
Math. Struct. in Comp. Science (2004), vol. 14, pp. 853–878. c© 2004 Cambridge University Press

DOI: 10.1017/S0960129504004396 Printed in the United Kingdom

Compact metric spaces as minimal-limit sets in

domains of bottomed sequences

HIDEKI TSUIKI

Graduate School of Human and Environmental Studies, Kyoto University

Email: tsuiki@i.h.kyoto-u.ac.jp

Received 22 January 2002; revised 21 June 2003

Every compact metric space X is homeomorphically embedded in an ω-algebraic domain D

as the set of minimal limit (that is, non-finite) elements. Moreover, X is a retract of the set

L(D) of all limit elements of D. Such a domain D can be chosen so that it has property M

and finite-branching, and the height of L(D) is equal to the small inductive dimension of X.

We also show that the small inductive dimension of L(D) as a topological space is equal to

the height of L(D) for domains with property M. These results give a characterisation of the

dimension of a space X as the minimal height of L(D) in which X is embedded as the set of

minimal elements. The domain in which we embed an n-dimensional compact metric space

X (n � ∞) has a concrete structure in that it consists of finite/infinite sequences in {0, 1,⊥}
with at most n copies of ⊥.

1. Introduction

When D is an ω-algebraic domain, we can consider the set L(D) of limit (that is, non-finite)

elements of D as a topological space with the subspace topology of the Scott topology of

D, and the set K(D) of finite elements of D as its approximation structure. That is, K(D)

forms a base of the topology of L(D) through the identification of d ∈ K(D) with the

open set ↑d∩L(D). We can use this domain-theoretic viewpoint for a topological space X

when X is embedded in L(D). In this case, K(D) also forms a base of X, and each element

of X can be identified as the limit of an infinite strictly increasing sequence in K(D).

This viewpoint is particularly effective when D is composed of infinite sequences in

Σ⊥ = {0, 1,⊥}. In this case, each cell of a sequence can be considered as representing

boolean information and an infinite strictly increasing sequence in K(D) can be considered

as an infinite (possibly uncomputable) process that incrementally outputs 0 or 1 to the cells

based on the partial information about the point obtained so far. The order the cells are

filled may not be unique, and is regulated by the structure of K(D). Some of the cells may

be left unfilled even after the infinite time of execution, and in that case, the corresponding

cell has the value ⊥.

Many of the computational notions over topological spaces that have been studied

so far are related to this idea of representing a computation as an infinite process with

incremental outputs based on partial information. A Type-2 machine (Weihrauch 2000) can

implement this kind of output because we can encode, as an infinite sequence of characters,

an infinite list of pairs composed of the index and the value of a cell. An IM2-machine
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(Tsuiki 2002) can directly manipulate this kind of sequence with bottoms because it has

the ability to skip some of the cells with multiple-heads and indeterministic rules. And

RealPCF (Escardó 1996) realises computation over the continuous domain of closed

intervals of � so that better and better approximations to an interval are obtained as the

evaluation proceeds. Embeddings of topological spaces into domains have been studied

by many authors (Weihrauch and Schreiber 1981; Blanck 2000; Edalat 1997; Edalat and

Sünderhauf 1998) with the motivation being the use of effective structures of domains

(Smyth 1977) for the study of computation over topological spaces, and, in particular, the

embedding of � in an ω-algebraic domain is studied in Di Gianantonio (1999).

To ensure that this programme to embed a space X in L(D) for the study of the

topological and computational structure of X works very well, we assume that all the

infinite increasing sequences in K(D) are meaningful, and identify one point of X. That

is, every process whose output at each finite time is valid and that continues to output

infinitely should be considered as designating a unique point of X. We first show that, when

D has property M (which is equivalent to Lawson-compactness because we only consider

ω-algebraic domains), this condition is equivalent to requiring that X is a Hausdorff

space densely embedded in D as the set of minimal elements of L(D) (Section 4). Note

that many of the domains studied in computer science such as Pω = {u | u ⊆ N} and

Plotkin’s Tω(Plotkin 1978) do not have minimal limit elements. We introduce a condition

on K(D) that guarantees the existence of enough minimal limit elements. That is, K(D)

is a finite-branching poset. A domain with this condition on K(D) is called a finite-

branching domain (fb-domain in short). In any fb-domain, the minimal limit elements

form a compact space.

We show that for each compact metric space X, there is an fb-domain D that contains X

as the set of minimal limit elements of D. Moreover, X is a retract of L(D). We first present

an fb-domain RD that has � = [0, 1] as the set of minimal limit elements (Section 5). RD

is usually defined as the domain corresponding to the signed digit representation of real

numbers, and this retract structure has already been investigated in Di Gianantonio (1999).

In this paper, based on the Gray-code embedding (Tsuiki 2002), we present this domain

as a subdomain of BD1, which is the set of finite/infinite sequences in {0, 1,⊥} with at

most one copy of ⊥. Then we define a new product (called the synchronous product) of

fb-domains, and construct domains corresponding to the n-dimensional Euclidean cube

�n (n = 0, 1, 2, . . .) and the Hilbert cube �ω (Section 7). Finally, we prove the existence of

such an fb-domain for a compact metric space in general, based on Nöbeling’s universal

n-dimensional space (Nöbeling 1931) for the finite dimensional case, and the universality

of the Hilbert cube �ω for the infinite dimensional case (Section 8).

When X is n-dimensional (n � ∞), we construct all the fb-domains mentioned above so

that they are composed of finite/infinite sequences in {0, 1,⊥} with at most n copies of ⊥.

In addition, we show that we need to use at least n copies of ⊥ when X is n-dimensional

and D has property M. For this purpose, the topological dimension of the set of limit

elements of a domain is studied. It is proved that the small inductive dimension of L(D)

is equal to the maximal length of a chain in L(D) when D has property M (Section 5).

Thus, we have a characterisation of the dimension of a space X as the minimal height

of L(D) in which X is embedded as the set of minimal elements. This is a generalisation
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of the result in Tsuiki (2000), and the proof is greatly simplified by thinking about the

dimension of L(D) in general.

2. Preliminaries and notation

First note that in this paper we use the word domain to mean an ω-algebraic pointed

dcpo.

Infinite sequences

In this paper, we fix the character set Σ as {0, 1} unless we state otherwise. We write

Σ∗ for the set of finite sequences of Σ, and Σω for the set of infinite sequences of Σ.

Σ∗ forms a tree (and thus a poset) with respect to the prefix ordering. We sometimes

identify an infinite sequence with an infinite tape, and call each place to write a character

a cell. A bottomed sequence is an infinite sequence of Σ⊥ = Σ ∪ {⊥}, where ⊥ means

undefinedness. In other words, it is an infinite tape some of whose cells may not be filled

by a character in Σ. We write Σω
⊥ for the set of bottomed sequences. When α ∈ Σω

⊥, we

write α[j] (j = 0, 1, 2 . . .) for the j-th component of α. When α[j] = ⊥ for j � n, we say

that α is a finite bottomed sequence.

Domain theory

Let (P ,�) and (Q,�) be partially ordered sets (posets). When d, e ∈ P , we write d < e for

d � e and d 
= e, ↑d for the set {d′ ∈ P | d′ � d}, and ↓d for the set {d′ ∈ P | d′ � d}.
We also write ↑A (or ↓A) for the set ∪a∈A ↑a (or ∪a∈A ↓a) and say that a subset A is

upper-closed (or down-closed) when ↑A = A (or ↓A = A). We say that a pair of elements d

and e are bounded if d and e have an upper bound, and write d ↑P e, or d ↑ e when P is

obvious.

A subset A of a poset P is directed if it is non-empty and each pair of elements of P

has an upper bound in A. A directed complete partial order (dcpo) is a partial order (D,�)

where every directed subset A has a least upper bound (lub) 
A, also called the supremum

of A. A poset P is pointed if it has a least element. A finite element of a dcpo D is an

element d ∈ D such that for every directed subset A, if d � 
A, then d � a for some

element a ∈ A. We write K(D) for the set of finite elements of D. An element of D is

called a limit element when it is not finite. We write L(D) for the set of limit elements of

D. We write Kx for K(D)∩ ↓x. A dcpo D is algebraic if Kx is directed and 
Kx = x for

each x ∈ D; and it is ω-algebraic if D is algebraic and K(D) is countable. In this paper, we

use the word domain to mean an ω-algebraic pointed dcpo. See, for example, Abramsky

and Jung (1994), Plotkin (1981) and Stoltenberg-Hansen et al (1994) for expositions of

the theory of domains.

