
Constraint solving for direct manipulation of features

DANIEL LOURENÇO,1 PEDRO OLIVEIRA,1 ALEX NOORT,2 and RAFAEL BIDARRA2

1Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
2Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands

(Received October 28, 2005; Accepted July 6, 2006!

Abstract

In current commercial feature modeling systems, support for direct manipulation of features is not commonly avail-
able. This is partly due to the strong reliance of such systems on constraints, but also to the lack of speed of current
constraint solvers. In this paper, an approach to the optimization of geometric constraint solving for direct manipulation
of feature dimensions, orientation, and position is described. Details are provided on how this approach was success-
fully implemented in the Spiff feature modeling system.

Keywords: Constraint Solving; Direct Manipulation; Feature Modeling; Model Compilation

1. INTRODUCTION

1.1. Feature modeling

Feature modeling is a design paradigm that comes as an
alternative to the traditional geometry-based design sys-
tems. The founding idea of feature modeling is to focus the
modeling tasks of the designer on a higher level, facilitat-
ing the specification of many different aspects in a product
model, and gaining insight into their interrelations ~Shah &
Mäntylä, 1995!. This is achieved by enabling the designer
to associate functional information to the shape informa-
tion in the product model.

Although one cannot find a consensual definition of the
concept of feature, one that nicely fits to this research defines
a feature as “a representation of shape aspects of a product
that are mappable to a generic shape and are functionally
significant for some product life-cycle phase” ~Bidarra &
Bronsvoort, 2000!. In contrast to conventional computer-
aided design ~CAD! systems, in which the design focus
mainly lies on geometry, in a feature modeling system the
designer builds a model out of features, each of which has a
well-defined semantics. As an example, for manufacturing
planning purposes it would be appropriate to provide the
designer with features that correspond to the manufacturing

processes available to manufacture the product being
designed ~e.g., slot, pocket, and hole features!.

Feature model semantics is mostly represented by a vari-
ety of constraints. Constraints can be used in feature mod-
eling systems to express characteristics of the model ~e.g.,
to specify some feature faces to be coplanar, or restrict the
volume of a product to a certain maximum!. However, above
all, constraints are used as the internal constituents of fea-
tures that express their semantics ~e.g., a hole feature could
have constraints to position and orient it, or constraints that
express the physical limits of the drilling machinery avail-
able!. Because of this central role of constraints, feature
modeling systems have to make an intensive use of con-
straint solving techniques. In particular, geometric con-
straints and geometric constraint solving techniques are very
common.

To ensure that feature model semantics is maintained, the
validity of the feature model has to be checked after each
model modification. Feature model validity is usually
checked by solving the constraints in the model: a valid
feature model is a feature model that satisfies all its con-
straints. Modeling systems that guarantee feature model
semantics to be maintained throughout the modeling pro-
cess are called semantic feature modeling systems ~Bidarra
& Bronsvoort, 2000!.

1.2. Interactive manipulation of features

The specification and the modification of feature param-
eters that determine the position, orientation, and dimen-

Reprint requests to: Rafael Bidarra, Faculty of Electrical Engineering,
Mathematics and Computer Science, Department of Mediamatics,
Computer Graphics and CAD0CAM Group, Delft University of Tech-
nology, Mekelweg 4, 2628 CD, Delft, The Netherlands. E-mail:
A.R.Bidarra@tudelft.nl

Artificial Intelligence for Engineering Design, Analysis and Manufacturing ~2006!, 20, 369–382. Printed in the USA.
Copyright © 2006 Cambridge University Press 0890-0604006 $16.00
DOI: 10.10170S0890060406060264

369

https://doi.org/10.1017/S0890060406060264 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060264

sions is in current modeling systems mostly done through
the input of values in dialog boxes, after which the model is
updated accordingly. The disadvantages of this approach
are that redesigning is time-consuming due to the ineffi-
cient feedback, the insight given on the consequences of an
operation is poor, and user interaction lacks intuitiveness
as, for example, the relation between a feature parameter
and the model is not always clear. As a result, all too often
designers are forced into using a trial and error approach to
find the right feature parameter to be changed or to find the
right value for the parameter.

Good interactive facilities for direct manipulation of fea-
tures should always deal with the three drawbacks just men-
tioned. In this research, we developed a new approach that
allows the designer to interactively select a parameter of a
feature in the model, and subsequently modify its value
while being provided with real-time feedback on the con-
sequences of the operation. When the designer is satisfied
with the model, he can choose to provisionally accept the
changes and, eventually, let the system check the model
validity.

This article describes the most crucial aspect of this
approach: being able to provide real-time feedback on the
changes effected to the feature model. Because this visual
feedback has to be generated several times per second to
support interactive modification of a feature parameter value,
all geometric constraints have to be solved several times
per second. Although techniques exist that enable geomet-
ric constraint models to be solved multiple times per sec-
ond, these techniques are either only applicable to a specific
constraint solving approach, or require a considerable imple-
mentation effort. The major challenge in this regard was,
therefore, to come up with a technique that reduces the time
needed to solve a geometric model, can be applied with a
variety of geometric constraint solvers, and can be easily
implemented.

The paper deals with the situation in which a real-valued
feature parameter that determines a dimension, or position,
or orientation of a feature in a fully specified feature model,
is interactively manipulated by a designer. Fully specified,
here, means that the designer has specified every aspect of
the geometry that is represented by the model. Therefore,
when a feature parameter is manipulated, only those aspects
of the geometry that are dependent on it can possibly change.
Note that these changes can affect several features, because
features typically are dependent on each other.

We first give an overview of previous research on
constraint-solving techniques related to interactive appli-
cations ~Section 2!. Next, we analyze the requirements for
interactive feature manipulation ~Section 3! and focus on
the crucial problem of model compilation, for which we
have developed a new approach that satisfies the above
requirements ~Section 4!. After that, we describe a proto-
type implementation of the new model compilation approach
~Section 5!, and discuss its performance ~Section 6!. Finally,
we present some conclusions ~Section 7!.

