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This study explores the control of mesoscale variability by topographic features
with lateral scales that are less than the scale of the eddies generated by baroclinic
instability. These dynamics are described using a combination of numerical simulations
and an asymptotic multiscale model. The multiscale method makes it possible to
express the system dynamics by a closed set of equations written entirely in terms
of mesoscale variables, thereby providing a physical basis for the development of
submesoscale parameterization schemes. The submesoscale topography is shown
to influence such fundamental properties of mesoscale variability as the meridional
eddy-induced transport and eddy kinetic energy. It is argued that the adverse influence
of submesoscale topography on baroclinic instability is ultimately caused by the
homogenization tendency of potential vorticity in the bottom density layer. The
multiscale model formally assumes a substantial separation between the scales of
interacting flow components. However, the comparison of asymptotic solutions with
their submesoscale-resolving numerical counterparts indicates that the multiscale
method is remarkably accurate even when scale separation is virtually non-existent.
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1. Introduction
The interaction of oceanic currents with spatially variable topography represents

one of the most fundamental and challenging problems in geophysical fluid dynamics
(e.g. Treguier & McWilliams 1990; Treguier & Panetta 1994; Holloway 2008). There
is overwhelming evidence that the non-uniformity of the ocean depth has major
consequences for the intensity and pattern of flows at various scales (e.g. Holloway
1986; Dewar 1998; Thompson 2010; Thompson & Sallée 2012; LaCasce et al. 2019).
However, the physical mechanisms of such interactions have only been partially
explained after more than half a century of investigation. Particularly relevant for
our study is the observation that topography can dramatically alter properties of
baroclinic instability (e.g. Hart 1975; Vallis & Maltrud 1993; Chen, Kamenkovich
& Berloff 2015) which, in turn, is a major source of mesoscale variability in the
ocean (e.g. Pedlosky 1987; Vallis 2006; Marshall, Maddison & Berloff 2012). The
term mesoscale variability is used here to describe eddies of the lateral extent of
the order of 100 km, which dominate transient flow components in much of the
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World Ocean (e.g. Stammer 1998; Chelton et al. 2007). Mesoscale eddies profoundly
affect large-scale circulation (e.g. Robinson 1983; Olson 1991; McWilliams 2008),
particularly in the Southern Ocean (e.g. Marshall & Radko 2003). They are known
to influence oceanic heat budget (e.g. Griffies et al. 2015), biological productivity
(e.g. McGillicuddy 2016) and dispersion of pollutants (e.g. Masumoto et al. 2012).
The ubiquity and geophysical significance of mesoscale eddies demand clear physical
insight into all aspects of their dynamics. From a more pragmatic perspective, it is
also critical to develop parameterizations of small-scale processes that affect baroclinic
instability but are not fully resolved by the current generation of global numerical
models.

While the effects of topography on baroclinic instability and on ensuing eddies
have already been addressed in a number of studies, this research area has
been disproportionately dominated by models in which scales of topography
are commensurate with or exceed those of mesoscale variability (e.g. Chen &
Kamenkovich 2013; Radko & Kamenkovich 2017; Brown, Gulliver & Radko 2019).
The impact of submesoscale topography – defined here as structures with a lateral
extent of 1–10 km – has been much less investigated. Notable exceptions include
analytical models of Benilov (2001) and Vanneste (2003), which quantified linear
stability properties of large-scale vertically sheared currents. These studies suggest
that submesoscale topography can have a strong and adverse influence on the
development of baroclinic instability. The possibility of submesoscale stabilization
is also supported by recent numerical simulations of LaCasce et al. (2019), who
demonstrated that topographic features of realistic height can effectively suppress
the baroclinic instability of currents that are comparable in size and strength to
the Gulf Stream and Kuroshio. Yet another compelling argument that underscores
the potential significance of submesoscale topography comes from the inspection of
observationally derived bathymetric spectra. This analysis (appendix A) shows that the
variance of the bottom slope is dominated by submesoscale components of topography.
Of course, this observation by itself does not guarantee that its impact on baroclinic
instability exceeds the influence of large-scale topography. For instance, it is known
that small-scale modes induced by the bottom roughness tend to decay rapidly in the
vertical direction (Callies 2018). Nevertheless, the estimates in appendix A motivate
efforts to explore the impact of submesoscale topography on baroclinic instability in
greater detail.

The present investigation into topographically induced effects represents a compo-
nent of the broader inquiry into the dynamics of the submesoscale variability
of oceanic flows – a topic which has recently drawn much attention from the
oceanographic community (e.g. McWilliams 2016). This interest was fuelled by
advances in observational techniques and computing power, which led to a broader
appreciation of the significance of submesoscale structures and concurrently opened
previously inaccessible avenues for their exploration (e.g. Levy et al. 2010; Chassignet
& Xu 2017). One of the potentially critical consequences of submesoscale variability
is related to energy transfer between different circulation components. Mechanical
and thermodynamic forcing of the ocean occurs on the scale of its basins, whereas
the energy is ultimately dissipated by molecular processes acting on the microscale.
Unlike larger structures, submesoscale eddies may not fully support the inverse energy
cascade – which is expected for two-dimensional turbulence – resulting in energy
leakage to both larger and smaller scales (e.g. Thomas, Tandon & Mahadevan 2008;
Nikurashin, Vallis & Adcroft 2013). Thus, submesoscale variability could represent
an essential conduit for energy transfer to the microscale.
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While high-resolution simulations clearly reflect the general ubiquity of submeso-
scales, the intensity of these structures is spatially heterogeneous. In particular,
submesoscale eddies are known to be very active in the upper mixed layer (e.g.
Fox-Kemper, Ferrari & Hallberg 2008; Whitt & Taylor 2017) and in the vicinity of
salient topographic features (e.g. Dewar, McWilliams & Molemaker 2015; Rosso et al.
2015; Gula, Molemaker & McWilliams 2016). The present investigation is focused
on the dynamics of latter, topographically induced submesoscale variability, which is
examined using a multi-layer ocean model of variable depth. The background current
in our model is baroclinically unstable and therefore the flow field is heavily populated
by mesoscale eddies. The model topography contains submesoscale features and their
interaction with baroclinic instability produces an active submesoscale eddy field
which, in turn, affects mesoscale structures. We find, in accord with previous studies,
that dominant topographically induced submesoscale patterns are largely contained
in the lowest density layer that is in direct contact with the sea floor. Nevertheless,
the influence of these submesoscale patterns can be surprisingly non-local, extending
vertically throughout the entire water column and reducing the intensity of baroclinic
instability at all levels.

The analysis of the interaction between submesoscale topography and eddies
generated by baroclinic instability is accomplished using a multiscale method.
Multiscale modelling is a vibrant, rapidly developing field with a broad range
of applications described, for example, in the review by Mei & Vernescu (2010).
Multiscale methods involve rewriting governing equations using two distinct sets of
independent spatial variables corresponding to small and large scales, which ultimately
leads to a set of evolutionary equations expressed entirely in terms of large-scale
quantities. The analysis is based on the expansion in powers of a small parameter
(ε) representing the ratio of typical scales of the small-scale pattern (submesoscale
variability in our case) and those of larger structures (mesoscale eddies). Since
multiscale methods are based directly on governing equations, they do not depend on
empirical parameterizations required by other analytical models.