An ideal of D is a directed down-closed subset. When P is a countable poset with least

element, Idl (P ), the set of ideals of P ordered by set inclusion, becomes a domain called the

ideal completion of P , and satisfies K(Idl (P )) ∼= P . On the other hand, when D is a domain,

we have Idl (K(D)) ∼= D. Therefore, K(D), the set of finite elements of D, determines the
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structure of D. We say that an ideal of K(D) is principal (or non-principal) if its supremum

is in K(D) (or L(D)). When D is a domain and a1 < a2 < . . . is an infinite strict increasing

sequence in K(D), it determines a non-principal ideal {x ∈ K(D) | x � ai for some i} of

K(D) and thus determines a point of L(D). A domain D is bounded complete if every

bounded pair has a supremum.

The Scott topology of a dcpo P is defined so that a subset O is open iff it is upper-closed

and for each directed subset S of P with 
S ∈ O, s ∈ O for some s ∈ S . When D is an

algebraic dcpo, the set {↑d | d ∈ K(D)} forms a base of the Scott topology on D.

When (D,�) is a domain, we call E ⊆ D a subdomain if (E,�) is a domain, K(E) ⊆ K(D),

and the embedding of E in D preserves the least element and the supremums of directed

sets. In this case, the Scott topology of (E,�) is the subspace topology of that of (D,�).

Two domains of bottomed sequences

The set Σ∞ = Σω ∪Σ∗ is a domain with K(Σ∞) = Σ∗ and L(Σ∞) = Σω . Σω is called Cantor

space and the topology on Σω induced as the subspace topology of the Scott topology

of Σ∞ is called the Cantor topology. The set of bottomed sequences (Σω
⊥,�) also forms a

domain with x � y iff x[k] � y[k] for all k = 0, 1, . . .. Here, the order on Σ⊥ is defined

as ⊥ � a for a ∈ Σ. In (Σω
⊥,�), d is a finite element iff d is a finite bottomed sequence.

Domains that are subdomains of Σω
⊥ (and thus composed of bottomed sequences) will

play an important role in this paper.

Topology

When O is a subset of a topological space X, we write clX(O) and intX(O) for the closure

and interior of O in X, respectively, and BX(O) for the boundary of O in X, that is,

clX(O) − intX(O). We write cl(O), int(O), and B(O) when these are unambiguous. A space

X is said to be a retract of a space Y if there is a pair s : X → Y , r : Y → X of

continuous functions such that r ◦ s is the identity on X. When X is a subspace of Y ,

we say that X is a retract of Y if r and the embedding of X in Y form a retract. In

this paper, we say that a topological space is compact when each open cover has a finite

subcover and we do not assume the Hausdorff property. See, for example, Smyth (1992)

and Engelking (1989) for topological notions.

Filter and filter-base

A filter in a topological space X is a non-empty family F of subsets of X that satisfies

the following conditions:

1 If A ∈ F and A ⊆ B, then B ∈ F.

2 If A1 ∈ F and A2 ∈ F, then A1 ∩ A2 ∈ F.

3 � 
∈ F.

A filter-base in X is a non-empty family B of subsets of X that satisfies:

1 If A1 ∈ B and A2 ∈ B, then there exists an A3 ∈ B such that A3 ⊆ A1 ∩ A2.

2 � 
∈ B.

https://doi.org/10.1017/S0960129504004396 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004396


Compact metric spaces as minimal-limit sets in domains of bottomed sequences 857

When B is a filter-base, the family

FB = {A ⊆ X | there exists a B ∈ B such that B ⊆ A}

is a filter. A point x is called a limit of a filter F if every neighbourhood of x belongs to

F, and x is called a limit of a filter-base B if x is a limit of FB. When x is a limit of a

filter (or a filter-base) F, we say that F converges to x. A point x is called a cluster point

of a filter F (or a filter base B) if x belongs to the closure of every element of F (or B).

We say that a filter (or a filter-base) F1 refines F2 if F1 ⊇ F2. We say that a filter (or a

filter-base) F is infinite when F is an infinite family. See, for example, Engelking (1989)

for more about filters.

The real line

A dyadic number is a rational number of the form m× 2−n for integers m and n. We write

� for the unit closed interval [0, 1].

3. Domains with property M

In this section, we give some fundamental properties of domains with property M.

We use domains to represent topological structures; we embed a topological space X in

L(D) and consider K(D) as a topological base of X through the identification of d ∈ K(D)

with the subset ↑d ∩ X of X. Therefore, when ↑d ∩ L(D) is empty, d does not contribute

to defining the topology of X. It is easy to show the following lemma.

Lemma 3.1. When D is a domain, the followings are equivalent.

(1) ↑d ∩ L(D) 
= � for all d ∈ K(D).

(2) L(D) is dense in D.

(3) D has no maximal finite element.

In the following, we will refer to this property as D has no maximal finite element. In

this paper, we are particularly interested in domains without maximal finite elements.

However, most of the theorems hold without this condition and thus we do not assume it

in general. We will write D̂ for the domain D − {d ∈ K(D) | d 
= ⊥ and ↑d ∩ L(D) = �}.

Lemma 3.2. When D is a domain and L(D) 
= �, we have D̂ is a domain without maximal

finite elements. When D is a domain, L(D) = L(D̂).

The notion of the set of minimal elements appears frequently in this paper.

Definition 3.3. Let P be a poset.

(1) x ∈ P is a minimal element if y � x implies y = x for all y ∈ P .

We write MP for the set of all minimal elements of P .

(2) We say that P has enough minimal elements if, for all y ∈ P , there exists x ∈ MP such

that x � y.

Many of the results of this paper are based on the following completeness condition,

which is more general than bounded completeness.
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Definition 3.4.

(1) We say that a poset P is mub-complete if for every finite subset X ⊆ P , the set of

upper bounds of X has enough minimal elements. That is, when y is an upper bound

of X, there exists a minimal upper bound y′ of X such that y′ � y.

(2) We say that a domain (that is, ω-algebraic pointed dcpo) D has property M if K(D)

is mub-complete and each finite subset X ⊆ K(D) has a finite set of minimal upper

bounds.

Property M is equivalent to Lawson-compactness for ω-algebraic domains by the 2/3

SFP Theorem (Plotkin 1981), and domains with property M are studied in Jung (1989).

Though only ω-algebraic domains are considered in this paper, the results of this section

and Section 6 can be generalised to Lawson-compact continuous domains, as discussed

in Section 9.

Lemma 3.5. When D has property M, D̂ also has property M.

Proposition 3.6. Suppose that D is a domain with property M.

(1) α ↑ β for α, β ∈ D iff d ↑ e for all d ∈ Kα and e ∈ Kβ .

(2) clD(↑d) = {α ∈ D | d ↑ α} (=↓↑d) for d ∈ K(D).

(3) If L(D) is a T1 space, then L(D) is a Hausdorff space.

(4) Suppose also that L(D) has enough minimal elements. If ML(D) is a retract of L(D),

then ML(D) is a Hausdorff space.

Proof.

(1) If part: Let γ be an upper bound of α and β. Then, γ is also an upper bound of e

and f.

Only if part: First note that when d ↑ e for d, e ∈ K(D), an upper bound of d and

e exists in K(D) because if γ ∈ L(D) is an upper bound of d and e, then Kγ is

directed. Let ⊥ = d0 < d1 < . . . and ⊥ = e0 < e1 < . . . be strictly increasing sequences

in K(D) with least upper bounds α and β, respectively. Choose an upper bound

fi ∈ K(D) of di and ei for every i. Now we will form an infinite increasing sequence

g0 < g1 < . . . such that di � gi, ei � gi and the set Nk = {fi | fi > gk, i > k} is

infinite for every k. First take g0 = ⊥. Suppose that g0, . . . , gk are defined. Consider

the set Gk = {gk, dk+1, ek+1}. Note that Nk is an infinite set of upper bounds of Gk .

Since the set of minimal upper bounds of Gk is finite, we can choose a minimal upper

bound gk+1 of Gk so that Nk+1 is infinite. The least upper bound of such a sequence

is greater than both α and β.

