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We investigate two-dimensional shallow granular flows on a rotating and gravitating
elliptical body. This is motivated by regolith flow on small planetary bodies – also
called minor planets – which is influenced by the rotation of the body, as well as its
irregular topography and complex gravity field. Governing equations are obtained in an
elliptic coordinate system attached to the body by extending the framework employed for
terrestrial avalanches to incorporate effects of rotation, varying gravity and a curvilinear
surface. Additionally, we introduce criteria to monitor grain shedding and to track flow
initiation and cessation. We delineate different types of regolith motion that are governed
by the rotation rate and surface roughness of the body. We find that grains migrate towards
the minor and major axis of the body at low and high rotation rates, respectively. Grains
are shed when the basal pressure vanishes, and shedding is encouraged by Coriolis effects
during prograde flow. We observe the coexistence of regions of static and mobile regolith
and their reorganization owing to the merging or division of flows. We also probe the
formation and destruction of dunes – bulges arising from local grain accumulation –
and find several aspects of their motion to be different from terrestrial situations. We
then perform discrete element simulations that display a good match with theoretical
predictions. Finally, we consider the evolution of a bi-disperse regolith. We find that big
and small grains occupy, respectively, the top and bottom of the dunes formed on the
surface, which is reminiscent of observations on asteroids like Itokawa.
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1. Introduction

Minor planets, like small moons and asteroids, are found to have regolith deposits on their
surfaces, which vary in depth from a few metres on the asteroid Itokawa (Barnouin-Jha
et al. 2008) – see figure 1 – to several tens of metres on the asteroid Eros (Cheng 2002;
Murdoch et al. 2015). These regolith deposits, which are composed of unconsolidated
granular material, can move on the surface of the body and their dynamics are affected
by the gravity, rotation and surface topography of the body, as well as the presence of
neighbouring bodies. For example, Eros is found to have freshly-exposed materials on
its steep surfaces, which are believed to have resulted from granular avalanches (Veverka
et al. 2000). Indeed, the lack of smaller craters on Eros, in spite of the presence of a
sufficient number of small potential impactors, suggests that these craters were erased by
regolith movement arising from seismic shaking post impact. Recently, in the context of
resurfacing of Mars’ moon Phobos, Ballouz et al. (2019) demonstrated that a granular
flow could be driven by even the gentle perturbations from the orbital eccentricity of the
body. The primary mechanism for the accumulation of surface regolith is thought to be
the agglomeration of impact ejecta. Another possibility is thermal fragmentation, which
arises from a diurnal temperature variation that can break rocks faster than micro-impacts
(Delbo et al. 2014).

Dynamics of grains on and in the vicinity of planetary objects is generally interpreted
from investigations into the motion of a particle in a complex gravitational environment.
Thus, Dobrovolskis & Burns (1980) studied ejecta from craters on Phobos, Deimos
and Amalthea by employing the restricted three-body model (Murray & Dermott 1999,
Chap. 3). They derived zero velocity curves to determine the escape conditions for ejecta.
They also noted the anisotropy induced in the distribution of escape velocities arising
from the rotation of the parent body. Scheeres (2015) studied conditions for initiation of
landslides and the fate of the disturbed regolith on a rigid spheroidal asteroid employing
local estimates of the forces at a point on the surface. By comparing the surface slope
with the frictional angle of repose of the grains, the surface failure was shown to initiate
before surface mass shedding, i.e. grains lost contact with the surface. This was followed
by a similar study on the fate of cohesive regolith on fast-spinning asteroids (Sanchez
& Scheeres 2020). However, the dynamics of the moving regolith was not considered.
Scheeres et al. (2016, 2019) studied the dynamical environment of the asteroids Bennu and
Phobos using high-resolution shape models and derived the surface slope, lift-off speed,
equilibrium points and Roche lobe. Recently, Yu et al. (2018, 2019) investigated mass
shedding from the fast-spinning asteroid Didymos by analysing the motion of a particle
on its surface. In spite of this rich body of work, a continuum analysis of granular flows
in an extraterrestrial environment is uncommon. An exception is the work by Kokelaar
et al. (2017) on lunar mass-wasting processes, which used methods of avalanche dynamics
(Savage & Hutter 1989; Pudasaini & Hutter 2007) that were developed for terrestrial flows.
They showed that the morphology of lunar and terrestrial flows is the same as gravity
scales out of the equations. However, gravity will not scale out if the avalanche occurs on
a small, rotating, irregular central body, like an asteroid. This is because the length scale
of a lunar avalanche is small compared with the size of the Moon, so that gravity is nearly
constant along the length of the flow and, moreover, surface gravity is sufficiently large
to suppress rotational effects. In contrast, on rotating small bodies, terms arising from
the rotational motion of the body, e.g. centripetal and Coriolis accelerations, are of the
same order as the surface gravity of the body. Additionally, if the body is irregular then,
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100 m

Figure 1. Image of asteroid 25143 Itokawa, obtained by the Japanese Space Exploration Agency (JAXA)
spacecraft Hayabusa 1 in 2005. Distinct regions of small and large grains are observed in the image on either
side of the white line. Source: JAXA Digital Archives.

because the run-out length of avalanches may be comparable to the size of the body,
gravity may vary significantly along the flow. Both of these aspects will prevent gravity
from scaling out in such systems.

The study of the dynamics of regolith motion on the surface of small planetary
bodies is made difficult by the complex topography, three-dimensional (3-D) rotation
and non-trivial gravitational field of the body. Models of geophysical flows on the Earth
do account for its topography and rotation, but the effects of these aspects are much
more pronounced on small bodies like minor planets. Unlike the Earth, where gravity is
normal to the surface and approximately constant everywhere, the gravity field on, say, an
asteroid may also have a component in the tangential direction that can vary significantly
over the surface of the body. Moreover, on small bodies, the magnitude of gravitational
acceleration is of the order of mm s−2, e.g. the surface acceleration on the asteroid Eros
is approximately 2 mm s−2. Then, in contrast to the Earth whose rotation period is 24 h,
small bodies can rotate much faster, with some having rotation periods as short as 2 h.
Finally, the surface of small bodies is generally much more curved than that of the Earth.
Faster rotation and higher curvature significantly reduce the basal pressure in surface flows
which, in turn, lowers the frictional resistance to the flow; cf. § 2.5. At the same time, the
presence of tangential components of a non-normal gravity and centrifugal acceleration
assist surface granular flow. Thus, in contrast to the Earth, the run-out length of avalanches
on small planetary bodies may be comparable to the size of the body, and this is indeed
observed; cf. § 4. Under these circumstances, the global topography and rotation of the
body may significantly affect the surface regolith motion. These aspects have not been
included in previous studies.

Here, we take the first step towards studying regolith motion on an irregular,
self-gravitating and rotating object. To this end, we investigate shallow granular flow
over the surface of a rotating and self-gravitating two-dimensional (2-D) ellipse;
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Figure 2. Schematic of our system consisting of an elliptical central body with a layer of regolith of depth
H. Also shown are the elliptic coordinates μ and ν, the rotation rate Ω of the central body, the Cartesian
coordinates x and y, the linear eccentricity a, and the semi-major axes of length a1 and a2. We also indicate the
flow directions normal (u1) and tangential (u2) to the surface. See § 2.3 for details.

figure 2 shows a schematic, the details of which are discussed in a later section. Our simple
2-D system includes the new processes that will influence regolith flow on a small body
in space, viz. a varying gravity field, rotation of the central body and a changing surface
topography. Indeed, we will observe several novel features in the flow even in the present
2-D framework. Because the setup is 2-D, it may not be possible to compare our results
directly with asteroids, with the main reason being the difference in the gravity field at the
circumference of a 2-D lamina and the gravity at the equator of a 3-D body. However, we
do note that, in spite of the simple setting of our system, it is reminiscent of the equatorial
flow of grains on a rotating small body in space.

The necessary governing equations for our system are obtained by an extension of
avalanche dynamics (Savage & Hutter 1989; Gray, Wieland & Hutter 1999), which is
employed to model shallow granular flows on Earth. We then investigate the final deposits
of regolith over the elliptical central body for different initial conditions, internal friction
angles and rotation rates. We will also identify regimes of rotation rates corresponding
to the manner in which the regolith moves and possibly sheds mass. The friction angles
characterizing the regolith are kept within the range of 0◦–30◦, which allows us to explore
many possible dynamical regimes. This range of friction is not unnatural, keeping in mind
the fluidisation of the regolith caused by impact-induced seismic shaking (Krohn et al.
2014; Murdoch et al. 2015), and also the very low confining pressure on small planetary
bodies owing to their inordinately small surface gravity (Sharma 2017, § 2.10), both of
which may reduce the friction in the system. We then briefly study the flow of a regolith
made up of a mixture of two differently sized grains. As in terrestrial avalanches, we
find that big and small grains occupy, respectively, the top and bottom of the bumps
formed on the surface of the central body. This outcome is consistent with the manner
in which regolith is distributed on Itokawa in figure 1; see also Miyamoto et al. (2007).
Finally, given the obvious difficulty in creating experiments for our system, we perform
discrete element (DE) simulations of shallow granular flow on the surface of a rotating
ellipse and compare their results with our theoretical predictions. We observe a reasonably
good agreement. We note that DE simulations for terrestrial landslides and avalanches
have been performed previously by many researchers, e.g. Cleary (2007), Liu & Koyi
(2013). However, similar studies on small rotating, aspherical, extra-terrestrial bodies are
not available.
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The paper is organized as follows: § 2 develops our mathematical model by first
describing the geometry and the associated coordinate system. This is followed by a
detailed derivation of the governing balance laws. At the end of the section, we arrive
at the depth-averaged equations for shallow granular flow on the surface of a rotating and
gravitating elliptical body. In § 3, we discuss the range of possible motions of the regolith.
Conditions for grain migration and shedding are studied, and various regimes are identified
depending upon the dynamics of the moving regolith. Subsequently, we discuss the results
of our numerical simulation in § 4. We briefly investigate flow of a regolith composed of
two different-sized grains in § 5. Finally, § 6 compares the theoretical predictions with the
output of the DE simulations.

2. Shallow granular flow on a rotating and gravitating ellipse

2.1. Model
As mentioned, as the first step, we limit ourselves to two dimensions. Figure 2 shows a
schematic of our system. We model the small object in space as a rigid ellipse, which is
rotating at the rate Ω about an axis k̂ perpendicular to its plane and passing through the
centre of the ellipse. The ellipse has semi-major axes of lengths a1 and a2 and its foci lie
at a distance a from the origin. The regolith is represented by a shallow layer of grains that
moves on the surface of the ellipse. We note that the boundary of a 2-D body is, strictly
speaking, a curve and not a surface. However, as this mathematical distinction will not
affect our analysis, we will continue to refer to the boundary of the body as a ‘surface’.

2.2. Governing equations
We model the regolith motion as the flow of a shallow layer of dry, cohesionless grains.
For simplicity, we take the flow to be incompressible. The governing equations are
then obtained by an appropriate extension of the manner in which avalanche flows are
studied (Gray et al. 1999; Gray, Tai & Noelle 2003). The conservation of mass and linear
momentum for a flow over the surface of a rotating central body in a coordinate frame
affixed to the body are, respectively,

∇ · u = 0 (2.1)

and

ρ
du
dt

= −∇ · P + ρb − 2ρΩ × u, (2.2)

where t is the time, u is the flow velocity, ρ is the density of the flow, ∇ · (.) is the
divergence operation, P is the pressure tensor, Ω = Ωk̂ is the rotation rate of the central
body, and

b = b0 − Ω × (Ω × r) (2.3)

is the effective gravitational acceleration at location r, with b0 being the external gravity
field of the central body.