2. CONSTRAINT SOLVING IN INTERACTIVE
APPLICATIONS

In general, constraint solvers are too slow to be used in
interactive applications, in which the value of one or more
constraint variables is changed interactively by a user and
the constraint model has to be solved in real time to provide
feedback. This is because the necessary constraint solving
algorithms are too complex to be executed in real time.

Various people have been working on techniques to enable
constraint solvers to be used in interactive applications, such
as user interface construction ~Borning & Duisberg, 1986;
Freeman-Benson, 1993; Hosobe, 2001!, and geometric mod-
eling systems ~van Emmerik, 1991; Hsu et al., 1997!. Some
focused on reducing the complexity of the model such that
it can be solved in real time, others focused on enabling a
specific constraint solver to solve constraint models in real
time, whereas others focused on techniques to reduce the
size of the constraint model, which can be applied with any
constraint solver. Some characteristic examples of these
classes of approaches are given below.

Van Emmerik ~1991! describes an interactive, constraint-
based, three-dimensional ~3-D! geometric modeling approach
that uses noncyclic constraint models with predefined solv-
ing order, which can be solved in real time. In this approach,
the geometric model is represented by geometric primitives
that are dimensioned and positioned by means of the
so-called geometric tree. The geometric tree is a 3-D struc-
ture of local coordinate systems, each with three transla-
tion, three rotation, and three scaling parameters relative to
its parent. The geometric tree initially contains a root coor-
dinate system, and new coordinate systems can be fixed to
the root coordinate system or other coordinate systems by
using constraints. Because of the simple structure of the
constraint model, it can be solved by a local propagation-
based constraint solver in real time. The constraint solver
evaluates the geometric tree by starting at the root node,
and solving the constraints in the order in which they have
been specified. Disadvantages of this approach are that it
does not support cycles, and does not allow the specifica-
tion of constraints that relate a coordinate system to another
one that had been created after it.

Kramer ~1992! describes a geometric constraint solver
based on degrees of freedom analysis, which splits the con-
straint solving process into an analysis phase that is inde-
pendent of the actual values of the constraint variables, and
an execution phase that depends on the result of the analy-
sis phase and the actual values of the constraint variables.
In the analysis phase, the structure of the constraint model
is analyzed and a metaphorical assembly plan is generated,
which describes the sequence of actions that have to be
performed to satisfy the constraints in the model. In the
execution phase, the actions from the metaphorical assem-
bly plan are executed based on the actual values of the
constraint variables, resulting in a model that satisfies all
constraints. In case the value of a constraint variable needs

370 D. Lourenço et al.

https://doi.org/10.1017/S0890060406060264 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060264

to be changed several times, the execution phase is per-
formed for each new value of the constraint variable to
satisfy the constraints. The analysis phase only needs to be
performed after the structure of the constraint model has
changed, that is, after a constraint has been added, changed,
or removed. A disadvantage of this approach is that each
time the value of a variable is changed, typically half the
number of constraints in the model has to be solved.

Hsu et al. ~1997! describe another constraint solver based
on degrees of freedom analysis, which also splits the con-
straint solving process into an analysis phase that is inde-
pendent of the actual value of the constraint variables, and
an execution phase that depends on the result of the analy-
sis phase and the actual values of the constraint variables.
The analysis phase results in a dependency graph, which is
a directed version ~of a subset! of the original constraint
graph, and which indicates the order in which the con-
straints have to be solved to satisfy all constraints in the
model. In the execution phase, the constraints are satisfied
in the order specified by the dependency graph, resulting in
a model that satisfies all constraints. In case the value of a
constraint variable needs to be changed, first a limited analy-
sis is performed once to create the specialized dependency
graph with the constraints that need to be solved if the value
of the constraint variable is going to be changed. Sub-
sequently, the execution phase is performed for the con-
straints in the specialized dependency graph each time the
value of the constraint variable is actually changed. The
advantage of this approach with respect to the approach
presented by Kramer is that a minimal subset of constraints
is solved each time the value of the constraint variable is
changed. A disadvantage is that it can only be applied with
a constraint solver that provides dependency graphs.

Weigel and Faltings ~1999! describe an approach that is
independent of the constraint solver used, and aims at com-
piling the rigid structures in the constraint model into struc-
tures that need less time to satisfy the constraints in it. The
resulting constraint model is subsequently solved by the
same, unchanged, constraint solver that was used to solve
the original model, but in less time. The approach exploits
interactions between three types of compilation techniques:
consistency, decomposition, and interchangeability. Consis-
tency techniques prune certain values or value combina-
tions from the set of possible solutions of the constraint
model, and thus reduce the work that needs to be done by
the constraint solver. Decomposition techniques can deter-
mine substructures such that the complexity of solving the
model is dominated by the complexity of solving the sub-
structures. Interchangeability techniques use the idea of
exploiting equivalences between different variable values:
for variable X, a value a is interchangeable with b exactly
if, whenever there is a solution where X � a, there is another
solution where all assignments are identical except that X �
b, and vice versa. An example of an interaction between
these techniques that is exploited is that after compiling a
constraint model using a consistency technique, new oppor-

tunities might appear to further compile it with an inter-
changeability technique. A complexity analysis of the
complete approach is not given in the paper, but it is men-
tioned that although the compilation technique itself could
be very slow, it can result in a significant performance gain
at run time. The advantage of this approach with respect to
the approach presented by Hsu et al. ~1997! is that it is
independent of the constraint solver used. The disadvan-
tage is that it requires excessive programming to implement
the techniques.

In conclusion, existing techniques do not optimally reduce
the number of constraints to be solved when modifying a
particular constraint variable, are only applicable to certain
constraint solvers, or require intensive programming to be
implemented.