(2) We need to show clD(↑d) � α iff d ↑ α. clD(↑d) � α means that ↑d∩ ↑e 
= � for all

e ∈ Kα. ↑d∩ ↑e 
= � iff d ↑ e, and it is equivalent to f ↑ e for all f ∈ Kd because d is

finite. Therefore, by applying (1), we have the result.

(3) First consider the case in which D has no maximal finite elements. If L(D) is a T1

space and x, y ∈ L(D) are different elements, then x and y do not have an upper

bound in L(D), and therefore they do not have an upper bound in D, because if a

finite element is an upper bound, there is also an upper bound that is a limit element.
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x y

d0

d1

d2

d3

d4

Fig. 1. An ω-algebraic domain that does not have property M.

Therefore, from (1), for some d, e ∈ K(D) such that d < x and e < y, we have d and

e do not have an upper bound in D. This means that ↑d and ↑e do not intersect.

For the case in which D has a maximal finite element and L(D) 
= �, x and y

may have an upper bound in D even when L(D) is a T1 space, as Figure 2 shows.

Therefore, we consider D̂ instead of D. D̂ comes to be a domain with property M and

with no maximal finite element, and we have L(D) = L(D̂) by Lemmas 3.5 and 3.2.

(4) As in (3), we only need to show this theorem for the case in which D has no maximal

finite elements. Let r be the retract map from L(D) to ML(D). Since r is monotonic

and L(D) has enough minimal elements, we have r−1(x) =↑x. This means that every

pair of different elements of ML(D) do not have an upper bound in either L(D) or D.

Therefore, they are separated by open sets in D by (1), and thus they are separated

by open sets in ML(D).

Example 3.7. A counterexample to Proposition 3.6 (1) and (2) when D does not have

property M is given in Figure 1. Note that there is no order relation between di (i = 0, 1, . . .).

Example 3.8. As a counterexample to Proposition 3.6 (3) and (4), one can add, to each di
in Figure 1, a strictly increasing sequence di = ei,0 < ei,1 < . . . and its limit pi (i = 0, 1, . . .).

Then, L(D) = {x, y, p0, p1, . . .} is flat in that whenever t, u ∈ L(D) and t � u, we have

t = u. Thus L(D) is a T1 space. However, L(D) is not Hausdorff because every open

neighbourhood of x (and also y) contains all pn (n � k) for some k.

Note that Proposition 3.6 (1) can also be stated as x and y are separated by open sets

iff x ⁄↑ y. In addition, when D has no maximal finite element, we can take an upper bound

of x and y in L(D). Therefore, in this case, we can restate (1) in the following form, which

connects the order structures of L(D) and K(D).
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x y

Fig. 2. An ω-algebraic domain that has property M and has a maximal finite element.

Proposition 3.9. Suppose that D is a domain with property M and with no maximal finite

element. x ↑L(D) y iff d ↑K(D) e for all d ∈ Kx and e ∈ Ky .

Figure 2 shows a counterexample when D has a maximal finite element.

4. Embeddings in minimal-limit sets of domains

When D is a domain, we can consider L(D) as a topological space and K(D) as its

approximation structure. That is, through the identification of d ∈ K(D) with the open

set ↑d ∩ L(D), we have K(D) forms a base of the topology of L(D), which is the subspace

topology of the Scott topology of D. Through this identification, each y ∈ L(D), viewed

as the ideal Ky ⊆ K(D), defines a filter-base F(Ky) = {↑d∩L(D) | d ∈ Ky} of L(D), which

converges as follows.

Proposition 4.1. The set of limits of F(Ky) is ↓y ∩ L(D).

Proof. A point x is a limit of F(Ky) iff, for every d ∈ Kx, there exists e ∈ Ky such that

↑d ∩ L(D) ⊇↑e∩L(D), which is equivalent to d � e. Therefore, x is a limit of F(Ky) iff

x � y.

When X is a subspace of L(D), K(D) also forms a base of the topology of X, through

the identification of d ∈ K(D) with the open set ↑d ∩ X. Through this identification, each

y ∈ L(D), viewed as the ideal Ky ⊆ K(D), defines a family FX(Ky) = {↑d∩X | d ∈ Ky}
of subsets of L(D). It is easy to show that FX(Ky) becomes a filter-base for all y ∈ L(D)

iff X is dense in D; X is dense in D iff ↑d∩X is not empty for each d ∈ K(D) and the

first condition of the definition of a filter-base holds because Ky is an ideal.

Now, suppose that X is dense in D, and consider the condition that for each y ∈ L(D),

the filter-base FX(Ky) converges to a unique point of X. When this holds, each infinite

strictly increasing sequence in K(D), which identifies an element of L(D) and determines
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x

y

d3

d2

d1

d0

z

f3

f2

f1

f0

e3

e2

e1

e0

d4

e4
f4

Fig. 3. An example showing that there is no limit of FY (Kx) for Y = {y, z}.

a non-principal ideal of K(D), specifies an element of X as the limit of the corresponding

filter-base.

The uniqueness of such a point, if it exists, is guaranteed when X is a Hausdorff space

because each filter-base converges to at most one point in a Hausdorff space. The converse

is also true when D has property M, as follows.

Proposition 4.2. Suppose that D is a domain with property M and X is a dense subset of

L(D). All the filter-bases of the form FX(Ky) (y ∈ L(D)) have at most one limit point iff

X is Hausdorff.

Proof. We only need to show this for domains with no maximal finite element because,

in the domains D and D̂, the sets of limit elements are the same and the filter-bases of

the forms FX(Ky) are the same.

If part: This is as described above.

Only if part: Suppose that X is not Hausdorff. Then there are two points x and y that

are not separated by open sets. That is, for all pairs of finite elements d < x and e < y,

↑d and ↑e intersect in X, and thus d and e have an upper bound in K(D). Therefore,

from Proposition 3.9, x and y have an upper bound z in L(D). Then, FX(Kz) converges

to both x and y.

For the existence of such a limit, if ↓y ∩X 
= �, then FX(Ky) converges to every point

of ↓y ∩ X. However, when ↓y ∩ X is empty, there may be no limit of FX(Ky).

Example 4.3. Consider the domain D in Figure 3. Let Y be the subset {y, z} of L(D).

Then the filter-base FY (Kx) does not converge to a point.

When ↓y ∩X is empty, there are also cases in which a limit of FX(Ky) exists but is not

a limit of F(Ky).

Example 4.4. In Example 4.3, consider the set Y = {y} and the filter-base FY (Kx). This

converges to y, while F(Kx) converges only to x.
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In order to exclude these cases, we consider the condition that FX(Ky) (y ∈ L(D))

converges to a unique point that is among the limits of F(Ky). It is immediate that under

this condition D has enough minimal limit elements and X is the minimal-limit set of D

defined as follows.

Definition 4.5. Let D be a domain. x ∈ L(D) is a minimal limit element of D if it is a

minimal element in L(D). We say that D has enough minimal limit elements if L(D) has

enough minimal elements (Definition 3.4). In this case, ML(D) is called the minimal-limit

set of L(D).

On the other hand, these conditions on D and X are sufficient for the above condition.

Proposition 4.6. Suppose that D is a domain which has enough minimal limit elements

and that X = ML(D) is a Hausdorff dense subspace of D.

(1) X is a retract of L(D).

Let y ∈ L(D) in the remaining parts.

(2) The filter-base FX(Ky) converges to a unique point r(y) for r the retract map from

L(D) to X.

(3) ∩FX(Ky) = {y} if y ∈ X.

(4) ∩FX(Ky) = � if y 
∈ X.

(5) ∩{cl(s) | s ∈ FX(Ky)} = {r(y)}. That is, r(y) is the unique cluster point of FX(Ky).

Proof.

(1) From the minimality, for every y ∈ L(D), there is an element x in X such that x � y.

Suppose that there is another element z 
= x in X such that z � y. Since X is

Hausdorff, we have c ∈ Kx and d ∈ Kz such that ↑c ∩ ↑d ∩ X = �. Since ↑c ∩ ↑d
includes y and thus is non-empty, from the density of X in D, we have u ∈ X, which is

in this set, and thus contradicts the assumption. Therefore, there is only one element

x in X such that x � y. We define this element as r(y). r is a continuous function

from L(D) to X; r−1(x) =↑x for each x ∈ X, and r−1(↑d ∩ X) =↑d ∩ L(D) for each

d ∈ K(D). Thus, X is a retract of L(D).

