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SUMMARY

Knowledge of the physical properties of terrain surrounding
a planetary exploration rover can be used to allow a rover
system to fully exploit its mobility capabilities. Terrain
classification methods provide semantic descriptions of the
physical nature of a given terrain region. These descriptions
can be associated with nominal numerical physical
parameters, and/or nominal traversability estimates, to
improve mobility prediction accuracy. Here we study the
performance of multisensor classification methods in the
context of Mars surface exploration. The performance
of two classification algorithms for color, texture, and
range features are presented based on maximum likelihood
estimation and support vector machines. In addition, a
classification method based on vibration features derived
from rover wheel–terrain interaction is briefly described.
Two techniques for merging the results of these “low-level”
classifiers are presented that rely on Bayesian fusion and
meta-classifier fusion. The performance of these algorithms
is studied using images from NASA’s Mars Exploration
Rover mission and through experiments on a four-wheeled
test-bed rover operating in Mars-analog terrain. Also a
novel approach to terrain sensing based on fused tactile and
visual features is presented. It is shown that accurate terrain
classification can be achieved via classifier fusion from
visual and tactile features.

KEYWORDS: Mobile robots; robot vision systems; robot
sensing systems; extraterrestrial exploration.

1. Introduction

Near-term scientific goals for Mars’ surface exploration are
expected to focus on understanding the planet’s climate
history, surface geology, and potential for past or present
life. To accomplish these goals, rovers will be required to
safely access very rough terrain with a significant degree of
autonomy. Terrain areas of interest might include impact
craters, rifted basins, and water-carved features such as
gullies and outflow channels.34 Such regions are in general
highly uneven and sloped, and may be covered with loose
drift material that causes rover wheel slippage and sinkage.

Terrain physical properties can strongly influence rover
mobility, particularly on sloped, natural terrain.18 For
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example, a rover might navigate up a rocky slope with ease,
but slide down a sandy slope of the same grade. Similarly,
a rover might easily traverse a region of packed soil but
become entrenched in loose drift material. The effect of
terrain properties on rover mobility was exemplified in April–
June 2005 and again in May–June 2006 when NASA’s Mars
Exploration Rover (MER) Opportunity became entrenched in
loose drift material and was immobilized for several weeks.
The ability to detect or estimate terrain physical properties
would allow a rover to predict its mobility performance
and thereby autonomously avoid terrain regions that are
potentially untraversable. Knowledge of terrain properties
could also allow a system to adapt its control and planning
strategies to enhance performance, by maximizing wheel
traction or minimizing power consumption.

Terrain classification methods provide semantic descrip-
tions of the physical nature of a given terrain region
(e.g., “sandy terrain,” “rocky terrain,” “drift material”).
Class labels can be associated with nominal numerical
physical parameters, and/or nominal traversability estimates,
to improve mobility prediction accuracy.

This paper presents a study of multisensor terrain
classification for planetary rovers in Mars and Mars-like
environments. Performances of two existing “low-level”
classification algorithms (based on maximum likelihood
estimation and support vector machines) for color, texture,
and range features are evaluated in the context of Mars
exploration. In addition, classification of terrain based on
features derived from rover wheel–terrain interaction is
briefly described. Two techniques for merging the results of
these low-level classifiers are presented that rely on Bayesian
fusion and meta-classifier fusion. The performance of these
algorithms is studied using images from NASA’s MER
mission and through experiments on a four-wheeled test-
bed rover operating in Mars-analog terrain. It is shown that
accurate terrain classification can be achieved via classifier
fusion from visual and tactile features.

1.1. Related work
Numerous researchers have proposed terrain classification
methods based on features derived from remote sensor
data such as color, image texture, and range (i.e., surface
geometry). Most of these algorithms have been developed
in the context of terrestrial unmanned ground vehicles
where visual features exhibit wide diversity. Moreover,
these algorithms typically address the problem of detecting
road surfaces or handling tall vegetation. We would note
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that a planetary surface presents a difficult challenge for
classification since scenes are often near-monochromatic,
terrain surface cover consists mainly of sands of varying
composition and rocks of diverse shapes, and sandy “crusts”
can form on (and therefore obscure) rocks.

