermal boundary layer for Q > 1. For Q ∼ O(1),
or weak rotation, the Ekman layer contributes to the total mass and heat transport.
Following the assumption of Park & Whitehead (1999) that the Ekman layer transport
is separable from the buoyancy-forced transport of the thermal boundary layer, the
corrected scaling for the Nusselt number (adding the Ekman layer contribution to
(2.15), expressing in terms of Ro and normalising by the non-rotating scaling (2.10))
becomes

Nu/Nu0 ≈ c7A−1/4
y Ro1/6/(1+

√
2c−1

4 (RoPr)1/2A−1/4
y ). (B 1)
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