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A study of the turbulence within a spiralling
vortex filament using proper orthogonal
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The stability and turbulence characteristics of a vortex filament emanating from a
single-bladed rotor in hover are investigated using proper orthogonal decomposition
(POD). The rotor is operated at a tip chord Reynolds number and tip Mach number
of 218 000 and 0.23, respectively, and with a blade loading of CT/σ = 0.066. In-
plane components of the velocity field (normal to the axis of the vortex filament)
are captured by way of two-dimensional particle image velocimetry with corrections
for vortex wander being performed using the Γ1 method. The first POD mode alone
is found to encompass nearly 75 % of the energy for all vortex ages studied and is
determined using a grid of sufficient resolution to avoid numerical integration errors
in the decomposition. The findings reveal an equal balance between the axisymmetric
and helical modes during vortex roll-up, which immediately transitions to helical mode
dominance at all other vortex ages. This helical mode is one of the modes of the
elliptic instability. The spatial eigenfunctions of the first few Fourier-azimuthal modes
associated with the most energetic POD mode is shown to be sensitive to the choice
of the wander correction technique used. Higher Fourier-azimuthal modes are observed
in the outer portions of the vortex and appeared not to be affected by the choice of
the wander correction technique used.

Key words: aerodynamics, turbulent flows, vortex flows

1. Introduction
Rotor wakes are dominated by tip vortices, which can play an important role

in the performance of a helicopter. A slice through these blade-tip vortices reveals
three distinct regions (Ramasamy, Timothy & Leishman 2007; Ramasamy, Johnson &
Leishman 2009b): a laminar inner region (Ragab & Sreedhar 1995; Devenport et al.
1996), a second intermediate region that is intermittently transitional (comprising
coherent eddies of various scales), and an outer region that is turbulent (less coherent
eddies). Devenport et al. (1996) suggests that the fluctuations (within the vortex
core) are a result of inactive motions produced by the turbulence in the outer wake
(surrounding the core), while Bandyopadhyay, Stead & Robert (1991) point out that
the vortex core comprises intermittent patches of turbulent and relaminarized fluid due
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A study of the turbulence within a spiralling vortex filament using POD 571

to the intermittent exchange of momentum (by organized motions) between the outer
turbulent region and the vortex core. Aside from their localized characteristics, these
vortices form compact filaments that wander under the influence of both short- and
long-wave instabilities (Widnall 1972), all the while interacting with Taylor–Görtler
vortices that reside in the trailed vortex sheet behind the rotor blade (Hall 1982;
Ramasamy et al. 2009b).

If the vortex core is laminar, then the occurrence of high-velocity fluctuations inside
the core is likely to be caused by the formation of short-wave instabilities. Short-wave
instabilities form when a vortex filament is subject to a stationary external strain field
(Moore & Saffman 1975; Tsai & Widnall 1976). In the case of a helical vortex
filament, such as in rotor wakes, strain is inherently induced by three mechanisms:
(i) the proximity of the vortex to neighbouring vortices (or its own in the case
of a single-bladed rotor), (ii) curvature of the vortex filament, and (iii) torsion
(Fukumoto & Okulov 2005). This causes streamlines to deform elliptically on a plane
perpendicular to the vortex axis, and so the vortex filament becomes the subject of the
so-called elliptic instability (Bayly 1986; Pierrehumbert 1986; Leweke & Williamson
1998; Kerswell 2002). Elliptic instabilities have been studied analytically, numerically
and experimentally in a variety of bounded and unbounded strained vortex flows
(Kerswell 2002; Lacaze, Ryan & Dizes 2007; Roy et al. 2011). In the context of
rotor-tip vortices, there are limited quantitative experimental studies characterizing the
behaviour of these instabilities and over extended vortex ages.

