
TLP 16 (5–6): 834–848, 2016. C© Cambridge University Press 2016

doi:10.1017/S1471068416000351

834

Iterative Learning of Answer Set Programs
from Context Dependent Examples

MARK LAW, ALESSANDRA RUSSO� and KRYSIA BRODA

Department of Computing, Imperial College London, SW7 2AZ

(e-mail: {mark.law09, a.russo, k.broda}@imperial.ac.uk)

submitted 6 May 2016; revised 8 July 2016; accepted 22 August 2016

Abstract

In recent years, several frameworks and systems have been proposed that extend Inductive

Logic Programming (ILP) to the Answer Set Programming (ASP) paradigm. In ILP, examples

must all be explained by a hypothesis together with a given background knowledge. In existing

systems, the background knowledge is the same for all examples; however, examples may be

context-dependent. This means that some examples should be explained in the context of

some information, whereas others should be explained in different contexts. In this paper, we

capture this notion and present a context-dependent extension of the Learning from Ordered

Answer Sets framework. In this extension, contexts can be used to further structure the

background knowledge. We then propose a new iterative algorithm, ILASP2i, which exploits

this feature to scale up the existing ILASP2 system to learning tasks with large numbers

of examples. We demonstrate the gain in scalability by applying both algorithms to various

learning tasks. Our results show that, compared to ILASP2, the newly proposed ILASP2i

system can be two orders of magnitude faster and use two orders of magnitude less memory,

whilst preserving the same average accuracy.

KEYWORDS: Non-monotonic Inductive Logic Programming, Answer Set Programming,

Iterative Learning

1 Introduction

Inductive Logic Programming (Muggleton 1991) (ILP) addresses the task of learning

a logic program, called a hypothesis, that explains a set of examples using some

background knowledge. Although ILP has traditionally addressed learning (mono-

tonic) definite logic programs, recently, several new systems have been proposed for

learning under the (non-monotonic) answer set semantics (e.g. (Ray 2009), (Corapi

et al. 2012), (Athakravi et al. 2014), (Law et al. 2014) and (Law et al. 2015)). Among

these, ILASP2 (Law et al. 2015) extended ILP to learning from ordered answer sets

(ILPLOAS), a computational task that learns answer set programs containing normal

rules, choice rules and both hard and weak constraints.

� This research is partially funded by the EPSRC project EP/K033522/1 “Privacy Dynamics”.

https://doi.org/10.1017/S1471068416000351 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000351

Iterative learning of answer set programs from context-dependent examples 835

Common to all ILP systems is the underlying assumption that hypotheses should

cover the examples with respect to one fixed given background knowledge. But, in

practice, some examples may be context-dependent – different examples may need to

be covered using different background knowledges. For instance, within the problem

domain of urban mobility, the task of learning journey preferences of people in a

city may require a general background knowledge that describes the different modes

of transport available to a user (walk, drive, etc.), and examples of which modes

of transport users choose for particular journeys. In this case, the context of an

example would be the attributes (e.g. the distance) of the journey. It is infeasible to

assume that every possible journey could be encoded in the background knowledge

– attributes, such as journey distances, may take too many possible values. But,

encoding the attributes of observed journeys as contexts of the observations restricts

the computation to those attribute values that are in the contexts.

In this paper, we present a generalisation of ILPLOAS , called context-dependent

learning from ordered answer sets (ILP context
LOAS), which uses context-dependent exam-

ples. We show that any ILP context
LOAS task can be translated into an ILPLOAS task,

and can therefore be solved by ILASP2. Furthermore, to improve the scalability

of ILASP2, we present a new iterative reformulation of this learning algorithm,

called ILASP2i. This iterative approach differs from existing non-monotonic learning

systems, which tend to be batch learners, meaning that they consider all examples at

once. Non-monotonic systems cannot use a traditional cover loop (e.g., (Muggleton

1995)), as examples that were covered in previous iterations are not guaranteed to

be covered in later iterations. However, ILASP2i iteratively computes a hypothesis

by constructing a set of examples that are relevant to the search, without the need

to consider all examples at once. Relevant examples are essentially counterexamples

for the hypotheses found in previous iterations. This approach is a middle ground

between batch learning and the cover loop: it avoids using the whole set of examples,

but works in the non-monotonic case, as the relevant examples persist through the

iterations. We show that ILASP2i performs significantly better than ILASP2 in

solving learning from ordered answer set tasks with large numbers of examples, and

better still when learning with context-dependent examples, as in each iteration it

only considers the contexts of relevant examples, rather than the full set.

To demonstrate the increase in scalability we compare ILASP2i to ILASP2 on a

variety of tasks from different problem domains. The results show that ILASP2i is up

to 2 orders of magnitude faster and uses up to 2 orders of magnitude less memory

than ILASP2. We have also applied both algorithms to the real-world problem

domain of urban mobility, and explored in greater depth the task of learning a

user’s journey preferences from pairwise examples of which journeys are preferred

to others. As we learn ASP, these user preferences can very naturally be represented

as weak constraints, which give an ordering over the journeys. Our results show that

ILASP2i achieves an accuracy of at least 85% with around 40 examples. We also

show that, by further extending ILP context
LOAS with ordering examples that express equal

preferences, in addition to strict ordering, the accuracy can increase to 93%.

The rest of the paper is structured as follows. In Section 2 we review the relevant

background. In Section 3 we present our new context-dependent learning from

https://doi.org/10.1017/S1471068416000351 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000351

836 M. Law, A. Russo, K. Broda

ordered answer set task, and in Section 4 we introduce our new ILASP2i algorithm.