The majority of multiscale models consider steady analytical small-scale patterns,
exemplified by the Kolmogorov model (e.g. Meshalkin & Sinai 1961; Manfroi &
Young 1999, 2002; Balmforth & Young 2002, 2005; Radko 2014) which represents the
background fields by a single Fourier harmonic. Such studies have been generalized
to incorporate more complicated two-dimensional small-scale structures (e.g. Gama,
Vergassola & Frisch 1994; Vanneste 2000; Novikov & Papanicolaou 2001; Radko
2011). Analogous models have also been developed for three-dimensional patterns
(e.g. Dubrulle & Frisch 1991; Wirth, Gama & Frisch 1995). A series of recent
studies (Radko 2016, 2019; Radko & Kamenkovich 2017) has shown that techniques
of multiscale analysis can also be successfully applied to realistic, dynamically
consistent flow fields. Such models offer a quantitative description of cross-scale
interactions that could be tested by observations and comprehensive simulations. At
the same time, they retain the dynamic transparency of analytical multiscale solutions,
making it possible to unambiguously identify the entire chain of physical processes
at work. The present investigation utilizes the multiscale framework to explain the
interplay of mesoscale eddies, submesoscale variability and topographic influences.
We consider an idealized harmonic model of bathymetry, which leads to transparent
Kolmogorov-type solutions. However, it is our belief that the proposed model can
be generalized to incorporate more general patterns of topography, such as based on
regional in situ observations or on statistical bathymetric spectra (e.g. Goff & Jordan
1988).
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In addition to the general oceanographic interest in explaining the dynamics
of interaction between mesoscale eddies and submesoscale topography from first
principles, multiscale modelling also opens an opportunity to develop accurate and
physically motivated submesoscale parameterizations. Despite continuous advances in
high-performance computing, it is highly unlikely that submesoscale-resolving models
will become a standard choice for extended climate simulations in the foreseeable
future. Thus, the development of submesoscale parameterizations may represent one
of the current priorities in climate science and global ocean modelling. Finally, this
study makes it possible to assess the performance characteristics of the multiscale
model itself. Since the model formally assumes asymptotic scale separation between
interacting flow components, the question arises as to whether it retains its capabilities
when the lines between large and small scales are blurred – which is indeed the case
for the problem of mesoscale–submesoscale interaction. This issue is addressed by
comparing the asymptotic and fully nonlinear solutions in a relatively simple and
easily controlled system. The results of this analysis are encouraging; we find that
the multiscale method is surprisingly accurate even when the scale separation is
virtually non-existent.

The material is organized as follows. In § 2, we describe the model configuration
and present illustrative numerical examples of active interaction between mesoscale
variability and topographically induced submesoscales. The multiscale theory
representing this interaction is formulated in § 3. The model predictions are then
discussed and compared to their nonlinear counterparts (§ 4). In § 5, we draw
conclusions and summarize our findings. The estimates of the relevant scales of
submesoscale topography from observationally derived bathymetric spectra are
given in appendix A. Most calculations in this study, analytical and numerical,
are based on the quasi-geostrophic model. Therefore, in order to assess the potential
significance of non-quasi-geostrophic effects, we also present (appendix B) a series of
simulations performed with a more general shallow-water model. Both models behave
in a consistent manner, which validates conclusions based on the quasi-geostrophic
framework for the regime of interest.

2. Preliminary simulations

Consider a baroclinically unstable zonal flow in an n-layer ocean on the beta plane
(figure 1). The basic current is assumed to be laterally homogeneous and steady – the
configuration which is maintained indefinitely by the mechanical and thermodynamic
forcing of the system. In the following model, U∗i , H∗i and ρ∗i represent the basic
speed, depth and density of layer i, where i = 1, . . . , n, and the asterisks denote
dimensional quantities. The basic velocity of the lowest layer n, which is in the direct
contact with the sea floor, is assumed to be zero (U∗n = 0). Theoretical development
is simplified by assuming identical density differences between adjacent layers 1ρ∗=
ρ∗i − ρ

∗

i−1, although the generalization to variable 1ρ would be rather straightforward.
Baroclinic instability of the basic state generates active mesoscale variability, which
is dominated by eddies with scales comparable to the radius of deformation. To be
specific, in the following analysis we shall refer to the radius of deformation based
on the entire ocean depth H∗ =

∑n
i=1 H∗i ,

R∗d ≡
√

g′∗H∗

f ∗0
, (2.1)
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FIGURE 1. Schematic diagram illustrating the interaction of mesoscale variability with
submesoscale topographic features.

where
g′∗ = g

ρ∗n − ρ
∗

1

ρ∗0
= g

1ρ∗

ρ∗0
(n− 1) (2.2)

is the reduced gravity, ρ∗0 is the reference density, f ∗0 is the reference value of the
Coriolis parameter ( f ∗) in the beta-plane approximation.

As indicated in figure 1, the model topography is spatially variable on scales
(L∗topogr) that are less than the radius of deformation,

L∗topogr ∼ εR
∗

d, (2.3)

where ε � 1. Baroclinic instability of the basic flow generates active mesoscale
variability in all layers. The interaction of eddies in the lower layer with uneven sea
floor produces circulation patterns that are commensurate in size with the scale of
topographic variability. The dynamics of these submesoscale structures (∼L∗topogr) and
their interaction with larger mesoscale eddies (∼R∗d) are the main subjects of our
investigation.

In this study, we shall focus on the intermediate range of topographic scales that
lead to geostrophically balanced submesoscale variability. These scales satisfy the
double requirement

U∗

f ∗0
� L∗topogr� R∗d, (2.4)

where U∗ =maxi(|U∗i |). Restricting the following analysis to the upper-submesoscale
range (2.4) obviously limits the breadth of physical effects that the model can possibly
represent. For instance, the forward energy cascade by submesoscales is left outside
of the scope of the present investigation. Nevertheless, it is generally accepted (e.g.
McWilliams 2016) that the exploration of balanced submesoscale dynamics represents
a convenient starting point of analysis, particularly for the purpose of developing
and testing new theoretical models. Furthermore, the comparison of the following
quasi-geostrophic solutions with their counterparts generated using a more general
shallow-water model (appendix B) reveals their qualitative consistency. The inequality
(2.4) is satisfied by relatively slow flows in the interior of ocean basins. For instance,
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assuming U∗∼ 3× 10−2 m s−1, R∗d∼ 6× 104 m, f ∗0 ∼ 10−4 s−1 and L∗topogr∼ 3× 103 m,
we arrive at

Ro=
U∗

f ∗0 L∗topogr

∼ 0.1, ε=
L∗topogr

R∗d
∼ 0.05. (2.5a,b)

The low values of the Rossby number (Ro) and the scale separation parameter (ε)
justify the concurrent application of the multiscale method (§ 3) and the more common
quasi-geostrophic model (e.g. Charney 1948, 1971; Pedlosky 1987):

∂Q∗1
∂t∗
+ J(Ψ ∗1 ,Q∗1)= ν

∗
∇

4Ψ ∗1 ,

Q∗1 =∇
2Ψ ∗1 +

f ∗20

g′∗locH
∗

1
(Ψ ∗2 −Ψ

∗

1 )+ β
∗y∗,

∂Q∗i
∂t∗
+ J(Ψ ∗i ,Q∗i )= ν

∗
∇

4Ψ ∗i , i= 2, . . . , (n− 1),

Q∗i =∇
2Ψ ∗i +

f ∗20

g′∗locH
∗
i
(Ψ ∗i−1 +Ψ

∗

i+1 − 2Ψ ∗i )+ β
∗y∗,

∂Q∗n
∂t∗
+ J(Ψ ∗n ,Q∗n)= ν

∗
∇

4Ψ ∗n − γ
∗
∇

2Ψ ∗n ,

Q∗n =∇
2Ψ ∗n +

f ∗20

g′∗locH∗n
(Ψ ∗n−1 −Ψ

∗

n )+ β
∗y∗ + f ∗0

η∗b

H∗n
,



(2.6)

where Ψ ∗i and Q∗i are the streamfunction and potential vorticity (PV) in layer i,
g′∗loc = g1ρ∗/ρ∗0 = g′∗/(n− 1), β∗ = ∂f ∗/∂y∗ = const., ν∗ is the lateral viscosity, γ ∗ is
the bottom drag coefficient and η∗b is the variation of the total ocean depth relative
to its mean value. The total lateral velocities in each layer are separated into the
background components (U∗i , 0) and perturbations (u∗i , v

∗

i ). These velocity fields are
readily expressed in terms of the streamfunction: (U∗i + u∗i , v

∗

i )= (−∂Ψ
∗

i /∂y, ∂Ψ ∗i /∂x).
The net streamfunction in each layer (Ψ ∗i ) is also separated into the basic state
representing the background steady current (−U∗i y∗) and the perturbation (ψ∗i ). To
be specific, in this study we consider the eastward sub-surface flow (U∗1 > 0) in
the Northern hemisphere ( f ∗ > 0). However, the following analysis can be readily
reproduced for f ∗ < 0 and/or U∗1 < 0.