The objective of the current study is to better understand both the organized
turbulence as well as the short-wave instabilities that reside within the vortex produced
by a rotor blade in hover. The vortex studied here is formed by a single-bladed rotor
and is captured by way of particle image velocimetry (PIV). The advantage of such
a configuration is that it reduces the interference from instabilities formed by the
presence of other vortex filaments, as is the case with multi-bladed rotors (Martin
et al. 2000; Ramasamy et al. 2009b). Proper orthogonal decomposition (POD) is
utilized to flush out the more energetic flow features responsible for characterizing
the bulk motions of the tip vortex and is performed over extended vortex ages. The
current study is complementary to the one conducted by Roy et al. (2011), who used
dye images to determine the low-order features associated with tip vortices from a
fixed wing.

2. Experimental arrangement

The data analysed here were acquired experimentally in a room measuring
6.5× 8.0× 6.5 rotor diameters; a schematic of this is shown in figure 1. The set-up
comprised a 1.0 m diameter (D = 2R) single-bladed rotor (untwisted NACA 0012
airfoil with a constant chord of c= 52 mm and square tip) attached at the hub by a
flap hinge. The rotor was balanced with a counterweight (statically up to 99 %) and
was operated at Ω = 1500 revolutions per minute. This corresponds to a tip chord
Reynolds number (Rec) of 218 000 and a tip Mach number of 0.23. The blade was
set to a collective pitch angle of 7.3◦, thus resulting in a blade loading (CT/σ ) of
0.066, as measured by a fixed-frame load cell.

Velocity measurements were performed along a two-dimensional slice of the rotor
wake (along a plane normal to the vortex filament axis) by phase-aligning the rotor
with a PIV system using a 1/rev optical switch. The orientation of the PIV system
(laser and camera) relative to the measurement window is shown in figure 1. The
laser sheet was oriented such that it was aligned along the quarter-chord of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

10
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.104


572 S. M. Mula and C. E. Tinney

x

y

Counter weight

Load cell

FOV

Laser sheet

FOV plane

Laser sheet

Motor housing

Tip vortex

Slipstream-
boundary

Camera

Plane of traverse

FIGURE 1. (Colour online) Schematic of the experimental set-up and coordinate
transformation.

blade at 0◦ vortex age. The focal distance of the PIV camera was chosen to capture
only one vortex (including provisions for vortex wander) so as not to compromise
on spatial resolution. At each vortex age, the camera was repositioned by way
of a two-degree-of-freedom traverse so that the new vortex location was centred
on the camera image. Measurement accuracies are estimated to be within 0.3◦
in azimuth given the inter-frame timing (36 µs) between successive laser pulses
(laser sheet thickness of 2 mm) and the rotation speed of the rotor. For the current
set-up, misalignment of the measurement plane (in z′ direction) relative to the
calibration plane is of the order of the laser sheet thickness. Based on the object
distance (zo= 905 mm) and following § 2.2 in Discetti & Adrian (2012), the resultant
magnification error was found to be less than 0.2 %.

Seeding was provided by a PIVTEC 14 cascadable Laskin nozzle olive oil seeder,
which produced 1 µm diameter particles. These small particles minimize particle
tracking errors that are inherent to vortex-dominated flows (Leishman 1996). A check
for peak locking errors was performed to ensure that particle image displacements
were unbiased by the integer pixel dimension. Additional details concerning these
measurements are described by Mula et al. (2013).

Because of the relatively low blade loading on the rotor, the helical pitch
(p̂ = H/(2πRc) = 0.046, where H is the vertical displacement of the helix over
one rotor revolution and Rc = [1 + (H/(2πR))2]R is the radius of curvature) and
vortex filament torsion (τ̂ = P/R = 0.046 using P = H/(2π) as the reduced pitch)
were also small so that the measurement plane was nearly orthogonal to the vortex
axis (Leishman, Baker & Coyne 1996; Han, Leishman & Coyne 1997; Mula et al.
2013). The resultant angle of inclination between the vortex axis and a line normal
to the measurement plane was estimated to be 2.66◦. A total of 350 statistically
independent PIV snapshots were acquired at each of the 10 vortex ages studied,
ψ = {45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦, 405◦, 495◦, 585◦}, using a field of view
of 88 mm × 66 mm. Images were processed using DaVIS v.7.2 with an initial
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FIGURE 2. (Colour online) (a) Sample original vector map (subsampled) at ψ = 45◦ with
(b) corresponding post-processed vector map. The vortex centre and core boundary are also
identified. (c) Standard deviation of vortex wander along the principal major (♦, ——) and
minor (A, · · · · · · ) axes.