The gravitational field at the boundary of a homogeneous ellipse may be obtained from
the closed form formula for an ellipsoid (Sharma 2017, (3.22)) in the limit of the size of
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the semi-major axis along ê3 tending to zero; we find

b0 = −3πe
2
ρEGA · r

a
, (2.4)

where G is the universal gravitational constant, e and ρE are, respectively, the eccentricity
and the density (mass per unit area) of the elliptical central body, and A is a gravitational
shape tensor that captures the effect of the shape of the body on its surface gravity field.
In the principal axes coordinate system of the elliptical body, A is diagonal, and may be
expressed as

A = A1ê1 ⊗ ê1 + A2ê2 ⊗ ê2, (2.5a)

with
A1 = 2γ (K[s] − E[s]) /(1 − γ 2) (2.5b)

and
A2 = 2γ (E[s]/γ 2 − K[s])/(1 − γ 2), (2.5c)

where γ = a2/a1 is the axes ratio of the ellipse, and K[s] and E[s] are the complete elliptic
integrals of the first and second kind, respectively, in terms of the parameter s =

√
1 − γ 2

(Abramowitz & Stegun 1965, p. 587). Finally, combining (2.3) and (2.4), and setting Ω =
Ωk̂, we find the effective gravitational acceleration to be

b =
(

−3πe
2a

ρEGA +Ω21

)
· r, (2.6)

where 1 is the identity tensor. Note that, in obtaining the above equation, we have
approximated the external gravity field of a body in (2.3) by its surface gravity field, which
is acceptable for shallow granular flows and is also consistent with the depth averaging that
will follow.

The boundary conditions follow the usual pattern of the flows in earlier work (Gray et al.
1999; Pudasaini & Hutter 2003). The top of the flow is a free surface. At the bottom of the
flow, we impose the no penetration condition. Further, the basal shear and normal tractions
are related by a local version of Coulomb’s law for dry friction as

n̂b · P − (n̂b · P · n̂b)n̂b = n̂b · P · (1 − n̂b ⊗ n̂b) = −
(

us

|us|
)
(n̂b · P · n̂b) tan δ, (2.7)

where n̂b is the normal to the surface of the central body, us is the velocity of the grains
at the surface of the body and tan δ is the friction coefficient between the regolith and the
surface of the central body. More details may be found in Gaurav (2020).

Later, we will be confronted by situations wherein an initially static regolith becomes
mobile, or vice versa. To capture this aspect we need to include a basal yield criterion,
which is obtained by emulating Coulomb’s friction law again as

|n̂b · P · (1 − n̂b ⊗ n̂b)| � |n̂b · P · n̂b| tan δ; (2.8)

thus, grains will begin slipping over the body when the shear traction at the base of
the regolith cannot be sustained by the maximum basal frictional resistance that can be
mobilized. At the same time, moving regolith near the surface of the body will stop when
its velocity drops to zero and the shear and normal tractions at the base satisfy (2.8).
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Figure 3. Elliptic coordinate system where curves of constant μ (red) and ν (green) form confocal ellipses
and confocal hyperbolae, respectively. The ellipse corresponding to μ = 0.4 is highlighted for future

reference.

2.3. Elliptic coordinate system
The geometry of the system suggests the use of elliptic coordinates. Elliptic coordinates are
generally represented by (μ, ν), and describe families of confocal ellipses and hyperbolae.
Curves of constant μ represent ellipses given by x2/a2 cosh2 μ+ y2/a2 sinh2 μ = 1,
whereas curves of constant ν yield the hyperbolae x2/a2 cos2 ν − y2/a2 sin2 ν = 1, where
a is the distance of the foci from the origin, and is also called the linear eccentricity.
Figure 3 plots several of these confocal ellipses and hyperbolae to show how an elliptic
coordinate system is generated.

An ellipse is defined completely by fixing a and the coordinate μ. The coordinate ν then
locates a point along the surface of the ellipse. Note that a sets the size of the ellipse, while
μ defines its shape in terms of its eccentricity e and axes ratio γ = a2/a1, and we record
the following formulae for future reference as

e = sechμ, γ = tanhμ, a1 = a coshμ and a2 = a sinhμ. (2.9a–d)

Finally, the transformation from elliptic coordinates to the usual Cartesian coordinates
(x, y) may be done through the relations

x = a coshμ cos ν and y = a sinhμ sin ν. (2.10a,b)

Let r = xê1 + yê2 be a position vector with the unit vectors ê1 and ê2 oriented along
the major and minor axes, respectively, of the ellipse. The natural covariant basis vectors
associated with the families of confocal ellipses and hyperbolae described above are then
defined by gi(r) = ∂r/∂xi, where x1 = μ and x2 = ν are the corresponding contravariant
coordinates (Ogden 1997, p. 57). This provides

g1(r) = a sinhμ cos ν ê1 + a coshμ sin ν ê2 (2.11a)

and
g2(r) = −a coshμ sin ν ê1 + a sinhμ cos ν ê2. (2.11b)

Because g12 = g21 = g1 · g2 = 0, the natural basis vectors are orthogonal. However, these
gi are not unit vectors, as

g1 · g1 = g2 · g2 := g11 = g22 = g := a2(sinh2 μ+ sin2 ν). (2.12)
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The gij above define the covariant components of the metric tensor, i.e. components with
respect to the contravariant natural basis vectors gi(r) = gi(r)/g. Here g relates to the
components of the metric tensor associated with the elliptical coordinate system and
should not be confused with the gravity field of the ellipse, which is denoted by b0 in
(2.4).

The Christoffel symbols Γ k
ij (r) := ∂gi/∂x j · gk(r) may now be computed to obtain the

non-zero components as

Γ 1
11 = α/g; Γ 1

12 = Γ 1
21 = β/g; Γ 1

22 = −α/g;
Γ 2

11 = −β/g; Γ 2
12 = Γ 2

21 = α/g; Γ 2
22 = β/g;

⎫⎬
⎭ (2.13)

where

α = a2 coshμ sinhμ and β = a2 cos ν sin ν, (2.14a,b)

while the remaining Γ k
ij are zero. These Christoffel symbols may now be used to compute

the gradient and divergence of various vector and tensor fields in elliptic coordinates
(Ogden 1997, pp. 58–60). Using these results and recalling that x1 = μ and x2 = ν, we
may now express (2.1) and (2.2) in elliptic coordinates as

∂u1

∂μ
+ ∂u2

∂ν
+ αu1

g
+ βu2

g
= 0, (2.15)

ρ

⎡
⎣√

g
∂u1

∂t
+ 1

g

{
√

gu1
∂(

√
gu1)

∂μ
+ √

gu2
∂(

√
gu1)

∂ν
− α(u2

1 + u2
2)

}⎤⎦

= ρ
√

g(b1 + 2Ωu2)− 1
g

{
∂(gP11)

∂μ
− α(P11 + P22)+ ∂(gP12)

∂ν

}
(2.16)

and

ρ

⎡
⎣√

g
∂u2

∂t
+ 1

g

{
√

gu1
∂(

√
gu2)

∂μ
+ √

gu2
∂(

√
gu2)

∂ν
− β(u2

1 + u2
2)

}⎤
⎦

= ρ
√

g(b2 − 2Ωu1)− 1
g

{
∂(gP12)

∂μ
− β(P11 + P22)+ ∂(gP22)

∂ν

}
. (2.17)

We now take the free surface of the flow to be given by Fs(r, t)=μ− {μE + h(ν, t)}=0,
whereμE + h(ν, t) is the value ofμ at the free surface at a given location ν on the elliptical
central body described by μ = μE. The kinematic and kinetic boundary conditions at the
free surface of the flow now become, respectively,

u1(h, ν, t)− ∂h(ν, t)
∂ν

u2 = √
g
∂h(ν, t)
∂t

, (2.18a)

and

P11(h, ν, t) = ∂h(ν, t)
∂ν

P12(h, ν, t) and P21(h, ν, t) = ∂h(ν, t)
∂ν

P22(h, ν, t). (2.18b)
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Similarly, the boundary conditions at the bottom surface of the flow, which coincides with
the surface of the central body, reduce to

u1(0, ν, t) = 0 (2.19a)

and
P12(0, ν, t) = −sgn{u2(0, ν, t)}P11(0, ν, t) tan δ, (2.19b)

where ‘sgn’ is the signum function. Finally, we emphasize that h is not the vertical extent
of the granular flow. Indeed, the location H of the free surface of the flow at any ν for
small values of h is, in fact,

H(ν, t) =
√

g(μE, ν) h(ν, t)+ O(h2). (2.20)

2.4. Non-dimensionalisation
We now follow Savage & Hutter (1989) and non-dimensionalise our equations. This will
allow us to identify and then ignore small terms, thereby simplifying the mathematical
model. We first introduce μ̃ = μ− μE and ε = H0/a, where we recall that μ = μE
represents the elliptical central body upon which the regolith flows, H0 is a measure of
the vertical extent of the flow and ε � 1 estimates the shallowness of the flow. We then
define non-dimensional variables, identified by the superscript ‘∗’, as follows

μ̃ = εμ∗; (u1, u2) =
√

ba(εu∗
1, u∗

2); t = (
√

a/b)t∗; (2.21a)

(P11,P22,P12) = ρbH0(P∗
11,P∗

22, tan δP∗
12); (2.21b)

b1 = bb∗
1, b2 = bb∗

2; g = a2g∗; α = a2α∗; β = a2β∗; (2.21c)

where b1 = ĝ1 · b and b2 = ĝ2 · b are effective gravitational accelerations in the normal
and tangential direction, respectively, and

b = 3πeρEG/2 (2.22)

is a scaling motivated by the right-hand side of (2.6).
With this, we non-dimensionalise (2.15)–(2.17) to obtain, respectively,

∂u1

∂μ
+ ∂u2

∂ν
+ ε

αu1

g
+ βu2

g
= 0, (2.23)

ε
√

g
∂u1

∂t
+ 1

g

{
ε
√

gu1
∂(

√
gu1)

∂μ
+ ε

√
gu2

∂(
√

gu1)

∂ν
− α(ε2u2

1 + u2
2)

}

= √
g (b1 + 2ωu2)− 1

g

{
∂(gP11)

∂μ
− εα(P11 + P22)+ ε tan δ

∂(gP12)

∂ν

}
(2.24)

and

√
g
∂u2

∂t
+ 1

g

(
√

gu1
∂(

√
gu2)

∂μ
+ √

gu2
∂(

√
gu2)

∂ν
− β(ε2u2

1 + u2
2)

)

= √
g (b2 − 2εωu1)− 1

g

{
tan δ

∂(gP12)

∂μ
− βε(P11 + P22)+ ε

∂(gP22)

∂ν

}
, (2.25)
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where

ω = Ω
√

a/b (2.26)

is the non-dimensional rotation rate, and the superscript ‘∗’ is suppressed to simplify the
notation. Similarly, the non-dimensional boundary conditions at the free surface of the
flow are obtained from (2.18) to be

u1(h, ν, t)− ∂h(ν, t)
∂ν

u2(h, ν, t) = √
g
∂h(ν, t)
∂t

, (2.27a)

P11(h, ν, t) = ε
∂h(ν, t)
∂ν

P12(h, ν, t) and P21(h, ν, t) = ε
∂h(ν, t)
∂ν

P22(h, ν, t). (2.27b)

The non-dimensional boundary conditions at the bottom surface of the flow (2.19)
becomes

u1(0, ν, t) = 0 (2.28a)

and

P12(0, ν, t) = −sgn{u2(0, ν, t)}P11(0, ν, t). (2.28b)

In the subsequent development, we will approximate the mass conservation and
momentum conservation in the normal direction, respectively, (2.23) and (2.24), to the
leading order, and neglect all terms of O(ε) or higher. However, we will retain the
O(ε) terms in (2.25), i.e. in the linear momentum balance in the tangential direction, to
incorporate the effects of the Coriolis force, the pressure tensor and its gradient in driving
the flow in the tangential direction. This is a standard practice in the analysis of shallow
flows; see, e.g. Savage & Hutter (1989) and Gray et al. (1999).

We close this section by noting that when non-dimensionalising, we assumed the length
scale of the flow to be O(a), i.e. the regolith flow takes place over a distance comparable
to the size of the central body.