In Section 5 we compare ILASP2i to ILASP2 on a range of different learning

tasks and give a detailed evaluation of the accuracy of ILASP2i and compare its

scalability with ILASP2 in the context of the journey planning problem. Finally, we

conclude the paper with a discussion of related and future work.

2 Background

Let h, h1, . . . , hk, b1, . . . , bn be atoms and l and u be integers. The ASP programs

we consider contain normal rules, of the form h:- b1, . . . , bm, not bm+1, . . . , not bn;

constraints, which are rules of the form :- b1, . . . , bm, not bm+1, . . . , not bn; and

choice rules, of the form l{h1, . . . , hk}u:- b1, . . . , bm, not bm+1, . . . , not bn. We refer

to the part of the rule before the “:-” as the head, and the part after the “:-”

as the body. The meaning of a rule is that if the body is true, then the head must

be true. The empty head of a constraint means false, and constraints are used to

rule out answer sets. The head of a choice rule is true if between l and u atoms

from h1, . . . , hk are true. The solutions of an ASP program P form a subset of the

Herbrand models of P , called the answer sets of P and denoted as AS(P).

ASP also allows optimisation over the answer sets according to weak constraints,

which are rules of the form :∼ b1, . . . , bm, not bm+1, . . . , not bn.[w@p, t1, . . . , tk]

where b1, . . . , bn are atoms called (collectively) the body of the rule, and w, p, t1 . . . tk
are all terms with w called the weight and p the priority level. We will refer to

[w@p, t1, . . . , tk] as the tail of the weak constraint. A ground instance of a weak

constraint W is obtained by replacing all variables in W (including those in the tail

of W) with ground terms. In this paper, it is assumed that all weights and levels of

all ground instances of weak constraints are integers.

Given a program P and an interpretation I we can construct the set of tuples

(w, p, t1, . . . , tk) such that there is a ground instance of a weak constraint in P whose

body is satisfied by I and whose (ground) tail is [w@p, t1, . . . , tk]. At each level p

the score of I is the sum of the weights of tuples with level p. An interpretation I1
dominates another interpretation I2 if there is a level p for which I1 has a lower score

than I2, and no level higher than p for which the scores of I1 and I2 are unequal.

We write I1 ≺P I2 to denote that given the weak constraints in P , I1 dominates I2.

Example 1

Consider the set WS =

⎧⎨
⎩

:∼ mode(L, walk), crime rating(L, R), R > 3.[1@3, L, R]

:∼ mode(L, bus).[1@2, L]

:∼ mode(L, walk), distance(L, D).[D@1, L, D]

The first weak constraint in WS , at priority 3, means “minimise the number of

legs in our journey in which we have to walk through an area with a crime rating

higher than 3”. As this has the highest priority, answer sets are evaluated over this

weak constraint first. The remaining weak constraints are considered only for those

answer sets that have an equal number of legs where we have to walk through an

area with such a crime rating. The second weak constraint means “minimise the

number of buses we have to take” (at priority 2). Finally, the last weak constraint

https://doi.org/10.1017/S1471068416000351 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000351

Iterative learning of answer set programs from context-dependent examples 837

means “minimise the distance walked”. Note that this is the case because for each

leg where we have to walk, we pay the penalty of the distance of that leg (so the

total penalty at level 1 is the sum of the distances of the walking legs).

We now briefly summarise the key properties of Learning from Ordered Answer

Sets and ILASP2, which we extend in this paper to Context-dependent Learning

from Ordered Answer Sets and ILASP2i. It makes use of two types of examples:

partial interpretations and ordering examples. A partial interpretation e is a pair of

sets of atoms 〈einc, eexc〉. An answer set A extends e if einc ⊆ A and eexc ∩ A = ∅. An

ordering example is a pair of partial interpretations. A program P bravely (resp.

cautiously) respects an ordering example 〈e1, e2〉 if for at least one (resp. every) pair

of answer sets 〈A1, A2〉 that extend e1 and e2, it is the case that A1 ≺P A2.

Definition 1

(Law et al. 2015) A Learning from Ordered Answer Sets (ILPLOAS) task T is a

tuple 〈B, SM, E〉 where B is an ASP program, called the background knowledge,

SM is the set of rules allowed in hypotheses (the hypothesis space) and E is a

tuple 〈E+, E−, Ob, Oc〉. E+ and E− are finite sets of partial interpretations called,

respectively, positive and negative examples. Ob and Oc are finite sets of ordering

examples over E+ called, respectively, brave and cautious orderings. A hypothesis

H is an inductive solution of T (written H ∈ ILPLOAS (T)) iff: H ⊆ SM; ∀e ∈ E+,

∃A ∈ AS(B ∪ H) st A extends e; ∀e ∈ E−, �A ∈ AS(B ∪ H) st A extends e; ∀o ∈ Ob,

B ∪ H bravely respects o; and, ∀o ∈ Oc, B ∪ H cautiously respects o.

In (Law et al. 2015), we proposed a learning algorithm, called ILASP2, and proved

that it is sound and complete with respect to ILPLOAS tasks. We use the notation

ILASP2(〈B, SM, E〉) to denote a function that uses ILASP2 to return an optimal

(shortest in terms of number of literals) solution of the task 〈B, SM, E〉. ILASP2

terminates for any task such that B ∪SM grounds finitely (or equivalently, ∀H ⊆ SM ,

B ∪ H grounds finitely). We call any such task well defined.

3 Context-dependent Learning from Ordered Answer Sets

In this section, we present an extension to the ILPLOAS framework called Context-

dependent Learning from Ordered Answer Sets (written ILP context
LOAS). In this new

learning framework, examples can be given with an extra background knowledge

called the context of an example. The idea is that each context only applies to a

particular example, giving more structure to the background knowledge.