window size of 64 pixel × 64 pixel that iteratively reduced to a final window size
of 16 pixel × 16 pixel with 50 % overlap. The resulting measurement resolution
(Lm) was found to be 0.88 mm (grid resolution = Lm/2). Spurious vectors were
filtered by first establishing a threshold signal-to-noise ratio (set to 1.5), followed by
the removal of groups (of less than five vectors) that then ended with a four-pass
regional median filter (Westerweel 1994; Nogueira, Lecuona & Rodriguez 1997). This
often occurred in the inner core of the vortex due to the poor seeding levels that
arise from centrifugal forces (see figure 2 in Mula et al. 2013). Missing vectors were
then interpolated using a nearest-neighbour fit. Figure 2(a,b) demonstrates a sample
raw PIV vector map (subsampled and filtering enabled), and the resultant vector
map (after interpolation and smoothing) that was used for subsequent analysis. The
post-processed vector map is shown to fit the overall flow structure quite well.

3. Vortex characteristics

Vortex wander is an inactive motion of the vortex that produces artificially
high-velocity fluctuations in the vortex core (Devenport et al. 1996). Corrections
for this were implemented here using an integral-based approach (the Γ1 method)
that allowed for the vortex centres to be identified; the details of this are described
elsewhere (Graftieaux, Michard & Grosjean 2001; Mula et al. 2013). Previous studies
using multi-bladed rotors have shown the vortex wandering motion to be anisotropic
(Kindler, Mulleners & Richard 2010; Mula et al. 2013). Similar results are observed
here, where figure 2(c) shows the standard deviation of wander along the principal
major and minor axes across all vortex ages. A third-order least-squares fit has also
been added (identified by the solid and dashed lines) to help with the interpretation.
This wandering motion is shown to grow linearly along the principal minor axis.
Wander along the major axis grows faster than that of the minor axis at earlier vortex
ages. However, the wandering motion (along the major axis) does not appear to show
a continuous growth, as it deviates from the least-squares fit in the vicinity of the
first blade passage (360◦). It is postulated that this discontinuity is the consequence of
long-wave instabilities with non-integer wavenumbers (Bhagwat & Leishman 2000).
The growth rate of these long-wave instabilities has been shown to manifest a local
minimum near the first blade passage, which is evident in figure 2(c).
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FIGURE 3. (a,b) Mean axial vorticity, ωz/Ω × (−0.1) at (a) ψ = 180◦ and (b) ψ = 495◦.
(c,d) Plots of (TKE/V2

t ) × 103 at (c) ψ = 180◦ and (d) ψ = 495◦; Vt is the blade-tip
velocity.
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FIGURE 4. (Colour online) Swirl velocity, (VΘ/Vt) × 10 (C), and (TKE/V2
t ) × 103 ( )

along the vortex slice labelled by ξ in figure 3(c,d) at (a) ψ = 180◦ and (b) ψ = 495◦.
(c) Comparison of the core radius with the previous studies listed in table 1.

The average spatial topography of the mean vorticity and turbulent kinetic energy
per unit mass (TKE= 0.5〈u2

1 + u2
2〉 with ui=1,2 being the in-plane fluctuating velocity

components), for vortices captured at ψ = 180◦ and 495◦, are shown in figure 3(a–d)
after wander correction. A noticeable asymmetry is observed, which persisted across
all other vortex ages (not shown). Core boundaries are identified by the locations of
peak swirl velocity and so it is evident in figure 3(c,d) that TKE levels peak inside the
vortex core (Devenport et al. 1996; Han et al. 1997; Ramasamy et al. 2009b). These
same features are observed in figure 4(a,b), which shows slices across the average
swirl velocity and TKE at ψ = 180◦ and 495◦, respectively. It is worth mentioning
that the total resolved turbulent kinetic energy, based on the in-plane velocity, varies
between 2 % and 8 % of the total resolved kinetic energy associated with the vortex
over the range of vortex ages studied.