2.5. Depth integration
As the regolith layer is shallow, flow variations in the direction normal to the surface of the
central body are expected to be smaller than those along the surface. At the same time, our
main interest is in the surface transport of regolith. We, thus, depth average the governing
equations along the surface normal. Depth integration of (2.23)–(2.25) is complicated by
the presence of metric coefficients g, α, β and a complex gravity field, all of which vary
with depth μ. As the flow is shallow, we ignore this variation, which simplifies the depth
integration considerably. We define the following depth-averaged quantities as

ūih =
∫ h

0
ui dμ, P̄ijh =

∫ h

0
Pij dμ and u2

i h :=
∫ h

0
u2

i dμ = χ ū2
i h, (2.29a–c)

where we recall that in § 2.4 we had re-scaled the coordinate μ so that it vanishes at the
surface of the elliptical body and μ = h is the free surface of the regolith. For most flow
profiles, χ ≈ 1 (Savage & Hutter 1989) and, for simplicity, we will set χ = 1.
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At the leading order, depth averaging the continuity equation (2.23) yields

∂(gh)
∂t

+ ∂(
√

gū2h)
∂ν

= 0. (2.30)

The leading-order momentum conservation in the normal direction (2.24) becomes

1
g
∂(gP11)

∂μ
= αu2

2
g

+ √
g (b1 + 2ωu2) . (2.31)

The normal pressure at any depth μ may be obtained by integrating the above from the
free surface h(ν) of the flow to a depth μ, which invokes the following estimates

ū2(h − μ) =
∫ h

μ

u2 dμ and ū2
2(h − μ) =

∫ h

μ

u2
2 dμ, (2.32a,b)

and by employing the boundary condition (2.27) at the free surface of the flow. The normal
pressure at the location μ is then given by

P11(μ) = −ψ(h − μ), (2.33a)

where
ψ(ν) = α

g
ū2

2 + √
g (b1 + 2ωū2) . (2.33b)

The form of the normal pressure P11 in (2.33) is different from that obtained in
usual shallow flow analyses, wherein ψ is a constant gravitational acceleration and
is independent of the flow velocity. Our flow takes place over a curved and rotating
body, which yields two extra terms. Thus, in (2.33b), the first term on the right is the
centripetal acceleration arising from the flow taking place over the curvilinear boundary
of the elliptical central body, while the last term is the Coriolis acceleration arising from
the rotation of the central body. We note that shallow water theory when applied to
geophysical flows (Pedlosky 1987; Dellar & Salmon 2005) contains contributions from
the Coriolis acceleration and topography, but suppresses the centripetal contribution as
the curvature of the Earth is negligible; this will not be true for minor planets. Separately,
for application to avalanches, Pudasaini & Hutter (2007) and Gray et al. (1999) studied
granular flows over a variable topography, wherein the effects of the basal curvature and
torsion on the normal pressure was incorporated but rotational effects were, of course,
ignored. The system considered here, and the accompanying mathematical development,
is the first to retain the full impact of both the varying topography of the underlying body
and its rotation on the surface granular flow.

Next, integrating the momentum conservation in the tangential direction (2.25) across
the vertical extent of the flow, while neglecting O(ε2) terms but retaining those of O(ε),
and applying boundary conditions (2.27) and (2.28), yields

√
g
∂(ū2h)
∂t

+ 1
g
∂(gū2

2h)
∂ν

− β

g
(ū2

2h) = −sgn(ū2)P11(0, ν, t) tan δ + √
gb2h . . .

− ε

{
1
g
∂(gP̄22h)
∂ν

− β

g
(P̄22 + P̄11)h + 2

√
gωū1h

}
.

(2.34)

We may eliminate ū1 that appears in the Coriolis term in the above equation – last term
on the right-hand side – by using the mass balance (2.23) as follows. By multiplying (2.23)
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by
√

g, rearranging, integrating from μ = 0 to a depth μ and invoking the boundary
condition (2.28), we obtain the normal velocity as

√
g u1(μ, ν, t) = − ∂

∂ν

∫ μ

0

√
gu2 dμ. (2.35)

The right-hand side of the above equation may be approximated in a manner similar to
(2.32a,b), to find

u1 = − 1√
g
∂(

√
gū2)

∂ν
μ, (2.36)

which, on depth averaging, provides

ū1 = − 1√
g
∂(

√
gū2)

∂ν

h
2
. (2.37)

As of now, we have five variables ū1, ū2, h, P11 and P̄22, and only four equations (2.30)
and (2.33)–(2.37). To complete the mathematical description, we need a constitutive law
for the flowing granular material. This is also expected, else our predictions would be
applicable to all manner of shallow regolith flows. Specifically, we require an estimate for
P̄22 to use in (2.34). For this we proceed as follows.

One way to estimate P̄22 in (2.34) is to invoke Earth-pressure theory (Nedderman 1992,
p. 34) to relate the normal and lateral normal components of the pressure tensor. By
employing this, Savage & Hutter (1989) were able to establish the relation

P̄22 = k±P̄11, (2.38)

where k± are the active/passive Earth pressure coefficients that depend on whether the
stress state is passive (compressional flow, ∂ ū2/∂ν < 0) or active (elongational flow,
∂ ū2/∂ν > 0). Furthermore, Savage & Hutter (1989) related k± to the internal friction
angle of the granular regolith, assuming it to be a cohesionless Mohr–Coulomb material
(Nedderman 1992, p. 25).

By using (2.37), (2.38) and (2.33) to eliminate ū1, P̄22, P̄11 and P11(0, ν, t) in (2.34), we
obtain the final form for the momentum balance in the tangential direction as

∂

∂t

(√
gū2h

) + 1
g
∂

∂ν

⎧⎨
⎩g

(
ū2

2h − εkψ
h2

2

)⎫⎬
⎭ − εωh2 ∂

∂ν

(√
gū2

)

= β

g
(ū2

2h)+ sgn(ū2)ψh tan δ + √
gb2h − ε

β

g
(k + 1)ψ

h2

2
. (2.39)

In the above, the flux term has an extra contribution – third term on the left side – from the
Coriolis acceleration, while the β/g term in the source term on the right arises from the
surface topography. Our mathematical model is finally complete with two equations (2.30)
and (2.39) for the two variables h and ū2. These equations constitute a hyperbolic system
that we will solve numerically for several choices of initial data. We begin by discussing
some general features of the motion of the regolith in our system.

3. General considerations

The governing equations obtained in the previous section will be solved numerically in § 4
for different values of the rotation rate of the central body Ω and the basal and internal
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Granular flow on a rotating and gravitating elliptical body

friction angles δ and φ, respectively, of the regolith. In this section, we will identify generic
behaviours of the regolith that will help better understand the later results. We begin by
using equations obtained in the previous section to find constraints on Ω and δ for grain
migration and shedding. In all plots henceforth, the ends of the major axis are located at
ν = 0 and π, while the minor axis extends from ν = π/2 to 3π/2.

3.1. Grain shedding
Beyond a certain rotation rate, grains in the regolith will lose contact with the surface of
the body. This happens when the normal pressure (2.33a) becomes negative at the base,
i.e. whenever P11(μ = 0) � 0. Ignoring the possibility of re-agglomeration, we assume
that grains that lose contact with the central body are shed permanently. From (2.33b), we
may obtain the condition for the shedding of a stationary regolith from the surface of the
body by setting the flow velocity to zero: a stationary regolith will not shed as long as

b1 < 0, (3.1)

where b1 is the normal component of the effective gravity defined in (2.6). When b1 > 0,
the gravitational force on a grain is unable to provide the necessary centripetal acceleration
and the grain leaves the surface; see also Scheeres (2015). Using (2.6) and (2.10a,b)–(2.12),
we find that

b1 = sinhμE coshμE{ω2 − (A1 cos2 ν + A2 sin2 ν)}/
√

sinh2 μE + sin2 ν, (3.2)

where μE defines the shape of the elliptical central body – specifically, its eccentricity
e and axes ratio γ = a2/a1, cf. (2.9a–d) – ν is the angular location along the surface of
the body, the Ai depend only on γ and are given by (2.5), and ω is the non-dimensional
rotation rate.

From (3.2), we immediately see that at any surface location ν, b1 vanishes whenω equals

(A1 cos2 ν + A2 sin2 ν)
1/2

, a value that depends only on the axes ratio of the elliptical body
and not its size a. Of course, given (2.26), the corresponding dimensional rotation rate Ω
will depend on the size of the body. We may now define the shedding rotation rate ωsh as
the rotation rate at which b1 first becomes positive anywhere on the surface of the body,
so that mass shedding is initiated. Because A1 � A2, we must have

ωsh =
√

A1. (3.3)

Thus, mass is first lost from the ends of the major axis of the central body when ω equals
ωsh. The expression for ωsh has a structure similar to the formula obtained for the rotation
rate of Maclaurin spheroids in the limit of the third axis going to zero (Chandrasekhar
1969; Sharma, Jenkins & Burns 2009), although we do note that in that limit, a Maclaurin
spheroid will flatten into a circle and not an ellipse. Similar connections with equilibrated
shapes of rotating fluids, in the context of particle motion on rotating and gravitating
ellipsoids, were established by Guibout & Scheeres (2003).

Figure 4(a) shows curves which trace the variation of b1 at the ends of the major and
minor axes with the rotation rate ω for an elliptical central body with μE = 0.4, for which
ωsh = 1.06. We observe three regions. In region I, the stationary regolith does not lose
grains because the gravity of the central body is stronger than the centrifugal force in
a direction normal to its surface and hence b1 is negative. As ω increases, the latter
exceeds the former for the first time at the ends of the major axis, which is indicated by b1
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Figure 4. (a) Variation with the non-dimensional rotation rate ω of the scaled effective normal gravity b1 at
the ends of the major (ν = 0 and π, blue curve) and minor (ν = π/2 and 3π/2, orange curve) axes of an
elliptical body with μE = 0.4 (e ≈ 0.93, γ ≈ 0.38). Here, b1 vanishes first at ωsh = 1.06. (b) The shedding
landscape for stationary regolith on an elliptical body in its shape (γ )–rotation (ω) parameter space. The total
area of the ellipse is kept constant as γ is changed.

vanishing there when ω = ωsh. At this time, a stationary grain at ν = 0 and ν = π loses
contact with the surface and is shed. As ω is raised beyond ωsh, grains begin to shed from
proportionately expanding zones centred around ν = 0 and ν = π. This is represented by
region II, in which b1 at and around the ends of the major axis is now positive. When
ω = √

A2 ≈ 2.21, mass shedding initiates even from the ends of the minor axis. Thus, in
region III, mass is being lost from all points on the surface of the body and b1 > 0 at the
minor axis.

In figure 4(b), we depict the shedding landscape for stationary regolith on a rotating
and gravitating elliptical body in its shape (γ )–rotation (ω) parameter space. We see how
regions I–III defined in figure 4(a) evolve with the axes ratio γ . In particular, as γ → 1,
the geometry of the body becomes more circular. Thus, the rotation rates at which mass
shedding initiates from the ends of the minor and major axes merge to the same value for
a circular body (γ = 1).

Before closing this section, we emphasize that the above analysis is restricted to
stationary regolith. Mass shedding in moving regolith may start at ω lower or higher than
ωsh depending upon the direction of granular flow, and this is discussed in § 3.3.

3.2. Grain migration
Grains may migrate towards the minor or major axis of the elliptical central body
depending upon its rotation rate. This is expected because, in the absence of rotation,
grains would prefer to be at the ends of the minor axis where the gravitational potential
is minimum. However, at high rotation rates, centrifugal effects shift the location of the
minimum of the total potential to the ends of the major axis. We now investigate this
process.