(2) Since r(y) � y and thus d ∈ Ky for all d ∈ Kr(y), every neighbourhood ↑d ∩ X of

r(y) is a member of FX(Ky). Uniqueness of the limit is guaranteed by the Hausdorff

property of X.

(3) ∩FX(Ky) is a subset of the set of limits of FX(Ky). Thus, we have ∩FX(Ky) ⊆ {r(y)}.
Since each element of FX(Ky) contains y = r(y) when y ∈ X, we have ∩FX(Ky) ⊇
{y}.

(4) y 
∈ X means that y > r(y) and, therefore, there is an element d ∈ Ky such that ↑d
does not contain r(y).

(5) Let d ∈ Ky . For all e ∈ Kr(y), we have y is an upper bound of d and e. Therefore,

an upper bound f ∈ K(D) of d and e exists, and since X is dense, ↑f ∩ X is not

empty. Therefore, (↑ e ∩ X) ∩ (↑d ∩ X) =↑ e ∩ ↑d ∩ X ⊇ ↑f ∩ X is not empty.

Therefore, r(y) ∈ cl(↑d∩X). On the other hand, when x ∈ X and x 
= r(y), since X is

Hausdorff, there exists f ∈ Kx and e ∈ Kr(y) such that ↑f∩ ↑e∩X is empty. Therefore,

x 
∈ cl(↑e ∩ X) for e ∈ Ky .
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Fig. 4. A counterexample to Proposition 4.6 (1) for the non-dense case.

Example 4.7. A counterexample to Proposition 4.6 (1) for the non-dense case is given in

Figure 4. In this example, ML(D) is a Hausdorff subspace of D, but is not a retract of D.

As we have noted, our idea is to consider an infinite increasing sequence in K(D) as

giving a code for a point of X. This proposition suggests two interpretations of such

sequences when D and X satisfy the conditions of this proposition. One is to consider

that d ∈ K(D) has the information that the point is in cl(↑d ∩ X), and consider a strictly

increasing sequence I = d0 < d1 < . . . as specifying the point ∩icl(↑ di ∩ X), which

is actually the only limit of the filter-base FX(Ky), and is equal to the unique cluster

point of FX(Ky), where Ky is the ideal corresponding to I. In this case, all the infinite

increasing sequences have meaning as a unique point of X. However, the representation

is not unique in that when x ∈ X, all the ideals Ky with y ∈↑x specify the same point x.

This kind of interpretation is used in Di Gianantonio (1999) and many other calculi of

real numbers. The other interpretation is to consider that d ∈ K(D) has the information

that the point is in ↑d ∩ X, and that I = d0 < d1 < . . . is specifying the point ∩i ↑di.
In this case, only those infinite increasing sequences with the limits in X have meanings.

However, the representation becomes unique in that the ideal representing a point is

unique. This kind of interpretation is used in Tsuiki (2002). In this paper, we do not

care which interpretation is used, and find, for each Hausdorff space X, a domain D with

enough minimal limit elements such that X is homeomorphically and densely embedded

in D as the minimal-limit set.

Many of the domains studied in computer science do not have enough minimal limit

elements. For instance, Pω = {u | u ⊆ N} and Σω
⊥ do not have minimal limit elements. We

consider a condition on a domain (Definition 4.11 below) that guarantees the existence of

enough minimal limit elements.
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Definition 4.8. When P is a poset, we define the level of d ∈ P as the maximal length of a

chain ⊥P = a0 < a1 < . . . < an = d, when it exists. A poset P is stratified if each e ∈ P has

a level. When P is a stratified poset, we write Kn(P ) for the set of level-n elements of P .

A domain D is stratified if K(D) is a stratified poset. We write Kn(D) for the set Kn(K(D))

of level-n finite elements of D. We call Kn(D) ∩ Kx the set of level-n approximations of x.

Thus, when D is a stratified domain, K(D) is stratified as K(D) = K0(D) ∪ K1(D) ∪ . . .

and K0(D) = {⊥D}.

Example 4.9. All the domains Pω , Σω
⊥, Σ∞, and Figures 1, 3 and 4 are stratified domains,

whereas Figure 2 is not.

Lemma 4.10. When D is a stratified domain:

(1) Every subset of K(D) has enough minimal elements.

(2) No finite element is bigger than a limit element. In particular, it has no maximal

finite element if L(D) 
= �.

In a poset P , when d < d′ and there is no element e such that d < e < d′, we say that

d′ is an immediate successor of d and call the pair (d, d′) a successor pair or an edge from

d to d′. We write succ(d) for the set of immediate successors of d.

Definition 4.11. A stratified poset P is finite-branching if succ(d) ⊆ Kn+1(P ) and succ(d) is

finite for every d ∈ Kn(P ). A finite-branching domain (fb-domain in short) is a domain D

such that K(D) is a finite-branching poset.

Each element of L(D) may have an infinite number of immediate successors for an

fb-domain D. An example is the fb-domain RD∞ in Proposition 7.7 corresponding to the

Hilbert cube. When D is an fb-domain, Kn(D) is a finite set for each n.

Proposition 4.12. When D is an fb-domain, L(D) is compact.

Proof. Suppose that {↑d | d ∈ S} forms an open cover of L(D) for S ⊆ K(D). The

set S has enough minimal elements by Lemma 4.10 (1), and we define T = MS . Then,

T = {↑d ∩ L(D) | d ∈ T } is an open subcovering of L(D). Suppose that T is an infinite

set. Let J = {j ∈ K(D) | ↑j ∩ T is infinite}. We have ⊥ ∈ J , and when j ∈ J , at least one

member of succ(j) is also in J . Therefore, we have an infinite strictly increasing sequence

⊥ = j0 < j1 < . . . in J . Let x ∈ L(D) be the limit of this sequence. Since J is down-closed

by definition, we have Kx ⊆ J . Since T is a covering, we have x > d for some d ∈ T .

Then d ∈ Kx, and d 
∈ J because ↑d ∩ T = {d} by the minimality of T , which is a

contradiction.

From the compactness of a space Y , we can show the existence of enough minimal

elements of Y with respect to the specialisation order (Neumann-lara and Wilson 1998;

Kopperman and Wilson (to appear)). We will show the proof for the case Y = L(D).

Proposition 4.13. When L(D) is compact:

(1) L(D) has enough minimal limit elements.

(2) ML(D) is compact.
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Proof.

(1) Let y ∈ L(D). By Zorn’s lemma, we have a maximal co-directed set A ⊆ L(D)

containing y. Then {↓a ∩ L(D) | a ∈ A} is a family of closed sets in L(D) with

the finite intersection property. Since L(D) is compact, this family has non-empty

intersection, and we let x be in this intersection. Since A is maximal, x ∈ A. Therefore,

x is the least element of A, which is minimal in L(D) because A is maximal. Thus we

have a minimal limit element less than or equal to y.

(2) Since L(D) is compact and every open covering of ML(D) also covers L(D), this result

is immediate.

From Propositions 4.12 and 4.13, we have a condition for the existence of enough

minimal limit elements.

Theorem 4.14.

(1) An fb-domain D has enough minimal limit elements.

(2) ML(D) is compact.

Thus finite-branchingness is a sufficient condition for the existence of enough minimal

limit elements. In addition, in this case, the set ML(D) is a compact set. Therefore, in the

rest of this paper we restrict our attention to the case X is compact, and we find, for each

compact metric space X, a finite-branching domain D such that X = ML(D) and ML(D) is

dense in D.

Note that ML(D) may not be dense in D even when D is finite-branching. For example,

the fb-domain in Example 4.3 has {x} as the minimal-limit set, which is not dense in

D. However, we can have a subdomain that contains ML(D) as a dense subset by simply

taking the closure of ML(D). Therefore, we will consider the construction of an fb-domain

D such that ML(D) contains X in the following sections, and then obtain the desired

fb-domain by taking the closure of X (Theorems 8.5 and 8.8).

5. fb-domains composed of bottomed sequences

In this section we give some examples of fb-domains composed of bottomed sequences.

Definition 5.1. A domain D is a domain of bottomed sequences if it is a subdomain of Σω
⊥

and the embedding of D in Σω
⊥ preserves the level.

In this case, each element of Kn(D) has n filled cells and an edge corresponds to filling

one unfilled cell with a character in Σ.