As for the core radius, close inspection of figure 4(c) shows a monotonic increase
from 10 % to 15 % of the blade chord up until the first rotor revolution (this is after
wander correction). A comparison of our findings with those reported in the open
literature is also provided; see table 1 for a listing of the rotor operating conditions
associated with these studies. At the earliest vortex age studied here (Ψ = 45◦),
Lm/rc = 0.17 (<0.2), which satisfies the measurement resolution requirements
suggested by Martin et al. (2000) for determining core radius. In general, the trends
in figure 4(c) are consistent with the open literature. That is, up until the first blade
passage (360◦), diffusion causes the core radius to increase with increasing vortex
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Data source Instrument Nb Rec × 10−5 Mach CT/σ

(a) Current work PIV 1 (untwisted) 2.18 0.23 0.066
(b) Thompson et al. (1988) LDV 1 (untwisted) 2.70 0.09 0.086
(c) Leishman (1998) LDV 1 (untwisted) 2.72 0.28 0.090
(d) Ramasamy & Leishman (2004) LDV 1 (untwisted) 2.72 0.26 0.064
(e) Richard et al. (2008) PIV 4 (twisted) 14.0 0.63 0.036
(f ) Ramasamy et al. (2009a) PIV 2 (untwisted) 0.34 0.08 0.113
(g) Ramasamy et al. (2009b) PIV 1 (untwisted) 2.72 0.26 0.064

TABLE 1. Overview of experimental conditions reported by others.

Measured Predicted using (3.2)
ψ (deg.) Γv (m2 s−1) |vb| (m s−1) v̂b = |vb|4πRc/Γv CMS v̂b

45 1.311 5.26 25.25 19.38 23.99
135 1.349 5.23 24.41 19.38 23.86
270 1.325 4.74 22.54 19.38 23.72
315 1.386 4.85 22.03 19.38 23.62

TABLE 2. Estimates of the binormal induced velocity measured from the current
experiment compared with the theoretical predictions using (3.2).

age. Aside from the studies of Thompson, Komerath & Gray (1988) and Richard
et al. (2008), the core radius is shown to decrease after the first blade passage due to
vortex stretching induced by the oncoming blade. The corresponding vortex Reynolds
number of our study was found to range between 8.3 × 104 and 8.7 × 104 over the
vortex ages studied.

Since the torsion of the helix is very small (τ̂ = 0.046), its influence is significant
on the binormal induced velocity (of the vortex), which is primarily responsible for
the displacement of the vortex filament in a fluid (Ricca 1994). Here, the binormal
velocity is computed as the net in-plane velocity of the vortex,

vb = 1
A

∫∫
U(x′, y′) dx′ dy′, A=

∫∫
dx′ dy′, (3.1)

where U(x′, y′) is the mean (in-plane) velocity field within the vortex, A is the area of
the vortex, and the limits of integration are confined to ∼2rc (from the vortex centre).
The dimensionless binormal velocity is then estimated using v̂b = |vb|4πRc/Γv and is
provided in table 2 at various vortex ages throughout the measurement envelope using
Γv as the circulation strength of the vortex. A comparison of our estimates with the
theoretical predictions is also provided based on the following analytical expression
from Ricca (1994),

v̂b = log
Rc

rc
+CMS, (3.2)

where CMS depends on the geometry of the helix and is determined using the closed
analytical expression

CMS =− 1
4 + p̂−1 + log p̂+ 1− 1

2 p̂+ [ 38ζ (3)− 1
2 ]p̂2 − 5

8 p̂3 +O(p̂4) (3.3)

derived by Boersma & Wood (1999) for thin helical filaments of small pitch.
These theoretical estimates are shown to compare favourably with our laboratory
measurements.
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4. POD of a spiralling vortex
Lumley’s (1967) POD is used here to identify the most energetic features of the

turbulence fluctuations that reside within the blade-tip vortex. The technique has been
rigorously used in both the experimental and numerical disciplines, with an extensive
description of its mathematical intricacies having been provided by Berkooz, Holmes
& Lumley (1993). In the current study, we follow the approach outlined by Glauser
& George (1987), Citriniti & George (2000) and Tinney, Glauser & Ukeiley (2008),
whereby the vortex (and its surrounding fluid) is first decomposed in azimuth using
Fourier decomposition followed by a radial decomposition using POD. This is applied
to only the fluctuating part of the signal and after correcting for wander; the effect
of vortex wandering correction on the results presented here is discussed in the
Appendix A. While it is customary for one to use the snapshot POD (Sirovich 1987)
approach with PIV data, (given the tradeoff between spatial resolution and the number
of realizations), the spatial modes described by harmonic analysis are more easily
interpreted.