In a depth-averaged description, regolith motion will be initiated when the basal yield
criterion (2.8) is violated. To test this, we require an estimate of the shear stress at the base
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Granular flow on a rotating and gravitating elliptical body

of a static regolith. This may be obtained as follows. We set the velocity terms to zero in
the tangential balance of momentum (2.25) to find

√
g b2 − 1

g

{
tan δ

∂

∂μ

(
gP12

) − βε (P11 + P22)+ ε
∂

∂ν

(
gP22

)} = 0. (3.4)

Depth averaging the above, using (2.38) and employing the boundary condition at the top
of the flow (2.27) provides the shear stress at the base (μ = 0) of a static regolith as

tan δP12(0, ν) = −√
gb2h + ε

2g

{
− ∂

∂ν
(gψh2)k± + β(k± + 1)ψh2

}
, (3.5)

where b2 and ψ depend on the rotation rate of the central body ω; cf. (2.6) and (2.33b),
respectively. Combining the preceding equation with the basal yield criterion (2.8),
we find that regolith motion will not commence as long as the following inequality
holds ∣∣∣∣∣√gb2h + ε

2g

{
∂

∂ν
(gψh2)k± − β(k± + 1)ψh2

}∣∣∣∣∣ < ∣∣ψh
∣∣ tan δ. (3.6)

The left-hand side of (3.6) is dominated by the effective tangential gravity b2, as the
other terms are of O(ε). Employing (2.6) and (2.10a,b)–(2.12), we compute

b2 = sin ν cos ν{−ω2 + (A1 cosh2 μE − A2 sinh2 μE)}/
√

sinh2 μE + sin2 ν. (3.7)

As for b1 in (3.2), given a non-dimensional rotation rate ω, b2 depends only on the shape of
the elliptical body, as defined by μE, and not its size. Furthermore, b2 vanishes whenever
ω equals

ωth := (A1 cosh2 μE − A2 sinh2 μE)
1/2, (3.8)

which defines the threshold rotation rate. From (3.7) and (3.8), we see that when
sin 2ν > 0, b2 is positive (i.e. directed along increasing ν) or negative (i.e. pointed
towards decreasing ν) depending upon whether ω is less than or greater than ωth,
respectively. When sin 2ν < 0, the sign of b2 reverses. Thus, in the absence of basal
friction (δ = 0◦), grains tend to migrate towards the ends of a smooth minor/major
axis of the elliptical central body when ω ≶ ωth. Furthermore, regolith can only be
stationary on a smooth body if it rotates at exactly ωth. We also observe that ωth is
independent of the angular location ν on the central body and its size, so that regolith
on a smooth surface of the body is mobilized simultaneously everywhere when ω /=ωth.
Consequently, the dimensional threshold rotation rate Ωth is also unaffected by ν, but not
by the size of the body; cf. (2.26). In this context, we again recall the work of Guibout
& Scheeres (2003). They showed that the tangential acceleration on the surface of a
rotating and gravitating ellipsoid only vanishes for some axes ratios, so that ωth may
not exist for all 3-D ellipsoidal bodies. This indicates an important distinction between
2-D and 3-D systems. Finally, similar to ωsh above, we note that the formula (3.8)
for ωth matches the expression that we obtain for the rotation rate of the fluid Jacobi
ellipsoid (Chandrasekhar 1969; Sharma et al. 2009) when the third axis is shrunk to
zero.

Figure 5(a) shows the variation of b2 with the rotation rate ω at various angular locations
ν in the first quadrant of an elliptical central body with μE = 0.4. As expected from the
above discussion, the curve for each ν crosses the abscissa at the same point when ω = ωth.
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Figure 5. (a) Variation with the non-dimensional rotation rate ω of the scaled effective tangential gravity b2
for an elliptical central body with μE = 0.4 (e ≈ 0.93, γ ≈ 0.38). Several angular locations ν are considered
and these are indicated next to their associated curves. (b) The migration landscape on a smooth (δ = 0◦)
elliptical body in its shape (γ )–rotation rate (ω) parameter space. The total area of the ellipse is kept constant
as γ is changed.

We observe that when μE = 0.4, ωth = 0.66ωsh. In general, the threshold rotation rate is
lower than the shedding rotation rate, as is also clear from comparing (3.3) and (3.8). This
is consistent with the understanding that at low ω, grains migrate to the minor axis, while
shedding is first initiated only from the ends of the major axis. Thus, grains need to first
switch their direction of motion, which occurs when ω = ωth.

Figure 5(b) displays the migration landscape for regolith on a smooth (δ = 0◦), rotating
and gravitating elliptical body in its shape (γ )–rotation rate (ω) parameter space. The
regions below and above the shedding curve ω = ωsh correspond to the regions I and
II of figure 4(b), respectively. Region I is divided into two zones in figure 5(b) that
are separated by the threshold curve ω = ωth at which the effective tangential gravity
b2 vanishes everywhere on the surface of the body. Below the threshold curve, grains
approach the minor axis of the body, while for ωsh > ω > ωth, grains migrate towards the
major axis. Above ωsh, grains begin shedding from the major axis. Finally, in the absence
of basal friction, surface regolith may remain stationary only if the γ and ω of the body
are such that they lie on the threshold curve.

Consider now the case when basal friction is present, i.e. δ > 0◦. As the right-hand side
is non-zero, the inequality in (3.6), even at the leading order, will now be satisfied by a
range of rotation rates ω. Therefore, while regolith on a smooth body could be stationary
only if ω = ωth, grains can remain motionless for a range of rotation rates centred around
ωth when the surface of the body is rough. The upper and lower bounds of this range may
be derived at the leading order from (3.6) to be

ω±=
⎡
⎣max

{
0,

±ω2
sh(A1 cos2 ν±

c +A2 sin2 ν±
c )d0 + ω2

th sin ν±
c cos ν±

c

±d0 + ω2
th sin ν±

c cos ν±
c

}⎤
⎦

1/2

(3.9)
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Figure 6. Variation of the critical angle νc with axes ratio γ for different choices of basal friction angle δ that
are indicated next to their associated curves. The solid (ν+

c ) and dashed (ν−
c ) curves correspond, respectively,

to the upper (ω+) and lower (ω−) bounds of the range of rotation rates within which stationary regolith can
persist everywhere on the surface of the central body; see main text for details.

where d0 = sinhμE coshμE tan δ, w0 = {2ω2
th − (A1 + A2)}/(A2 − A1),

ν±
c =−

⎛
⎜⎝±2d0 + ω0

√
4d2

0 + w2
0 − 1

4d2
0 + w2

0

⎞
⎟⎠ (3.10)

and ‘+’ and ‘−’ correspond to the upper and lower bounds, respectively.
When δ > 0◦, the regolith does not fail simultaneously at all points of the surface, as

it does when δ = 0◦. The critical angles ν±
c in (3.10) are the angular locations on a given

central body where the regolith first gets mobilised when the rotation rate ω is raised
above or lowered from ωth, respectively, and crosses a critical value. Figure 6 displays the
variation of νc with the axes ratio γ of the central body. With this understanding of νc, the
upper (ω+) and lower (ω−) bounds given by (3.9) thus represent, respectively, the least
upper bound and the greatest lower bound of the range of rotation rates ω within which
the regolith can persist in a stationary state everywhere on the elliptical central body.
Therefore, when ω → ω±, then grains located at ν±

c start flowing, but remain stationary
elsewhere.

Figure 7(a) revisits figure 5(b) but with δ = 20◦. We find that the region I that lies below
the shedding curve ω = ωsh is now subdivided into three zones: A, B and C. Owing to the
presence of basal friction, elliptical bodies lying in zone B have immobile regolith, despite
non-zero values of effective tangential acceleration b2. The upper and lower bounds of
zone B are provided by (3.9), and are depicted in figure 7(a) by, respectively, the solid
(ω = ω+) and dashed (ω = ω−) red curves centred around the threshold curve ω = ωth
(black curve). The angular locations at which grains would first become mobilized when
the upper or lower bound is breached may be found by noting the corresponding critical
angular location νc in figure 6. In zones C and A, grains are mobilized from regions
centred around ν = ν±

c , which then migrate towards the ends of the minor and major axes,
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Figure 7. Continued from figure 5(b). (a) Different types of behaviour of surface regolith for an elliptical
central body with μE = 0.4 and basal friction angle δ = 20◦. Zones A, B and C, make up region I in figure 5(b).
(b) Variation of the lower (dashed) and upper (solid) boundaries of zone B in (a) for different basal friction
angles δ that are indicated next to their associated curves.

respectively, unless this migration is resisted by static grains surrounding the mobilized
regions. As in figure 5(b), zone C is bounded above by region II of figure 4(b). We
henceforth call zones A, B and C as the pre-critical, critical and post-critical regimes,
respectively.

Figure 7(b) repeats figure 7(a) for various choices of basal friction angle δ. We find that
zone B expands with δ. Correspondingly, figure 6 shows that ν−

c shifts towards the minor
axis, while ν+

c moves towards the major axis when δ is increased, i.e. at a higher basal
friction, grains closer to the major/minor axes are the first to become mobilized when the
upper/lower boundaries of region B are crossed. We also observe that the lower boundary
of zone B vanishes when δ � 35◦. Therefore, when the basal friction is sufficiently high,
grains never migrate towards the minor axis no matter how low the rotation rate might be.
Finally, the regolith remains stationary for a larger range of rotation rates with an increase
in basal friction and a decrease in the eccentricity of the central body, i.e. when γ → 1 .
This may also be understood directly from (3.6) and (3.7). Higher basal friction augments
the right-hand side while a lowering in eccentricity – i.e. raising of μE – diminishes b2 on
the left side, which allows for a broader range of ω to strictly satisfy the inequality (3.6).

We close this section with three remarks. First, as we saw above, for granular flow to
start from rest at any point on the surface, the basal resistance must be overcome by the
effective tangential gravity there, i.e. the equality must hold in (3.6). This was shown
to not happen simultaneously at all points on the surface of the body when δ > 0◦; cf.
(3.10) and the associated discussion. At the same time, we found in § 3.1 that there can be
locations on the surface of the body from where grains will be lost. Thus, there could be
regions on the surface that have moving regolith coexisting with zones where grains are
stationary or are not present. Second, the foregoing discussion tacitly assumed that the
free surface of the regolith is at a constant distance h from the surface of the body, so that
we could ignore its variation in (3.6). Basal pressure will be higher at larger h, which will
translate to a greater basal resistance that, in turn, will affect if and how the regolith flows.
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Both these aspects will, as we see in later sections, add to the complexity of the motion of
the regolith. Finally, the analysis so far parallels the recent work of Sanchez & Scheeres
(2020) who included cohesion, but predicated their development on the force balance of a
single boulder on a spherical body. In contrast, ours is a continuum analysis and we have
not included the effect of cohesion in this work to retain focus on the flow of grains over a
non-spherical body in the presence of rotation and varying gravity. The effects of cohesion
may be included by a straightforward modification of the yielding condition and the basal
interaction law.

3.3. Lift-off velocity
In § 3.1, we found the rotation rate ωsh beyond which a stationary regolith first begins
to shed. However, a flowing regolith may lose contact with the elliptical central body
at rotation rates below or above ωsh depending upon the direction of flow. Grains are
shed from the surface when the basal pressure P11 becomes negative at that location. The
condition that the basal pressure in the regolith flow, provided by (2.33), remains positive
at any surface location ν, limits the maximum velocity that the granular flow may attain
before grains lose contact with the surface. This velocity is called the lift-off velocity ul;
see also Van wal & Scheeres (2017).

We find from (2.33) that P11 becomes negative whenψ > 0. The functionψ is quadratic
in velocity and vanishes when the average flow velocity ū2 equals

u±
l =−ωg3/2

E ± (ω2g3
E − αEb1g3/2

E )1/2

αE
, (3.11)

where gE and αE are given by, respectively, (2.12) and (2.14a,b) with μ = μE, and then
non-dimensionalised as per (2.21c). Now, for ω < ωsh, the effective normal gravity b1

is negative everywhere, so that u−
l < 0 < u+

l and |u−
l | > |u+

l |. Therefore, even at rotation
rates below the shedding rotation rate ωsh, grains will be lost from a location on the surface
of the elliptical central body if the flow velocity there satisfies either ū2 > u+

l or ū2 < u−
l .