When governing equations (2.6) are expressed in terms of perturbations ψ∗i , we
arrive at

∂q∗1
∂t∗
+ J(ψ∗1 , q∗1)+ β

∗
∂ψ∗1

∂x∗
+

f ∗20 (U
∗

1 −U∗2)
g′∗locH

∗

1

∂ψ∗1

∂x∗
+U∗1

∂q∗1
∂x∗
= ν∗∇4ψ∗1 ,

∂q∗i
∂t∗
+ J(ψ∗i , q∗i )+ β

∗
∂ψ∗1

∂x∗
+

f ∗20 (2U∗i −U∗i−1 −U∗i+1)

g′∗locH
∗
i

∂ψ∗1

∂x∗

+U∗i
∂q∗i
∂x∗
= ν∗∇4ψ∗1 , i= 2, . . . , (n− 1),

∂q∗n
∂t∗
+ J(ψ∗n , q∗n)+ β

∗
∂ψ∗n

∂x∗
−

f ∗20 U∗n−1

g′∗locH∗n

∂ψ∗n

∂x∗
+

f ∗0
H∗n

J(ψ∗n , η
∗

b)= ν
∗
∇

4ψ∗n − γ
∗
∇

2ψ∗n ,


(2.7)
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where q∗i are the perturbation PV fields,

q∗1 =∇
2ψ∗1 +

f ∗20

g′∗locH
∗

1
(ψ∗2 −ψ

∗

1 ),

q∗i =∇
2ψ∗i +

f ∗20

g′∗locH
∗
i
(ψ∗i+1 +ψ

∗

i−1 − 2ψ∗i ),

q∗n =∇
2ψ∗n +

f ∗20

g′∗locH∗n
(ψ∗n−1 −ψ

∗

n ).

i= 2, . . . , (n− 1),


(2.8)

To reduce the number of controlling parameters, the governing equations (2.7) are non-
dimensionalized using R∗d and U∗1 as units of length and velocity respectively. The
resulting non-dimensional system takes the form

∂q1

∂t
+ J(ψ1, q1)+ β

∂ψ1

∂x
+ s1(1−U2)

∂ψ1

∂x
+
∂q1

∂x
= ν∇4ψ1,

∂qi

∂t
+ J(ψi, qi)+ β

∂ψi

∂x
+ si(2Ui −Ui−1 −Ui+1)

∂ψi

∂x

+Ui
∂qi

∂x
= ν∇4ψi, i= 2, . . . , (n− 1),

∂qn

∂t
+ J(ψn, qn)+ β

∂ψn

∂x
− snUn−1

∂ψn

∂x
+

1
rn

J(ψn, ηb)= ν∇
4ψn − γ∇

2ψn,


(2.9)

where si = (g′∗H∗)/(g′locH
∗

i ) = (n− 1)/ri, β = (β∗R∗2d )/U
∗

1 , ν = ν∗/(R∗dU∗1), γ =
(γ ∗R∗d)/U

∗

1 , ri = H∗i /H
∗ are the governing parameters, and ηb = ( f ∗0 R∗dη

∗

b)/(H
∗U∗1).

Note that the adopted non-dimensionalization of the topographic height implies that
η∗b = εRoH∗ηb and therefore O(1) values of ηb considered in this study correspond to
η∗b�H∗.

The non-dimensional PV perturbations reduce to

q1 =∇
2ψ1 + s1(ψ2 −ψ1),

qi =∇
2ψi + si(ψi+1 +ψi−1 − 2ψi),

qn =∇
2ψn + sn(ψn−1 −ψn).

i= 2, . . . , (n− 1),

 (2.10)

In the following numerical experiments, we assume doubly periodic boundary
conditions for ψi. The governing system is integrated using a dealiased pseudospectral
method based on the fourth-order Runge–Kutta time-stepping scheme (e.g. Radko &
Kamenkovich 2017).

To gain preliminary insight into the interaction between baroclinic instability
and submesoscale topography, we present two n = 2 experiments – the flat-bottom
simulation (figure 2) and its counterpart performed in an ocean of non-uniform depth
(figure 3). In both cases, we use the following governing parameters:

β = 0.8, ν = 0.005, γ = 1.0, r1=
1
4 , r2=

3
4 , Lx= 15, Ly= 15, (2.11a−g)

where Lx and Ly represent the zonal and meridional extents of the computational
domain, which is resolved by Nx × Ny = 1024 × 1024 grid points. The model
bathymetry is represented by the harmonic pattern,

ηb = η0 cos(kx+ ly), (2.12)
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FIGURE 2. Typical patterns of PV in the upper (a) and lower (b) layers in the quasi-
equilibrium phase (t= 500) of the flat-bottom simulation.

where k and l are the zonal and meridional wavenumbers respectively. Adopting the
idealized topography (2.12) makes it possible to express the topographic influences in
terms of explicit solutions of Kolmogorov type (§ 3). The experiment in figure 3 was
performed with zonally oriented bathymetry (k= 0), a meridional wavelength of dy=

2π/l = 0.15 and an amplitude of topographic variability of η0 = 4.5. Dimensionally,
these parameters correspond to

d∗y = 10 km, η∗0 = 85 m, (2.13a,b)

where we have assumed

H∗1 = 1000 m, H∗2 = 3000 m, U∗1 = 0.03 m s−1,

f ∗0 = 10−4 s−1, g′∗ = 0.01 m s−1.

}
(2.14)
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FIGURE 3. Typical patterns of PV in the upper (a) and lower (b) layers in the
quasi-equilibrium phase (t= 500) of the non-uniform depth simulation. Panel (c) shows an
enlarged view of the square area marked in (b) and panel (d) presents the total potential
vorticity (Q2) in the same square area.

The pattern (2.13) represents rather modest variations in depth and sea-floor slope,
which are commonly matched or exceeded in the ocean (appendix A).

The simulations in figures 2 and 3 were initiated by the small-amplitude random
distribution of (ψ1, ψ2) – identical patterns were used for both simulations. The first
evolutionary stage of each experiment is represented by the exponential growth of
baroclinic instability, which is followed by its nonlinear equilibration and the transition
to a statistically steady but highly disorganized regime. Figure 2(a,b) presents the
typical patterns of the potential vorticity (q1, q2) in the upper and lower layers
respectively, realized during the fully developed stage of the flat-bottom simulation.
While the inclusion of topography has only a moderate impact on the upper layer
(figure 3a), the lower layer PV (figure 3b) exhibits visible modulation on small scales.
Figure 3(c) shows an enlarged view of q2 in the small area marked in figure 3(b),
revealing a well-defined imprint of the zonally oriented topography on the lower layer.
Figure 3(d) presents the pattern of the total PV in the lower layer (Q2) over the same
area as shown in figure 3(c). The distribution of Q2 is visibly more homogeneous
over small scales than the corresponding pattern of q2. The PV homogenization
tendency will be subsequently used (§ 3) to physically interpret the stabilizing role
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FIGURE 4. The same as figure 3 but for the non-zonal (θ = π/4) orientation of
topography.

of submesoscale topography. Figure 4 presents the analogous calculation in which
bathymetric features are oriented at the angle θ =π/4 relative to the zonal direction.

To be more quantitative in assessing the impact of bottom topography on the
intensity and mixing characteristics of baroclinic instability, we introduce the following
integral measures of the flow field. The average kinetic energy is defined as

Ei =

[
u2

i + v
2
i

2

]
xy

, i= 1, 2, (2.15)

where (ui, vi)= (−∂ψi/∂y, ∂ψi/∂x) are the non-dimensional perturbation velocities and
the symbol [· · ·]xy represents averaging in x and y. The meridional potential vorticity
fluxes are defined accordingly,

Fqi = [viqi]xy, i= 1, 2. (2.16)

Note that while E1 and E2 offer independent measures of the intensity, the PV fluxes
(Fq1 and Fq2) in the two-layer model are rigidly related through the Taylor–Bretherton
identity (Bretherton 1966),

r1Fq1 + r2Fq2 = 0. (2.17)
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FIGURE 5. Time records of E1, E2 and Fq1 are shown in (a), (b) and (c) respectively.
The blue curves correspond to the flat-bottom simulation (figure 2) and the red curves
represent the non-uniform depth experiment in figure 3.

Therefore, analyses of both Fq1 and Fq2 would be redundant and our diagnostics are
focused on (E1, E2, Fq1).

Figure 5 presents the temporal records of (E1, E2, Fq1) realized in the flat-bottom
simulation (blue curves) and in the experiment with variable topography (red curves).
All data consistently indicate that small-scale topographic variability adversely affects
baroclinic instability. It reduces its growth rate, which almost doubles the period of
transition to the quasi-equilibrium regime – from 1t∼ 100 in the flat-bottom case to
1t∼ 250 in the variable topography experiment. Even more significant is the notable
topographically induced reduction in the equilibrium levels of eddy energy (E1, E2)
and the eddy PV flux |Fq1|. The following asymptotic multiscale model attempts to
explore this effect in detail and parameterize the associated submesoscale dynamics.