The process begins by first transforming the raw PIV images from Cartesian
coordinates to cylindrical coordinates (i.e. x′, y′, z′ → r, θ, z′). At each vortex age,
the azimuthal grid resolution, δθ , is determined such that it equals the resolution of
the original grid at r= rc, δθ = tan−1(Lm/(2rc)). For example, at ψ = 135◦, δθ is equal
to 4◦ (though it was found to vary only from 3◦ to 5◦ over the entire measurement
envelope). The fluctuating part of the in-plane velocity field (ui=1,2, where ũi=Ui+ ui,
and 1= r and 2= θ ) is then transformed along the azimuthal coordinate to obtain the
Fourier-azimuthal modes for each of the 350 PIV snapshots at a given vortex age as
follows:

ûi(r, ψ, t;m)= 1
2π

∫ π

−π

ui(r, θ, ψ, t)e−imθ dθ, (4.1)

from which a two-point tensor is then formed,

Bij(r, r′, ψ;m)= 〈ûi(r, ψ, t;m) ûj
∗
(r′, ψ, t;m)〉. (4.2)

Here 〈 〉 is used to denote ensemble averaging. In (4.1), the same azimuthal starting
position is employed in order to preserve the asymmetries that are shown to reside
in the TKE profiles in figures 3 and 4. Symmetry considerations for statistically
axisymmetric flows without swirl are provided in appendix A of Jung, Gamard &
George (2004). Here we assume these symmetries cannot be applied. An integral
eigenvalue problem is then formed for each vortex age,∫

R
Bij(r, r′, ψ;m)Φ(n)

j (r′, ψ;m)r′ dr′ =Λn(ψ;m)Φ(n)
i (r, ψ;m), (4.3)

and is solved to produce an ordered sequence of eigenvalues (λn > λn+1) with
eigenfunctions Φn

i (r, ψ;m). This vector decomposition ensures that the eigenfunctions,
corresponding to the in-plane velocity components, are coupled. In order to construct
the spatial modes that characterize the velocity field, the POD eigenfunctions Φn

i and
Fourier eigenfunctions eimθ are combined as follows:

U(m,n)i (r, θ, ψ)= eimθΦ
(n)
i (r, ψ;m). (4.4)

When compared with the spatial modes obtained using the snapshot POD method
(which also does not force axisymmetry), the general features of the first few most
energetic modes were essentially the same (Mula & Tinney 2014).
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Having discretized (4.3), the total number of POD modes is governed by the product
between the number of points measured (N) and the number of in-plane components
(η) used to construct Bij. The radial extent is confined to ∼2rc at each ψ . So, given
the grid resolution employed here (Lm/2; Lm/rc < 0.2), N > 20, at least 40 POD
modes are generated at each vortex age. Further, the total resolved energy (Citriniti &
George 2000; Tinney et al. 2008) of the flow, Π(ψ), and the normalized eigenspectra,
βn(ψ;m), are obtained as

Π(ψ)=
∑

n

∑
m

Λn(ψ;m), βn(ψ;m)= Λ
n(ψ;m)
Π(ψ)

. (4.5a,b)

While (4.4) allows one to view the spatial topography of the modes associated
with the average turbulence statistics, an instantaneous low-dimensional representation
of the fluctuating velocity field can be obtained from the following established
expressions (Lumley 1967),

ûi(r, ψ, t;m)=
k∑

n=1

a(n)(ψ, t;m)Φ(n)
i (r, ψ;m), (4.6)

using uncorrelated and time-varying coefficients,

a(n)(ψ, t;m)=
∫

R
ûi(r, ψ, t;m)Φ(n)∗

i (r, ψ;m)r dr. (4.7)