When D is a domain of bottomed sequences, we introduce a labelling of edges of D

by the character set Γ = {a(i) | a ∈ {0, 1}, i ∈ {0, 1, . . .}} so that the label a(i) is assigned

to an edge filling the i-th (counting from 0) unfilled cell with a. For example, the edge

from ⊥ω to ⊥1⊥ω is labelled with 1(1), and the edges from ⊥1⊥ω to ⊥10⊥ω and from

⊥10⊥ω to 010⊥ω are labelled with 0(1) and 0(0), respectively. Let Γ(n) be the finite set

{a(i) | a ∈ {0, 1}, i ∈ {0, 1, . . . , n}}. When D is an fb-domain of bottomed sequences, Kn(D)

is a finite set for all n = 0, 1, 2, . . . , Therefore, for each n, there is a number l such that all

the edges from level-n finite elements are labelled with Γ(l) (n = 0, 1, . . .).
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Fig. 5. The structure of BD1 for the case Σ = {1} (⊥ is shown as ‘b’).

We write Σω
⊥,n for the set of infinite bottomed sequences in which at most n undefined

cells are allowed to exist. Therefore, for example, Σω
⊥,0 = Σω and Σω

⊥,1 = Σω ∪ Σ∗⊥Σω . We

write Σ∗
⊥,n for the sets of finite bottomed sequences in which at most n undefined cells are

allowed to exist. More precisely, Σ∗
⊥,n is a subset of Σω

⊥ such that all the cells are ⊥ after

the (n + 1)-th ⊥ cell.

Definition 5.2.

(1) Let P be a poset and d ∈ P . The co-level of d is the maximal length n of a chain (that

is, strictly increasing sequence) d = a0 < a1 < . . . < an in P . If there is an arbitrary

long chain starting with d, we define the co-level of d to be ∞.

(2) The upper-n subset of P is the set of elements whose co-level is not greater than n.

The upper-n subset of Σω
⊥ is Σω

⊥,n. Now we define BDn = Σ∗
⊥,n ∪ Σω

⊥,n (n = 0, 1, . . .).

This is obviously a subdomain of Σω
⊥ with K(BDn) = Σ∗

⊥,n and L(BDn) = Σω
⊥,n. BDn are

obviously bounded-complete fb-domains of bottomed sequences. As a special case, BD0

is the domain Σ∞.

We will now study the structures of BDn more carefully. In BD1, the least element of

Σ∗
⊥,1, which is the empty string, has 4 successors:‘0’, ‘1’, ‘⊥0’ and ‘⊥1’. This is also the case

for other elements; every finite element has 4 outgoing edges labelled with 0(0), 1(0), 0(1),

and 1(1). Therefore, BD1 is the subdomain of Σω
⊥ in which the edges are restricted to Γ(1).

In the same way, each finite element of BDn has 2n successors. Figure 5 shows the order

structure of BD1 for the case Σ = {1}. Note that the open sets ↑d (d ∈ K(D)) are all

isomorphic to each other.

Definition 5.3. An fb-domain D is homogeneous if ↑d is isomorphic to D for each d ∈ K(D).

Proposition 5.4. BDn is homogeneous.

Proof. Let d ∈ K(D), K = {k | d[k] ∈ Σ} and e ∈↑d. Since all the bottom cells of e have

an index not in K , the number of bottoms in e does not change if we omit the cells with

index in K . Therefore, by deleting K from the index set ω and re-indexing, we can make

an isomorphism between ↑d and BDn.
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Fig. 6. Binary Expansion and Gray code Expansion of real numbers.

As for the limit elements, Σω
⊥,1 has 2 levels of elements. The upper level is isomorphic

to Σω , and the lower level, which is the minimal-limit set of Σω
⊥,1, consists of infinite

sequences with one bottom. Each lower level element is smaller than two upper level

elements obtained by specifying the value of the bottom cell as 0 or 1, and each upper

level element is bigger than countably many lower level elements obtained by substituting

the value of each cell with ⊥. Similarly, Σω
⊥,n has (n+1)-level structures (n = 0, 1, . . .).

Proposition 5.5. ML(BDn) is not Hausdorff when n � 1.

Proof. If it is Hausdorff, then it is a retract of L(BDn) by Proposition 4.6 (1). This

means that for each maximal element x ∈ L(BDn), there is only one y ∈ ML(BDn) such that

y � x. This contradicts the structure of Σω
⊥,n mentioned above.

Next we consider a more important example of a domain of bottomed sequences

whose minimal-limit set is Hausdorff and homeomorphic to � = [0, 1]. The Gray code

embedding G (see Tsuiki (2002) and Definition 5.6 below) is an embedding of � = [0, 1]

in the set Σω
⊥,1. It is based on the Gray code expansion, which is another expansion of

real numbers. Figure 6 shows the usual binary expansion and the Gray-code expansion

of �. Here, a horizontal line means that the corresponding bit has value 1 on the line

and value 0 otherwise. In the usual binary expansion of x, the head h of the expansion

indicates whether x is in [0, 1/2] or [1/2, 1], and the tail is the expansion of f(x, h) for f

the following function:

f(x, h) =

{
2x (h = 0)

2x − 1 (h = 1).

Note that the value of f depends not only on x but also on the choice of h when x = 1/2.

On the other hand, the head of the Gray-code expansion is the same as that of the

binary expansion, whereas the tail is the expansion of t(x) for t the so-called tent function.

Note that t is continuous at 1/2.

t(x) =

{
2x (0 � x � 1/2)

2(1 − x) (1/2 < x � 1).
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Fig. 7. The structure of RD. Here, b means ⊥.

As is the case for the usual binary expansion, we have two expansions for dyadic

numbers. For example, we have two Gray code expansions 111000 . . . and 101000 . . . for

3/4, corresponding to the two binary expansions 11000 . . . and 10111 . . . . However, the

two expansions differ only at one digit (in this case the second digit). This means that

the second digit does not contribute to the fact that this number is 3/4. Therefore, it is

natural not to select a {0, 1} value for such a digit, but instead to leave it unspecified as

⊥. In this way, we define the Gray code embedding G as follows.

Definition 5.6. Let P : � → Σ⊥ be the map

P (x) =




0 (x < 1/2)

⊥ (x = 1/2)

1 (x > 1/2)

and t : � → � be the tent function defined above. The Gray code embedding G is a

function from � = [0, 1] to Σω
⊥,1 defined as G(x)[n] = P (tn(x)).

Note that G is an injective function from � to Σω
⊥,1 with the image im(G) = Σω ∪

Σ∗⊥10ω −Σ∗Σ10ω . Next we consider an fb-domain RD of bottomed sequences that corres-

ponds to im(G). Let L(RD) be the set Σω ∪ Σ∗⊥10ω and K(RD) be the set Σ∗ ∪ Σ∗⊥10∗.

Then RD = L(RD) ∪ K(RD) is a bounded complete fb-domain with K(RD) and L(RD)

the sets of finite and limit elements, respectively. The structure of RD is represented

in Figure 7. RD was introduced in Di Gianantonio (1999) as a domain corresponding

to the signed digit representation of �, and as an fb-domain of bottomed sequences in

Tsuiki (2002). This domain corresponds to the way an IM2-machine manipulates Gray-

code; K(RD) represents finite-time states of the input/output tapes of an IM2-machine

(Tsuiki 2002). Comparing im(G) with L(RD), one can see that G is a bijection to ML(RD).

We consider how the function G interacts with the topological structure. For each finite

element d of RD, G−1(↑d) has the form (m/2k, (m + 1)/2k) or ((2m − 1)/2k, (2m + 1)/2k),

depending on whether d ∈ Σ∗ or d ∈ Σ∗⊥10∗, with the exception that G−1(↑ε) = [0, 1],

G−1(↑0k) = [0, 1/2k), and G−1(↑10k−1) = ((2k − 1)/2k, 1] (k = 1, 2, . . .). Since these intervals

form a base of �, G gives a correspondence between bases of � and RD. Therefore, G is a
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topological embedding of � in RD. Since the set of real numbers � is homeomorphic to

(0, 1), � can also be embedded in ML(RD).

Proposition 5.7.

(1) � is homeomorphic to ML(RD), and ML(RD) is dense in L(RD).

(2) � is a retract of L(RD).