This paper presents a new technique that optimally reduces
the number of constraints to be solved when modifying a
particular constraint variable, can be applied to many exist-
ing geometric constraint solvers, and requires little program-
ming. This technique capitalizes on the constraint solver
used in order to compile the original constraint model into a
specialized constraint model to be used when modifying a
particular constraint variable.

The new technique is presented in the context of geomet-
ric constraint models, consisting of, among others, distance
and angle constraints, in which cycles are allowed, and which
are well constrained. Well constrained means that there is a
limited number of solutions to the constraint problem ~Joan-
Arinyo et al., 2003!. In our context, the number of solutions
of a constraint model is typically 1.

Manipulation in this context involves changing the value
of real-valued constraint variables of geometric constraints,
such as the variable that represents the distance or angle
that should be enforced by a distance or angle constraint,
respectively. Depending on the number of real-valued con-
straint variables associated with the feature parameter that
is manipulated, several such variables may be affected at
the same time. Take, for example, a pattern feature, consist-
ing of two cylinder shapes, and its feature parameter height,
associated with the real-valued constraint variables speci-
fying the height of each cylinder shape; then, manipulation
of the feature parameter height results in manipulation of
both real-valued constraint variables.

3. MANIPULATION OF FEATURES

A feature can be modified by manipulating the value of the
parameters of the feature. Although a parameter of a feature
can also be a face of another feature to which it is attached,
or with respect to which it is positioned, this article only
deals with manipulation of real-valued feature parameters,
such as the dimension of the shape of a feature, the distance
of a feature with respect to a face of another feature, and so
forth. An example of a through hole feature with its param-
eters is given in Figure 1.

Constraint solving for direct manipulation of features 371

https://doi.org/10.1017/S0890060406060264 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060264

3.1. Direct feature manipulation

Direct manipulation of a real-valued feature parameter con-
sists of two phases. In the selection phase, the parameter to
be manipulated has to be selected. In the interaction phase,
the value of the parameter is changed by the designer, and
the feature model is updated accordingly by the system.

In the interaction phase, the designer changes the value
of a feature parameter by using the mouse to drag an icon
that represents the feature parameter on the image of the
displayed feature model. During the dragging, the model
and its visualization are updated continuously to reflect the
modifications. Only the aspects of the model that depend
on the feature parameter being manipulated should be
updated, to avoid that the designer becomes distracted by
irrelevant changes. The fact that the constraint model rep-
resenting the feature model is well constrained ~see Sec-
tion 2!, guarantees that no irrelevant changes can happen.

The interaction phase needs to be performed in real time,
because the designer needs the feedback of the image of the
changed model on the display while dragging the mouse.
Real-time here means fast enough to preserve the illusion
of movement, that is, the illusion that consecutive images
of the same object in a somewhat different position, show a
moving object. The illusion of movement is preserved when
the system presents more than 10 frames ~or images! per
second ~Card et al., 1983!.

3.2. Model validity maintenance

Manipulating the parameter of a feature in a model may
turn a valid feature model into an invalid one ~see Sec-
tion 1.1!, for example, because an undesirable interaction

occurs between two features, or a dimension does not sat-
isfy its dimension constraint anymore.

An invalid situation should preferably be detected during
the manipulation of the model, and the designer should pref-
erably be immediately informed on it. In case that it is not
feasible to detect the invalid situation during the manipula-
tion of the model, for example, because it takes too much
time to check the validity of the model, the validity of the
model should be checked as soon as the manipulation of the
model is ended.

However, in case a model has become invalid during
manipulation of a feature parameter, further manipulation
should not be prohibited, because the model may turn valid
again if the value of the parameter is changed even more.
For example, if the model of Figure 1 would also contain a
through slot that is positioned to the left of the hole, and the
through slot would be moved to the right by manipulating
its position parameter, then, as the through slot and the hole
start to overlap, the model becomes invalid, but the model
turns valid again if the through slot is moved beyond the
hole.

If the model is invalid at the moment that the manipula-
tion of a feature parameter is ended, then some validity
maintenance mechanism ~Bidarra & Bronsvoort, 2000!
should be triggered to assist the designer to make the model
valid again.

3.3. Constraint management

To solve the geometric constraints in the model, a con-
straint management scheme is used. The constraint manage-
ment scheme maps the high-level constraint model with the
~complex! design constraints to a low-level constraint model

(a) (b)

Fig. 1. ~a! A through hole feature and ~b! its parameters. @A color version of this figure can be viewed online at www.journals.
cambridge.org#

372 D. Lourenço et al.

https://doi.org/10.1017/S0890060406060264 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060264

with primitive constraints that can be solved by the con-
straint solvers used, and updates the high-level constraint
model based on the low-level constraint model after solving.

However, the low-level constraint model of typical fea-
ture models generally consists of 100� constraint vari-
ables. Most constraint solvers are too slow to solve these
during interactive feature manipulation, given the high com-
plexity of constraint solving algorithms.

Fortunately, in the interaction phase of interactive fea-
ture manipulation, only a part of the constraint model needs
to be solved. Because only one feature parameter is changed
during the interaction phase, typically, large parts of the
model do not change, that is, they are rigid. Such rigid parts
can, therefore, be represented by a single constraint vari-
able in the low-level constraint graph, thus avoiding the
need to solve all constraints within these parts.

Constraint management for interactive feature manipula-
tion should thus identify all rigid parts of the model, and
map each one to a separate constraint variable in the low-
level constraint model that is solved in the interaction phase.
The resulting, simple, constraint model can be used to find
the relative position and orientation of the rigid parts dur-
ing the interaction phase, given the current value of the
feature parameter that is beeing changed.

Although the rigid parts of the model can be found using
the algorithms presented by Hsu et al. ~1997! and Weigel
and Faltings ~1999!, this article proposes the generation
and use, for this purpose, of a special constraint model,
because this approach can be applied with many geometric
constraint solvers and requires little implementation effort.
The only requirement to the constraint solver is that it should
be able to solve an underconstrained model, and return infor-
mation on the rigid parts in such a model.