3. Multiscale model
To represent mesoscale–submesoscale interactions in a systematic manner, we

introduce new spatial variables (xS, yS) that reflect the relatively short wavelength of
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the topographic pattern. These small-scale variables are related to the original ones
through

(xS, yS)= ε
−1(x, y), (3.1)

where ε� 1 is the scale-separation parameter. The spatial derivatives in the governing
system (2.9) are replaced accordingly,

∂

∂x
→

∂

∂x
+ ε−1 ∂

∂xS
,

∂

∂y
→

∂

∂y
+ ε−1 ∂

∂yS
. (3.2a,b)

The temporal variability exhibits an even broader range of scales. One of the temporal
scales (t0) reflects the dynamics of mesoscale variability, which is characterized by
O(1) spatial scales and O(1) velocities. Another scale (t−1) represents relatively
rapid changes in fluid properties associated with their advection by mesoscale flows
with O(1) velocity across the submesoscale topography with spatial scales O(ε).
Preliminary simulations (§ 2) indicate that small-scale bathymetric variability exerts a
relatively weak but persistent influence on the mesoscale flow pattern. The appropriate
scaling for this slow process (t2) was determined a posteriori. We first tentatively
proceeded with the multiscale expansion, discovering in the process that the term
representing topographic mesoscale influence is of the order of ∼ ε2, which implies
that the evolution of the mesoscale field due to topography occurs on time scales of
O(ε−2). Thus, we introduce three distinct temporal variables,

t−1 = ε
−1t, t0 = t, t2 = ε

2t, (3.3a−c)

and the time derivatives in the governing system (2.9) are replaced as follows:

∂

∂t
→ ε−1 ∂

∂t−1
+

∂

∂t0
+ ε2 ∂

∂t2
. (3.4)

The lateral viscosity (ν) is assumed to be small and therefore it is also rescaled in
terms of ε,

ν = ε2ν0, (3.5)

which implies that friction could be significant on scales of submesoscale variability
but plays only a secondary role in mesoscale dynamics.

The leading-order mesoscale field in the following model is represented by the
fully developed streamfunction fields ψ i. These fields vary only on spatial scales
of baroclinic instability, whereas on temporal scales we admit, in addition to O(1)
mesoscale variability, the slow drift induced by submesoscale topography,

ψ i =ψ i(x, y, t0, t2). (3.6)

The corresponding mesoscale PV fields (qi) are defined accordingly. To explore the
interaction of the mesoscale field (3.6) with topography ηb(xS, yS), the solution for ψi
is sought in terms of power series in ε� 1,

ψi =ψ i(x, y, t0, t2)+ εψ
(1)
i (x, y, xS, yS, t−1, t0, t2)+ ε

2ψ
(2)
i (x, y, xS, yS, t−1, t0, t2)+ · · ·

(3.7)
When (3.2)–(3.5) and (3.7) are substituted into the governing equations (2.9), we
discover that the inclusion of topographic variability triggers a streamfunction response
at O(ε2) and therefore the solution can be constructed for ψ (1)

i = 0. The leading-order

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

82
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.826


Control of baroclinic instability by submesoscale topography 882 A14-13

balance of governing equations is realized at O(ε−1) and it can be reduced to the
following form:

ψ
(2)
i = 0, i= 1, . . . , (n− 1),

∂2ψ (2)
n

∂x2
S
+
∂2ψ (2)

n

∂y2
S
+
ηb(xS, yS)

rn
= 0.

 (3.8)

Equations (3.8) imply that the leading-order perturbation varies only on small scales
and is uniquely determined by topography. The physical interpretation of (3.8) is
straightforward – it represents the homogenization of the total potential vorticity in
the bottom layer. The latter takes the following non-dimensional form:

Qn =∇
2ψn + sn(Ψn−1 −Ψn)+ βy+

ηb

rn
. (3.9)

Since the total potential vorticity is a quasi-conservative quantity, in the absence of
strong inhomogeneous forcing it tends to evolve in time toward a uniform distribution.
This effect occurs in numerous geophysical configurations (e.g. Rhines & Young 1982)
and in the present system it is facilitated by active mesoscale stirring. On scales of
(xS, yS), the variation of the beta term is weak (∆(βy)∼ ε) and so is the variation of
the stretching term sn(Ψn−1 − Ψn). Thus, the homogenization of PV on small spatial
scales demands that ∇2ψn + ηb/rn = const. For small-scale components of ψn and
topography also varying only on small scales, the latter equality can only be satisfied
as long as the constant on its right-hand side is zero – which is exactly what (3.8)
implies. The resulting PV-homogenization mode ψ (2)

n will be referred to as the primary
submesoscale component.

In order to assess the extent to which the homogenization tendency (3.8) is
reflected in numerical simulations (e.g. figure 3), we introduce the following measure
of homogenization:

Rh =
rms(∇2ψsm + r−1

n ηb)

rms(r−1
n ηb)

, (3.10)

where ψsm is the small-scale component of the streamfunction in the bottom layer. In
the following calculation, ψsm is constructed as a superposition of Fourier harmonics
of ψn with wavelengths not exceeding 2d. The homogenization variable Rh was
evaluated for a series of simulations in which the wavelength of topography
was systematically decreased (figure 6). Figure 6 indicates that the reduction of
topographic wavelength – which implies an increase in scale separation (ε → 0) –
leads to a systematic decrease in Rh. This homogenization tendency supports the
asymptotic result (3.8) and instils confidence in its proposed physical interpretation.

To proceed with the multiscale model, the harmonic topography (2.12) is expressed
in terms of small-scale variables as follows:

ηb = η0 cos(kSxS + lSyS), (3.11)

where (kS, lS)= ε(k, l), which reduces (3.8) to

ψ (2)
n =

1
rn

η0

k2
S + l2

S
cos(kSxS + lSyS). (3.12)

The next order in our expansion contains the O(1) components of the governing
equations. At this order, topography still does not trigger a response in any layers
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FIGURE 6. The diagnostic variable Rh that measures the extent of PV homogenization
in the bottom layer is plotted as a function of the wavelength of the topographic pattern.
The solid (dashed) curve represents a series of simulations performed with a bottom drag
coefficient of γ = 1 (γ = 0.1).

except for the bottom one and therefore ψ (3)
i = 0 for i= 1, . . . , (n− 1). Collecting all

O(1) terms, we arrive at

∂q1

∂t0
+ J(ψ1, q1)+ β

∂ψ1

∂x
+ s1(1−U2)

∂ψ1

∂x
+
∂q1

∂x
= 0,

∂qi

∂t0
+ J(ψ i, qi)+ β

∂ψ i

∂x
+ si(2Ui −Ui−1 −Ui+1)

∂ψ i

∂x

+Ui
∂qi

∂x
= 0, i= 2, . . . , (n− 1),


(3.13)

for the upper layers and

∂qn

∂t0
+ J(ψn, qn)+ β

∂ψn

∂x
− snUn−1

∂ψn

∂x
+ γ∇2ψn︸ ︷︷ ︸

A

+
∂

∂t−1

(
∂2ψ (3)

n

∂x2
S
+
∂2ψ (3)

n

∂y2
S

)
+
∂ψn

∂x
∂

∂yS

(
∂2ψ (3)

n

∂x2
S
+
∂2ψ (3)

n

∂y2
S

)
−
∂ψn

∂y
∂

∂xS

(
∂2ψ (3)

n

∂x2
S
+
∂2ψ (3)

n

∂y2
S

)
︸ ︷︷ ︸

B

= ν0

(
∂4ψ (2)

n

∂x4
S
+ 2

∂4ψ (2)
n

∂x2
S∂y2

S
+
∂4ψ (2)

n

∂y4
S

)
+ γ

(
∂2ψ (2)

n

∂x2
S
+
∂2ψ (2)

n

∂y2
S

)
+

1
rn

(
∂ψ (2)

n

∂xS

∂ηb

∂yS
−
∂ψ (2)

n

∂yS

∂ηb

∂xS

)
︸ ︷︷ ︸

C

(3.14)

for the bottom layer. Equation (3.13) essentially describes the evolution of basic
mesoscale variability in the upper (n − 1) layers under the assumption that lateral
friction is weak. The bottom layer equation (3.14) is substantially different and
contains three distinct groups: A, B and C. Group A varies only on large scales and
it represents the evolution of the basic mesoscale field in the absence of topographic
influences. The terms grouped in C vary only on small scales. These terms can be
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evaluated for any ψ (2)
n , which, in turn, is given in (3.12). Group B depends on the

third-order perturbation (ψ (3)
n ) and therefore (3.14) implicitly determines ψ (3)

n . The
analysis is simplified by realizing that the average of (3.14) over small-scale variables
(xS, yS) requires A= 0, which reduces (3.14) to

∂

∂t−1

(
∂2ψ (3)

n

∂x2
S
+
∂2ψ (3)

n

∂y2
S

)
+
∂ψn

∂x
∂

∂yS

(
∂2ψ (3)

n

∂x2
S
+
∂2ψ (3)

n

∂y2
S

)
−
∂ψn

∂y
∂

∂xS

(
∂2ψ (3)

n

∂x2
S
+
∂2ψ (3)

n

∂y2
S

)
=C. (3.15)

To determine ψ (3)
n , we seek the solution in the following form:

ψ (3)
n = ϕC(x, y, t−1, t0, t2) cos(kSxS + lSyS)+ ϕS(x, y, t−1, t0, t2) sin(kSxS + lSyS). (3.16)

When (3.12) and (3.16) are substituted into (3.15), we arrive at

∂ϕC

∂t−1
=−

η0

rn

(k2
S + l2

S)ν0 + γ

k2
S + l2

S
+ ϕS

(
∂ψn

∂y
kS −

∂ψn

∂x
lS

)
,

∂ϕS

∂t−1
=−ϕC

(
∂ψn

∂y
kS −

∂ψn

∂x
lS

)
.