(3) � can be embedded in ML(RD).

As we said in Section 4, we have two interpretations of finite elements of RD as

information about a point in �. One is to interpret d ∈ K(RD) as G−1(↑d) and x ∈ ML(RD)

as expressing G−1(x). Thus, for example, 0, 1,⊥1 express the open intervals [0, 1/2),

(1/2, 1], and (1/4, 3/4), and only ⊥1000 . . . represents 1/2. The alternative is to interpret

d as cl(G−1(↑d)), and x ∈ L(RD) as expressing G−1(r(x)). Thus, 0, 1,⊥1 express the closed

intervals [0, 1/2], [1/2, 1], and [1/4, 3/4], and the three sequences ⊥1000 . . ., 11000 . . .,

01000 . . . represent 1/2.

Since the embeddings of RD in BD1 and BD1 in Σω
⊥ are topological ones, G can be

considered as topological embeddings also in BD1 and in Σω
⊥.

6. The dimension of L(D)

Dimension is one of the most important invariants of topological spaces, which is useful

in proving, for instance, the non-existence of an embedding of a space into another space.

In this section, we calculate the dimension of L(D) for the case in which D has property

M, and induce a requirement for the existence of an embedding of X in L(D).

There are three major definitions of the dimension of a topological space X, the small

(or weak) inductive dimension ind X, the large (or strong) inductive dimension Ind X, and

the covering dimension dim X. The three dimension functions coincide and have good

properties for the class of separable metric spaces. However, they diverge in T0 spaces in

general. Actually, ind Σω
⊥,1 = 1, as we will show, whereas one can calculate dim Σω

⊥,1 = ∞.

In this paper, we will consider the small inductive dimension, since it has good properties

even for such a general class of spaces.

Definition 6.1. The small inductive dimension ind X of a topological space X is defined to

be:

(i) ind X = −1 if X = �.

(ii) ind X � n if for every neighbourhood U of a point p ∈ X there exists an open set V

such that x ∈ V ⊆ U and ind B(V ) � n − 1, where B(V ) is the boundary of V , see

Section 2.

If ind X � n and ind X 
� n − 1, we define ind X = n. If ind X 
� n for every n, then

ind X = ∞.

The following proposition is straightforward, and we will use it in calculating the

dimension.

Proposition 6.2. If X has a base O such that every element U ∈ O satisfies ind B(U) � n−1,

then ind X � n.
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Proposition 6.3 (heredity property of ind).

(1) If ind X � n and Y is a subspace of X, then ind Y � n.

(2) When ind X < ind Y , Y has no topological embedding in X.

Proof.

(1) The proof is by induction on n. The case n = −1 is trivial. Assume the result for

n − 1. Since ind X � n, for all x ∈ Y and O � x, there exists x ∈ O′ ⊆ O such that

ind B(O′) � n − 1. Since BY (O′ ∩ Y ) ⊆ B(O′), by the induction hypothesis, we have

ind BY (O′ ∩ Y ) � n − 1.

(2) This is immediate from (1).

This heredity property does not hold for T0 spaces in general when we consider the

covering dimension or the large inductive dimension. See the Appendix of Hurewicz and

Wallman (1948) for details. Below, when we use the word dimension we will mean small

inductive dimension.

Definition 6.4. The height of a poset P (denoted by height P ) is the maximal length of a

chain in P . If P is empty, we define height P = −1.

Proposition 6.5.

(1) height {a0 < a1 < . . . < an} = n.

(2) height Σω = 0.

(3) height Σω
⊥,n = n.

(4) height Σω
⊥ = ∞.

Proposition 6.6. For a poset P , the height of P and the dimension of P with the

Alexandroff topology coincide. Here, the Alexandroff topology of P has as open sets the

upper-closed subsets of P .

However, when P is a subspace of a domain, with the subspace topology of the Scott

topology, the height of P and the dimension of P do not coincide. For example, the image

of the Gray code embedding im(G) ⊆ Σω
⊥,1 has height 0 because there is no order relation

among elements of im(G), whereas it has dimension 1 because it is homeomorphic to �.

Proposition 6.7. When P is a subspace of a domain D with the subspace topology of the

Scott topology of D, ind P � height P .

Proof. Let n = height P . A chain of length n has dimension n by Proposition 6.5 (1),

and is embedded in P as a subspace. The result then follows by heredity (Proposition 6.3).

Lemma 6.8.

(1) If D is a domain and A is a closed subset of D, then A is also a domain such that

K(A) = A ∩ K(D).

(2) In addition, when D has property M, A also has property M.

Proposition 6.9. Let D be a domain with property M and with no maximal finite element.

Let d ∈ K(D).
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(1) clL(D)(↑d ∩ L(D)) = clD(↑d) ∩ L(D).

(2) BD(↑d) = {α ∈ D | d ↑ α and d 
� α}, and BD(↑d) is a domain with property M such

that L(BD(↑d)) = BL(D)(↑d ∩ L(D)).

(3) When L(D) is not empty, height L(BD(↑d)) � height L(D) − 1.

Proof.

(1) Since the right-hand side is a closed subset of L(D) including ↑d ∩ L(D), we have

the ⊆ direction. Let x ∈ clD(↑d) ∩ L(D). Since D has no maximal finite element,

d and x have an upper bound z ∈ L(D) by Propositions 3.6 and 3.9. Therefore,

z ∈ clL(D)(↑d∩L(D)) and, since this set is down-closed, x must also belong to this set.

(2) By Lemma 6.8, BD(↑d) is a domain with property M such that L(BD(↑d)) = BD(↑
d) ∩ L(D). On the other hand, from (1)

BL(D)(↑d ∩ L(D)) = clL(D)(↑d ∩ L(D))− ↑d ∩ L(D)

= clD(↑d) ∩ L(D)− ↑d ∩ L(D)

= (clD(↑d)− ↑d) ∩ L(D)

= BD(↑d) ∩ L(D).

(3) Let a0 < a1 < . . . < an be a chain in L(BD(↑d)). Then, by (2), an ↑ d. So there exists z

with an � z � d. As D has no maximal finite element, we can assume z ∈ L(D). Also,

by (2), z 
∈ BD(↑d). So an < z. Therefore, a0 < a1 < . . . < an < z is a chain in L(D).

Proposition 6.10. When D is a domain with property M, ind L(D) � height L(D).

Proof. The proof is by induction on height L(D). The proposition is obvious when L(D)

is empty. Suppose that height L(D) = n � 0. Consider the domain D̂. Since L(D̂) = L(D),

L(D̂) also has height n. From Proposition 6.9 (3), we have height L(BD̂(↑d)) � n−1 for any

finite element d of D̂. We apply the induction hypothesis to the domain BD̂(↑d) to have

ind L(BD̂(↑d)) � n − 1. Therefore, by Proposition 6.2, we have ind L(D̂) � n. Therefore,

ind L(D) � n.

Propositions 6.7 and 6.10 now give us our result.

Theorem 6.11. When D is a domain with property M, ind L(D) = height L(D).

Since we view a domain D as the space L(D) with the approximation structure given

by K(D), we also refer to the dimension of L(D) as the dimension of the domain D, and

write ind D for it.

This theorem, with the heredity property, derives the main result of Tsuiki (2000) as

follows.

Corollary 6.12.

(1) ind Σω
⊥,n = n.

(2) There are no embeddings of n-dimensional topological spaces in Σω
⊥,m when n > m.

In particular, there are no embeddings of �n in Σω
⊥,n−1 for any character set Σ of

countable cardinality.

(3) There are no embeddings of infinite-dimensional topological spaces in Σω
⊥,n for any n.

https://doi.org/10.1017/S0960129504004396 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004396


H. Tsuiki 872

Proof.

(1) This follows from Proposition 6.5 (3).

(2) ind �n = n. See Engelking (1978).

The domain in Example 3.8, which does not have property M, satisfies ind L(D) = 1

whereas height L(D) = 0, so it gives a counterexample to Theorem 6.11 when D does not

have property M.

7. The synchronous product of stratified domains

We have shown that � is homeomorphic to ML(RD) and the real line � can be embedded

in ML(RD). To consider corresponding results for higher dimensional spaces such as the

n-dimensional Euclidean cube �n (n = 0, 1, 2, . . .) and the Hilbert cube �ω , we define a new

product of stratified domains. When we use the usual product, we have ind D1 × D2 = ∞
if ind D1 � 0 and ind D2 � 0, because any pair of a finite element and an infinite element

is an infinite element of D1 × D2. Therefore, we use the following definition.