The next sections describe such a constraint solver-
driven model compilation approach.

4. CONSTRAINT SOLVER-DRIVEN MODEL
COMPILATION

In the constraint solver-driven model compilation approach,
the original constraint model is compiled into a manipula-
tion constraint model that is optimized to reduce the time
needed to validate the feature model after manipulating a
specific feature parameter. The compilation is performed
by a constraint solver. The optimization is based on the
notion that, in general, a change to the value of a certain
feature parameter causes only limited changes to the fea-
ture model, which was described in Subsection 3.3.

4.1. Generating the manipulation constraint model

The manipulation constraint model is generated in the selec-
tion phase of the interactive feature manipulation process.
It is generated only once when a feature parameter is selected
to be manipulated.

The manipulation constraint model contains a constraint
variable for each rigid part of the original constraint model,
and the constraints between these rigid parts. The con-
straint variables within a rigid part in the original constraint
model are replaced by a single constraint variable in the
manipulation model, which represents the position and ori-
entation of the rigid part. The constraints between the con-
straint variables within a rigid part are discarded in the
manipulation model, because their relative position and ori-
entation will not change during the manipulation phase.
The constraints between the constraint variables of differ-
ent rigid parts in the original constraint model are in the
manipulation constraint model between the constraint vari-
ables that represent the rigid parts.

The manipulation constraint model is generated by a con-
straint management approach that uses the constraint solver
to find the rigid parts in the model. The constraint manage-
ment approach finds the rigid parts in the model by having
the constraint solver solve the original constraint model
except for the constraints that represent the feature param-
eter that is changed. Based on the rigid parts found, the
constraint management approach generates the manipula-
tion model.

Discarding the constraints that represent the feature param-
eter that is changed, results in an underconstrained con-
straint model with multiple well-constrained ~Joan-Arinyo
et al., 2003! submodels. Each well-constrained submodel
represents a region of the feature model that remains rigid
if the feature parameter is changed. Although it is not nec-
essary to minimize the number of well-constrained submod-
els, reducing the number of submodels cuts down the time
needed to solve the resulting manipulation constraint model.

The constraint solver that is used by the constraint man-
agement approach to solve this model should be capable of
solving such underconstrained models and returning the sub-
models that are well constrained. These capabilities are
owned by many geometric constraint solvers.

The constraint management approach generates the manip-
ulation constraint model based on the information on the
well-constrained or rigid parts of the model that is returned
by the constraint solver. It creates a constraint variable in
the manipulation constraint model for each rigid part in the
original constraint model. In addition, it analyzes the orig-
inal constraint model to find the constraints between the
rigid parts; for each constraint it finds, it creates an identi-
cal constraint between the constraint variables in the manip-
ulation constraint model that represent the rigid parts. These
constraints include the constraints that represent the feature
parameter whose value will be changed.

A simple example of the generation of the manipulation
constraint model will be given based on the manipulation
of the width of the slanted slot in the feature model of
Figure 2a. The designer will manipulate the width of the
slanted slot, which in turn, will displace the slot side 2 ~a
side face of the slanted slot; see Fig. 2b!. When slot side 2
is moved, prot1, prot2, and prot3 will move accordingly

Constraint solving for direct manipulation of features 373

https://doi.org/10.1017/S0890060406060264 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060264

because they are positioned with respect to slot side 2, either
directly or indirectly ~see Fig. 2c!.

In the first step, the constraint model is generated that
will be solved by the constraint solver to find the parts in
the model that are rigid when manipulating the width of the
slanted slot. The model is derived from the original con-
straint model of the feature model by copying all constraint
variables and constraints except the constraints that repre-
sent the feature parameter to be manipulated. This results in
an underconstrained model, in which the well-constrained
parts or, more precisely, the not underconstrained parts,
represent the parts of the model that are rigid when manip-
ulating the width of the slanted slot ~see Fig. 3!.

In the second step, the generated model is solved to find
the well-constrained parts in the model, and thus find the
parts of the model that are rigid during the manipulation.
Here, there are two well-constrained parts: one that con-
sists of the step, base block, and slot side 1, the other one
consists of slot side 2, prot1, prot2, and prot3 ~see again
Fig. 3!.

In the third step, the manipulation constraint model is
generated based on the found well-constrained parts. Ini-
tially a constraint variable is generated for each well-

constrained part ~see Fig. 4a!. After that, the constraints
from the original constraint model that relate constraint vari-
ables from different well-constrained parts are created
between the constraint variables that represent these well-
constrained parts ~see Fig. 4b!.

4.2. Using the manipulation constraint

The manipulation constraint model is used in the validity
checking subphase of the interaction phase of the inter-
active feature manipulation process.

The manipulation constraint model is solved each time
the value of the feature variable that has been selected to be
manipulated has been updated, to determine the changes in
the model. Because the manipulation constraint model is
typically quite small, it can of be solved in the validity
checking subphase of the interaction phase without break-
ing the movement illusion of part of the model.

Prot2 Prot3

Prot1

slot side1

slot side2

step

base block

(b) (c)

(a)

slot width

Fig. 2. ~a! The feature model with the slanted slot that is interactively
manipulated by the designer, ~b! the names of the relevant entities of the
model, and ~c! the relevant relations in the model.

Fig. 3. ~a! The part of the constraint model of the feature model of Fig-
ure 2 that is relevant for manipulation of the width of the slanted slot and
~b! the constraint model that is derived from it to find the parts in the
model that are rigid during this manipulation.

Fig. 4. The manipulation constraint model consists of ~a! a constraint
variable for each well-constrained part and ~b! the constraints from the
original model that relate constraint variables of different rigid parts.