Note that the lift-off velocities are independent of basal friction, as P11 does not depend
on δ.

To facilitate subsequent discussion, we propose a few definitions. Grains whose flow
velocity ū2, relative to the rotating central body, is co-directional with the surface velocity
(ω × r) of the body are said to have prograde velocities, while those with ū2 opposite to
ω × r have retrograde velocities. We define the prograde (retrograde) sides of the central
body as the surface regions wherein grains have prograde (retrograde) velocities. Keeping
in mind the setup of figure 2, prograde and retrograde motions have, respectively, positive
and negative ū2. Thus, grains that are shed because ū2 > u+

l were necessarily in prograde
motion, while if mass is lost because ū2 < u−

l , then the flow was retrograde.
Figure 8 plots the variations of the lift-off velocities u+

l and u−
l along the surface of

an elliptical central body defined by μE = 0.4 for several rotation rates ω. We confirm
that |u−

l | > |u+
l | at a given ω. Furthermore, this difference in the lift-off velocities during

prograde (u+
l ) and retrograde (u−

l ) motion becomes more prominent at higher rotation
rates. We understand this as follows. Regolith motion (ū2 /= 0) in the rotating frame of the
elliptical body is affected by the Coriolis force that acts normal to the surface of the body,
and also the normal component of the centrifugal force that arises because of flow over
a curved surface. For flows with prograde and retrograde velocities, the Coriolis force is
directed outwards from and towards the surface, respectively. This Coriolis force increases
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Figure 8. Variation of lift-off velocities u+
l (positive) and u−

l (negative) along the surface of an elliptical body
with μE = 0.4 for different non-dimensional rotation rates 0 � ω � ωsh = 1.06, as indicated next to their
associated curves. Positive and negative velocities correspond to, respectively, prograde and retrograde surface
motions. Only the extent from ν = 0 to ν = π is shown because of symmetry about the major axis. The red
arrow is in the direction of the surface velocity ω × r.

(decreases) the basal pressure P11 for retrograde (prograde) motion, while the additional
centrifugal force always diminishes P11. Finally, the Coriolis force grows as |ū2|, while
the centrifugal force is proportional to ū2

2. Thus, at a given rotation rate ω, grains lose
contact with the surface at lower speeds during prograde motion than when they are in
retrograde motion, i.e. |u+

l | < |u−
l |. Indeed, during retrograde motion, the magnitude of

the flow velocity ū2 has to be sufficiently high so that the linear additions to P11 from
the Coriolis force may be reversed by the quadratically growing reductions to the basal
pressure from the centrifugal force.

We close with a brief summary. We have identified several different responses of the
regolith that are regulated by the rotation rate ω of the body once the shape μE and the
basal friction δ of the central body are fixed. Figure 9 displays this schematically. At low
rotation rates, we have the pre-critical regime, where gravity dominates the centrifugal
and frictional forces, and the regolith moves towards the ends of the minor axis of the
body. This is followed by the critical regime, centred around a threshold rotation rate
ωth, in which the frictional resistance and the tangential components of the centrifugal
and gravitational forces balance, permitting the regolith to remain stationary. At still
higher ω, the component of the centrifugal force along the surface of the body is able to
overcome frictional resistance and gravitational attraction, and we move into the so-called
post-critical regime, in which grains flow towards the ends of the major axis. Finally, when
ω is raised beyond the shedding rotation rate ωsh, grains lose contact with the surface of
the body and start to shed.

We now proceed to solve the equations of motion of the regolith and discuss the
outcomes.

4. Numerical simulation results

We now investigate regolith flow in the system sketched in figure 2. We will study the
steady-state distribution of surface regolith resulting from an initially uniform deposit
of grains by plotting the non-dimensional height H of the free surface (2.20). We also
investigate the collapse and spread of dunes lying at various locations on the body.
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Figure 9. The different regimes of regolith behaviour as regulated by the rotation rate ω of the central body;
see also figures 4, 5 and 7. The rate ωminor

sh is the rotation rate at which regolith sheds from the minor axis, and
corresponds to the the orange line in figure 4(b).

We employ the descriptor ‘dune’ here to indicate a bulge or hump in the regolith
distribution, i.e. a local accumulation of grains, and not a geological formation.

The evolution of the location of the free surface h and the average flow velocity ū2 is
governed by, respectively, (2.30) and (2.39). These we will now numerically solve. It may
be shown that this system of equations is strictly hyperbolic at all points where the normal
basal pressure P11 given by (2.33a) is positive, which is equivalent to requiring ψ < 0 in
(2.33b). In § 3.1, we identified ψ > 0 as the condition for flowing grains to shed, which is
equivalent to the flow velocity exceeding the local lift-off velocity (see § 3.3).

We proceed by introducing the variables

q1 = gh and q2 = gh(εgωh + √
gū2) (4.1a,b)

into (2.30) and (2.39) to write the final system of equations in a conservation form as

∂q1

∂t
+ ∂

∂ν

(
q2 − εωq2

1
g

)
= 0 (4.2)

and

∂q2

∂t
+ ∂

∂ν

⎧⎨
⎩1

g

(
q2

2
q1

− εωq2q1 − εkψ
q2

1
2

)⎫⎬
⎭

= sgn(q2 − εωq2
1)q1ψ tan δ · · · + √

gb2q1 + β

g2

{
q2

2 − ε2ω2q4
1

q1
− ε

(k + 1)ψq2
1

2

}

(4.3)

The above hyperbolic system of equations is solved by using the non-oscillatory central
scheme of Kurganov & Tadmor (2000). There are, of course, other ways to computationally
model granular flows, see, e.g. Adimurthi, Aggarwal & Veerappa Gowda (2016).

4.1. Initial conditions
The density of the elliptical central body is set to a value at which the accelerations
produced at the surface are of the order 1 mm s−2, as is true for asteroids like Eros
where normal accelerations vary from a minimum of 2.1 mm s−2 to a maximum of
5.5 mm s−2 (Yeomans et al. 2000). We solve (4.2) and (4.3) for different initial conditions,
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Figure 10. Final deposits (solid lines) of an initially uniform layer of nearly frictionless grains are plotted
alongside the corresponding equal area equipotential curves (dashed lines) for ω = 0.34 (pre-critical regime)
and ω = 0.76 (post-critical regime). A body with μE = 0.4 has ωth ≈ 0.7. The red arrow is in the direction of
the surface velocity ω × r.

rotation rates, and the basal (δ) and internal friction (φ) angles of the regolith. All
computations are done for a central body whose elliptical shape is defined by μE = 0.4.
This yields an axes ratio of ellipse equal to 0.38, which is close to the ratio of the smallest
to biggest axis of Itokawa, which is 0.39 (Fujiwara et al. 2006). For the shallow flows
that interest us, we take ε = 0.004, so that for a body with a = 1000 m, the flow is
approximately 4 m deep. For comparison, asteroid regolith deposits are found to be of the
orders of few metres to several tens of metres (Murdoch et al. 2015). For simplicity and to
reduce the parameter space, we set δ = φ, and vary it between 0◦ and 30◦. Computations
are run for a sufficiently long time to allow the steady state to be reached, which in our
system corresponds to the regolith coming to a stop.

4.2. ‘Fluid’ regolith
Fluid placed at the boundary of a rotating body will take the shape of an equipotential
surface. The equipotential surfaces will be curves for the 2-D system we are investigating.
The equation for the equipotential curves – defined by heq(ν) – for a given rotating and
gravitating elliptical central body may be obtained from (2.39) by setting the velocity ū2
and friction angle δ to zero, which gives

∂heq

∂ν
= −

(
b2

εb1
+ βheq

2g
+ heq

2b1

∂b1

∂ν

)
. (4.4)

We now have an opportunity to verify our code by evolving a uniform depth of nearly
frictionless grains (δ = φ = 0.1◦) and comparing the final deposit with the solution to
(4.4). We do not set the friction to zero to allow the flow to reach steady state in finite
time. Figure 10 plots the steady-state deposit of initially uniformly distributed regolith at
two rotation rates, one each in the pre- and post- critical regimes defined in § 3.2. Figure 10
also shows the corresponding equipotential curves that encompass the area required to
contain the chosen number of grains. We find an excellent match. This comparison builds
confidence in both our mathematical model and our computational procedure.
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4.3. Frictional regolith
We now consider the motion of an initially uniform layer of regolith that is mobilised
and begins to flow owing to a sudden increase (spin-up) or decrease (spin-down) of the
rotation rate of the central body. We found in § 3.2 that at the threshold rotation rate ωth,
the regolith experiences no tangential force, so that a uniform deposit of regolith will
remain stationary. Therefore, the central body is taken to be rotating with ω = ωth, which
instantly spins up/down to a post-/pre-critical rate. Such situations of rapid change in the
spin may develop during the close passage to a planet of, say, a granular asteroid, the
so-called tidal flyby; see, e.g. Sharma, Jenkins & Burns (2006).

4.3.1. Pre-critical regime
As discussed in § 3.2, grains try to move towards the ends of the minor axis (ν = π/2
and 3π/2) of the body in the pre-critical regime. Figure 11(a) shows the stages in the
evolution of regolith from a uniform layer to a dune at the minor axis when the friction
angles δ = φ = 4◦. Regolith movement initiates at those places on the surface where the
effective tangential gravity b2 overcomes the basal frictional resistance. This happens first
near the ends of the major axis (ν = 0 and π) in the pre-critical regime, and grains there
begin moving towards the minor axis. During this motion towards ν = π/2, the effective
tangential gravity decreases, while the basal resistance increases owing to an elevation
in the normal pressure P11, which retards the motion of the regolith. Moreover, the front
of the granular flow decelerates faster than its rear, thereby leading to the formation of a
wavefront. The sharpness in the wavefronts is because the horizontal span in the plots is
much longer than the vertical span. The height of the wavefront grows as it moves closer
to the minor axis. At lower friction angles, wavefronts coming from the opposite ends of
the major axis meet at the ends of the minor axis, which forms a dune. In flows with higher
friction, these wavefronts stop earlier to yield a two-dune structure, as seen in figure 11(b),
which shows the final deposits for several friction angles. At very low friction angles, the
regolith may oscillate about the equipotential curve owing to the inertia of the flow. This
may ultimately lead to the formation of dunes that are steeper than the equipotential curve;
see, e.g. figure 11(b), δ = 4◦ curve. Here we recall that the flow will stop whenever its
velocity becomes zero and the basal yield criterion (2.8) is not violated. This happens
suddenly in systems with dry friction so that it is possible that lower frictional flows may
deform less than those with higher friction: thus in figure 11(b), the δ = 4◦ flow piles up
higher than the flow with δ = 2◦ or 0◦. Such an outcome was also observed by Sharma
et al. (2009) in the context of bulk deformation of granular asteroids. Finally, for friction
angles higher than 10◦, we do not observe any significant regolith motion in the pre-critical
regime.

We also observe from figure 11(a) that the motion of the regolith on either side of the
minor axis is asymmetric. This is because of the effect of the Coriolis force, previously
discussed in § 3.3, which causes a regolith in prograde motion to travel faster than that
which is in retrograde motion. Thus, wavefronts on the prograde side (0 < ν < π/2) travel
further towards the minor axis and, hence, accumulate more mass, thereby increasing
the height of the dunes on the prograde side relative to those on the retrograde side
(π/2 < ν < π). This asymmetry is minor in figure 11(b) where the rotation rate lies in the
pre-critical regime and friction is low, but becomes fairly prominent in the post-critical
regime at high friction angles, which is discussed in the next section. We note that,
even though the tangential component b2 vanishes when ν = 0 and π, grains there are
mobilized by the presence of a non-zero ∂ ū2/∂ν and, later, ∂h/∂ν that builds up because
of the asymmetry of the motion.
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Figure 11. (a) Time evolution of the regolith in the pre-critical regime on an elliptical central body (μE = 0.4)
rotating at the non-dimensional rate ω = 0.34 for friction angle δ = 4◦. Snapshots at several non-dimensional
time instants are shown, which are indicated next to their associated curves. (b) Final deposits in the same
system as in (a), but for regoliths with different choices of δ, which are noted along their corresponding curves.
The equipotential curve encompassing the same area as the initial deposit is also shown. In both (a,b) the initial
deposit is a uniform layer of grains. The red arrow is in the direction of the surface velocity ω × r.