Color-based methods for classification and segmentation
of natural terrain have been developed that are accurate
and computationally inexpensive. Manduchi has presented
a method based on mixture of Gaussians modeling
for classifying outdoor scenes using color.22,23 Kelly
et al. has demonstrated the effectiveness of multispectral
imaging, specifically at the near-infrared range, for terrain
classification.19 Dima et al. have employed the LUV
color space and computed distribution statistics of each
channel over ground patches as color features.14 Color-based
classification is attractive for terrestrial applications because
many major terrain types such as soil, vegetation, and rock
possess distinct color signatures. Color-based classification
is also attractive for planetary exploration rover applications
since most past, current, and planned rovers have included
multispectral imagers as part of their sensor suites.32

Texture-based classifiers have also been studied
extensively. Rasmussen used Gabor filters to detect
“denseness” of textured surfaces to distinguish roads from
surrounding vegetation.28 Dima employed a Fast Fourier
Transform representation of terrain surfaces for texture
feature extraction.14 Angelova utilized a histogram-based
method where terrain classes are represented by textons and
terrain patches are identified through occurrence statistics
of these textons.1,2 Castano also used texture features
for autonomous detection of science targets.10 Texture-
based techniques are generally computationally expensive
methods; however, they have been shown to be effective at
segmenting natural scenes (Reed & Hans du Buf 1993).29

Geometric features acquired through stereo cameras or
range finders have also been used extensively for terrain
classification and/or obstacle detection. A standard approach
for detecting obstacles relies on detecting rapid changes in
elevation from the ground plane. Manduchi23 and Bellutta5

have developed algorithms for exploiting elevation points
while Vandapel35 preferred to represent 3D point clouds
using their statistical distributions in space. Avedisyan4 was
interested in far-field navigation and employed toposemantic
techniques and Mandelbaum20 detected obstacles directly
from disparity maps. The result of such obstacle detection is
often a traversability map that defines regions of the terrain as
traversable or untraversable.16 Note that such methods allow
for detection of “geometric” hazards or terrain features such
as rocks; however, they cannot easily detect “non-geometric”
hazards or terrain classes that are not characterized by
geometric variation such as sand dunes on Mars.

Although nearly all terrain classification methods rely on
features derived from remote sensor data, recently methods
have been proposed to classify terrain based on “tactile”
features, i.e., features derived from sensor data measuring
some aspect of physical robot wheel–terrain interaction.
A method for terrain classification based on analysis of
vibrations arising from robot wheel–terrain interaction was
first proposed in ref. [18] by Iagnemma and Dubowsky and
then later developed by Brooks and Iagnemma.9 Similar

work was presented in ref. [30]. Another recent work has
used a neural network-based classifier to analyze a variety of
tactile sensor signals to classify terrain.26 It was shown that
data from various sensor modalities can be fused to produce
reliable class estimates. Of course, tactile data can only be
used to classify terrain that a robot is currently traversing
and cannot predict the class of distant terrain without also
employing visual features.

Classifier fusion methods attempt to combine the results
from low-level classifiers into class assignments that are
(ideally) of higher accuracy than those attainable from any
individual classifier. Recent work in classifier fusion has
been applied to Mars terrain. Specifically, researchers have
developed algorithms that fuse intensity and elevation data
to identify scientifically interesting targets.10,17 Related work
applied a vision-based classification approach using features
such as color, texture, spatial dependence, and elevation
for detection of rocks.33 McGuire developed a method for
real-time detection of geologically interesting points based
on color and texture histograms of terrain images.25 Note
that several methods exist that employ a larger set of visual
features such as texture and infrared imaging in addition
to range data; however, their focus is detecting relatively
structured roads and obstacle detection rather than terrain
classification.13,28

This paper is organized as follows. Section 2 describes
the low-level classifiers and the choice of features for color,
texture, range, and vibration-based classification. Section 3
describes the proposed classifier fusion methods. Section 4
presents experimental results. MER imagery is used to
assess the algorithm’s performance, along with experiments
conducted with TORTOISE (all-Terrain Outdoor Rover Test-
bed for Integrated Sensing Experiments), the Field and Space
Robotics Laboratory’s four-wheeled test-bed rover. Section 5
concludes the paper and describes directions of current work.

2. Description of Low-Level Classifiers and Features

2.1. Classifier architectures
Low-level classifiers are defined as classification methods
that operate solely on a single feature type. As noted in
Section 1, such classifiers have been studied extensively for
terrain classification based on color, texture, range features,
and vibration. Here we study the performance of two distinct
classification methods: a maximum likelihood classifier with
mixture of Gaussians modeling (MoG) and a support vector
machine (SVM).

2.1.1. MoG method. The MoG method models the
distribution of data points in the feature space as a mixture of
Gaussians.7 The likelihood of observed features y given the
terrain class x is computed as a weighted sum of k Gaussian
distributions:

f (y | xi) =
k∑

j=1

αjG(y, μj , �j ) (1)

Parameters of the model are αj , the weighting coefficient,
μj , the mean, and �j , the covariance. These parameters
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are learned through off-line training using the Expectation
Maximization algorithm.6,7 Here, the selection of k was
tuned based on empirical analysis. Similar to ref. [23], good
results were obtained using three to five Gaussian modes,
with a greater number of modes often leading to over-fitting.
The classifier based on this approach will be termed the
MoG classifier. This classifier was applied to the remote
sensing modes described in Sections 2.2, 2.3, and 2.4. The
classifier output is a semantic class label assigned according
to maximum likelihood, along with the conditional likelihood
of the assigned class.