Definition 2

A context-dependent partial interpretation (CDPI) is a pair 〈e, C〉, where e is a partial

interpretation and C is an ASP program with no weak constraints, called a context. A

context-dependent ordering example (CDOE) o is a pair of CDPIs, 〈〈e1, C1〉, 〈e2, C2〉〉.
A program P is said to bravely (resp. cautiously) respect o if for at least one (resp.

every) pair 〈A1, A2〉 such that A1 ∈ AS(P ∪ C1), A2 ∈ AS(P ∪ C2), A1 extends e1 and

A2 extends e2, it is the case that A1 ≺P A2.

https://doi.org/10.1017/S1471068416000351 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000351

838 M. Law, A. Russo, K. Broda

Example 2

Consider the programs P = {coin(1..2). 1{val(C, h), val(C, t)}1:- coin(C).}, C1 =

{val(1, V):- val(2, V).} and C2 = {:- val(1, V), val(2, V).}. AS(P ∪ C1) =

{{val(1, h), val(2, h)}, {val(1, t), val(2, t)}} and AS(P ∪ C2) = {{val(1, h),
val(2, t)}, {val(1, t), val(2, h)}}. Also consider the CDOE o = 〈〈e1, C1〉, 〈e2, C2〉〉,
where e1 = e2 = 〈∅, ∅〉, Let W = {:∼ val(C, t).[1@1, C]}. P ∪ W bravely respects o

as {val(1, h), val(2, h)} is preferred to {val(1, h), val(2, t)}, but does not cautiously

respect o as {val(1, t), val(2, t)} is not preferred to {val(1, h), val(2, t)}.

Examples with empty contexts are equivalent to examples in ILPLOAS . Note that

contexts do not contain weak constraints. The operator ≺P defines the ordering

over two answer sets based on the weak constraints in one program P . So, given a

CDOE 〈〈e1, C1〉, 〈e2, C2〉〉, in which C1 and C2 contain different weak constraints, it

is not clear whether the ordering should be checked using the weak constraints in

P , P ∪ C1, P ∪ C2 or P ∪ C1 ∪ C2. We now present the ILP context
LOAS framework.

Definition 3

A Context-dependent Learning from Ordered Answer Sets (ILP context
LOAS) task is a tuple

T = 〈B, SM, E〉 where B is an ASP program called the background knowledge,

SM is the set of rules allowed in the hypotheses (the hypothesis space) and E is

a tuple 〈E+, E−, Ob, Oc〉 called the examples. E+ and E− are finite sets of CDPIs

called, respectively, positive and negative examples, and Ob and Oc are finite sets of

CDOEs over E+ called, respectively, brave and cautious orderings. A hypothesis H

is an inductive solution of T (written H ∈ ILP context
LOAS (T)) if and only if:

1. H ⊆ SM;

2. ∀〈e, C〉 ∈ E+, ∃A ∈ AS(B ∪ C ∪ H) st A extends e;

3. ∀〈e, C〉 ∈ E−, �A ∈ AS(B ∪ C ∪ H) st A extends e;

4. ∀o ∈ Ob, B ∪ H bravely respects o; and finally,

5. ∀o ∈ Oc, B ∪ H cautiously respects o.

In this paper we will say a hypothesis covers an example iff it satisfies the appropriate

condition in (2)-(5); e.g. a brave CDOE is covered iff it is bravely respected.

Example 3

In general, it is not the case that an ILP context
LOAS task can be translated into an

ILPLOAS task simply by moving all the contexts into the background knowledge

(B ∪ C1 ∪ . . . ∪ Cn where C1, . . . , Cn are the contexts of the examples). Consider, for

instance, the ILP context
LOAS task 〈B, SM, 〈E+, E−, Ob, Oc〉〉 defined as follows:

• B = ∅. E− = ∅. Ob = ∅. Oc = ∅
• SM = {go out:- raining. go out:- not raining.}
• E+ = {〈〈{go out}, ∅〉, ∅〉, 〈〈∅, {go out}〉, {raining.}〉}

This task has one solution: go out:- not raining. But, if we were to add all

the contexts to the background knowledge, we would get a background knowledge

containing the single fact raining. So, there would be no way of explaining both

examples, as every hypothesis would, in this case, lead to a single answer set (either

{raining, go out} or {raining}), and therefore cover only one of the examples.

https://doi.org/10.1017/S1471068416000351 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000351

Iterative learning of answer set programs from context-dependent examples 839

To capture, instead, the meaning of context-dependent examples accurately, we

could augment the background knowledge with the choice rule 0{raining}1 and

define the ILPLOAS examples as the pairs 〈{go out}, {raining}〉 and 〈{raining},
{go out}〉. In this way, answer sets of the inductive solution would exclude go out

when raining (i.e., in the context of raining), and include go out otherwise, which

is the correct meaning of the given context-dependent examples.

Definition 4 gives a general translation of ILP context
LOAS to ILPLOAS , which enables

the use of ILASP2 to solve ILP context
LOAS tasks. The translation assumes that each

example ex has a unique (constant) identifier, exid, and that for any CDPI ex =

〈〈einc, eexc〉, C〉, c(ex) is the partial interpretation 〈einc ∪ {ctx(exid)}, eexc〉, where ctx

is a new predicate. Also, for any program P and any atom a, append(P , a) is the

program constructed by appending a to the body of every rule in P .

Definition 4

For any ILP context
LOAS task T = 〈B1, SM, 〈E+

1 , E
−
1 , O

b
1 , O

c
1〉〉, TLOAS (T) = 〈B2, SM,

〈E+
2 , E

−
2 , O

b
2 , O

c
2〉〉, where the components of TLOAS (T) are as follows:

• B2 = B1 ∪ {append(C, ctx(exid)) | ex = 〈e, C〉 ∈ E+
1 ∪ E−

1 }
∪
{
1{ctx(id1), . . . , ctx(idn)}1.