374 D. Lourenço et al.

https://doi.org/10.1017/S0890060406060264 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060264

The changes to the manipulation constraint model are
propagated to the original constraint model each time the
manipulation constraint model has been solved. This con-
sists of updating the value of the constraint variables in the
original constraint model based on the value ~i.e., position
and orientation! of each of the constraint variables in the
manipulation constraint model.

Figure 5 gives an example of the use of the manipulation
constraint model model of Figure 4 for changing the width
of the slanted slot in the feature model of Figure 2a. Each
time the width of the slanted slot has been increased, this
change is propagated to the original constraint model, that
is, to the features ~and entities of features! slot side 2, prot1,
prot2, and prot3, which are moved accordingly in the fea-
ture model.

5. PROTOTYPE IMPLEMENTATION

The proposed approach to support interactive feature manip-
ulation has been implemented in Spiff ~Bronsvoort et al.,

1997!, a prototype feature modeling system developed at
Delft University of Technology.

This section first describes the global constraint solving
scheme used in the Spiff system. Subsequently, it describes
in some detail the implementation of the proposed approach,
focusing on the solving strategy followed in the compilation
and use of the manipulation model. The section closes with a
brief performance analysis of the current implementation.

5.1. Constraint model

A feature model is represented in the Spiff system using
several internal representations. One of these, on which
we will focus, consists of the high-level constraint graph.
In this graph, nodes represent both the variables and the
constraints applied upon them, and edges represent the
relationships established among these nodes. The high-
level constraint graph thus aggregates the definitions of
every feature in the model, as well as the relations between
them. in the following, for simplicity, we will only deal
with the geometric variables ~e.g., faces and parameters!
and with the geometric constraints in the high-level con-
straint graph ~but it should be remarked that it contains
quite a few other entities!. These geometric constraints
can either relate a feature with other features or specify
internal solver restrictions between variables of the feature
itself. Figure 6 presents a simplified version of a high-
level constraint graph.

The high-level constraint graph is maintained in Spiff by
a constraint manager. In addition, the constraint manager
disposes of several dedicated constraint solvers, among
which the Kramer solver plays a central role for the pur-
poses of this research. The Kramer solver works with a
specific primitive constraint graph format, the so-called
Kramer graph.

Just like the high-level constraint graph, in the Kramer
graph the nodes describe constraints and variables, and the

Fig. 5. Each outcome of solving the manipulation constraint model is
propagated to the feature model, which is smoothly modified from ~a!
to ~b!.

Fig. 6. A high-level constraint graph for the simple model of Figure 1, consisting of a base block and a through hole.

Constraint solving for direct manipulation of features 375

https://doi.org/10.1017/S0890060406060264 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060264

edges describe their relationships. In this graph, the vari-
ables are called geoms and represent a coordinate system
that is in a specific position and orientation in space. The
position and orientation are restrained by the constraints in
the graph. By determining, for each geom, a position and an
orientation that satisfy all constraints, the final values for
the variables are set.

These geoms are actually more complex. They contain a
number of dependent coordinate systems, called markers.
Each marker’s position and orientation is fixed relative to
its geom’s coordinate system, and therefore cannot move in
relation to it. Even though the constraints are connected to
geoms, in the Kramer graph, what they actually relate are
markers inside those geoms. By specifying constraints on
markers we indirectly specify constraints on the respective
geoms.

Each constraint reduces the relative degrees of freedom
between geoms by specifying restrictions to the position
and orientation of its markers. The Kramer currently sup-
ports the following constraint types:

1. the parallel-z constraint, specifying the z axes of two
markers to be parallel;

2. the coincident constraint, specifying two markers to
have the same position;

3. the in-plane constraint, specifying the position of a
marker to lay on the plane defined by the x–y axes of
the other marker; and

4. the in-line constraint, specifying the position of a
marker to be on the z axis of the other marker.

Further details can be found in Dohmen ~1998!. An exam-
ple of a simple Kramer graph is given in Figure 7.

5.2. Mapping from the high-level constraint graph
to the Kramer graph

To create the Kramer Graph, each geometric variable and
geometric constraint of the high-level constraint graph must
first be mapped to the Kramer graph as one or more vari-
ables or constraints. Every geometric variable is mapped to
exactly one geom whose position and orientation are fixed
and orientation is the same as that of the original variable.
As for the geometric constraints, the way in which the map-
ping is actually done varies. Generally, it consists of first
creating one or more markers in each of the geoms that
correspond to the geometric variables of the original con-
straint, and then creating a number of Kramer constraints
relating these markers in a way that expresses the semantics
of the original constraint.

Fig. 7. An example Kramer graph ~Dohmen, 1998!. @A color version of this figure can be viewed online at www.journals.
cambridge.org#

376 D. Lourenço et al.

https://doi.org/10.1017/S0890060406060264 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060264

Figure 8 presents an extract of the Kramer Graph result-
ing from the mapping of a cylinder basic shape. This could,
for example, be part of the mapping of the through hole in
the example of Figure 6.

Now consider the attach constraint between the top face
of the through hole and the top face of the base block of the
example in Figure 6. The two faces will be mapped each to
one geom. The mapping of the attach constraint will create
one marker in each of the geoms and add between these
markers a parallel constraint and an in-plane constraint.
These specify that the z axis of the two markers will have to
be parallel and that the position of the first marker will have
to be in the plane defined by the second marker.

5.3. Kramer solving strategy

To explain how the Kramer solving actually works, we first
need to define the concept of joint. A joint is no more than
the set of constraints between two geoms. This means a
joint is what restricts how two geoms are positioned in
relation to each other. We call a joint rigid if it leaves no
relative degrees of freedom between the two geoms, that is,
their position and orientation are fixed in relation to each
other.