Finally, we find in figure 11(a) that, during its evolution, the regolith has a static region
centred around ν = π/2 – indicated by a flat curve at the height of the initial deposit that
shrinks as stationary grains near the minor axis are mobilised by mobile grains arriving
from the ends of the major axis. Figure 11(b) shows that at very low friction angles,
all grains near the minor axis are set in motion. However, at higher friction angles, the
final deposit may have undisturbed regolith around the minor axis, again identified by flat
curves. Similarly, at angular locations between the major and the minor axes, there are
places where the surface of the central body is completely exposed, as is indicated by the
vanishing height H of the deposit.

In closing, we note that this example illustrates that, as the regolith evolves, the edges
of the mobile regions advance, retreat and even merge, and our computational scheme is
able to track this change.

4.3.2. Post-critical regime
We saw in § 3.2 that the regolith moves towards the major axis in the post-critical regime.
Figure 12(a) displays the time evolution of a uniform layer of grains on an elliptical central
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Figure 12. (a) Time evolution of the regolith in the post-critical regime on an elliptical central body
(μE = 0.4) rotating at the non-dimensional rate ω = 0.99 for friction angle δ = 30◦. Snapshots at several
non-dimensional time instants are shown, which are indicated next to their associated curves. (b) Final deposits
in the same system as in (a), but for different choices of rotation rates ω that are noted along their corresponding
curves. In both (a,b) the initial deposit is a uniform layer of grains. Only the region close to the ν = π end of
the major axis is shown, as the regolith elsewhere remains immobilized. The red arrow is in the direction of the
surface velocity ω × r.

body rotating sufficiently fast to be in the post-critical regime. The friction angles are δ =
φ = 30◦ and we continue to work with the elliptical body defined by μE = 0.4. Unlike in
the pre-critical regime, where two dunes formed near the ends of the minor axis when the
friction was raised, we now find only one dune at each end of the major axis although the
friction now is even higher. This is because the basal pressure, and so the basal frictional
resistance, lowers as the grains flow towards the major axis. Thus, the deceleration of the
regolith reduces, which leads to the formation of a single dune even at high friction. It may
now happen that, as the regolith flows towards the major axis, the grain speeds may exceed
the local lift-off velocity causing the grains to lose contact with the surface of the central
body. This was discussed previously in § 3.3. For reasons discussed there, grains on the
prograde side will be shed more easily. This is indeed observed to occur in the example
evolution discussed in figure 12(a), where the vertical extent of the regolith drops to zero
in those regions from where grains are ejected, and this is seen to happen more often and
with greater severity on the prograde side. Finally, in contrast to the pre-critical regime
considered in figure 11(b), asymmetry in the final deposit, owing to the Coriolis force, is
more prominent in the post-critical regime. Additional asymmetry is introduced by mass
shedding from the prograde side close to the major axis.

Figure 12(b) shows the final deposits of an initially uniform layer of regolith for δ = φ =
30◦ at several different rotation rates ω. The height of the dune formed at the major axis
first increases with ω and then decreases when mass shedding from the ends of the major
axis becomes significant. For ω > ωsh = 1.06, we observe no dunes at the major axis.
We also observe from figure 12(b) that the dunes are not always aligned with the major
axis. This we now discuss. Regolith coming from the prograde side has higher momentum
than that arriving from the retrograde side and hence, when they meet at the major axis,
the final location of the dune shifts in the counter-clockwise direction, i.e. towards a ν >
π; see the curve for ω = 0.99 in figure 12(b). However, as ω is raised further, grains
from the prograde side have a velocity sufficiently high to leave the surface, as discussed
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Figure 13. Variation of (a) the percentage of mass shed and (b) the maximum non-dimensional height Hmax of
the dune formed at the major axis with non-dimensional rotation rateω for an elliptical central body (μE = 0.4).
Several different friction angles δ are considered and these are indicated next to their associated curves.

in § 3.3. This reduces the contribution of the prograde regolith to dune formation and the
dune shifts back to the major axis (figure 12b, ω = 1.04). As grains on the prograde side
are ejected more, the dune at the major axis is composed primarily of grains from the
retrograde side. For ω > ωsh, even stationary grains are shed from ends of the major axis
(see § 3.1), so that no dunes are formed.

Figure 13(a) plots the percentage of the mass shed as a function of the scaled rotation
rate ω for several values of the friction angle δ. Mass fraction shed is defined as the ratio of
the regolith mass lost to its total initial mass. We observe that, as expected, mass shedding
increases with rotation rate. However, we note from figure 13(a) that not all mass is ejected
even when ω > ωsh. Furthermore, shedding reduces in higher frictional flows. This is
because, as the rotation rate ω is elevated beyond ωsh = 1.06, mass loss takes place from
shedding regions that grow around the ends of the major axis, but not from elsewhere. At
the same time, in granular flows with high friction, the flow may stop before all grains can
enter the shedding regions near the ends of the major axis.

We saw in figure 11(b) that in the pre-critical regime, the dune height typically grows
when the friction is lowered. However, in the post-critical regime, mass may also be lost,
which reduces the height of the dune formed and makes the overall process more complex.
Thus, at low rotation rates in the post-critical regime, say 0.8 < ω � 1.0, because mass
shedding is reduced, we find that regoliths with the least friction lead to higher dunes;
see figure 13(b), which traces the maximum dune height Hmax := √

ghmax as a function
of the scaled rotation rate ω for several friction angles δ = φ. Mass loss is augmented at
faster rotation rates (ω � 1.0), which depletes regoliths with low friction more, so that
now regoliths with higher friction form taller dunes. For rotation rates ω that lie beyond
ωsh, all mass escapes from the major axis and no dunes survive.

4.4. Dunes
We now investigate how granular dunes on the surface of a rotating elliptical body may
‘break’, i.e. fail and flow. Recall that for us, a ‘dune’ is simply a local accumulation
of grains causing a bulge or bump in the regolith. We assume that the initial dune is
symmetric for simplicity. This allows us to obtain a typical shape for a dune in terms
of the Gaussian function whose height and width may be varied while keeping its
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mass constant. Note that our use of a Gaussian to model the initial dune means that we
retain a thin layer of regolith on the surface of the body everywhere away from the dune.

Dunes at surfaces may fail depending upon their location and shape. Therefore, there
are constraints on the shape and size of the dune that need to be met for it to persist in
equilibrium. In our depth-averaged framework, a dune will break whenever it violates the
basal yield criterion (3.6). As discussed in § 3.2, the pressure gradient term in (3.6) is
O(ε), so that the equilibrium of most dunes is determined by the competition between the
effective tangential gravity b2 and basal frictional resistance. At the ends of the minor and
major axes, b2 = 0 and the left side of (3.6) is O(ε), so that dunes located close to the ends
of the minor axis may fail and flow only at very low friction angles δ. In contrast, dunes
centred near the ends of the major axis continue to break at high friction angles, provided
the rotation rate is sufficiently high to sufficiently lower the effective normal pressure P11.
The response of dunes at other locations on the surface of the body, where b2 /= 0, is more
complex.

We begin our discussion by considering a dune break in the pre-critical regime wherein,
because of the low rotation rate of the central body, mobilized regolith tends to move
towards the ends of the minor axis (ν = π/2 and 3π/2) of the body. Thus, we find that
dunes near the major axis (ν = 0 and π) begin to break while dunes close to the minor axis
may become steeper. Figure 14(a) shows the post-break time evolution of a dune located
at the ν = π end of the major axis.

Dunes that break in our system display some features that are different from terrestrial
features. An avalanche on Earth tends to deposit a layer of material over the surface
until it runs out. However, on our rotating body, we observe that a single dune breaks
to form smaller dunes. Figure 14(a) shows that a dune break at the major axis forms three
smaller dunes: one at the location of the original dune and two others on either side.
This we now explain. When the dune breaks, grains move towards the minor axis. On the
surface of the body, there are acceleration zones wherein the effective tangential gravity
b2 overcomes resistance f2 owing to basal friction, while regions where f2 dominates are
called deceleration zones. Recall that f2 := b1 tan δ, and is obtained by combining (2.28b)
and (2.33) at h = 0. We find from figure 14(a) that the deceleration zones lie closer to the
ends of the minor axis than the acceleration zones. When the front of the regolith flow
first reaches the deceleration zone, it begins to slow down, even as the rear of the flow
still lies in the acceleration zone, so that the flow velocity there continues to increase. This
results in the formation of secondary dunes in the deceleration zone. The height of this
dune grows as the flow’s front of the flow moves further into the deceleration zone.

Figure 14(b) displays the breaking of dunes located at the major axis of a rotating
elliptical body for several friction angles δ = φ. We find that regolith with higher friction
decelerates more and stops sooner, thereby forming smaller secondary dunes close to the
primary dune. At the same time, grains with lower friction travel further, which form
bigger secondary dunes. Finally, the secondary dune on the retrograde side is smaller
and is found to have travelled a shorter distance than the dune on the prograde side. As
discussed in § 3.3, the Coriolis acceleration is responsible for this asymmetry, as it lowers
the flow velocity of grains on the retrograde side.

In the post-critical regime, dunes at the ends of the major axis of the body steepen
with an increase in the rotation rate ω. However, if ω is close to ωsh, grains from the
prograde side begin escaping from the surface because the local velocity of the flow
exceeds the lift-off velocity; cf. § 3.3. As a result, we find that dunes at later times become
progressively smaller. An example is shown in figure 15(a) that displays the temporal
evolution of the regolith following a dune break at time t = 0. We observe that the dune
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Figure 14. (a) Stages during the breaking of a dune with non-dimensional time that is indicated next to its
associated curve. The dune is located initially at the major axis (ν = π) of an elliptical central body (μE = 0.4)
rotating at ω = 0.34, which lies in the pre-critical regime. The regolith has a basal friction angle δ = 8◦.
Acceleration and deceleration zones are also indicated. (b) Final deposits following the breaking of a dune
composed of regoliths with different friction angles δ that are noted along their corresponding curves. The
initial dune and other system parameters are as in (a). The red arrow is in the direction of the surface velocity
ω × r.

grows initially, so that we find a much taller dune at t = 1.6 compared with that at t = 0.4.
However, because of mass shedding that commenced at t = 0.4, the dune gets depleted
resulting in a smaller dune at t = 4.0 than that at t = 1.6. In contrast, recall that in the
pre-critical regime dunes at the ends of the minor axis never break, even though the
situation is analogous to that at the major axis in the post-critical regime.

As mentioned above, dunes at the minor axis break only at very low friction angles and
that too in the post-critical regime. Figure 15(b) depicts the breaking of the same dune as in
(a), but now located at the ν = π/2 end of the minor axis and composed of regolith with
friction angles δ = φ = 2◦. An interesting observation from figure 15(b) is that, unlike
when dunes failed at the major axis in the pre-critical regime, here we find secondary
dune formation only on the retrograde side of the central body. This occurs because grains
moving on the prograde side escape from the surface before reaching the major axis, as
their velocity exceeds the local lift-off velocity. We note that although the mass contained
in the dunes in figures 15(a) and 15(b) and their initial heights are the same, the spread
of the initial dune in the former case appears to be smaller. This is primarily because the
extent of ν plotted in the two cases is different.