∣∣{id1, . . . , idn} = {exid | ex ∈ E+
1 ∪ E−

1 }
}

• E+
2 = {c(ex) | ex ∈ E+

1 }; E−
2 = {c(ex) | ex ∈ E−

1 }
• Ob

2 ={〈c(ex1), c(ex2)〉 | 〈ex1, ex2〉∈Ob
1};Oc

2 ={〈c(ex1), c(ex2)〉 | 〈ex1, ex2〉∈Oc
1}

We say that an ILP context
LOAS task T is well defined if and only if TLOAS (T) is a well

defined ILPLOAS task. Before proving that this translation is correct, it is useful to

introduce a lemma (which is proven in Appendix A). Given a program P and a set

of contexts C1, . . . , Cn, Lemma 1 gives a way of combining the alternative contexts

into the same program. Each rule of each context Ci, is appended with a new atom

ai, unique to Ci, and a choice rule stating that exactly one of the new ai atoms is

true in each answer set. This means that the answer sets of P ∪ Ci, for each Ci, are

the answer sets of the combined program that contain ai (with the extra atom ai).

Lemma 1

For any program P (consisting of normal rules, choice rules and constraints) and

any set of pairs S = {〈C1, a1〉, . . . , 〈Cn, an〉} such that none of the atoms ai appear

in P (or in any of the C ’s) and each ai atom is unique: AS(P ∪ {1{a1, . . . , an}1.} ∪
{append(Ci, ai)|〈Ci, ai〉 ∈ S}) = {A ∪ {ai}|A ∈ AS(P ∪ Ci), 〈Ci, ai〉 ∈ S}

Theorem 1

For any ILP context
LOAS learning task T , ILPLOAS (TLOAS (T)) = ILP context

LOAS (T).

Proof

Let T = 〈B1, SM, 〈E+
1 , E

−
1 , O

b
1 , O

c
1〉〉 and TLOAS (T) = 〈B2, SM, 〈E+

2 , E
−
2 , O

b
2 , O

c
2〉〉.

H ∈ ILP context
LOAS (T) ⇔ H ⊆ SM; ∀〈e, C〉 ∈ E+

1 , ∃A ∈ AS(B1 ∪ C ∪ H) st A extends

e; ∀〈e, C〉 ∈ E−
1 , �A ∈ AS(B1 ∪ C ∪ H) st A extends e; ∀o ∈ Ob

1 , B1 ∪ H bravely

respects o; ∀o ∈ Oc
1, B1 ∪ H cautiously respects o

⇔ H ⊆ SM; ∀ex ∈ E+
1 , ∃A ∈ AS(B2 ∪ H) st A extends c(ex); ∀ex ∈ E−

1 , �A ∈
AS(B2 ∪ H) st A extends c(ex); ∀〈ex1, ex2〉 ∈ Ob, B2 ∪ H bravely respects 〈c(ex1),

c(ex2)〉; ∀〈ex1, ex2〉 ∈ Oc, B2 ∪ H cautiously respects 〈c(ex1), c(ex2)〉 (by Lemma 1)

https://doi.org/10.1017/S1471068416000351 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000351

840 M. Law, A. Russo, K. Broda

⇔ H ⊆ SM; ∀e ∈ E+
2 , ∃A ∈ AS(B2 ∪ H) st A extends e; ∀e ∈ E−

2 , �A ∈ AS(B2 ∪ H)

st A extends e; ∀o ∈ Ob, B2 ∪ H bravely respects o; ∀o ∈ Oc, B2 ∪ H cautiously

respects o �

Theorem 1 shows that, by using an automatic TLOAS translation, ILASP2 can be

used to solve ILP context
LOAS tasks. Although this means that any ILP context

LOAS task can

be translated to an ILPLOAS task, context-dependent examples are useful for two

reasons: firstly, they simplify the representation of some learning tasks; and secondly,

the added structure gives more information about which parts of the background

knowledge apply to particular examples. In Section 4 we present a new algorithm

that is able to take advantage of this extra information.

Theorem 2

The complexity of deciding whether an ILP context
LOAS task is satisfiable is ΣP

2 -complete.

Theorem 2 (proven in Appendix A) implies that the complexity of deciding the

satisfiability of an ILP context
LOAS task is the same as for an ILPLOAS task. Note that,

similar to Theorem 2 in (Law et al. 2015), this result is for propositional tasks.

4 Iterative Algorithm: ILASP2i

In the previous section, we showed that our new ILP context
LOAS task can be translated

into ILPLOAS , and therefore solved using the ILASP2 algorithm (Law et al. 2015).

However, ILASP2 may suffer from scalability issues, due to the number of examples

or the size and complexity of the grounding of the hypothesis space, when combined

with the background knowledge. In this paper, we address the first scalability issue

by introducing a new algorithm, ILASP2i, for solving (context-dependent) learning

from ordered answer sets tasks. The algorithm iteratively computes a hypothesis

by incrementally constructing a subset of the examples that are relevant to the

search. These are essentially counterexamples for incorrect hypotheses. The idea of

the algorithm is to incrementally build, during the computation, a set of relevant

examples and, at each iterative step, to learn hypotheses with respect only to this

set of relevant examples instead of the full set of given examples. Although we do

not directly address the second issue of large and complicated hypothesis spaces, it

is worth noting that by using the notion of context-dependent examples, the size of

the background knowledge (and therefore the grounding of the hypothesis space) in

a particular iteration of our algorithm may be much smaller. In fact, in Section 5 we

show that the background knowledge of one learning task (learning the definition

of a Hamiltonian graph) can be eliminated altogether by using contexts.