The Kramer solver works by iteratively determining which
joints are rigid and joining them into new geoms called
macrogeoms, which embed the old geoms ~i.e., all the mark-
ers in the original geoms are placed in the new macro-
geom!. By progressively joining more and more geoms, a
moment is reached when there is only one ~macro!geom. At
this point the system has been solved. From this single geom
it is possible to update the coordinate systems of the origi-
nal geoms by locating their markers in it.

Figure 9 shows an iconic representation of the process
for solving a Kramer graph. In Figure 9b and c, the con-
straints in the joint between the geom that represents the
top face and the geom that represents the side face of the
cylinder are processed, and it is detected that the joint is
rigid. Consequently, in Figure 9d the two geoms with the

rigid joint between them are merged into a macrogeom that
represents both the side face and the top face of the cylin-
der. After that, in Figure 9e and f, the constraints in the joint
between the macrogeom and the geom that represents the
bottom face are processed, and it is detected that this joint
is also rigid. Finally, in Figure 9g, the macrogeom and the
geom that represents the bottom face are merged into a
single resulting macrogeom, and in Figure 9h, the position
of the original geoms is updated based on the information
from that macrogeom.

In addition to the above strategy for rigid joints, a group
of nonrigid joints that form a loop may fully determine the
relative position and orientation of all the variables in that
loop. In order for the solver to determine a solution for
these loops, it attempts to rewrite their constraints using the
techniques described in Dohmen ~1998!, in a way that turns
some of the joints rigid.

One final remark is that the Kramer Solver is able to
handle models that are not fully constrained. In this sit-
uation, it merges geoms up to the point where it can no
longer find rigid joints, resulting in a graph with more
than one remaining macrogeom. This characteristic is cru-
cial for this approach, as will be explained in the next
subsection.

5.4. Algorithm details

In this section we describe in more detail how the proposed
approach was implemented in the Spiff system. The detailed
outline of the algorithm is depicted in Figures 10 and 11.

5.4.1. Generating the preprocessed Kramer graph

When applying the generic approach described in Sec-
tion 4 to our Kramer Solver implementation, what we need
is to use the Kramer Solver to produce a new Kramer
graph that encloses all the constraint solving results that
are not related to the specific parameter being solved. In
this way, one avoids repeating a significant amount of
work in the subsequent solving process. For this reason,
we call this result the preprocessed Kramer graph. The
whole generation process is schematically depicted in
Figure 10.

The first step in computing the preprocessed Kramer graph
consists of determining which parameters will be affected
by a given manipulation. This is easily achieved by adding
a tag to each parameter that is set when the value of the
variable is changed.

Subsequently, making use of the ability of the Kramer
solver to handle underconstrained graphs, the computation
of the preprocessed graph is performed taking the follow-
ing steps:

1. In the high-level constraint graph deactivate the
constraints related to the parameter~s! affected by
manipulation.

Fig. 8. The mapped Kramer geometric variables and constraints of a
cylinder.

Constraint solving for direct manipulation of features 377

https://doi.org/10.1017/S0890060406060264 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060264

2. Map the high-level constraint graph to the starting
Kramer graph. This graph will not contain the Kramer
constraints that correspond to the deactivated con-
straints, and will therefore be underconstrained.

3. Solve the starting Kramer graph. The resulting graph
will be used as the preprocessed Kramer graph.

4. Reactivate in the high-level constraint graph the con-
straints that were deactivated in step 1.

5.4.2. Using the preprocessed Kramer graph

After the preprocessed Kramer graph has been gener-
ated, it is necessary, for the solving itself, to add to this
graph the constraints related to the parameters that are
affected by the manipulation ~these were left out during the

generation of the preprocessed graph!. The resulting graph,
called the solving step Kramer graph, is our manipulation
constraint model. This is the second step in Figure 11, which
describes what is done for each change in the parameter.

Updating the high-level constraint graph from the final
Kramer graph for each solving step has to be done in two
phases ~see Fig. 11!. In the first phase, the starting graph
has to be updated. For this, the position and orientation of
each of the geoms in the starting graph has to be found by
searching for one of its markers in the single macrogeom in
the final graph. This step is necessary because the geoms
that correspond to each geometric variable of the high-level
constraint graph only exist in the starting Kramer graph.
Therefore, only after updating it can the second phase take

Fig. 9. An iconic representation of the solving process for the Kramer graph of the cylinder in Figure 8. The geoms are represented by the larger blocks
that contain coordinate axes, and the constraints are represented by the smaller rounded rectangles. The constraints that are represented by the shaded
rectangles are the ones that have already been processed. ~a! Initial graph, ~b! two constraints processed, ~c! rigid joint detected, ~d! merge geoms, ~e! two
constraints processed, ~f ! rigid joint detected, ~g! merge geoms, and ~h! solution found. @A color version of this figure can be viewed online at
www.journals.cambridge.org#

378 D. Lourenço et al.

https://doi.org/10.1017/S0890060406060264 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060264

place, in which the high-level constraint graph is updated.
This is the last step in Figure 11.

6. PERFORMANCE ANALYSIS

The research goal of the present work ~see Section 1!was to
come up with a generic and easy to implement optimization
technique able to significantly reduce the constraint solving
time, in a way that enables a designer to interactively manip-
ulate a real-valued feature parameter that determines a dimen-
sion or the position0orientation of a feature in a fully specified
feature model. At this point, one can legitimately ask how
efficient the constraint solver-driven model compilation
approach described in the preceding sections is.

6.1. General considerations

As highlighted before, this approach is generic, in the sense
that it can be applied to a large variety of geometric con-

straint solvers. Consequently, its absolute performance is
inherently dependent on the absolute performance of the
specific constraint solver used. Therefore, the relevant ques-
tion can be formulated as follows: “for a given parameter
modification, what is the improvement in the solving time
provided by this optimization approach, compared to the
solving time ~Ts! required by the same solver without the
optimization?”