2.1.2. SVM method. A second classification method studied
here was based on an SVM framework.36 This approach
constructs a binary classifier for each pair of classes by
building a function that will be positive for one class and
negative for the other. This function is constructed as a linear
combination of similarity measures between the point to be
classified y and the training points xj :

f (y) =
n∑

j=1

αjK(y, xj ). (2)

The similarity measure K is the kernel function. For
this work linear, polynomial, and Gaussian kernels were
evaluated. Values for the αj are calculated during training
by minimizing a loss function over the training data set.
Complexity of the function f (y) is limited by restricting
the values of αj to lie in the range [0,C], and for the
Gaussian kernel by controlling the width of the Gaussian
using a parameter γ . Cross-validation over a training data set
was used to determine an appropriate choice of kernel and
reasonable values for the regularization parameters Cand γ .
Binary classifiers are combined into multiclass classifiers
using a voting scheme.

The SVM algorithms used in this work were implemented
with the LIBSVM library with additional optimizations for
linear classification.11 The classifier based on this approach
will be termed the SVM classifier. This classifier was applied
to all remote and tactile sensing modes described later. The
classifier output is a discrete class label for each input feature
vector.

2.2. Feature selection
In this work features based on color, texture, range (i.e.,
surface geometry), and vibration arising from robot wheel–
terrain interaction are utilized for classification. These
features are described here.

2.2.1. Color feature selection. Color is an obvious
distinguishing characteristic of many terrain types. Although
perceived color is affected by various physical factors such as
illumination, color-based classification has yielded accurate
results in natural terrain.5,23 It should be noted, however, that
color variation is somewhat limited for the surface of Mars.
Mars’ lack of moisture (and, therefore, vegetation) leads to
a narrow distribution of colors for the distinct terrain types.

In this work red, green, and blue channel intensity values
were selected as the 3D color feature vector for every image
pixel. Construction of this feature vector for MER imagery

was slightly different due to the nature of the rover imaging
system, and is detailed in Section 4.1.

2.2.2. Texture feature selection. Texture is a measure of the
local spatial variation in intensity in an image. For our present
work, the texture length scale of interest is on the order of
tens of centimeters. This scale allows us to observe textural
appearances of surfaces in the range of 4 to 30 meters, which
corresponds to the range of interest for local planetary rover
navigation.16 In this work we employ a wavelet-based fractal
dimension signature method, which yields robust results in
natural texture segmentation, as demonstrated by Espinal
et al.15

Texture feature extraction consists of two parts: computing
the wavelet transform of the image at various resolutions and
calculating the fractal dimension signature of every pixel
in a given neighborhood. The discrete wavelet transform
of an image is the decomposition of the 2D signal at
multiple resolutions. Every sublevel of transformation yields
fractal information for the horizontal, diagonal, and vertical
directions. After the transformation, the texture signature
of every pixel is extracted by averaging the amplitudes of
texture components in a predefined neighborhood window.
Every transformation level utilizes a different neighborhood
window that scales with the level of transformation. Here,
three levels of transformation were applied using the Haar
wavelet kernel and neighborhood windows of 7, 9, and
11 pixels. This feature extraction method yields an HDV
(horizontal, diagonal, and vertical) feature space, and a 3D
feature vector is generated for every pixel.

2.2.3. Range feature selection. Surface geometry inform-
ation can be used to distinguish between terrain classes
that possess inherent geometric dissimilarity. An example
of two such classes is rock and cohesionless sand. Since
cohesionless sand can never attain a slope greater than its
angle of repose (whereas rock, of course, can), features
related to terrain slope could potentially be used to
distinguish “rock” and “sand” classes. Similar logic was
applied for range feature selection in this work. This is
based on the observation that rocky terrain on Mars-like
surfaces project from the ground plane while sandy terrain
predominantly lies parallel to the ground plane. Figure 1
shows a typical Mars scene in the field of view of an MER
rover stereo pair.

In this work, range data was acquired from stereo imaging
techniques. To compute range features in a scene, a 20 cm ×
20 cm grid-based patch representation of the terrain surface
was constructed in the field of view of the stereo pair. This
grid size was selected to be similar to one rover wheel
diameter, as an ad hoc attempt to capture the minimum-
sized terrain patch that could significantly influence a rover’s
mobility. Best-fit planes were found within every patch using
least-squares estimation, and a 2D surface normal vector
was extracted. The 3D range feature vector for a given
patch was then composed of the coefficients of the surface
normal vector, along with the height difference between the
maximum and minimum elevation points within the patch.