The mean-square energies of these coefficients are the eigenvalues themselves, λ(n) =
〈a(n)a(n)〉, while for k=ηN, ûi= ûi. A low-dimensional reconstruction of the fluctuating
velocity is then obtained using the following inverse transformation:

ui(r, θ, ψ, t)=
∑

m

ûi(r, ψ, t;m)eimθ . (4.8)

4.1. Low-dimensional axial vorticity
Given the kind of flow being studied here and the arrangement of our measurement
system, it is only natural that we seek to construct a low-dimensional representation
of the axial vorticity. This is calculated using the standard expression

$z
(m,n) = 1

r
∂(rU2

(m,n))

∂r
− 1

r
∂U1

(m,n)

∂θ
, (4.9)

with gradients in r being determined using a second-order central difference scheme.
Contrarily, gradients in θ are calculated analytically by the nature of Fourier functions,

∂U(m,n)1

∂θ
= im eimθΦ

(n)
1 (r, ψ;m). (4.10)

Likewise, the axial vorticity of the low-dimensional instantaneous fluctuating velocity
can be calculated by simply replacing Ui

(m,n) in (4.9) with ui from (4.8).
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FIGURE 5. (a) Energy spectra of the first seven POD modes. (b) Fourier mode energy
spectra of the first (n= 1) POD mode for m= 0 (E), 1 ( ), 2 (♦) and 3 (@).

5. Results

Convergence of the POD modes is shown in figure 5(a), with approximately 75 %
of the resolved energy residing in the first POD mode (n=1) for the entire range of ψ
studied here. Given the spatial resolution used to generate Bij, this rapid convergence
is a reflection of the organized events that characterize the active motions of this
vortex filament, as opposed to numerical integration errors (see § 4.1 of Tinney et al.
2008); similar rates of convergence were found at other vortex ages. Furthermore,
for the first POD mode (n = 1), figure 5(b) demonstrates how the helical mode
(m = 1) dominates the energy spectrum (>40 %) at all vortex ages, followed by
the axisymmetric (m = 0) and double helical modes (m = 2). However, at ψ = 45◦,
both the axisymmetric and helical modes are equally imperative. In what follows we
will resort to a viewing of the first few eigenfunctions for an understanding of their
behaviour.

5.1. Spatial structures of the Fourier modes for the first POD mode
We begin this discussion by presenting the spatial structures of the axisymmetric
(m = 0), helical (m = 1) and double helical (m = 2) modes for the first POD mode
(n = 1) using (4.9). Where the axisymmetric mode is concerned, radial profiles of
circulation and axial vorticity are shown in figure 6(a) for ψ = 45◦. These profiles
resemble that of a vortex with viscous core (see Han et al. 1997; Ramasamy et al.
2007). Hence, the axisymmetric mode is associated with the roll-up of the vortex
sheet trailed from the rotor blade at early ages. However, at ψ = 315◦ in figure 6(b)
(after the roll-up process is complete), circulation and vorticity profiles associated
with the axisymmetric mode manifest the kinds of behaviours observed in swirling
jet flows (Liang & Maxworthy 2005). The presence of this swirling jet mode, which
is shown in figure 5(b) to increase in energy from 5 % (at ψ = 90◦) to about 15 %
(at ψ = 495◦), reinforces flow entrainment and diffusion mechanisms.

Owing to the nature of Fourier functions, non-zero Fourier modes such as the
helical (m = 1) or double helical modes (m = 2) comprise both real and imaginary
components. Figure 7 shows the real component of the axial vorticity of the helical
mode at a sample vortex age (ψ = 135◦). As expected, the spatial structure of the
imaginary component is identical to its real counterpart, except that it is oriented
at π/(2m) = 90◦ (anticlockwise) relative to its real counterpart. Bayly (1986),
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FIGURE 6. Radial profiles of axial vorticity (E) and circulation (@) for (m, n)= (0, 1) at
(a) 45◦ and (b) 315◦ age.
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−0.5 0 0.5

FIGURE 7. Contours of the (a) real and (b) imaginary components of the axial vorticity
of the helical mode (m, n)= (1, 1) at ψ = 135◦. Circles of core radius (——) and peak
TKE (· · · · · · ) are indicated.