Definition 5

Consider an ILP context
LOAS learning task T = 〈B, SM, 〈E+, E−, Ob, Oc〉〉 and a hypothesis

H ⊆ SM . A (context-dependent) example ex is relevant to H given T if ex ∈
E+ ∪ E− ∪ Ob ∪ Oc and B ∪ H does not cover ex.

The intuition of ILASP2i (Algorithm 1) is that we start with an empty set of

relevant examples and an empty hypothesis. At each step of the search we look for

https://doi.org/10.1017/S1471068416000351 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000351

Iterative learning of answer set programs from context-dependent examples 841

an example which is relevant to our current hypothesis (i.e. an example that B ∪ H

does not cover). If no such example exists, then we return our current hypothesis as

an optimal inductive solution; otherwise, we add the example to our relevant set of

examples and use ILASP2 to compute a new hypothesis.

The notation �, in line 5 of algorithm 1, means to add the relevant example re

to the correct set in Relevant (the first set if it is a positive example etc).

Algorithm 1 ILASP2i

1: procedure ILASP2i (〈B, SM, E〉)
2: Relevant = 〈∅, ∅, ∅, ∅〉; H = ∅;

3: re = findRelevantExample(〈B, SM, E〉, H);

4: while re �= nil do

5: Relevant � re;

6: H = ILASP2(TLOAS (〈B, SM, Relevant〉));
7: if (H == nil) return UNSATISFIABLE;

8: else re = findRelevantExample(〈B, SM, E〉, H);

9: end while

10: returnH;

11: end procedure

The function findRelevantExample(〈B, SM, E〉, H) returns a (context-dependent)

example in E which is not covered by B ∪ H , or nil if no such example exists. It

works by encoding B ∪ H and E into a meta program whose answer sets can be

used to determine which examples in E are covered. This meta program contains a

choice rule, which specifies that each answer set of the program tests the coverage

of a single CDPI or CDOE example. For a positive or negative example ex = 〈e, C〉,
if there is an answer set of the meta program corresponding to ex then there must

be at least one answer set of B ∪ C ∪ H that extends e. This means that positive

(resp. negative) examples are covered iff there is at least one (resp. no) answer set

of the meta program that corresponds to ex. Similarly, CDOE’s are encoded such

that each brave (resp. cautious) ordering o is respected iff there is at least one (resp.

no) answer set corresponding to o. findRelevantExamples uses the answer sets of

the meta program to determine which examples are not covered. Details of the meta

program are in Appendix B, including proof of its correctness.

It should be noted that in the worst case our set of relevant examples is equal

to the entire set of examples. In this case, ILASP2i is slower than ILASP2. In real

settings, however, as examples are not carefully constructed, there is likely to be

overlap between examples, so the relevant set will be much smaller than the whole set.

Theorem 3 shows that ILASP2i has the same condition for termination as ILASP2.

Theorem 3

ILASP2i terminates for any well defined ILP context
LOAS task.

Note that although the algorithm is sound, it is complete only in the sense that it

always returns an optimal solution if one exists (rather than returning the full set).

https://doi.org/10.1017/S1471068416000351 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000351

842 M. Law, A. Russo, K. Broda

Table 1. The running times of ILASP2, ILASP2i and ILASP2i pt. TO stands for time out (6

hours) and OOM stands for out of memory.

#examples time/s Memory/kB
Learning

task E+ E− Ob Oc 2 2i pt 2i 2 2i pt 2i

Hamilton A 100 100 0 0 10.3 4.2 4.3 9.7×104 1.2×104 1.2×104

Hamilton B 100 100 0 0 32.0 84.9 3.6 3.6×105 2.7×105 1.4×104

Scheduling A 400 0 110 90 291.9 64.2 63.4 2.7×106 1.7×105 1.7×105

Scheduling B 400 0 128 72 347.2 40.1 40.3 5.2×106 2.6×105 2.6×105

Scheduling C 400 0 133 67 1141.8 123.6 124.2 8.4×106 4.9×105 5.0×105

Agent A 200 0 0 0 444.5 56.7 39.1 4.7×106 3.7×105 9.8×104

Agent B 50 0 0 0 TO 212.3 9.4 TO 1.1×106 1.8×105

Agent C 80 120 0 0 808.7 132.3 60.1 2.9×106 3.5×105 8.4×104

Agent D 172 228 390 0 OOM 863.3 408.4 OOM 2.4×106 8.0×105

Theorem 4

ILASP2i is sound for any well defined ILP context
LOAS task, and returns an optimal

solution if one exists.

Note that in Algorithm 1 the translation of a context-dependent learning task is

applied to the context-dependent task generated incrementally at each step of the

iteration (see line 6) instead of pre-translating the full initial task. This has the

advantage that the background knowledge of the translated task only contains the

contexts for the relevant examples, rather than the full set. In Section 5 we compare

the efficiency of ILASP2i on ILP context
LOAS tasks that have been pre-translated with cor-

responding tasks that have not been pre-translated, and demonstrate that in the latter

case ILASP2i can be up to one order of magnitude faster. We refer to the application

of ILASP2i with an automatic pre-translation to ILPLOAS as ILASP2i pt.

5 Evaluation

In this section, we demonstrate the improvement in performance of ILASP2i over

ILASP2, both in terms of running time and memory usage. Although there are

benchmarks for ASP solvers, as ILP systems for ASP are relatively new, and solve

different computational tasks, there are no benchmarks for learning ASP programs.