The primary assumption of this feature selection method
is that the terrain is dominated by planar features. Another
method for analyzing range data has been described in
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Fig. 1. Visible stereo range of a Martian scene.

ref. [38] where covariance of the data points in a point cloud is
used to estimate 3D structure. In this representation, features
represent the “point-ness,” “curve-ness,” and “surface-ness”
of a 3D point cloud in a support region. When applied to
Mars scenes with a fixed 20 cm × 20 cm support region, it
was observed that the “surface-ness” feature is dominant, and
hence the above planar features assumption appears justified.

2.2.4. Vibration feature selection. Analysis of vibrations
propagating through a rover’s wheel/suspension structure
can be used to distinguish between various types of terrain
the rover is traversing.9 This classification mode is unique
among the low-level classifiers described here in that it relies
on a “tactile” sensor signal that is modulated by physical
rover wheel–terrain interaction. Such a classifier is immune
to illumination variation, making it a potentially attractive
complement to vision-based classification techniques. Of
course, tactile data can only be used to classify terrain
that a robot is currently traversing, and cannot predict the
class of distant terrain unless combined with remote sensing
elements.

The general classification framework employed here is
identical to that in ref. [9]. Vibration signals were processed
as the log power spectral density for every one-second time
step at 557 frequencies in the frequency range 20.5 Hz
to 12 kHz. A linear classifier was trained in this 557-
dimensional space using hand-labeled training data. For this
work, an SVM with a linear kernel was used as the classifier
instead of the Fisher linear discriminant employed in ref. [9].

3. Description of High-Level Classifier Methods

Low-level classifiers can yield poor results when applied
individually in certain problem domains. For example, color
is sensitive to illumination changes and shadowing, and thus
poor color classification performance is possible in scenarios
with wide expected lighting variation, although there are
certain computer vision techniques designed to reduce this
sensitivity.22 Similarly, texture feature characteristics vary

with distance, so poor texture classification performance is
possible in scenarios with image geometry such that a single
image spans a large distance. In this section, two classifier
fusion methods are presented as means for merging results
from multiple low-level classifiers, in an attempt to mitigate
the weaknesses of each individual classifier.

It should be noted that the class spaces of low-
level and high-level classifiers can be different. Since
certain class distinctions may be unobservable by low-level
classifiers, classifier fusion methods can improve classifier
descriptiveness by combining results from multiple sensing
modes. Although this difference makes it more difficult
to directly compare classifier performance, it should be
noted that increase in the number of detectable classes is
a performance boost in itself.

3.1. Bayesian classifier fusion
Bayesian fusion has been presented for classification of
natural scenes with promising results.21,31 Here, Bayesian
fusion was applied to merge the results of the low-level
classifiers presented in Section 2.1. In the work described
here, the low-level MoG classifiers’ outputs yield conditional
class likelihoods. Posterior distributions of conditional class
assignments are computed by Bayes’ rule, using the assump-
tion that prior likelihoods are equal. Assuming that the visual
features are conditionally independent, simple classifier
fusion is applied as in Eq. (3). Here P (xi |yj ) is the posterior
probability of terrain class (xi) given the sensing mode (yj ).

P (xi | y1, . . . , yn) =
j=n∏

j=1

P (xi | yj ) (3)

However, this formulation implicitly requires that all
classifier functions reside in the same class space (i.e., the
set xi is same for all sensing modes). In the absence of this
assumption, the class space of the final fusion is formed
as the Cartesian product of the low-level class spaces,
which yields a high number of nonphysical terrain classes.
Although previous researchers have addressed this problem
with an unsupervised dimensionality reduction algorithm,21

this method did not exploit physical class knowledge that
could be inherited from supervised classifiers. In this work
the fusion class space was manually grouped into a lower-
dimensional space of physically meaningful terrain classes
based on physical class knowledge as shown in Eq. (4). Here
R, S, M represent the terrain classes “rock,” “sand,” and
“mixed,” respectively, and c, t , r represent the visual features
“color,” “texture,” and “range,” respectively. Ro and Sm refer
to the texture-based classes of “rough” and “smooth.”

P (R | c, t, r) = P (R | c) ∗ P (R | r) ∗ P (Sm | t)
P (S | c, t, r) = P (S | c) ∗ P (S | r) ∗ P (Sm | t)

P (M | c, t, r) = [P (R | c) ∗ P (R | r) + P (S | c)

∗P (S | r)] ∗ P (Ro | t) (4)

These relations explicitly encode physical knowledge in the
final class decisions. Rocky terrain was generally observed
to be darker than sandy or mixed terrain, with pronounced
vertical features, and often had a smooth texture. Low-level
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Fig. 2. Classifier flow for meta-classifier fusion.

classifier outputs related to these attributes were thus
mapped to the classifier fusion “rock” class. Sandy terrain
was generally observed to be smooth and low-lying relative
to the ground plane. Mixed terrain exhibited uneven geo-
metric properties and very rough textural properties at the
scale of interest.