Definition 7.1. Let D1 and D2 be stratified domains. The synchronous product D1 ×s D2 of

D1 and D2 is the stratified domain defined by the following set of finite elements

Kn(D1 ×s D2) = {〈a, b〉 | a ∈ Kn(D1), b ∈ Kn(D2)} (n = 0, 1, . . .),

with the pointwise order.

Proposition 7.2. Let D1 and D2 be stratified domains.

(1) D1 ×s D2 is a subdomain of D1 × D2 such that L(D1 ×s D2) is homeomorphic to

L(D1) × L(D2).

(2) When D1 and D2 are finite-branching, D1 ×s D2 is finite-branching also.

(3) ML(D1×sD2) is homeomorphic to ML(D1) × ML(D2).

(4) When D1 and D2 have property M, D1 ×s D2 also has property M and ind D1 ×s D2 =

ind D1 + ind D2.

Proof.

(1) D1 ×s D2 is obviously a subdomain of D1 × D2; the embedding maps a finite element

of D1 ×s D2 to a finite element of D1 × D2.

Let p1 and p2 be projection functions from D1 ×s D2 to D1 and D2, respectively, and

defined in the obvious way for finite elements and continuously extended to limit

elements. Let I be an ideal of D1 ×s D2. Then p1I and p2I are obviously ideals of D1

and D2. Let x1 and x2 be the limits of p1I and p2I , respectively. Let a1 ∈ Kx1
and

a2 ∈ Kx2
such that a1 and a2 have the same level. Then, for some b1 and b2, we have

〈a1, b2〉 ∈ I and 〈b1, a2〉 ∈ I . Since I is directed, we have 〈c1, c2〉 such that ci � ai
and ci � bi for i = 1, 2. Since I is lower closed, we have 〈a1, a2〉 ∈ I . Therefore, each

non-principal ideal I has the following form for some x ∈ L(D1) and y ∈ L(D2):

I = {〈a, b〉 | a ∈ Kx, b ∈ Ky, a and b have the same level}.

Thus, there is a one-to-one correspondence between L(D1) × L(D2) and the set of

non-principal ideals of D1 ×s D2. It is obviously a homeomorphism.
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(2) We have succ(〈a, b〉) = succ(a) × succ(b).

(3) This is immediate from (1), because ML(D1) ×ML(D2) is the set of minimal elements of

L(D1) × L(D2).

(4) Let N = {(a1, b1), . . . , (al , bl)} be a finite subset of K(D1 ×s D2) and S1 and S2 be

the sets of minimal upper bounds of {a1, . . . , al} and {b1, . . . , bl}, respectively. Let

n be the maximal level of the elements of S1 ∪ S2. Define Ti =↑Si ∩ Kn(Di) for

i = 1, 2. T1 × T2 is a finite subset of K(D1 ×s D2), which is the set of minimal

elements of {d ∈ K(D1 ×s D2) | level(d) � n, d is an upper bound of N}. Therefore,

take T = T1 ×T2 ∪ {d ∈ K(D1 ×s D2) | level(d) < n, d is an upper bound of N}. Since

T is a finite set, the set of minimal elements of T is also finite and is the set of

minimal upper bounds of N. Thus, D1 ×s D2 has property M.

The height of L(D1 ×s D2) is equal to the height of L(D1) ×L(D2) by (1), and is equal

to the sum of the heights of L(D1) and L(D2).

The domain D1 ×s D2 can be extended to a domain of bottomed sequences when D1

and D2 are themselves domains of bottomed sequences. Let in : Σω
⊥ × Σω

⊥ → Σω
⊥ be the

interleaving function defined as

in(a, b)[2n] = a[n],

in(a, b)[2n + 1] = b[n].

Through in, Σω
⊥ × Σω

⊥ and Σω
⊥ become order-isomorphic. Thus, D1 ×s D2 becomes a

subdomain of Σω
⊥ by Proposition 7.2(1). Since this embedding is not level-preserving, we

add to the set of finite elements of D1 ×s D2 the sets

K ′
n(D1 ×s D2) = {〈a, b〉 | a ∈ Kn+1(D1), b ∈ Kn(D2)} (n = 0, 1, . . .)

so that Kn(D1 ×s D2) and K ′
n(D1 ×s D2) become the set of 2n-level and (2n+ 1)-level finite

elements, respectively. We write D1 ×s
⊥ D2 for the domain thus constructed embedded in

Σω
⊥ by in. This insertion of intermediate finite elements does not change the structure of

the space of limit elements.

Proposition 7.3. When D1 and D2 are domains of bottomed sequences, D1 ×s
⊥ D2 is a

domain of bottomed sequences such that L(D1 ×s
⊥ D2) is homeomorphic to L(D1 ×s D2).

Proof. When I is an ideal of K(D1 ×s
⊥ D2), we have that I ∩ K(D1 ×s D2) is also a

directed set of K(D1 ×s
⊥ D2) with the same limit. To see this, it is enough to show that

when e < f in K(D1 ×s
⊥ D2), there is g ∈ K(D1 ×s D2) such that e � g � f.

We can also define the synchronous product ×s
⊥ of arity n by adding n − 1 levels of

intermediate finite elements between Kn and Kn+1, and using the interleaving function of

arity n. We write Dn for the n-arity synchronous product D ×s
⊥ D ×s

⊥ . . . ×s
⊥ D of n copies

of D.

Corollary 7.4.

(1) RDn is an n-dimensional finite-branching domain of bottomed sequences with prop-

erty M.

(2) L(RDn) is an upper-closed subset of Σω
⊥,n.
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(3) �n is homeomorphic to ML(RDn).

(4) �n is a retract of L(RDn).

(5) �n can be embedded in ML(RDn).

We write Gn for the homeomorphism from �n to ML(RDn).

Next, we consider infinite products.

Definition 7.5. Let Di (i = 1, 2, . . .) be stratified domains. We can define a stratified domain∏∞
i=1

s
Di as the ideal completion of the following stratified poset:

Kn

( ∞∏
i=1

s

Di

)
= {〈a1, a2, . . . , an〉 | ak ∈ Kn−k+1(Dk) (k = 1, . . . , n)},

with the order 〈a1, a2, . . . , an〉 � 〈b1, b2, . . . , bm〉 if n � m and ak � bk in K(Dk) (k =

1, 2, . . . , n).

Proposition 7.6. Let Di (i = 1, 2, . . .) be stratified domains.

(1)
∏∞

i=1
s
Di is a subdomain of

∏∞
i=1Di such that L(

∏∞
i=1

s
Di) is homeomorphic to∏∞

i=1 L(Di).

(2) When Di (i = 1, 2, . . .) are finite-branching,
∏∞

i=1
s
Di is finite-branching also.

(3) ML(
∏ ∞

i=1
s
Di)

is homeomorphic to
∏∞

i=1 ML(Di).

(4) When Di (i = 1, 2, . . .) have property M,
∏∞

i=1
s
Di also has property M and

ind

( ∞∏
i=1

s

Di

)
=

∞∑
i=1

ind (Di).

Proof. The proof is similar to the proof of Proposition 7.2.∏∞
i=1

s
Di can also be extended to a domain of bottomed sequences when Di (i = 1, 2, . . .)

are. Let in∞ :
∏∞

i=1Σ
ω
⊥ → Σω

⊥ be the isomorphism defined as

in∞(〈a1, a2, . . .〉)[〈n, k〉] = ak[n] (1)

for 〈n, k〉 = (n+ k − 1)(n+ k)/2 + k − 1 with n = 0, 1, . . . and k = 1, 2, . . .. Through in∞, we

have
∏∞

i=1
s
Di becomes a subdomain of Σω

⊥ by Proposition 7.6(1). Since this embedding is

not level-preserving, we add n levels of finite elements between Kn and Kn+1:

Kt
n

( ∞∏
i=1

s

Di

)
=

{
〈a1, a2, . . . , an〉

∣∣∣∣ ak ∈ Kn−k+2(Dk)(1 � k � t)

ak ∈ Kn−k+1(Dk)(t < k � n)

}
(t = 1, 2, . . . , n).