The preceding outcomes may be better appreciated by studying dunes located initially
at ν = π/4 and ν = 3π/4, whose evolutions post-failure are depicted in figure 16.
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Figure 15. Stages during the evolution of a dune on an elliptical central body (μE = 0.4) with
non-dimensional time indicated next to its associated curve. (a) The dune was located initially at the major
axis (ν = π) of the body rotating at ω = 1.05, close to the shedding rotation rate ωsh = 1.06. The regolith
has a basal frictional angle δ = 30◦. (b) The dune was located initially at the minor axis (ν = π/2) of the
body rotating at ω = 0.87. The regolith is described by the low friction angle δ = 2◦. The red arrow is in the
direction of the surface velocity ω × r.
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Figure 16. Final deposits following the break up of dunes located initially at ν = π/4 (solid lines) and ν =
3π/4 (dashed lines) on the elliptical central body rotating (μE = 0.4) at ω = 1.0. Several friction angles are
investigated as indicated next to their associated curves. The red arrow is in the direction of surface velocity
ω × r.

The initial height of the dunes is kept the same. In the post-critical regime, grains from
a dune located at ν = π/4 flow towards the end of the nearest major axis, which is at
ν = 0. Thus, the regolith is in retrograde motion, which inhibits mass shedding. However,
grains at ν = 3π/4 move towards ν = π, and the resulting prograde motion encourages
mass shedding. Consequently, we observe dune formation at the major axis only when
the initial dune lays at ν = π/4. Therefore, we find that the break up of two dunes, which
initially lay symmetrically about the centre of the elliptical body, may lead to very different
dynamics, because of the rotation of the body and the accompanying Coriolis effects.

A new feature that is not observed in terrestrial avalanches, but is found in our system, is
the apparent translation of the original dune without breaking. For example, if the rotation
rate ω of the central body is lowered to ω = 0.34 – a value which places the system in the
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Figure 17. Evolution of a dune initially at ν = 3π/4 and composed of regolith having δ = 6◦ in the (a)
pre-critical regime when ω = 0.34 and (b) post- critical regime when ω = 0.8. Both acceleration (A) and
deceleration (D) zones are shown. Lighter shading indicates greater deceleration magnitude. The red arrow is
in the direction of the surface velocity ω × r.

pre-critical regime – then the dune at ν = 3π/4 in figure 16 is observed in figure 17(a) to
shift as a whole towards the minor axis (ν = π/2) without breaking, although its shape
changes. At the same time, if ω is raised to the post-critical rate of 0.80, as in figure 17(b),
then we obtain a deposit with two dunes, one near the original location of the dune and the
other at the ν = π end of the major axis. This difference in outcomes is explained next.

Figure 17(a) may be understood in a manner similar to figure 14. In the pre-critical
regime, following the breaking of the dune, the regolith flows towards the minor axis
(ν = π/2). The front of the flow experiences greater net retardation than its rear, which
prevents separation into two dunes. The original dune does not survive in any way as it lay
almost completely in the acceleration zone. In contrast, the physics underlying figure 17(b)
is more subtle. The shading in figure 17(b) represents the magnitude of deceleration faced
by regolith when in motion, with a darker shade indicating lower values. In the post-critical
regime, post dune break, the regolith moves towards the ν = π end of the major axis. We
observe from figure 17(b) that the front of the flow moves faster than the rear because it
experiences a lower deceleration, as indicated by the deeper shading. In fact, the part of
the dune lying toward ν = 0 is retarded greatly (very light shading), so that a part of it
survives as a smaller dune. As the flow proceeds to ν = π, it crosses a narrow acceleration
zone, beyond which it re-enters a deceleration zone wherein the frictional resistance starts
to climb. This causes accumulation at the front of the flow and subsequent formation of
a secondary dune. This outcome should be contrasted with the three dune structure in
figure 14. Finally, we note that a dune may also translate in the post-critical regime if it
lies in an accelerating zone and the post-break flow experiences higher resistance at its
front than at its rear, e.g. ν ∈ (11π/12, 13π/12).

As discussed above, the amount of mass lost from regolith flow once a dune breaks
depends upon the location of the dune on a given rotating elliptical body. Figure 18(a)
compares the mass shed following the breaking of dunes at different initial locations. As
expected, the mass lost from a dune originally at ν = π/4 is much smaller than that which
was at ν = 3π/4. In fact, owing to prograde motion of the grains following the breaking of
a dune, the mass fraction shed by a dune initially at ν = 3π/4 is the greatest amongst all
cases shown in figure 18(a), except when ω → ωsh, at which time, all grains at the ν = π
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Figure 18. (a) Percentage of mass shed as a function of the scaled rotation rate ω for different initial locations
of the dune that are indicated next to their associated curves. The basal friction angle δ = 20◦ of the regolith.
(b) Time evolution of the regolith following the break up of a dune located at ν = π/4 on a body rotating at
ω = 1.08 > ωsh. Several time steps are shown as noted along their corresponding curves. The regolith has a
friction angle φ = 30◦. For both (a,b), the elliptical central body is defined by μE = 0.4. The red arrow is in
the direction of surface velocity ω × r.

end of the major axis leave the surface of the body. We note that the dune at the ν = π/2
end of the minor axis did not break for the friction angle considered in figure 18(a).

We close this section by showcasing an interesting possibility. Figure 18(b) plots the time
evolution of a dune initially located at ν = π/4 that breaks in the post-critical regime.
As discussed above, the regolith flows towards the end of the major axis at ν = 0. The
retrograde motion of the grains suppresses mass shedding. However, owing to inertia,
the grains overshoot ν = 0, but then have to return to the major axis as we are in the
post-critical regime. The return flow is, however, prograde, which now facilitates mass
loss.

5. Binary mixtures

The grain size in regolith on small planetary bodies varies from centimetres to metres
(Miyamoto et al. 2007). During terrestrial regolith flows, smaller grains percolate down
and bigger grains move up through the mechanism of kinetic sieving and squeeze
expulsion (Savage & Lun 1988; Gray & Thornton 2005). This results in an inversely graded
particle size distribution with bigger grains lying on top of smaller grains. Furthermore,
because the top of the flow moves faster than the bottom, bigger grains migrate towards
the front of the flow while smaller grains are pushed to the rear (Thornton & Gray 2008;
Gray & Ancey 2009; Gray & Kokelaar 2010). We now extend the theory developed
in the previous sections to investigate size separation in a regolith consisting of grains
of two different sizes, but having the same material properties, when it flows on a
rotating, gravitating elliptic central body. Gray & Thornton (2005) and Gray & Chugunov
(2006) developed a binary mixture theory for gravity-driven particle-size segregation
and diffusive remixing in which both species individually satisfy mass and momentum
balances. The momentum balance has an additional term owing to the force exerted by
one species on the other. Gray & Chugunov (2006) considered this interaction drag force
to consist of three parts: linear velocity drag, grain-grain surface interaction force and
diffusive forces. Furthermore, partial densities, partial velocities and partial pressures are
defined at each point, assuming that all constituents of the mixture are present everywhere
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simultaneously (Morland 1992). Gray & Thornton (2005) defined partial pressures based
on the idea that the percolating small grains should bear less of the overburden pressure.
In turn, the big grains would bear more overburden pressure, so that the sum of the
partial pressures equals the bulk pressure. Substituting these partial pressures and the
interaction drag force in the momentum balance in the normal direction, and neglecting
acceleration terms, yields the velocities of each constituent in the normal direction; see
Gray & Chugunov (2006) for details. Replacing these normal velocities in the mass
balance of small grains results in the segregation-diffusive-remixing equation which, after
non-dimensionalising and framing them in elliptic coordinates, becomes

∂Φ

∂t
+ 1√

g

{
∂(Φu1)

∂μ
+ ∂(Φu2)

∂ν

}
+ ∂

∂μ

{
SψΦ(1 −Φ)

} − ∂

∂μ

(
D
∂Φ

∂μ

)
+ Φu2β

g
√

g
= 0,

(5.1)
where Φ is the area fraction of small grains,

S = β

εgc

√
b
a

and D = d

ε2gac
√

ab
(5.2a,b)

are, respectively, the non-dimensional segregation number and the diffusive-remixing
number defined in terms of the linear drag coefficient c and the diffusive force coefficient
d. Note that the presence of the diffusion terms in the equation drives remixing.

At the top and the bottom of the flow, the boundary conditions, respectively, (2.27)
and (2.28a), continue to apply. Additionally, there is no flux of small grains across these
boundaries, which leads to

D
∂Φ

∂μ
− Sψ (1 −Φ)Φ = 0 (5.3)

holding at the bottom boundary (μ = 0) of the flow and its free surface (μ = h).
We now depth average (5.1) through the thickness of the flow and use boundary

conditions (2.28a), (2.27) and (5.3) to find
∂

∂t
(ghΦ̄)+ ∂

∂ν
(
√

gh u2Φ) = 0, (5.4)

where we recall from §2.5 that the overbar indicates the depth-averaged value. To complete
the mathematical description, we need to evaluate u2Φ. Following Baker, Johnson & Gray
(2016), we assume that (i) the flow is inversely graded at all times, so that

Φ =
{

0 μ > hΦ̄

1 μ ≤ hΦ̄,
(5.5)

and (ii) the flow velocity is approximated by the linear velocity profile u2 = ū2f (μ), where
f (μ) = η + 2(1 − η)μ/h, 0 ≤ η ≤ 1 (Gray & Kokelaar 2010). The parameter η may be
varied to obtain different flow profiles, e.g. η = 1 corresponds to no shear while η = 0
corresponds to linear shear without slip at the base. Introducing these assumptions in (5.4)
and expressing the resultant in terms of q1, q2 – defined previously by (4.1a,b) – and
q3 = ghΦ̄, we obtain

∂q3

∂t
+ ∂

∂ν

[
q3(q2 − εωq2

1)

gq1

{
η + q3

q1
(1 − η)

}]
= 0. (5.6)

We thus have three equations (2.39), (4.3) and (5.6) for ū2, h and Φ̄. It may be shown
that these three equations form a system of hyperbolic equations whenever ψ < 0, i.e.

916 A40-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

24
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.248


Granular flow on a rotating and gravitating elliptical body

there is no mass shedding; cf. (2.33). Note that we continue to set χ = 1 in (2.29a–c)
even though χ = (1 − η)2/3 + 1 for a linear velocity profile. This is a fairly common
simplification in the field; see, e.g. Baker et al. (2016). Note also that upon depth averaging,
the parameters S and D disappear. This is because vertical segregation is not modelled
within a depth-averaged framework and, further, grains are neither lost nor gained at the
boundaries.

Before moving onto the results, a comment is in order regarding our assumption that
the binary mixture is inversely graded at all times. This assumption is motivated by
the observation that, in terrestrial flows, the vertical segregation of the mixture into
large grains on top and small grains at the bottom is a rapid process. Thus, unless
mixing is strong, the flow remains inversely graded at all times. The appropriateness
of this assumption on small bodies, where gravity is much smaller, is still an unsettled
question. Recent works (Maurel et al. 2017; Chujo et al. 2018) show that mechanisms
leading to inverse grading remain active on small bodies, but their efficacy in retaining
this structure in flowing conditions is not yet known. In this context, we mention the
recent separation-flux model of Pudasaini & Fischer (2020). This model overcomes the
shortcomings of previous works in that it does not presume inverse grading, does not
require grains with similar material properties and makes no assumptions about the bulk
velocity.

5.1. Results
The system of equations (4.2), (4.3) and (5.6) is solved for different choices of rotation
rates and friction angles taking the initial conditions to be a uniformly thick layer of an
inversely graded mixture of grains lying on top of an elliptic central body defined by
μE = 0.4. Figures 19 and 20 display the evolution of a regolith consisting of large (grey)
and small (black) grains in the pre- and post-critical regimes, respectively. As discussed
in § 4, when regolith flow is initiated in the pre-/post-critical regimes, then two wavefronts
are formed that move towards the minor/major axis, and this is also observed in figures 19
and 20.

Both the flows in figures 19 and 20 show that big grains accumulate at the front of the
flow. This is a consequence of us assuming an inversely graded flow throughout, and its
physics was explained in the first paragraph of § 5. Wavefronts that are formed thus have
a higher concentration of big grains, which then populate the top of any dunes that are
subsequently formed, while the small grains accumulate near the base of the dune. In the
post-critical regolith flow of figure 20, mass shedding is also observed and, because big
grains always move faster than the small grains, these big grains escape from the surface
of the body more easily.