3.2. Meta-classifier fusion
A second approach to high-level classifier fusion is meta-
classifier fusion. As illustrated in Fig. 2, meta-classifier
fusion is a classifier with features extracted from the outputs
of low-level classifiers. Specifically, it employs as features
the continuous class likelihood outputs of the low-level
classifiers as an n-dimensional feature vector for every terrain
patch. Hand-labeled training data is used to fit a MoG
classifier in this meta-feature space by the method described
in Section 2.

Meta-classifier fusion is very similar to stacked
generalization (SG) presented by Wolpert (1992) and applied
for road detection by Dima et al.14 In our method, low-
level classifiers described in Section 2 correspond to the
“level-0 generalizer” where meta-classifier corresponds to
“level-1 generalizer” of SG architecture. Similar to SG, meta-
classifier uses the outputs of low-level classifiers as inputs
and computes the terrain class assignment for the data points.
However, in our work, the data points may not have the
same resolution for all low-level classifiers. As described
in Section 2, color- and texture-based classifiers are pixel-
wise while range-based classifier is a patch-wise classifier. A
trivial solution to this data association problem is addressed
by a pixel to patch conversion. This conversion computes the
continuous class likelihood of a cell by averaging the class
likelihood values of every pixel in that particular cell. In short,
the “patch-wise feature extraction” step generates a feature
vector from the converted patch-wise class likelihood outputs
of low-level classifiers and feeds it to the high-level classifier.

This high-level classifier is also a supervised classifier which
needs to be trained with a different set of training data than
the low-level classifiers.

3.3. Data fusion
A straightforward and well-known method to combine
different sensing modes is simply concatenating all the
sensor outputs into a single feature vector. This method
was employed as a baseline to compare the performance
of the Bayesian and meta-classifier fusion techniques and as
a method for combining wheel vibration and vision data. In
the context of color, texture, and geometric data, the feature
vectors from the various sensing modes are combined to form
a single 9D feature vector (composed of RGB, HDV, and 3D
range features). Similar to the classifier flow shown in Fig. 2,
data fusion scheme utilizes a pixel-to-patch conversion, but
the low-level classifier layer is bypassed. Note that the mixed-
resolution problem discussed in Section 3.2 is also relevant
for data fusion and it is overcome by averaging the feature
vectors over all pixels in a given cell. This 9D feature space
is mapped to a probability distribution function using an
MoG model. An SVM classifier was also applied to the
data fusion framework. Note that the class space for data
fusion includes three classes and SVM is implemented as a
multiclass classifier using a voting scheme.

Data fusion was also applied as an approach to combine
vibration and vision data for improved local terrain
classification accuracy. Here, images captured using a camera
pointed at the wheel provided visual data corresponding to
the terrain being sensed by the vibration sensor, as seen in
Fig. 3. The visual data was represented as the mean RGB
value of the pixels in a small region below the wheel. This
3-element vector was appended to the 557-element vibration
vector using the data fusion framework (see Fig. 4) producing
a 560-element combined vision/vibration vector. An SVM
classifier was used to identify the local terrain class.
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Fig. 3. Image of wheel and terrain from belly-mounted camera.

Fig. 4. Classifier flow of data fusion for local terrain classification.

4. Experimental Results

The performance of the low-level classifiers and the classifier
fusion algorithms presented in Sections 2 and 3 was studied
using images from NASA’s MER mission and through
experiments on a four-wheeled test-bed rover operating in
Mars-analog terrain. These results are described below.

4.1. MER imagery
Publicly available images from the MER mission’s Spirit and
Opportunity rovers were used to assess the performance of
the low-level and high-level classifiers. Fifty images from

the rovers’ panoramic camera stereo pairs were selected
from the Mars Analyst’s Notebook database.24 These images
were selected to be representative of the entire image set
collected to date during the MER mission. Ten images
were used for classifier training and identifying meta-
parameters. The remaining 40 images were used to evaluate
algorithm accuracy and computation time. Note that five
more images were used for meta-classifier fusion and data
fusion in addition to the training set to overcome data
scaling problem. For MER imagery, the vibration-based
classification approach was not employed since only image
data was available.

The MER panoramic camera pair has eight filters per
camera, with left camera filters distributed mostly in the
visible spectrum and right camera filters located in the
infrared region (with the exception of filter R1 at 430 nm). For
color feature extraction, a combination of images from the
left camera filters was employed. The 4th filter at 601 nm,
5th filter at 535 nm, and 6th filter at 482 nm intensities
were chosen since they are near to the red, green, and blue
wavelengths, respectively. Note that radiometric calibration
would be necessary to acquire true color RGB images from
the filter intensities (Crotty, 2006). Texture feature extraction
was performed on the intensity image from the 2nd filter
of the left camera at 753 nm. Range data was extracted
by processing stereo pair images using stereo libraries
developed at JPL.3