We define the domain
∏∞

i=1
s

⊥Di of bottomed sequences as the ideal completion of this

domain embedded in Σω
⊥ by in∞, and we use D∞ to denote the synchronous product∏∞

i=1
s

⊥D.

Corollary 7.7.

(1) RD∞ is an ∞-dimensional finite-branching domain of bottomed sequences with

property M.

(2) L(RD∞) is an upper-closed subset of Σω
⊥.

(3) The Hilbert cube �ω is homeomorphic to ML(RD∞).
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(4) �ω is a retract of L(RD∞).

(5) �∞ can be embedded in ML(RD∞).

8. Embeddings of compact metric spaces

Now we consider embeddings of separable metric spaces. For finite-dimensional cases,

our construction is based on the universality of Nöbeling’s universal n-dimensional space.

Definition 8.1. We define a subspace Nn
k of In as follows:

Nn
k = {(x1, . . . , xn) ∈ In | at most k of x1, . . . , xn are dyadic}.

It is known that Nn
k has dimension k (Engelking 1978). The space N2n+1

n is essentially the

same as Nöbeling’s universal n-dimensional space, and it has the following universality.

Proposition 8.2. For any n-dimensional separable metric space X, there is a topological

embedding of X in N2n+1
n .

Proof. See Engelking (1978), for example.

Consider the embedding Gm of �m in ML(RDm) ⊆ Σω
⊥. Since it is an interleaving of the

Gray code, the number of ⊥ that appear in Gm(x) is equal to the number of dyadic

coordinates that x ∈ �m has. Therefore,

Gm
(
Nm

n

)
⊆ Σω

⊥,n ∩ ML(RDm).

Theorem 8.3. Let n be a finite number. When X is an n-dimensional separable metric

space, X has an embedding in ML(RD2n+1). The image is in the upper-n subspace of RDm.

Proof. The proof follows from Proposition 8.2.

Next, we consider the case when X is compact.

Lemma 8.4. When D is an fb-domain with property M and Y is a closed subset of ML(D),

clD(Y ) is an fb-domain with property M such that ML(clD(Y )) = Y .

Proof. Being a closed subset, Y = E ∩ ML(D) for some closed subset E of D. Since

clD(Y ) ⊆ E, we have Y = clD(Y ) ∩ ML(D). From Lemma 6.8, clD(Y ) is a domain with

property M, which is also finite-branching because clD(Y ) is down-closed.

Theorem 8.5. Let n be a finite number. For each n-dimensional compact metric space X,

there is an n-dimensional fb-domain D of bottomed sequences with property M such that:

(1) ML(D) is homeomorphic to X and ML(D) is dense in D.

(2) X is a retract of L(D).

(3) D is a subdomain of BDn.

Proof.

(1) It is known that a compact metric space is separable. Therefore, X has an embedding

in N2n+1
n , and thus in ML(RD2n+1) by Theorem 8.3. Let Y be the image of the embedding.

Y ⊆ Σω
⊥,n ∩ML(RD2n+1). Since ML(RD2n+1) is Hausdorff, Y is a closed subset of ML(RD2n+1).

https://doi.org/10.1017/S0960129504004396 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004396


H. Tsuiki 876

Therefore, by Lemma 8.4, clRD2n+1 (Y ) is an fb-domain with property M, which we

denote by D. Since ML(D) = Y and Y ⊆ Σω
⊥,n, we have L(D) ⊆ Σω

⊥,n, and thus L(D) is

n-dimensional. Since D is the closure of ML(D), we have ML(D) is dense in D.

(2) This part follows from (1) and Proposition 4.6.

(3) This part is obvious from the construction.

For the infinite-dimensional case, we can use the universality of the Hilbert cube.

Proposition 8.6. Every separable metric space X can be embedded in the Hilbert cube

�ω .

Proof. See Engelking (1978), for example.

Theorem 8.7. Every separable metric space X can be embedded in ML(RD∞).

Proof. The proof follows from Proposition 8.6 and Corollary 7.7.

Also, from Lemma 8.4 and Theorem 8.7, we have the following theorem.

Theorem 8.8. Theorem 8.5 ((1) and (2)) holds also for the case of n = ∞.

As a corollary to Theorems 6.11, 8.5 and 8.8, we have the following theorem.

Theorem 8.9. The dimension of a compact metric space X is equal to the minimal height

of L(D) such that D is a domain with property M and X is homeomorphic to ML(D).

9. Concluding remarks

In Theorem 6.11, we have shown that the dimension of L(D) is equal to the height of L(D)

when D is an ω-algebraic domain with property M. It is not hard to show that this theorem

is also true for Lawson-compact continuous domains in general. Proposition 3.6(2) can

be proved for Lawson-compact continuous domains, and from this the algebraic-domain

case of Theorem 6.11 is derived. Since the height of L(D) is always ∞ for non-algebraic

continuous domains, this theorem holds trivially for the non-algebraic case.

We have shown that every n-dimensional compact metric space can be realised as the

minimal-limit set of an n-dimensional fb-domain of bottomed sequences. This means that

we can view every compact metric space as a kind of space of infinite sequences. The

minimality of the subspace elements means that, through this embedding, each strictly

increasing sequence in K(D), which can be realised as a process of filling a tape infinitely,

can be interpreted as a point of X. In addition, because D is finite-branching, we have

only a finite number of candidates to fill at every finite stage. When X is n-dimensional,

D can be constructed as a subdomain of BDn, and thus the candidates for the next cell

are the first n + 1 unfilled cells.

In Tsuiki (2002), the author presented the notion of an IM2-machine, which has, on

each input/output tape, n + 1 heads that move so that they are always located at the

first n + 1 undefined cells, and thus can input/output sequences in BDn. Therefore, an

IM2-machine can be used to input/output representations of n-dimensional spaces. As a

special case, when the Gray-code embedding is used to represent � in RD, some algorithms

https://doi.org/10.1017/S0960129504004396 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004396


Compact metric spaces as minimal-limit sets in domains of bottomed sequences 877

a) b) c)

1

1 1

1

1

11/2

1/2 1/2 1/2

1/2 1/2

Fig. 8. The structure of infinite filters-bases converging to (1/2,1/2) on �2. (a) is the lower level

element (unique), (a) + (b) is a middle level element (4 of this kind exist), (a) + 2 copies of type

(b) + (c) is the upper level element (4 of this kind exist). Only the first one contains the point

(1/2,1/2).

such as addition can be expressed using an IM2-machine (Tsuiki 2002), and it can be

shown that the rules of an IM2-machine can easily be translated into a parallel logic

programming language GHC, and executed on many platforms(Tsuiki 2001).

In this paper, we have proved the existence of a domain D that represents an n-

dimensional separable metric space X via a classical theorem in dimension theory. In

order to apply IM2-machines to give algorithms on a space X, we need to select a

concrete structure for D and an embedding of X in D, as we did for �. The question of

how to define such a concrete structure when some effective structure of X is given is an

interesting open problem.

When X is embedded in the space L(D) of limit elements of a domain D, K(D) gives

a base of the topology of X. To conclude this paper, we will express some properties of

this base in topological terms. When B is a base of X, we use F(B) to denote the set of

infinite filter-bases that are composed of elements of B. We can consider F(B) as a poset

by defining F1 � F2 iff F2 refines F1. When we combine Theorems 8.5 and 8.8 and

Proposition 4.6, we have the following theorem.

Theorem 9.1. When X is a compact metric space of dimension n (n � ∞), there is a base

B of X such that:

(1) The poset (B,⊇) is finite-branching.

(2) Every infinite filter-base F ∈ F(B) converges to a unique point of X (denoted by

lim F).

(3) lim F is the unique cluster point of F.

(4) F(B) is a poset of height n.

(5) If F is a minimal element of F(B), then ∩F = {lim F}.
(6) If F is not a minimal element of F(B), then ∩F = �.

Such a base is given by the Gray-code expansion for the case of �, by the synchronised

product of the base of � for �n (n = 2, 3, . . . ,∞), and as a subspace of �2n+1 (or �∞ when

n = ∞) for general cases. Figure 8 depicts the structure of the filter-bases in F(B) that are

converging to (1/2, 1/2), for the case of �2.

https://doi.org/10.1017/S0960129504004396 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129504004396


H. Tsuiki 878

Acknowledgement

The author thanks Alex Simpson, Martı́n Escardó, Achim Jung, Andreas Knobel and
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