Pierrehumbert (1986), Leweke & Williamson (1998), Sipp (2000) and Kerswell
(2002) have shown how helical modes, such as the one displayed in figure 7, cause
streamlines of the base vortex flow to undergo elliptical deformation. More recently,
Lacaze et al. (2007) showed how the most unstable modes associated with the elliptic
instability correspond to |m| = 1 (helical mode) when the axial velocity strength (W0)
is low. Here, we estimate W0 = 0.159, which is sufficiently low, using the axial
velocity data from Mula et al. (2013) and see from figure 5(b) that the helical mode
dominates the energy spectrum of the vortex filament. So, it is clear that the helical
mode in figure 7 is a mode associated with the elliptic instability.

In order to study the evolutionary behaviour of this helical mode, its real component
is shown in figure 8 over the range of vortex ages measured. At the earliest vortex age,
ψ = 45◦, two counter-rotating eddies are manifest, which reside on the circle of core
radius. These eddies remain centred on the core radius for all vortex ages without
modifying the structure of the helical mode. Likewise, the size of these eddies
increases as the core radius increases. Therefore, the helical mode of the elliptic
instability in figure 8 is shown to be in the linear regime; an elliptic instability mode
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Eddies
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0.2

−0.5 0 0.5

FIGURE 8. Contours of the real component of the axial vorticity of the helical mode
(m, n) = (1, 1) at ψ = 45◦–495◦. Circles of core radius (——) and peak TKE (· · · · · · )
are indicated.

in the nonlinear regime would undergo either a rotation (Sipp 2000) or a modification
in its structure (Schaeffer & Dizes 2010), which is not observed here. Furthermore,
where short-wave instabilities are concerned, Hattori & Fukumoto (2009, 2014) have
shown how torsion produces a second-order correction to the growth rate of the
curvature instability, which is first order in ε (the ratio of core radius to curvature
radius). From this, it can be inferred that torsion also influences the growth rate of
the elliptic instability, which is of O(ε2 log(1/ε)) (Fukumoto & Hattori 2005; Hattori
& Fukumoto 2014). Given the amount of torsion in the current set of measurements
(τ̂ = 0.046), the most unstable mode of elliptic instability (the helical mode) is shown
to be in the linear regime for the entire range of vortex ages studied. It is postulated
that, by reducing the amount of torsion (of the helix), nonlinearities will develop in
this most unstable mode, and will accelerate the breakdown of the tip vortex structure
(Leweke & Williamson 1998; Schaeffer & Dizes 2010).
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FIGURE 9. (Colour online) (a) Mean axial vorticity (ωz/Ω), (b) reconstruction of the
fluctuating vorticity ($z/Ω) at an instant in time using (m, n)= (1, 1), and (c) mean axial
vorticity plus the (1, 1) mode, all at ψ = 405◦. (d) Corresponding instantaneous vorticity
from a raw PIV snapshot, and (e) core boundaries for the mean (τ1), low-dimensional (τ2)
and original instantaneous (τ3) vortices for a sample set of data.

While we have shown the evolutionary characteristics of the dominant mode of
the elliptic instability, it would be interesting to see how this mode might reveal
itself in an instantaneous sense. Therefore, a low-dimensional reconstruction of the
instantaneous vorticity field using (m, n)= (1, 1) at ψ = 405◦ is shown in figure 9(c)
and is performed by combining the average vorticity at that vortex age (figure 9a,
with the core boundary identified by τ1) with an instantaneous snapshot of the
low-dimensional fluctuating vorticity field (figure 9b). The boundaries identifying
the locations of peak swirl velocity associated with the mean flow (figure 9a)
are shown in figure 9(c) with (τ2) and without (τ1) the effects imposed by the
addition of a low-dimensional fluctuating vorticity field (figure 9b). The discrepancies
between these boundaries coincide with the compression and expansion of contour
lines, which is typical of elliptic instability; the inward radial displacement of the
instantaneous boundary (from the mean) causes streamline compression, while the
outward displacement causes streamline expansion (Leweke & Williamson 1998).
In figure 9(d), the instantaneous vorticity field of the raw PIV snapshot (without
the mean subtracted), which is used to construct the low-dimensional image in
figure 9(b), is shown with core boundaries being defined by τ3. Having done so, all
three core boundaries (τ1, τ2, τ3) are then shown overlaid one another in figure 9(e)
to demonstrate the similarities between the raw and low-dimensional (m = 1 only)
instantaneous vorticity field. The discrepancies between τ2 and τ3 are attributed to
the energies that reside in the higher POD and Fourier-azimuthal modes.