For Mars surface scenes, three primary terrain types that
are believed to possess distinct traversability characteristics
were defined: rocky terrain, composed of outcrop or large
rocks; sandy terrain, composed of loose drift material and
possibly crusty material; and mixed regions, composed of
small loose rocks partially buried or lying atop a layer of sand.
Examples of these terrains are shown in Fig. 5 (right). High-
level classifiers such as data fusion, Bayesian fusion, and
meta-classifier fusion are expected to distinguish these three
terrain classes; however, low-level classifiers can distinguish
only a subset of these terrain classes (Fig. 5, left, middle)
because observable features of the terrain do not present
unique signatures for each of the sensing modes. For instance,
the color space of mixed terrain class, since it is composed
of small rocks scattered on sand, overlaps with the color
spaces of rock and sand terrain classes, so a color-based

Fig. 5. Observable class distinctions for classifiers: color- and geometry based classes (left), texture-based classes (middle), fusion (final)
classes (right).
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Table I. Low-level classifier performance.

Average 95% Confidence Standard
accuracy (%) interval for average deviation (%)

Color-based
MoG 57.2 [52.4 62.1] 15.6
SVM 68.1 [63.4 72.7] 15.0

Texture-based
MoG 60.9 [56.1 65.7] 15.6
SVM 66.7 [61.4 71.9] 16.8

Geometry-based
MoG 75.5 [69.0 82.1] 21.2
SVM 70.2 [63.0 77.3] 23.0

classifier cannot identify it. Similarly, texture on the rock
surfaces is not observable given the range of observation is 4
to 20 meters. In short, for color- and range-based classifiers,
the classes of interest are “rock” and “sand” classes; for
texture-based, the classes of interest are “sand” and “mixed”
classes.

4.1.1. Low-level classifier results. Quantitative results of
low-level classifier are presented in Table I as average
performances over the test set. The color-based classifiers
produced results close to expectation of random choice
between two classes on average. This may be expected due
to the monochromatic nature of Martian surface. Almost all
images exhibit a uniform brownish-red tone, where rocks
generally appear only slightly darker than sandy plains.
Texture-based classifier performed better than color since

the discrimination between mixed and sandy terrain is
more apparent. However, the performance for texture-based
classification is still not sufficiently robust since the texture
classification accuracy is sensitive to the scaling of the image.
This may be expected because the texture features are a
visual measure of roughness, tuned to sense the roughness
of surfaces in the range of 4 to 20 meters. Poor performance
was observed in classifying terrain outside that range. The
range-based classifier demonstrated the best performance,
with 75% average classification accuracy. Failures in range-
based classification were observed when sand was steeply
sloped to form ridges and dunes.

Figure 6 shows ROC curves for each low-level classifier,
illustrating the accuracy of the MoG and SVM classifiers
across a range of confidence thresholds. The threshold levels
start at 0.6 and goes up to 0.99 for low-level classifiers while
high-level classifiers utilize threshold levels of 0.5 up to 0.99.
These results demonstrate the weaknesses of the low-level
classifiers. Besides being unable to distinguish between the
three terrain classes of interest, low classification accuracy is
inherent due to the challenging nature of the classes. It should
be observed that SVM and MoG classifiers demonstrated
similar behavior for each of the low-level sensing modes as
viewed in the ROC curves.

Sample images showing ground truth images and
classification results are shown in Figs. 7 and 8. Note that
although color- and texture-based classifiers are pixel-wise
in nature, their results are also presented as patch-wise
(i.e., each patch was assigned to a class, based on the total
probability computed from the likelihoods of the pixels in
that patch).

Fig. 6. ROC curves of the low level classifier: MoG (first row), SVM (second row).
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Fig. 7. Sample classification results; First row: Original scene (left), Pixel-wise hand labeled ground truth (middle), Patch-wise ground
truth; Second Row: Color-based (left), texture-based (middle), range-based (right); Third row: Data fusion (left), Bayesian fusion (middle),
Meta-classifier fusion (right). Black: rock, white: sand, light grey: mixed, dark grey: unknown.

4.1.2. High-level classifier results. As described in Section 3,
classifier fusion methods combine the data from multiple
sensing modes to compute a class label. By merging the
results of color- and range-based classifiers, classifier fusion
algorithms aim to compensate the weaknesses of the low-
level classifiers (e.g., to decrease the false positives of
rock vs. sand detection). Moreover, inclusion of the texture
data enables the observation of roughness and allows the
definition of a “mixed” class that represents regions of small
stones distributed in sand.

Figure 9 shows ROC curves for the data fusion method
applied with SVM and MoG as a multiclass classifier. As
expected, data fusion performed poorly. This may be due to
the difficulty of modeling in the high-dimensional feature
space. In each case, it was observed that the classifier tend
to have a bias toward a certain terrain class which yields
poor average performance. These results also demonstrate the
need for high-level classifier fusion for robust classification
performance. Table II shows the comparison between the
data fusion and classifier fusion methods in terms of global
performance results.