We therefore investigate new problems. To demonstrate the increased performance of

ILASP2i over ILASP2, we chose tasks with large numbers of examples. We compare

the algorithms in four problem settings, each including tasks requiring different

components of the ILP context
LOAS framework. We also investigate how the performance

and accuracy vary with the number of examples, for the task of learning user journey

preferences. All learning tasks were run with ILASP2, ILASP2i and ILASP2i pt1.

Our first problem setting is learning the definition of whether a graph is Hamil-

tonian or not (i.e. whether it contains a Hamilton cycle). Hamilton A is an ILPLOAS

(non context-dependent) task. The background knowledge B consists of the two

choice rules 1 { node(1), node(2), node(3), node(4) }4 and 0 { edge(N1, N2) } 1 :-

1 For details of the tasks discussed in this section and how to download and run ILASP2, ILASP2i and
ILASP2i pt, see https://www.doc.ic.ac.uk/ ml1909/ILASP.

https://doi.org/10.1017/S1471068416000351 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000351

Iterative learning of answer set programs from context-dependent examples 843

Fig. 1. (a) the average computation time and (b) the memory usage of ILASP2, ILASP2i

and ILASP2i pt for Hamilton A and B.

node(N1), node(N2), meaning that the answer sets of B correspond to the graphs of

size 1 to 4. Each example then corresponds to exactly one graph, by specifying which

node and edge atoms should be true. Positive examples correspond to Hamiltonian

graphs, and negative examples correspond to non-Hamiltonian graphs. Hamilton

B is an ILP context
LOAS encoding of the same problem. The background knowledge is

empty, and each example has a context consisting of the node and edge atoms

representing a single graph. ILASP2i performs significantly better than ILASP2 in

both cases. Although ILASP2i is slightly faster at solving Hamilton B compared with

Hamilton A, one interesting result is that ILASP2 and ILASP2i pt perform better

on Hamilton A. This is because the non context-dependent encoding in Hamilton A

is more efficient than the automatic translation (using definition 4) of Hamilton B.

To test how the size of the contexts affects the performance of the three algorithms,

we reran the Hamilton A and B experiments with the maximum size of the graphs

varying from 4 to 10. Each experiment was run 100 times with randomly generated

sets of positive and negative examples (100 of each in each experiment). The results

(figure 1) show that ILASP2i performs best in both cases - interestingly, on average,

there is no difference between Hamilton A (non context-dependent) and Hamilton

B (context-dependent) at first, but as the maximum graph size increases, the domain

of the background knowledge in Hamilton A increases and so ILASP2i performs

better on Hamilton B. Although ILASP2i pt is much slower on Hamilton B than

Hamilton A, it uses significantly less memory on the former. As the performance of

ILASP2i and ILASP2i pt is the same on any non context-dependent task, we do

not show the results for ILASP2i pt on Hamilton A.

We also reconsider the problem of learning scheduling preferences, first presented

in (Law et al. 2015). In this setting, the goal is to learn an academic’s preferences

about interview scheduling, encoded as weak constraints. Tasks A-C in this case

are over examples with 3x3, 4x3 and 5x3 timetables, respectively. As this setting

contains no contexts for the examples, the performance of ILASP2i and ILASP2i pt

are relatively similar; however, for larger timetables both are over an order of

magnitude faster and use over an order of magnitude less memory than ILASP2.

https://doi.org/10.1017/S1471068416000351 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000351

844 M. Law, A. Russo, K. Broda

Interestingly, although ILASP2i does not directly attempt to scale up the size of

possible problem domains (in this case, the dimensions of the timetables), this

experiment demonstrates that ILASP2i does (indirectly) improve the performance

on larger problem domains. One unexpected observation is that ILASP2i runs faster

on task B than task A. This is caused by the algorithm choosing “better” relevant

examples for task B, and therefore needing a smaller set of relevant examples. On

average, the time for 4x3 timetables would be expected to be higher than the 3x3’s.

Our third setting is taken from (Law et al. 2014) and is based on an agent

learning the rules of how it is allowed to move within a grid. Agent A requires a

hypothesis describing the concept of which moves are valid, given a history of where

an agent has been. Agent B requires a similar hypothesis to be learned, but with

the added complexity that an additional concept is required to be invented. While

Agent A and Agent B are similar to scenarios 1 and 2 in (Law et al. 2014), the key

difference is that different examples contain different histories of where the agent

has been. These histories are encoded as contexts, whereas in (Law et al. 2014), one

single history was encoded in the background knowledge. There are also many more

examples in these experiments. In Agent C, the hypothesis from Agent A must be

learned along with a constraint ruling out histories in which the agent visits a cell

twice (not changing the definition of valid move). This requires negative examples

to be given, in addition to positive examples. In Agent D, weak constraints must be

learned to explain why some traces through the grid are preferred to others. This

uses positive, negative and brave ordering examples. In each case, ILASP2i per-

forms significantly better than ILASP2i pt, which performs significantly better than

ILASP2 (ILASP2 times out in one experiment, and runs out of memory in another).

In our final setting, we investigate the problem of learning a user’s preferences

over alternative journeys, in order to demonstrate how the performance of the

three algorithms varies with the number of examples. We also investigate how the

accuracy of ILASP2i varies with the number of examples. In this scenario, a user

makes requests to a journey planner to get from one location to another. The user

then chooses a journey from the alternatives returned by the planner. A journey

consists of one or more legs, in each of which the user uses a single mode of

transport.