 (3.17)

Equations (3.15)–(3.17) are physically interpreted as the generation of the secondary
submesoscale pattern (ψ (3)

n ) in response to the system forcing by the primary
submesoscale pattern (ψ (2)

n ).
The expansion is extended in a similar manner to the O(ε) balance of the governing

equations, which yields

∂ϕC

∂t0
= Jxy(ϕC, ψn)+ 2ϕC

(l2
S − k2

S)
∂2ψn

∂x∂y
+ kSlS

(
∂2ψn

∂x2
−
∂2ψn

∂y2

)
k2

S + l2
S

−ϕC(k2
Sν0 + l2

Sν0 + γ ),

∂ϕS

∂t0
= Jxy(ϕS, ψn)+ 2ϕS

(l2
S − k2

S)
∂2ψn

∂x∂y
+ kSlS

(
∂2ψn

∂x2
−
∂2ψn

∂y2

)
k2

S + l2
S

−ϕS(k2
Sν0 + l2

Sν0 + γ )

+
η0

rn

∂

∂x
∇

2ψnlS −
∂

∂y
∇

2ψnkS + sn
∂ψn−1

∂x
lS − kS

(
∂ψn−1

∂y
sn − snUn−1 + β

)
(k2

S + l2
S)

2
.


(3.18)

The notation Jxy for the Jacobian is used here to emphasize that the derivatives
are taken in large-scale variables (x, y). The terms representing the influence of
topography on mesoscale fields are obtained as a solvability condition at the next
order, by averaging the O(ε2) balances of the governing equations in (xS, yS). For the
upper layers, we obtain

∂

∂t2
qi − ν0

(
∂4ψ i

∂x4
+ 2

∂4ψ i

∂x2∂y2
+
∂4ψ i

∂y4

)
= 0, i= 1, . . . , (n− 1). (3.19)
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The corresponding mesoscale balance for the lower layer amounts to

∂

∂t2
qn +D− ν0

(
∂4ψn

∂x4
+ 2

∂4ψn

∂x2∂y2
+
∂4ψn

∂y4

)
= 0, (3.20)

where

D=
η0

2rn

(
∂ϕS

∂y
kS −

∂ϕS

∂x
lS

)
. (3.21)

The mesoscale term D is a result of the interaction between the primary submesoscale
component (the PV-homogenization mode ψ (2)

n ) and the secondary submesoscale
response (ψ (3)

n ). Since the small-scale patterns of ψ (2)
n and ψ (3)

n are not entirely
orthogonal, their nonlinear interaction produces a finite mesoscale response. This effect
accounts for the modification of baroclinic instability properties by submesoscale
topography.

At this point, the multiscale analysis is complete and we can return to the original
variables by reverting the transformation (3.4),

∂q1

∂t
+ J(ψ1, q1)+ β

∂ψ1

∂x
+ s1(1−U2)

∂ψ1

∂x
+
∂q1

∂x
= ν∇4ψ1,

∂qi

∂t
+ J(ψ i, qi)+ β

∂ψ i

∂x
+ si(2Ui −Ui−1 −Ui+1)

∂ψ i

∂x

+Ui
∂qi

∂x
= 0, i= 2, . . . , (n− 1),

∂qn

∂t
+ J(ψn, qn)+ β

∂ψn

∂x
− snUn−1

∂ψn

∂x
+ γ∇2ψn +D= ν∇4ψ2,


(3.22)

where

D= ε2D. (3.23)

The comparison of the mesoscale system (3.22) with governing equations (2.9) is
revealing. It shows that the submesoscale topographic forcing term J(ψn, ηb)/rn in
(2.9) is now replaced by the mesoscale term D. The final step in formulating the
closed mesoscale system is the calculation of (ϕC, ϕS), which is accomplished by
evaluating the two leading tendency terms,

∂

∂t

(
ϕC
ϕS

)
= ε−1 ∂

∂t−1

(
ϕC
ϕS

)
+

∂

∂t0

(
ϕC
ϕS

)
+O(ε2). (3.24)

The inclusion of two terms in (3.24), instead of retaining just the single leading-order
component, makes it possible to construct the parametric model of the submesoscale
topography with a relative error of only O(ε2). Such a model can be expected to
retain its predictive capabilities even in cases when the scale separation between the
interacting flow components is limited – the situation which is probably realized in
most ocean regions.
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The substitution of (3.17) and (3.18) in (3.24) yields

∂ϕC

∂t
=−

η0

rn

(k2
+ l2)ν + γ

k2 + l2
+ ϕS

(
∂ψn

∂y
k−

∂ψn

∂x
l
)

+ Jxy(ϕC, ψn)− ϕC(k
2ν + l2ν + γ )

+ 2ϕC

(l2
− k2)

∂2ψn

∂x∂y
+ kl

(
∂2ψn

∂x2
−
∂2ψn

∂y2

)
k2 + l2

,

∂ϕS

∂t
=−ϕC

(
∂ψn

∂y
k−

∂ψn

∂x
l
)
+ Jxy(ϕS, ψn)

+ 2ϕS

(l2
− k2)

∂2ψn

∂x∂y
+ kl

(
∂2ψn

∂x2
−
∂2ψn

∂y2

)
k2 + l2

+
η0

rn

∂

∂x
∇

2ψnl−
∂

∂y
∇

2ψnk+ sn
∂ψn−1

∂x
l− k

(
∂ψn−1

∂y
sn − snUn−1 + β

)
(k2 + l2)2

−ϕS(k
2ν + l2ν + γ ),


(3.25)

where (ϕC, ϕS) = ε3(ϕC, ϕS). The topographic forcing term D in (3.22) is then
expressed in terms of ϕS using (3.21)

D=
η0

2rn

(
∂ϕS

∂y
k−

∂ϕS

∂x
l
)
. (3.26)

Equations (3.22), (3.25) and (3.26) represent a closed system written entirely in
terms of mesoscale variables. Therefore, this model can be viewed as a rigorous
parameterization of topographically induced submesoscale variability. While the
new set contains two additional prognostic equations (3.25), this disadvantage is
outweighed by its ability to represent the submesoscale dynamics without explicitly
resolving it.

4. Results
The objective of this section is twofold: (i) the systematic exploration of the

influence of submesoscale topography on the properties baroclinic instability for a
wide range of governing parameters and (ii) the assessment of the performance of
the multiscale model (§ 3), which is achieved by comparing the parameterized and
submesoscale-resolving simulations. The investigation starts with a detailed analysis
of the two-layer model (§ 4.1) and is followed by an abbreviated discussion of the
corresponding multilayer (n> 2) solutions in § 4.2.

4.1. Two-layer model
The analysis is based on the equilibrium values of kinetic energy and the meridional
PV flux (E1, E2, Fq1) as the key diagnostic variables. These equilibrium values
are computed by integrating the model equations, both original and parametric,
over extended periods of time (for 1500 non-dimensional units at the minimum).
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The time records of (E1, E2, Fq1) are then averaged over the second half of each
simulation, thereby excluding from averaging the period of system transition to the
quasi-equilibrium regime (e.g. figure 4).