Regarding the comparison between low- and high-
level classifiers, note that high-level classifiers distinguish
between three classes, whereas the low-level classifiers each
distinguish between only two. Therefore the performance
in terms of average accuracy is not directly comparable.
However, the color- and texture-based classifiers perform
close to the expectation of random choice, whereas the
performances of the classifier fusion methods are much more
robust.

Comparing high-level classifiers based on the ROC curves
presented in Fig. 10, it was observed that Bayesian and
meta-classifier fusion were much more accurate than data
fusion. Although scaling of data (from pixel to patch)
potentially affects both data fusion and meta-classifier
fusion, classifier fusion demonstrates better results than data
fusion given the same amount of training data. For this
data set, Bayesian fusion demonstrated similar accuracy
to meta-classifier fusion. However, meta-classifier fusion
requires more training data for the second level of classifier,
besides the training set of low-level classifiers. Bayesian
fusion, on the contrary, does not require extra training
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Fig. 8. Sample classification results; First row: Original scene (left), Pixel-wise hand labeled ground truth (middle), Patch-wise ground
truth; Second Row: Color-based (left), texture-based (middle), range-based (right); Third row: Data fusion (left), Bayesian fusion (middle),
Meta-classifier fusion (right). Black: rock, white: sand, light grey: mixed, dark grey: unknown.

for the second level, but the relationship between low-
level classes and high-level classes has to be manually
defined based on the environment setting. In short, there

Fig. 9. Data fusion ROC curves using SVM classifier (left) and MoG classifier (right).

is a trade-off between predefined class space and amount
of training data to identify the selection of either fusion
method.
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Table II. High-level classifier performance.

Average 95% Confidence Standard
accuracy interval for deviation

(%) average (%)

Data Fusion
MoG 38.0 [32.5 43.5] 17.8
SVM 47.0 [41.6 52.3] 17.3

Bayesian Fusion 64.7 [59.9 69.5] 15.5
Meta-classifier 59.6 [55.3 63.7] 13.6

Fusion

4.2. Wingaersheek Beach rover experiments
4.2.1. Experimental setup. Additional experiments were
performed using a four-wheeled mobile robot developed at
MIT, named TORTOISE, shown in Fig. 11. TORTOISE is
an 80-cm-long × 50-cm-wide × 90-cm-tall robot with 20-cm
diameter wheels. The TORTOISE sensor suite includes the

Fig. 10. ROC curves for Bayesian fusion (left) and meta-classifier fusion (right).

Fig. 11. TORTOISE experimental rover (left), local sensing suite (right).

following: a forward-looking mast-mounted Videre Design
“dual DCAM” stereo pair with 640 × 480 resolution; a belly-
mounted color monocular camera with 320 × 240 resolution
to observe local terrain; and a Signal Flex SF-20 contact
microphone mounted on the rover suspension near the front
right wheel assembly to sense vibrations. The stereo pair is
capable of capturing color and grayscale images, which were
used for color and texture feature extraction, respectively.
Range data was extracted from stereo images using Videre
Design’s commercial stereo processing software.37 During
experiments, TORTOISE traveled at an average speed of
6 cm/s. It captured monocular images at 2 Hz and vibration
data at 44.1 kHz. Stereo images were captured every 1.5 s.

Experiments were performed at Wingaersheek Beach
in Gloucester, MA. This is an oceanfront environment
dominated by large (i.e., meter-scale) rock outcrops and
distributions of rover-sized and smaller rocks over sand.
Neighboring areas exhibit sloped sand dunes and sandy flats
mixed with beach grass. Figure 12 shows a typical scene
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Fig. 12. Sample scene from Wingaersheek Beach.

from the experiment site. This scene shows a large rock in the
foreground and scattered, partially buried rocks in the middle
range. Sand appears grayish in color while rock features vary
from gray to light brown and dark brown. This test site was
chosen because of its visual and topographical similarities
to Mars surface scenes. For the following experiments, the
terrain classes of interest were “rock,” “sand,” and “beach
grass.” The “mixed” class was not defined due to lack of
scattered small-sized rocks; dry beach grass was used to
reflect distinct texture signature in an effort to maintain a
consistent number of classes with MER results.

4.2.2. Low-level classifier results. Six days of experiments
were conducted, with a total of approximately 50 traverses

Fig. 13. Low level classifier results for Wingaersheek Beach experiments.