We used a simulation environment (Poxrucker et al. 2014) to generate realistic

examples of journeys. In our experiment, we ran the simulator for one (simulated)

day to generate a set of journey requests, along with the attributes of each possible

journey. The attributes provided by the simulation data are: mode, which takes the

value bus, car, walk or bicycle; distance, which takes an integer value between

1 and 20000; and crime rating. As the crime ratings were not readily available

from the simulator, we used a randomly generated value between 1 and 5.

For our experiments, we assume that the user’s preferences can be represented by

a set of weak constraints based on the attributes of a leg. We constructed a set of

possible weak constraints, each including at most 3 literals. Most of these literals

capture the leg’s attributes, e.g., mode(L, bus) or crime rating(L, R) (if the attribute’s

values range over integers this is represented by a variable, otherwise each possible

value is used as a constant). For the crime rating (crime rating(L, R)), we also allow

https://doi.org/10.1017/S1471068416000351 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000351

Iterative learning of answer set programs from context-dependent examples 845

Fig. 2. average accuracy of ILASP2i

comparisons of the form R > c where c is an integer from 1 to 4. The weight of

each weak constraint is a variable representing the distance of the leg in the rule,

or 1 and the priority is 1, 2 or 3. One possible set of preferences is the set of weak

constraints in Example 1. SJ denotes the set of possible weak constraints.

We now describe how to represent the journey preferences scenario in

ILP context
LOAS . We assume a journey is encoded as a set of attributes of the legs of the

journey; for example the journey {distance(leg(1), 2000), distance(leg(2), 100),
mode(leg(1), bus), mode(leg(2), walk)} has two legs; in the first leg, the person must

take a bus for 2000m and in the second, he/she must walk 100m. Given a set

of such journeys J = {j1, . . . , jn} and a partial ordering O over J , M(J, O, SJ) is

the ILP context
LOAS task 〈∅, SJ , E+, ∅, Ob, ∅〉, where E+ = {〈〈∅, ∅〉, ji〉 | ji ∈ J} and Ob =

{〈〈〈∅, ∅〉, j1〉, 〈〈∅, ∅〉, j2〉〉 | 〈j1, j2〉 ∈ O}. Each solution of M(J, O, SJ) is a set of weak

constraints representing preferences which explain the ordering of the journeys. Note

that the positive examples are automatically satisfied as the (empty) background

knowledge (combined with the context) already covers them. Also, as the background

knowledge together with each context has exactly one answer set, the notions of

brave and cautious orderings coincide; hence, we do not need cautious ordering

examples for this task. Furthermore, since we are only learning weak constraints,

and not hard constraints, the task also has no negative examples (a negative example

would correspond to an invalid journey).

In each experiment we randomly selected 100 test hypotheses, each consisting of

between 1 and 3 weak constraints from SJ . For each test hypothesis HT , we then

used the simulated journeys to generate a set of ordering examples 〈j1, j2〉 such that

j1 was one of the optimal journeys, given H , and j2 was a non-optimal alternative

to j1. We then tested the algorithms on tasks with varying numbers of ordering

examples by taking a random sample of the complete set of ordering examples.

The accuracy of ILASP2i for different numbers of examples is shown in Figure 2.

The average accuracy converges to around 85% after roughly 20 examples. As

we only gave examples of journeys such that one was preferred to the other, the

hypotheses were often incorrect at predicting that two journeys were equal. We

therefore introduced a new type of brave ordering example to ILASP2i, which

https://doi.org/10.1017/S1471068416000351 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000351

846 M. Law, A. Russo, K. Broda

Fig. 3. (a) the average computation time and (b) the memory usage of ILASP2, ILASP2i

and ILASP2i pt for learning journey preferences.

enables us to specify that two answer sets should be equally optimal. We ran

the same experiment with half of the ordering examples as the new “equality”

orderings. The average accuracy increased to around 93% after 40 examples. Note

that as ILASP2 and ILASP2i return an arbitrary optimal solution of a task, their

accuracy results, on average, are the same. We therefore only present the results for

ILASP2i.

Figures 3(a) and (b) show the running times and memory usage (respectively) for

up to 500 examples for ILASP2, ILASP2i and ILASP2i pt. For experiments with

more than 200 examples, ILASP2 ran out of memory. By 200 examples, ILASP2i

is already over 2 orders of magnitude faster and uses over 2 orders of magnitude

less memory than ILASP2, showing a significant improvement in scalability. The

fact that by 500 examples ILASP2i is an order of magnitude faster without the

pre-translation shows that, in this problem domain, the context is a large factor in

this improvement; however, ILASP2i pt’s significantly improved performance over

ILASP2 shows that the iterative nature of ILASP2i is also a large factor.

6 Related Work

Most approaches to ILP address the learning of definite programs (Srinivasan 2001;

Muggleton et al. 2014), usually aiming to learn Prolog programs. As the language

features of Prolog and ASP are different (e.g. ASP lacks lists, Prolog lacks choice), a

comparison is difficult. On the shared language of ASP and the fragment of Prolog

learned by these systems (definite rules), a traditional ILP task can be represented

with a single positive example (where the inclusions (resp. exclusions) of this example

correspond to the positive (resp. negative) examples in the original task).