Of particular interest is the sensitivity of the equilibrium energy and PV flux
– denoted as (E1, E2, Fq1) – to the amplitude of topographic variability (η0), its
orientation (θ) and the wavelength d = (2π)/

√
k2 + l2. The orientation variable is

implicitly defined by

cos(θ)=
k

√
k2 + l2

, sin(θ)=
l

√
k2 + l2

, (4.1a,b)

and therefore zonal topography corresponds to θ = π/2 (e.g. figure 3), while θ = 0
represents the meridional orientation. Without loss of generality, we explore the
orientation effects within the interval 0 6 θ < π. Since the parametric system
(3.22), (3.25) and (3.26) does not require the resolution of submesoscale features,
its integrations are performed on the mesh with Nx × Ny = 256 × 256 grid points,
which is much coarser than that one used in submesoscale-resolving calculations
(Nx × Ny = 1024 × 1024). Other parameters, which are listed in (2.11), are kept the
same as in the baseline experiments (§ 3).

Figure 7 presents a series of simulations with various amplitudes of topography
for θ = π/2 and d = 0.15. The predictions of parametric and topography-resolving
models are mutually consistent. In both models, the increase in bottom variability
results in the dramatic reduction in the intensity of both eddy kinetic energy and
PV transport. Even a rather modest amplitude of η0 = 9, which corresponds to the
dimensional topographic variation of only 170 m in the 4 km deep ocean, produces a
threefold reduction in the upper layer energy (E1) and a fivefold reduction in the PV
flux (|Fq1|). This result is particularly striking in view of the indirect manner in which
topography influences the upper layer dynamics. Topography enters into parametric
system (3.22) only through the forcing term in the lower layer equation – the upper
layer equation does not explicitly reflect the non-uniformity of depth. Submesoscale-
resolving simulations also reflect no visible presence of submesoscale features in the
upper layer (e.g. figure 3). Yet, the impact of submesoscale topography on the upper
layer eddies is adverse and profound. It is possible that this result reflects the role of
the barotropic mode, which is directly influenced by topography, in the equilibration
of baroclinic instability.

The sensitivity of baroclinic instability to the orientation of bottom topography
for η0 = 4.5 and d = 0.15 is illustrated in figure 8. It indicates that the zonally
oriented topography (θ = π/2) is particularly effective in suppressing mesoscale
variability. This result can be physically rationalized by recalling that the most rapidly
amplifying modes of baroclinic instability take the form of meridional currents (e.g.
Phillips 1951; Pedlosky 1975). Therefore, a zonally orientated topography presents
an apparent obstacle to their growth, adversely affecting baroclinic instability even
in the fully nonlinear regime. The meridional topography, on the other hand, does
not directly interact with amplifying meridional modes and therefore its impact on
baroclinic instability is less pronounced. The meridional topography actually tends to
slightly intensify the mesoscale eddy activity in the upper layer relative to that in the
flat-bottom case, which is indicated in figure 6 by the horizontal dashed lines. The
latter effect can be attributed to the topographic suppression of secondary instabilities
of primary meridional modes. It has been suggested that the equilibrium state of
baroclinic instability is controlled by the interaction between primary modes and their
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FIGURE 7. The mean values of kinetic energy in the upper layer (a), kinetic energy in
the lower layer (b) and the upper layer PV flux (c) as functions of the amplitude of
topographic variation. The blue (red) curves represent topography-resolving (parametric)
simulations.

secondary instabilities (e.g. Pedlosky 1975; Radko, Peixoto de Carvalho & Flanagan
2014). Thus, the suppression of secondary instabilities by meridional topography
weakens one of the potentially significant equilibration mechanisms, thereby allowing
baroclinic instability to be more intense than in the flat-bottom case.

The impressive agreement between parametric and topography-resolving simulations
in figures 7 and 8 underscores the power and utility of multiscale modelling on which
the proposed parameterization is based. In this regard, it should be emphasized that
the multiscale method formally assumes that the interacting components operate
on asymptotically dissimilar scales (ε � 1). The successful performance of the
parametric model in the regime where scale separation is rather limited (d = 0.15)
suggests that this assumption may not be critical. To further explore this issue, we
have reproduced the foregoing calculation (figure 8) with an even larger wavelength
of d = 0.5 – the regime in which scale separation is virtually non-existent. The
dimensional scale of topographic variability in this case is d∗ = 30 km, which

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

82
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.826


882 A14-20 T. Radko

(a)

(b)

(c)

0.05

0.10

0.15

œ

E1

E2

Fq1

2.0

2.5

3.0

4.0

3.5

0 0.5 1.0 1.5 2.0 2.5 3.0

0 0.5 1.0 1.5 2.0 2.5 3.0

0 0.5 1.0 1.5 2.0 2.5 3.0
-1.0

-0.9

-0.8

-0.7

-0.6

-0.5

FIGURE 8. The mean values of kinetic energy in the upper layer (a), kinetic energy in
the lower layer (b) and the upper layer PV flux (c) as functions of the orientation of
topography. The blue (red) curves represent topography-resolving (parametric) simulations.
The wavelength of topographic patterns is d= 0.15. The horizontal dashed lines represent
the corresponding flat-bottom simulation.

places it in the mesoscale, rather than submesoscale, range. Nevertheless, even under
these unfavourable conditions, the model performs surprisingly well, particularly in
its description of the upper layer properties – E1(θ) in figure 9(a) and Fq1(θ) in
figure 9(c). Some systematic differences between parametric and topography-resolving
models can be detected in their lower layer energy patterns (figure 9b), but these
differences are relatively small (∼20 %) and the qualitative similarity of two models
is still apparent.

In addition to these quasi-geostrophic results, figure 9 also presents the correspond-
ing topography-resolving simulations performed using a more general shallow-water
model (appendix B). Their general consistency implies that non-quasi-geostrophic
effects are not critical for the system considered in the present investigation.
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FIGURE 9. The same as figure 8, but for the topographic pattern with larger wavelength
of d = 0.5. Also shown (green colour) are the corresponding energy and PV flux values
from the shallow-water model (appendix B).

4.2. Multi-layer solutions

While two-layer solutions are suggestive and dynamically transparent, their quantitative
applicability can be readily questioned. Of particular concern is the possibility that
crude vertical discretization of the foregoing model could lead to an exaggeration
of topographic effects. By design, the horizontal velocity components are vertically
uniform over the entire abyssal layer −H < z < −H1 and therefore much of the
model ocean is directly influenced by topographic features. Would such sensitivity
of baroclinic instability to the bottom topography persist in models with a more
sophisticated and realistic representation of stratification? To alleviate such concerns,
we present a series of simulations – parametric and topography resolving – in which
the number of layers (n) is systematically increased. We consider density layers of
equal thickness (ri = 1/n) and a velocity pattern characterized by the linear variation
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FIGURE 10. Typical patterns of PV realized in the quasi-equilibrium phase (t= 2000) of
the four-layer simulation.

with depth,

Ui =
n− i
n− 1

, i= 1, . . . , n. (4.2)

The topographic variability is represented by (2.12) with η0= 2 and zonal orientation
(θ = π/2). To ensure that the layer thickness greatly exceeds the variation in
topography, which is one of the basic assumptions of the quasi-geostrophic approxima-
tion, the number of layers is kept at n= 8 or less.

Typical patterns of baroclinic instability realized in the multi-layer (n > 2) model
are qualitatively similar to their two-layer counterparts. Figure 10 presents PV fields
(qi) in the four-layer system that are realized in the quasi-equilibrium evolutionary
stage (t = 2000). While the bottom layer exhibits visible modulation on the scales
set by topography (figure 10d), such variability is notably absent in all other layers
(figure 10a–c). However, despite the lack of readily identifiable submesoscale features
in most of the model ocean, submesoscale topography dramatically alters the intensity
and transport characteristics of baroclinic instability throughout the entire domain. This
conclusion is quantified by figure 11, where we plot the mean values of kinetic energy
and meridional PV flux in the sub-surface (i= 1) and bottom (i= n) layers for each
of seven simulations (n = 2, . . . , 8) performed with the original quasi-geostrophic
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FIGURE 11. Multi-layer solutions. The mean values of kinetic energy in the top (i =
1) and bottom (i = n) layers are plotted as a function of the total number of layers (n)
in (a,b). The corresponding mean values of the PV flux are shown in (c,d). The flat-bottom
simulations are represented by black dots, whereas the variable topography experiments
performed with the original quasi-geostrophic and parametric models are indicated by blue
and red dots respectively.

(blue dots) and parametric (red dots) models. For reference, we also present the
corresponding flat-bottom experiments (black dots).