In order to answer this question, one should distinguish
two solving times in this approach: the compilation time,
required to generate the manipulation constraint model, and
the interaction time, required to solve the manipulation con-
straint model for each new parameter value. For a given
parameter, the compilation time is spent only once, in the
selection phase, that is, when the parameter to be modified
is chosen. The interaction time, however, is repeatedly spent
during the interaction phase, that is, every time the value of
the chosen parameter is interactively modified by the user.

Fig. 9. ~continued !

Constraint solving for direct manipulation of features 379

https://doi.org/10.1017/S0890060406060264 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060264

The latter is, therefore, the most critical one from an inter-
activity point of view. In general, the two times are not
necessarily related.

The compilation time primarily depends on the size of the
original constraint model, that is, the number N of constraint
variables in it. Secondarily, it also depends on the number of
rigid parts identified in it during the compilation, that is, the
number M of constraint variables in the resulting manipula-
tion constraint model ~which, ultimately, is dependent on the
particular parameter chosen for manipulation!.

The interaction time is mainly dependent on the size of
the manipulation constraint model, that is, the number M of
constraint variables in it. In this regard, one can ideally
distinguish three situations: best case, average case, and
worst case:

1. Best case: The manipulation constraint model is the
smallest possible, that is, it consists of two constraint
variables representing two rigid parts; see for an exam-
ple the operation on the model in Figures 4 and 5. In
this situation, the compilation time should be compa-
rable to time Ts required to solve the original con-
straint model for the same parameter modification.
The interaction time, in turn, should be very low
~roughly in the order of Ts0N !, as the manipulation
constraint model is very simple.

2. Average case: In the average case, the value of a real-
valued constraint variable only influences the relative
position of a small number of rigid parts in the model,
so the manipulation constraint model consists of a
small number M of constraint variables. In these sit-
uations, the compilation time should be comparable
to the time Ts required to solve the original constraint
model for the same parameter modification; however,
it is usually somewhat higher because, in addition to
the constraint management overhead described in Sub-
section 4.1, the compilation typically involves solv-
ing an underconstrained model, possibly with cycles.
The interaction time, in turn, should be expected to be
a small fraction of Ts ~roughly in the order of Ts �
M0N !.

3. Worst case: The worst case conceivable is rather hypo-
thetical, and not realistic in practice, at least within a
feature modeling context. That would be the unlikely
situation for which the manipulation constraint model
generated would have the same number of constraint
variables as the original constraint model, that is, M �
N ~in other words, no optimization can be achieved!.
In such a situation, the compilation time should typi-
cally surpass the time Ts required to solve the original
constraint model, because the constraint management
overhead is higher, and the compilation most likely
involves solving an underconstrained model with
cycles. Accordingly, the interaction time for such a
manipulation model should be expected to be of the
same order as Ts, the solving time for the original
constraint model.

From a practical point of view, the best and average cases are
the most relevant. In real-world models, parameter modifi-
cations will mostly result in a best case situation, with M �2
~as exemplified in Subsection 4.1!, or, otherwise, in an aver-
age case situation, with M much smaller than N. The follow-
ing subsection describes and analyses some results of
performance measurements on a prototype implementation.

Fig. 10. The computation of the preprocessed Kramer graph.

Fig. 11. Solving for each interaction step of the parameter modification.

380 D. Lourenço et al.

https://doi.org/10.1017/S0890060406060264 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060264

6.2. Performance measurements

To evaluate the proposed approach, we measured the per-
formance improvements of its Kramer implementation,
described in Section 5, by performing a number of tests
within the Spiff system, running on a 2.4-GHz Pentium 4
PC under Linux.

The three models used in the tests were all similar to the
model shown in Figure 12, consisting of a block with a row
of through holes, only differing in the number of holes
present: 2, 10, and 20 through holes.

Two modeling operations were performed on each of
these models. Operation 1 consists of modifying the radius
of one of the through holes ~i.e., a parameter on which no
other feature parameter depends!. Operation 2 consists of
modifying the height of the block ~i.e., a parameter that
affects the height of every through hole in the model!. Ulti-
mately, both operations can be regarded as examples of the
best case described above, differing only in the amount of
overhead involved in the compilation process and in con-
straint management.

For each model and for each operation, the solving times
measured are summarized in Table 1, and compared to the
solving times taken by the Kramer solver without any
optimization.

The most relevant observation about the measurements
in Table 1 regard the interaction times, which lie between 3
and 8% of the solving time without optimization. Further-
more, the interaction times are very low, always below
100 ms, which leaves more than enough time to render each
new frame as a feature parameter is interactively modified.
We can, therefore, conclude that the presented approach
fulfills the performance requirements stated in Section 1.

Despite these low interaction times, we should also remark
that, for this Kramer solver implementation, solving the
manipulation model for operation 2 takes indeed slightly
longer than solving it for operation 1, which can be attrib-
uted to the higher overhead previously mentioned.

The compilation times for this Kramer solver implemen-
tation are in the same order of magnitude of ~though higher
than! the solving time without optimization, as was pre-
dicted in the analysis above. To understand why the com-
pilation times are higher, one should realize that one of the
steps of the Kramer Solver is the search and rewriting of the
loops in the constraint graph ~Kramer, 1992!. When in under-
constrained situations, the Kramer Solver has to search all
the possible loops before it can conclude that it cannot merge
any more geoms.

7. CONCLUSIONS

This paper presented a new approach to the optimization of
geometric constraint solving for interactive feature model
manipulation. The presented constraint solver-driven model
compilation approach not only considerably reduced the
number of constraints that have to be solved during inter-
action, it also avoids the need for a separate constraint model
analysis algorithm, by using an existing constraint solver
for the analysis instead. In fact, any solver can be used that
is capable of solving an underconstrained model and of
returning which parts of the model are well constrained, a
characteristic shown by many contemporary geometric con-
straint solvers.