The idea of context-dependent example has similarities with the concept of learning

from interpretation transitions (LFIT) (Inoue et al. 2014), where examples are pairs

of set of atoms 〈I, J〉 such that B ∪ H must satisfy TB∪H (I) = J (where TP (I)

is the set of immediate consequences of I with respect to the program P). LFIT

technically learns under the supported model semantics and uses a far smaller

https://doi.org/10.1017/S1471068416000351 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000351

Iterative learning of answer set programs from context-dependent examples 847

language than that supported by ILP context
LOAS (not supporting choice rules or hard or

weak constraints), but can be simply represented in ILP context
LOAS . The head h of each

rule in the background knowledge and hypothesis space should be replaced by j(h),

and each body literal b, by i(b). Each example 〈I, J〉 should then be mapped to a

context-dependent positive example 〈〈{j(a) | a ∈ J}, ∅〉, {i(a). | a ∈ I}〉.
Other than our own frameworks, the two main ILP frameworks under the answer

set semantics are brave and cautious induction (Sakama and Inoue 2009). As

ILP context
LOAS subsumes ILPLOAS , ILP

context
LOAS inherits the ability to perform both brave

and cautious induction. ILASP2i is therefore more general than systems such as (Ray

2009; Corapi et al. 2012; Athakravi et al. 2014), which can only perform brave

induction. In ILP, learners can be divided into batch learners (those which consider

all examples simultaneously), such as (Ray 2009; Corapi et al. 2012; Athakravi

et al. 2014; Law et al. 2014), and learners which consider each example in turn

(using a cover loop), such as (Srinivasan 2001; Muggleton 1995; Ray et al. 2003).

Under the answer set semantics, most learners are batch learners due to the non-

monotonicity. In fact, it is worth noting that, in particular, although the HAIL (Ray

et al. 2003) algorithm for learning definite clauses employs a cover loop, the later

XHAIL algorithm is a batch learner as it learns non-monotonic programs (Ray

2009). One approach which did attempt to utilise a cover loop is (Sakama 2005).

Their approach, however, was only sound for a small (monotonic) fragment of ASP

if the task had multiple examples, as otherwise later examples could cause earlier

examples to become uncovered.

The ILED system (Katzouris et al. 2015) extended the ideas behind XHAIL

in order to allow incremental learning of event definitions. This system takes as

input, multiple “windows” of examples and incrementally learns a hypothesis. As

the approach is based on theory revision (at each step, revising the hypothesis from

the previous step), ILED is not guaranteed to learn an optimal solution. In contrast,

ILASP2i incrementally builds a set of relevant examples and learns a new hypothesis

at each iteration. In so doing it is guaranteed to compute an optimal solution.

7 Conclusion

In this paper, we have presented an extension to our ILPLOAS framework which

allows examples to be given with extra background knowledge called the context of

the example. We have shown that these contexts can be used to give structure to the

background knowledge, showing which parts apply to which examples. We have also

presented a new algorithm, ILASP2i, which makes use of this added structure to

improve the efficiency over the previous ILASP2. In Section 5, we demonstrated that

our new approach is considerably faster for tasks with large numbers of examples.

Unlike previous systems for learning under the answer set semantics, ILASP2i is

not a batch learner and does not need to consider all examples at the same time, but

instead iteratively builds a set of relevant examples. This combination of relevant

examples and the added structure given by contexts means that ILASP2i can be up

to 2 orders of magnitude better than ILASP2, both in terms of time and memory

https://doi.org/10.1017/S1471068416000351 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000351

848 M. Law, A. Russo, K. Broda

usage. In future work, we intend to investigate how to improve the scalability of

ILASP2i with larger hypothesis spaces and with noisy examples.

Supplementary material

For supplementary material for this article, please visit http://dx.doi.org/10.1017/

S1471068416000351

References

Athakravi, D., Corapi, D., Broda, K. and Russo, A. 2014. Learning through hypothesis

refinement using answer set programming. In Inductive Logic Programming. Springer, 31–46.

Corapi, D., Russo, A. and Lupu, E. 2012. Inductive logic programming in answer set

programming. In Inductive Logic Programming. Springer, 91–97.

Inoue, K., Ribeiro, T. and Sakama, C. 2014. Learning from interpretation transition. Machine

Learning 94, 1, 51–79.

Katzouris, N., Artikis, A. and Paliouras, G. 2015. Incremental learning of event definitions

with inductive logic programming. Machine Learning 100, 2-3, 555–585.

Law, M., Russo, A. and Broda, K. 2014. Inductive learning of answer set programs. In

Logics in Artificial Intelligence (JELIA 2014). LNAI, vol. 8761. Springer.

Law, M., Russo, A. and Broda, K. 2015. Learning weak constraints in answer set

programming. Theory and Practice of Logic Programming 15, 4-5, 511–525.

Muggleton, S. 1991. Inductive logic programming. New Generation Computing 8, 4, 295–318.

Muggleton, S. 1995. Inverse entailment and Progol. New Generation Computing 13, 3-4,

245–286.

Muggleton, S. H., Lin, D., Pahlavi, N. and Tamaddoni-Nezhad, A. 2014. Meta-interpretive

learning: application to grammatical inference. Machine Learning 94, 1, 25–49.

Poxrucker, A., Bahle, G. and Lukowicz, P. 2014. Towards a real-world simulator for

collaborative distributed learning in the scenario of urban mobility. In Proceedings of

the Eighth IEEE International Conference on Self-Adaptive and Self-Organizing Systems

Workshops. IEEE Computer Society, 44–48.

Ray, O. 2009. Nonmonotonic abductive inductive learning. Journal of Applied Logic 7, 3,

329–340.

Ray, O., Broda, K. and Russo, A. 2003. Hybrid abductive inductive learning: A generalisation

of Progol. In Inductive Logic Programming. Springer, 311–328.

Sakama, C. 2005. Induction from answer sets in nonmonotonic logic programs. ACM

Transactions on Computational Logic (TOCL) 6, 2, 203–231.

Sakama, C. and Inoue, K. 2009. Brave induction: a logical framework for learning from

incomplete information. Machine Learning 76, 1, 3–35.

Srinivasan, A. 2001. The aleph manual. Machine Learning at the Computing Laboratory,

Oxford University .

https://doi.org/10.1017/S1471068416000351 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000351