Our 2-D model shows that big grains will occupy the tops of any dunes, which represent
a local high in the potential. This is reminiscent of the observations on Itokawa (figure 1),
where high-potential bulges are populated by large boulders while fine grains fill in the
low-potential depressions (Miyamoto et al. 2007). This is an encouraging result and
prompts further development to extend the present theory to three dimensions and include
effects of more realistic topography and surface gravity fields.

6. Discrete element simulations

Finally, we perform DE simulations to evaluate the predictions of the theoretical model
developed above. We consider grains flowing over a rotating elliptical central body.
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Figure 19. Time evolution of an inversely graded regolith consisting of small (black) and big (grey) grains
with time t in the pre-critical regime with δ = φ = 4◦ and ω = 0.34.
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Figure 20. Time evolution of an inversely graded regolith consisting of small (black) and big (grey) grains
with time t in the pre-critical regime with δ = φ = 30◦ and ω = 1.0.

The grains are subjected to the changing surface gravity field of the elliptical
body. Because the flow is shallow, we neglect gravitational attraction between
grains.
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Figure 21. Snapshots in a co-rotating frame of DE simulations showing half of the elliptical central body (pink
curve) and the regolith layer (yellow) composed of grains with a diameter of 1 m. Three different rotation rates
ω are investigated whose directions are as indicated. (a) Uniform layer of grains at time t = 0 of depth 4 m. (b)
Steady-state deposit in the pre-critical regime with ω = 0.32. (c) Steady-state deposit in the post-critical regime
with ω = 0.75. (d) Mass shedding from the prograde side when ω = 1.0. The prograde (P) and retrograde (R)
regions, and the direction of the Coriolis acceleration (green arrows) are indicated. The white arrows indicate
direction of grain motion. The simulation details are provided in table 1. The central body and the flow are
scaled differently for better flow visualization.

6.1. Simulations
We modified the classical molecular dynamics code LAMMPS (Large-scale Atomic/
Molecular Massively Parallel Simulator) created by Plimpton (1995). This software is
open-source and has a ‘GRANULAR’ package for grains that implements the soft-sphere
DEM (Cundall & Strack 1979); here ‘grains’ refer to frictional, elastic spheres of constant
density. Inter-grain collisions are modelled through a set of tangential and normal springs
and viscous dashpots, in addition to rate-independent dry friction between contacting
grains. The details of the simulations are provided in table 1, while the documentation
for LAMMPS is available at https://lammps.sandia.gov/doc/Manual.html. Although the
simulation domain is 3-D, we have kept the flow restricted to the equatorial plane of an
ellipsoid flattened along its axis of rotation to be consistent with the theoretical model. The
surface of the body is lined by larger diameter grains, and the equations of motion for each
grain are solved in a rotating frame. Figure 21 shows some snapshots from our simulations
corresponding to the different flow regimes discussed in § 3.

Before discussing our results, several comments are in order regarding our DE
simulations. First, the contact stiffness of regolith on real asteroids (Tanbakouei et al. 2019)
is ten times higher than the values we employ; see table 1. Retaining actual values for the
contact stiffness would have made the computations very time consuming. The main effect
of the contact stiffness is to limit the degree that a grain deforms in response to applied
forces. At the same time, given the very low forces experienced on small planetary bodies,
we expect that lowering the contact stiffness will increase the computational efficiency
without tangibly affecting the results. Indeed, the radial strain in simulations is O(10−3).
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Time step, �t 0.09 s
Linear eccentricity, a 1000 m
Parameter, μE 0.4
Number of flowing grains 24 248
Grains lining the body’s surface 2171
Diameter of flowing grains 1 m
Diameter of surface grains 20 m
Grain density 1500 kg m−3

Areal density of the central body, ρE 2.6 × 106 kg m−2

Coefficient of restitution, egg 0.3
(Damping of normal and tangential dashpots) (45.1, 18.04 N s m−1)
Stiffness of normal and tangential spring 10 000, 7000 N m−1

Coefficient of inter-grain dry friction, μgg 0.0699, 0.577

Table 1. Details of our discrete element method (DEM) simulations.

Second, in LAMMPS, the strength of the dashpots incorporated in the grain contact
model are regulated by the coefficient of restitution egg, while the coefficient of dry friction
μgg between grains is supplied separately. We run simulations for three different values
of egg: 0.1, 0.3 and 0.9, and find that the results do not vary much. The results though
are found to depend on μgg, as we will see in the next section. We understand this as
follows. Both viscous dashpots and inter-grain friction control the rate at which the flow
slows down in simulations, with the dry friction being more important in slow and dense
flows like ours. Additionally, viscous effects cannot stop the flow, so that the final deposit
depends crucially on the amount of dry friction.

Using the soft-sphere DEM developed by Sánchez & Scheeres (2011), Sanchez &
Scheeres (2020) recently conducted local DE simulations of cohesive regolith on asteroids,
restricting themselves to a lune on the surface of a sphere. Sanchez & Scheeres (2020)
employed 5000 spherical grains with a density of 3200 Kg m−3 and diameters of 2–3
cm, which allowed them a regolith depth of approximately 12 cm. Our DE simulations,
in contrast, span the entire body, for which we took larger diameter grains to limit
computational requirements. We note that Sánchez & Scheeres (2011) considered kn values
of 104, 105 and 107 N m−1, while kt was taken to be 103, 104 and 107 N m−1. In their
work on the pkdgrav code, Schwartz, Richardson & Michel (2012) used values of 104 and
105 N m−1 for kn and kt, respectively. Our values are consistent with these choices.

Finally, we developed a continuum theory that employs the macroscopic internal angle
of friction φ to characterize the rheology of the granular flow. To compare the results of this
theory with DE simulations, it is necessary to understand how the choice of microscopic
parameters describing contact between grains in simulations relates to the bulk friction
angle of the simulated granular material. There is no reason for the friction coefficient μgg
employed in simulations to equal the bulk friction of the aggregate made up of those grains,
and separate tests are required to establish their relationship. Here, we simulate a heap
test (Roessler & Katterfeld 2019) to find the macroscopic friction angle of the simulated
granular material. In these virtual heap tests, we drop grains along the centre-line of a
cylindrical container and observe the angle repose of the cone that is formed at the steady
state. The angle of repose may be shown to be a reasonable estimate of the internal friction
angle of the granular material (Nedderman 1992, p. 36). In this way, we relate the choice of
friction between grains forming an aggregate in a simulation to its macroscopic frictional
response.
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Figure 22. Final deposit obtained from theory (solid curve) and DE simulations (dotted curve). (a) Pre-critical
regime with friction angles δ = φ = 4◦ and scaled rotation rate ω = 0.32. (b) Post-critical regime with δ =
φ = 4◦ and scaled rotation rate ω = 0.75. (c) Post-critical regime with δ = φ = 25◦ and scaled rotation rate
ω = 1.0 showing mass shedding. The prograde (P) and retrograde (R) regions are indicated.

From the virtual heap test, we find that at low values of μgg ≈ 0.05–0.15, heap
formation cannot be distinguished. However, when μgg is set to 0.5 and 0.57, the angles
of repose of the heap formed are approximately 20◦ and 25◦, respectively. Thus, for low
friction regolith, we assume that the outcomes are insensitive to the values of μgg used in
simulations and the macroscopic friction angle φ employed in the continuum description,
and equate the two, i.e. take μgg = tanφ. However, in frictional flows, we select the
inter-grain friction in DE simulations carefully to ensure a match between the macroscopic
internal friction of the granular materials used in simulations and theory.

6.2. Results
We compare our theoretical predictions with the results obtained from our DE simulations
in figure 22, which plots the final deposit profiles for an initially uniform layer of a low
friction regolith in the pre-critical regime in figure 22(a) and in the post-critical regime in
figure 22(b). The example of a regolith with higher friction is considered in figure 22(c).

We find that several interesting features predicted by the theoretical model are reflected
in the simulations. For example, asymmetries in the final deposits that occur owing to the
presence of Coriolis effects may be observed in figures 22(a) and 22(b). Then, undisturbed
regions around the minor axis predicted by theory in figure 22(b) are also exhibited in the
simulations to an extent. Finally, mass shedding is seen in figure 22(c) in both theory and
simulations. Note that mass shedding occurs at a rotation rate lower than ωsh in both theory
and simulations because lift-off velocities are exceeded locally.

There are several reasons for the observed mismatch in figure 22. First, both the discrete
nature of DE simulations and the fact that it permits vertical motion of grains introduces
more fluctuations in its output than are observed in the results of the depth-averaged
continuum model. Second, several simplifying assumptions have been made in the theory,
e.g. the rigid, perfectly plastic constitutive law for the granular flow and the manner
in which mass shedding is modelled. Finally, simulation data is obtained in Cartesian
coordinates, which are then mapped to elliptical coordinates for comparison with theory.
The grain size limits the minimum interval for sampling while traversing along ν, thereby
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reducing the smoothness of the simulation data. Nevertheless, in spite of these caveats, the
match between theory and simulation in figure 22 is encouraging.

7. Conclusions

In this work, we have taken a first step towards investigating granular flow on small rotating
planetary bodies. Such flows are affected by the rotation and irregular topography of the
central body and the varying, but small, surface gravity. We simplified the system from
three to two dimensions, but retained the aforementioned complexities by studying regolith
movement on a rotating elliptical central body. For this, we extended the framework of
avalanche dynamics employed for terrestrial shallow granular flows, and derived governing
equations in an elliptic coordinate frame co-rotating with the central body. Finally, we
included criteria to allow coexistence of and transformation between static and flowing
regolith regimes, and also to model surface grain shedding.

We found that, unlike terrestrial cases, the basal pressure in our flow has new terms
owing to both the underlying rotating curvilinear topography of the body and induced
Coriolis effects. We then identified several different regimes of regolith motion that are
regulated by the basal friction and the rotation rate of the central body, given its shape.
We then solved for the dynamical evolution of the regolith flow numerically, using the
non-oscillatory central scheme of Kurganov & Tadmor (2000).

We studied the motion of a uniform layer of regolith on a rotating, elliptical central body.
Depending on whether the rotation rate was low (pre-critical regime) or high (post-critical
regime), grains accumulated at the ends of the minor or major axis, respectively. We saw
that mass shedding may take place during regolith flow in the post-critical regime, which
is augmented if the grains are in prograde motion, i.e. the flow is in the direction of the
surface velocity relative to the rotating body. We also investigated the spread of local
pile-ups of grains, a process that we labelled as the ‘breaking of dunes’. Dunes at the
ends of the semi-major axes are less liable to break than those at other locations, as the
tangential acceleration is low. We found that the outcome of dune breaking diverges from
terrestrial situations because of rotation and a variable gravity field. For example, once a
dune breaks, secondary dunes may form elsewhere, owing to the flow being stopped by a
growing basal resistance or by a translation of the original dune.

We next extended our model to study flows with both big and small grains. We found
that the big grains occupied the top of the dunes that formed, while the small grains lay
at the bottom of the dunes. This was reminiscent of the regolith deposits on small bodies
like the asteroid Itokawa. Finally, we compared the theoretical predictions about the final
deposit of a regolith flow with the DE simulations and found a very encouraging match.

The theory developed here may be extended to three dimensions, which will allow us
to study regolith dynamics on minor planets. Further, segregation in mixtures has to be
investigated in the context of the low and changing gravity fields on small bodies, where
some of the segregation mechanisms may get suppressed. For example, because kinetic
sieving depends strongly on gravity field, the assumption of inverse grading at all times
may not be true when the gravity field is weak. Finally, regolith motion may also affect
the rotational dynamics of the central body which, in turn, will influence surface granular
flow. Modelling this would require a coupling of the theory developed here for regolith
flow with the rotational dynamics of the underlying rigid central body.
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