The essence of this approach was illustrated using a few
examples, which, for the sake of clarity, were kept rela-
tively simple; however, all concepts discussed are equally
valid and applicable to other realistic feature models of any
complexity.

A prototype implementation of the new approach has also
been described, implemented within the Spiff feature mod-
eling system, demonstrating the value and the feasibility of
the new approach. This implementation has been success-
ful in achieving the speed required for direct manipulation

Fig. 12. An example of a benchmark model used in the performance tests.
@A color version of this figure can be viewed online at www.journals.cam-
bridge.org#

Table 1. Solving times of the Kramer solver (ms) for two
different parameter modifications on three benchmark models
as in Figure 12

Kramer Solver
With OptimizationKramer

Solver
Without

Optimization
Compilation

Time
Interaction

Time

Small model ~2 holes!
Operation 1 250 270 20
Operation 2 260 300 20

Medium model ~10 holes!
Operation 1 770 1200 40
Operation 2 780 1270 50

Large model ~20 holes!
Operation 1 2240 2430 60
Operation 2 2270 3330 80

Constraint solving for direct manipulation of features 381

https://doi.org/10.1017/S0890060406060264 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060264

of features and, as a result, effectively improving the user
experience.

In summary, it can be concluded that the presented
approach to the optimization of geometric constraint solv-
ing during interactive manipulation can be used with many
constraint solvers and avoids the need for a separate con-
straint model analysis algorithm. Both the prototype imple-
mentation described and the performance tests executed
with it confirm the high potential of the approach.

REFERENCES

Bidarra, R., & Bronsvoort, W.F. ~2000!. Semantic feature modelling.
Computer-Aided Design 32(3), 201–225.

Borning, A., & Duisberg, R. ~1986!. Constraint-based tools for building
user interfaces. ACM Transactions on Graphics 5(4), 345–374.

Bronsvoort, W.F., Bidarra, R., Dohmen, M., van Holland, W., & de Kraker,
K.J. ~1997!. Multiple-view feature modelling and conversion. In Geo-
metric Modeling: Theory and Practice—The State of the Art ~Strasser,
W., Klein, R., & Rau, R., Eds.!, pp. 159–174. Berlin: Springer–Verlag.

Card, S.K., Moran, T.P., & Newell, A. ~1983!. The Psychology of Human–
Computer Interaction. Hillsdale, NJ: Erlbaum.

Dohmen, M. ~1998!. Constraint-based feature validation. PhD thesis, Delft
University of Technology.

Freeman-Benson, B.N. ~1993!. Converting an existing user interface to
use constraints. In Proc. ACM Symp. User Interface Software and Tech-
nology, pp. 207–215. New York: ACM Press.

Hosobe, H. ~2001!. A modular geometric constraint solver for user inter-
face applications. In Proc. 14th Annual ACM Symp. User Interface
Software and Technology, pp. 91–100. New York: ACM Press.

Hsu, C., Huang, Z., Beier, E., & Brüderlin, B. ~1997!. A constraint-based
manipulator toolset for editing 3D objects. In Proc. of the Fourth ACM
Symp. on Solid Modeling and Applications, pp. 168–180. New York:
ACM Press.

Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., & Vilaplana-Pasto, J. ~2003!.
Transforming an underconstrained geometric constraint problem into
a well-constrained one. In Proc. Eighth ACM Symp. Solid Modeling
and Applications, pp. 33– 44. New York: ACM Press.

Kramer, G.A. ~1992!. A geometric constraint engine. Artificial Intelli-
gence 58(1–3), 327–360.

Shah, J.J., & Mäntylä, M. ~1995!. Parametric and Feature-Based CAD0
CAM. New York: Wiley.

van Emmerik, M.J.G.M. ~1991!. Interactive design of 3D models with
geometric constraints. The Visual Computer 7(506), 309–325.

Weigel, R., & Faltings, B. ~1999!. Compiling constraint satisfaction prob-
lems. Artificial Intelligence 115(2), 257–287.

Daniel Lourenço attained a degree in computer science in
2005 at Instituto Superior Técnico, Lisbon, Portugal. His

graduation project, which was performed with Pedro
Oliveira, was carried out at the Computer Graphics and
CAD0CAM Group at Delft University of Technology. The
project dealt with real-time direct manipulation of feature
models and eventually led to the work described in this
article. Daniel works as a Consultant for the agile soft-
ware company Outsystems.

Pedro Oliveira graduated in computer science in 2005 at
Instituto Superior Técnico, Lisbon, Portugal. His gradua-
tion project, which was performed with Daniel Lourenço,
was carried out at the Computer Graphics and CAD0CAM
Group at Delft University of Technology. The project dealt
with real-time direct manipulation of feature models and
eventually led to the work described in this article. Pedro
currently works as a Consultant at the Business Technology
Office of McKinsey & Company.

Alex Noort works as computer scientist at The Netherlands
Bureau for Economic Policy Analysis in The Hague. He
received his MS degree in computer science in 1997 and his
PhD degree in 2002, both from Delft University of Tech-
nology. His master’s thesis was written on solving overcon-
strained geometric models, and his PhD thesis dealt with
multiple-view feature modeling with model adjustment. Dr.
Noort’s main research interests are feature modeling, in
particular multiple-view feature modeling and constraint
solving.

Rafael Bidarra is Assistant Professor of geometric model-
ing in the Faculty of Electrical Engineering, Mathematics
and Computer Science of Delft University of Technology.
He graduated with a degree in electronics engineering at
the University of Coimbra, Portugal, in 1987, and received
his PhD degree in computer science from Delft University
of Technology in 1999. He currently leads the research work
on computer games at the Computer Graphics and CAD0
CAM Group. His current research interests include proce-
dural, parametric, and semantic modeling and geometric
reasoning. He has published many papers in international
journals, books, and conference proceedings and has served
as a member of several program committees.

382 D. Lourenço et al.

https://doi.org/10.1017/S0890060406060264 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060264