Fig. 14. ROC curves: Data fusion (left), Bayesian fusion (middle), meta-classifier fusion (right).

and a total distance traveled of 500 meters. Every traverse
includes around 250 images and every other tenth image is
selected for test set to minimize overlap. Data of the first
traverse of the day is used for training data. The performance
of the low-level classifiers is shown in Fig. 13 as a series
of ROC curves. It was observed that the performance of
the color-based classifier was improved over that observed
in experiments on MER imagery. This was likely due to
the greater color variation present in an average beach
scene. Relatively poor results were observed from the range-
based classifier. The reason for this decrease in performance
may be related to the poor accuracy and resolution of
stereo-based range data for these experiments relative to
MER imagery data, which used state-of-the-art JPL stereo
processing software operating on high-quality images. This
performance decline illustrates the sensitivity of range-based
classification to data quality and strengthens the motivation
for classifier fusion.

4.2.3. High-level classifier results. High-level classifier
performance is shown in Fig. 14. In keeping with the MER
results, the classifier fusion methods perform significantly
better than the data fusion approach. Data fusion exhibits
a bias toward the “rock” class yielding high false positives
and degrading the detection rate for other classes. In this
experiment setting, high-level classifiers do not increase the
observable terrain classes since the color-based classifier is
able to distinguish all terrain classes present in the setting.
However, the ROC curves show a performance increase
as a result of merging texture- and range-based classifiers
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Fig. 15. Classifier results for local vibration-based classification (left), color-based classification (middle), and data fusion of color and
vibration (right).

with color-based results. In the meta-classifier fusion results,
it is clear that although individual performances of other
low-level classifiers are below color-based results, they
contribute to the training of meta-classifier yielding improved
results.

4.2.4. Data fusion for tactile and visual sensing of local
terrain. Local classification of terrain based on fusion of
vibration and color features was tested using data captured by
the vibration sensor and belly-mounted camera. These data
were collected while the rover traversed sand, beach grass,
and rock. A total of 21 min of vibration data were collected
(1260 one-second segments), with over 2500 associated local
images. Half of the data was used for establishing the meta-
parameters and training each SVM classifier. The other half
was used to test the classifiers.

The results for local terrain classification are shown in
Fig. 15. The left plot shows results for pure vibration-based
classification. It can be seen that all terrains are moderately
well distinguished, with an average accuracy of 65% at full
classification. The center plot shows results for pure color-
based classification. Here “beach grass” is nearly always
detected, with very few false positives. “Rock” and “sand”
are also well distinguished. The average accuracy is 77% at
full classification. Finally, the right plot shows the results
for data fusion of color and vibration. An improvement
over vibration-only and color-only classifiers was exhibited,
with an average accuracy of 84%. This result suggests
that improved classification performance can be derived
from fusion of visual and tactile information. This is likely
due to the insensitivity of tactile features to variations in
illumination.

4.3. Computation times
All algorithms in this work except SVM classification
were implemented in Matlab. On a Pentium 1.8 GHz
desktop computer, pixel-wise MoG classification of a
512 × 512 image took an average of 5.2 s. Patch-wise
MoG classification (for range-based, data fusion, and meta-
classifier fusion) required an average of 2.4 s. Bayesian
fusion took 1.2 s to form classifier decisions. The most
computationally expensive element of the algorithms is
texture feature extraction, which requires approximately
14.8 s of computation time for three levels of Haar

wavelet transforms and for computing the pixel-wise texture
signature of 512 × 512 grayscale image. In total, classifying
a 512 × 512 frame takes approximately 29.0 s/frame.
These times could be significantly reduced in a C-code
implementation.

SVM classification was implemented with C++, using
the LIBSVM library, with additional optimization for linear
kernels.11 Classification of a 512 × 512 color image took an
average of 0.61 s using a linear kernel. Classification using a
Gaussian kernel took an average of 77.5 s for a 512 × 512
color image. After feature extraction, texture classification
times were identical to those for color classification. Patch-
wise classification (for range and data fusion) averaged less
than 0.01 s per patch for the linear SVM, and less than 0.04 s
per patch for the Gaussian SVM. The number of patches in
each image varied from 10 to 400.

5. Conclusion

This paper has compared the performance of various methods
for terrain classification based on the fusion of visual and
tactile features. Two classification algorithms for color,
texture, and range features were presented based on max-
imum likelihood estimation and support vector machines. In
addition, a classification method based on features derived
from rover wheel–terrain interaction was briefly described.
Two techniques for merging the results of these “low-level”
classifiers were presented that rely on Bayesian fusion and
meta-classifier fusion. It was shown that the classifier fusion
methods improved overall classification performance in two
ways. First, classifier fusion yielded a more descriptive
class set than any of the low-level classifiers could attain
individually. Second, the rate of false positives decreased
significantly while the rate of true positives increased.
This shows that in challenging planetary surfaces, stand-
alone visual features are not sufficiently robust enough for
mobile robot sensing; however, classifier fusion techniques
manage to elevate the sensing performance significantly.
Future research will focus on integrating additional tactile
sensing modes such as wheel sinkage and torque with
visual classifier fusion algorithms. This will enable improved
prediction of the physical properties of distant terrain and
lead to generation of safe, feasible traverse routes.
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