The results in figure 11 reveal very clearly that the influence of submesoscale
topography not only persists but substantially grows as the number of layers is
increased. In particular, both kinetic energy and PV fluxes systematically decrease
with increasing n in the non-uniform topography case, whereas the opposite trend is
realized in the flat-bottom configuration. As a result, the two systems systematically
diverge. For n = 8, submesoscale topography reduces PV fluxes and energy in all
layers by more than an order of magnitude. The fundamentally non-local character
of topographic control is truly striking. Even the sub-surface eddying flow in the
eight-layer model – which is insulated from the bottom by seven distinct active layers
– is drastically slowed down by topographic variability. Another encouraging finding
is the quantitative agreement between the original quasi-geostrophic and parametric
solutions across a range of stratification patterns (figure 11). The consistency of the
full and reduced models is indicative of a very robust mechanism of the submesoscale
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topographic control of baroclinic instability that can be effectively captured by
multiscale methods. This, in turn, raises our hopes of finding analogous solutions
in more general and realistic models that go beyond the layered quasi-geostrophic
framework.

5. Discussion

This study examines the interaction between mesoscale eddies, topography, and
secondary topographically induced submesoscale patterns. We demonstrate that the
presence of even weak submesoscale variability in sea-floor depth (∼3 %) has a major
impact on the intensity and transport characteristics of baroclinic instability throughout
the entire water column. Inspection of the observationally derived bathymetric
spectrum (Goff & Jordan 1988) shows that submesoscale topographic features of
such magnitude are expected to be most common in the ocean (appendix A). The
ubiquity of submesoscale flow–topography interactions and their profound impact
on larger scales of motion motivate efforts to explain the dynamics at play. This
task becomes particularly urgent in view of the inability of the current generation of
global numerical models to resolve topographic features on the scale of 1–10 km.

The current investigation of processes induced by submesoscale topography employs
techniques of multiscale modelling (e.g. Mei & Vernescu 2010). One of the key
results is the parametric model which expresses the system dynamics entirely in
terms of mesoscale variables. This model is successfully validated by comparing its
predictions with those generated by corresponding submesoscale-resolving simulations.
We demonstrate that the formal requirement of asymptotic scale separation between
interacting flow components does not substantially limit the predictive capabilities
of the multiscale model. This finding is highly encouraging since the clear-cut
separation between mesoscale and submesoscale structures may not be realized in
typical oceanic systems. It reinforces our belief that multiscale modelling represents
an effective and versatile tool for the analysis and interpretation of a multitude
of geophysical phenomena. The dynamic transparency of the multiscale method
also makes it possible to physically interpret the chain of processes controlling the
inter-scale exchanges in the model. We argue that the feedback of submesoscales
on larger scales of motion is initially triggered by the homogenization of potential
vorticity in the lowest density layer, which creates a primary submesoscale flow.
This primary pattern then nonlinearly interacts with eddies generated by baroclinic
instability, which has an adverse effect on mesoscale components and ultimately acts
to stabilize the system.

The presented analysis can be extended in a number of promising directions. For
instance, the present formulation is based on an idealized harmonic topography, which
carries the benefit of analytical tractability and transparency. However, the adoption
of more realistic bathymetric patterns, such as afforded by the spectral representation
of Goff & Jordan (1988), can lead to more quantitative predictions that are directly
testable by oceanographic field observations. The problem of parameterizing the
influence of complicated multi-harmonic topographic features is challenging and
will likely require a major modification of the algorithms used in the present study.
However, the recent precedents of applying multiscale methods to irregular realistic
patterns in various systems (Radko 2016, 2019; Radko & Kamenkovich 2017) suggest
that such an approach is potentially viable.

Another natural step in the development of this project is the analysis of more
general (e.g. primitive equation) frameworks. The present investigation addressed
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the dynamics of phenomena contained in the upper-submesoscale range (2.4). This
focus made it possible to (i) isolate effects associated with geostrophically balanced
motions and (ii) use the quasi-geostrophic framework, which affords a simpler and
more transparent view than the one provided by the Navier–Stokes system. In the
parameter regime of interest, this restriction has not led to significant dynamical
consequences, which was confirmed by comparing quasi-geostrophic solutions with
their shallow-water counterparts (appendix B). However, it is desirable to expand the
scope of investigation to models which encompass the lower-submesoscale range

H∗� L∗topogr .
U∗

f ∗0
. (5.1)

Such analyses would make it possible to address several poorly understood aspects
of geophysical turbulence, such as the transition between upscale energy cascade in
geostrophic flows and the direct three-dimensional cascade. In this regard, it should
be noted that techniques of multiscale modelling are sufficiently generic and could be
readily applied to progressively smaller scales and phenomena. It is our belief that the
minimal model presented here, interesting as it may be in its own right, offers only a
glimpse of insight into the dynamics of the eddying ocean that can be generated by
the systematic application of multiscale methods.
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Appendix A. Analysis of the topographic spectrum
The spectrum of bottom topography for scales of several hundred metres and above

is known to be adequately captured by the empirical representation of Goff & Jordan
(1988),

Ph =
2πH2

rms(µ− 2)
k0l0

(
1+

k2
c

k2
0
+

l2
c

l2
0

)−µ/2
, (A 1)

where kc and lc are the wavenumbers (measured in cycles m−1) and H2
rms is the

variance of the topographic height. Nikurashin et al. (2014) estimate that typical
topographic patterns can be described using the following parameters:

µ= 3.5, k0 = 1.8× 10−4 m−1, l0 = 1.8× 10−4 m−1, Hrms = 305 m. (A 2a−d)

In the context of our discussion of the effects of submesoscale topography, it is of
interest to evaluate the contribution of various spectral components to the net variance
of topographic height and, perhaps more importantly, to the variance of the sea-floor
slope

s2
rms =

(
∂H∗

∂x∗

)2

+

(
∂H∗

∂y∗

)2

, (A 3)

where the overbar represents the spatial average. The counterpart of (A 1) for the
spectrum of slope becomes

Ph =
(2π)3H2

rms(µ− 2)
k0l0

(
1+

k2
c

k2
0
+

l2
c

l2
0

)−µ/2
(k2

c + l2
c). (A 4)
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A straightforward quantification of different components is readily afforded by the
Parseval identity

h2
rms =

∫∫
V

Ph dkc dlc, s2
rms =

∫∫
V

Ps dkc dlc, (A 5a,b)

where V represents the space of relevant wavenumbers. Of particular interest is the
submesoscale component (Vsm), which we define as a superposition of all spectral
harmonics with wavelengths (L∗w) in the following range:

Vsm = {1 km< L∗w < 10 km}. (A 6)

The large-scale/mesoscale component (Vlm) is defined accordingly,

Vlm == {L∗w > 10 km}, (A 7)

which yields
h2

sm = 6.9× 104 m2, h2
lm = 1.7× 104 m2,

s2
sm = 0.38, s2

lm = 3.1× 10−3.

}
(A 8)

The estimates in (A 8) underscore the potential significance of submesoscale
topography in controlling oceanic flows. While the variation in topographic height
associated with submesoscale features is comparable to that of larger scales
(hsm = 263 m, hlm = 130 m), the slope is clearly dominated by submesoscale
components (ssm = 0.61, slm = 0.056). The latter finding is particularly suggestive
since the magnitude of slope appears to be the most germane measure of topographic
influences – for instance, topographic effects are reflected in governing equations
(2.7) entirely in terms of the slope.

Finally, it is of interest to make a rough assessment of the relative significance of
submesoscale topography relative to that of the gradient of planetary vorticity (the beta
effect). One of the arguments emphasizing the importance of submesoscale topography
is based on the analysis of barotropic potential vorticity,

Qb =
f ∗ +∇× v∗

H∗
, (A 9)

which is a quasi-conservative quantity that controls several key aspects of ocean
dynamics (e.g. Pedlosky 1987; Vallis 2006). The meridional gradient of Qb reduces,
in the limit of weak perturbations, to

∂Q∗b
∂y∗
≈
β∗

H∗0︸︷︷︸
a

+
1

H∗0

∂(∇× v∗)

∂y∗
−

f ∗0
H∗20

∂η∗b

∂y∗︸ ︷︷ ︸
b

, (A 10)

where the term a (b) measures the influence of the beta effect (topography). The
topographic term is separately evaluated for submesoscale components (bsm) and for
large-scale/mesoscale features (blm) using (A 8), which yields

a∼ 2.5× 10−15 m−2 s−1, bsm ∼ 3.8× 10−13 m−2 s−1, blm ∼ 3.5× 10−12 m−2 s−1.
(A 11a−c)

The result in (A 11) is truly revealing. It shows that submesoscale topographic
features contribute to the variability of potential vorticity much more – by almost

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

82
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.826


Control of baroclinic instability by submesoscale topography 882 A14-27

three orders of magnitude – than does the beta effect. Of course, this estimate should
be interpreted with caution since planetary vorticity and topography influence oceanic
flows in dynamically dissimilar ways. Therefore, the inequality bsm � blm � a does
not guarantee that submesoscale topography is cardinally more significant than the
beta effect or than larger topographic patterns. However, (A 11) draws attention to
the apparent bias in the literature toward analyses of large-scale processes in the
equilibration of baroclinic instability. It concurrently motivates additional efforts to
explain and represent the effects of submesoscale topography, such as the current
study strives to offer.

Appendix B. The shallow-water model
The horizontal momentum equations for the two-layer shallow-water Boussinesq

system (e.g. Vallis 2006) are given by

∂u∗i
∂t∗
+ u∗i

∂u∗i
∂x∗
+ v∗i

∂u∗i
∂y∗
− ( f ∗0 + β

∗y∗)v∗i =−
1
ρ∗0

∂p∗i
∂x∗
+ ν∗∇2u∗i − δi2γ

∗u∗i ,

∂v∗i

∂t∗
+ u∗i

∂v∗i

∂x∗
+ v∗i

∂v∗i

∂y∗
+ ( f ∗0 + β

∗y∗)u∗i =−
1
ρ∗0

∂p∗i
∂y∗
+ ν∗∇2v∗i − δi2γ

∗v∗i ,

i= 1, 2,


(B 1)

and the layer thickness (h∗i ) equations can be written as,

∂h∗i
∂t∗
+

∂

∂x∗
(u∗i h∗i )+

∂

∂y∗
(v∗i h∗i )= 0. (B 2)

The commonly used rigid lid approximation assumes that the variation in sea-surface
height is much less than the variation in thickness of density layers, in which case

h∗1 + h∗2 =H∗. (B 3)

The dynamic pressure components (p∗i ) in the rigid lid model are also connected in a
rather straightforward manner,

p∗1 = p∗2 + g′∗h∗1. (B 4)

The governing equations (B 1)–(B 4) are non-dimensionalized using the average ocean
depth H∗0 as the unit of thickness, the radius of deformation R∗d = (

√
g′∗H∗0)/f ∗0 as the

horizontal scale, the nominal speed of the upper layer U∗ as the velocity unit and
ρ∗0 U∗2 as the unit of pressure. The non-dimensional system takes the following form:

∂ui

∂t
=−

∂pi

∂x
+Gui, Gui =−ui

∂ui

∂x
− vi

∂ui

∂y
+ (Ro−1

R + βy)vi + ν∇
2ui − δi2γ ui,

∂vi

∂t
=−

∂pi

∂y
+Gvi, Gvi =−ui

∂vi

∂x
− vi

∂vi

∂y
− (Ro−1

R + βy)ui + ν∇
2vi − δi2γ vi,

∂hi

∂t
=Ghi, Ghi =−

∂

∂x
(uihi)−

∂

∂y
(vihi),

h1 + h2 =H = 1+ η̂, η̂=
η∗b

H∗0
,

p1 = p2 +
h1

Ro2
R
, RoR =

U∗

f ∗0 R∗d
, β =

β∗R∗2d

U∗
, ν =

ν∗

R∗dU∗
, γ =

γ ∗R∗d
U∗

.


(B 5)
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The upper layer dynamical pressure can be inferred from the instantaneous distribution
of (ui, vi) using the diagnostic equation

∂

∂x

(
H
∂p1

∂x

)
+
∂

∂y

(
H
∂p1

∂y

)
=
∂

∂x

(
h1Gu1 + u1Gh1 + h2Gu2 + u2Gh2 +

h2

Ro2

∂h1

∂x

)
+
∂

∂y

(
h1Gv1 + v1Gh1 + h2Gv2 + v2Gh2 +

h2

Ro2

∂h1

∂y

)
, (B 6)

which is iteratively solved for p1 using the generalized minimum residual method.
The major complication in integrating the shallow-water equations using spectral

methods is that periodic boundary conditions, which were conveniently applied to
perturbation fields in the quasi-geostrophic model, can no longer be employed in
the meridional (y) direction. This complication is addressed by using cos(πnyyL−1

y )

functions (ny= 0, 1, . . . ,Ny− 1) for (hi, pi, ui) and sin(πnyyL−1
y ) for vi. Such a choice

implies that the flow field satisfies the rigid no-stress boundary conditions at y= 0, Ly.
However, in x-direction we still use a full Fourier series, which conforms to periodic
boundary conditions. In order to maintain the mean vertical shear indefinitely, the
x-averaged zonal velocity is weakly relaxed to the following target distribution:

u1 = tanh(10 sin2(πyLy)), u2 = 0. (B 7a,b)

The implementation of the relaxation algorithm is particularly straightforward in
the context of our spectral model, where x-averages are represented by the Fourier
harmonics with zero horizontal wavenumbers (kx = 0). The target velocity pattern
(B 7) is shown in figure 12(a). In most of the computational domain u1≈ 1. However,
u1 gradually reduces to zero within the narrow meridional boundary layers, which
makes it possible to satisfy the boundary conditions ∂hi/∂y = 0, vi = 0 implicitly
imposed by the spectral model at y= 0, Ly.

The model was initialized by the geostrophically balanced basic state (ui, hi),
conforming to the target velocity distribution (B 7), which was slightly augmented
by random low-amplitude perturbation and then integrated in time. The shallow-
water simulations are computationally more intensive than their quasi-geostrophic
counterparts. Severe limitations on time step in the shallow-water model are imposed
by the requirement to resolve relatively fast interfacial internal waves that are filtered
out by the quasi-geostrophic approximation (§ 2). This makes it difficult to achieve the
same resolution as afforded by the quasi-geostrophic model. Therefore, the following
shallow-water experiments resolved the computational domain of Lx × Ly = 15 × 30
by Nx × Ny = 384 × 768 grid points. Nevertheless, this discretization adequately
represents topographic variability for d= 0.5, and typical flow patterns realized in the
shallow-water simulations are shown in figure 12. As in their quasi-geostrophic
counterparts, the velocity fields are dominated by active mesoscale variability
(figure 12b,c).

To offer more quantitative comparisons, we focus on the central region of the
computational domain

1
4 Ly < y< 3

4 Ly, (B 8)

where the flow is not strongly affected by rigid meridional boundary conditions. In
particular, we evaluate the equilibrium levels of kinetic energy Ei (i = 1, 2) and
the potential vorticity flux in the upper layer (Fq1) averaged over region (B 8). To
be consistent with the definition of PV anomaly adopted in our quasi-geostrophic
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FIGURE 12. The shallow-water model. The upper layer zonal velocity of the background
flow is shown in (a). Panels (b,c) present the instantaneous patterns of zonal and
meridional velocities in the quasi-equilibrium phase (t = 500) of the simulation with
meridional topography. Dashed lines mark the central region that is used to evaluate the
equilibrium values of energy and PV flux. The potential vorticity anomalies in the central
regions of the top and bottom layers are shown in (d) and (e) respectively.

model (2.8), we introduce the corresponding diagnostic variable for the shallow-water
system,

qi =

(
f +∇× vi

hi
−

f
hi

)
hi, (B 9)

where hi is the mean basic thickness (hi ) in the area (B 8). The typical distribution
of PV anomalies (e.g. figure 12d,e) is structurally similar to patterns realized in quasi-
geostrophic experiments (cf. figure 3a,b). In all cases, the upper layer flow field is
dominated by intense mesoscale variability whereas the lower layer PV anomaly also
reveals a clear imprint of the bottom topography.

A series of experiments analogous to that in figure 12 were performed for
various values of the orientation variable (θ ). The resulting equilibrium values of
(E1, E2, Fq1) averaged over the central area (B 8) are plotted in figure 9 along with
the corresponding quasi-geostrophic results, revealing their general consistency. In
both models, the intensity of baroclinic instability monotonically increases (decreases)
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as the topography becomes more meridional (zonal). Some quantitative differences
are apparent in the energy and PV flux estimates offered by quasi-geostrophic
and shallow-water models. However, these differences do not seem to reflect any
systematic trends. Furthermore, it is likely that they are caused by dissimilar
meridional boundary conditions rather than by inherently non-quasi-geostrophic
effects in the shallow-water system.
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