As for the double helical mode (m = 2), figure 10 shows the real component of
its average low-dimensional vorticity field for the range of vortex ages studied. At
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Lobe
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Single eddy

−0.5 0 0.5

FIGURE 10. Contours of the real component of the axial vorticity of the double helical
mode (m, n) = (2, 1) at ψ = 45◦–495◦. Circles of core radius (——) and peak TKE
(· · · · · · ) are indicated.

ψ = 90◦, the structure has four lobes in azimuth, with each lobe containing a pair
of counter-rotating eddies which are radially separated. In a strained vortex flow, this
four-lobed structure has been shown by Roy et al. (2011) to be one of the modes
of the elliptic instability. The size of this spatial mode also changes in proportion to
the vortex core radius. Furthermore, pairs of co-rotating eddies, indicated in figure 10
at ψ = 90◦, eventually merge at higher vortex ages, thereby slightly modifying the
structure of the double helical mode. That is, at ψ = 495◦, a single elongated eddy
appears to have formed from each such pair. In a nonlinear regime, an elliptic
instability mode undergoes a rotation (Sipp 2000) or a modification in its structure
(Schaeffer & Dizes 2010). Therefore, the double helical mode of the elliptic instability
in figure 10 is in a slightly nonlinear regime, unlike the helical mode, which was in
the linear regime (figure 8).
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FIGURE 11. Plots of (Ξ/V2
t )× 1000 for the first POD mode (a) using m= 0 (E), 1 (@)

and 2 (♦), and (b) using m = 0 (E), 0 + 1 (@) and 0 + 1 + 2 (♦) on a vortex slice at
ψ = 180◦. The original (TKE/V2

t )× 1000 ( ) on the vortex slice is indicated.

5.2. Asymmetries in the vortex filament
An interesting question that we would like to address is which mode, or combinations
of modes, is responsible for producing asymmetries in the TKE in the plane
perpendicular to the vortex axis. To do so, a low-dimensional reconstruction of
the turbulent kinetic energy per unit mass (Ξ = 0.5〈u2

1 + u2
2〉, with ui=1,2 being

the in-plane low-dimensional fluctuating velocity obtained from (4.8)) using the
axisymmetric, helical and double helical modes, on a vortex slice at a sample age
ψ = 180◦, is shown in figure 11(a). A slice of the original TKE is also shown and
is a duplication of the findings shown in figure 4(a). Once again, the TKE is clearly
asymmetric. Where the individual modes are concerned, the slices in figure 11(a)
appear symmetric. In figure 11(b), however, where Ξ is constructed using the first
two (m= 0+ 1) and the first three (m= 0+ 1+ 2) Fourier modes, the Ξ is shown
to comprise asymmetries. Thus, it is shown here how a combination of at least the
axisymmetric, helical and double helical modes is responsible for the distinguishable
asymmetries in the TKE inside the tip vortex.

6. Conclusions

The velocity fluctuations residing within two core radii from the centre of a vortex
filament emanating from a single-bladed rotor were investigated using POD during
hovering conditions. Upwards 75 % of the resolved energy from these turbulent
motions was captured in the first (n = 1) POD mode alone for all the vortex ages
studied. Within the first POD mode, the helical mode (m= 1) was found to dominate
the energy spectrum, at all the vortex ages except at ψ = 45◦, followed by the
axisymmetric (m= 0) and then the double helical (m= 2) modes, where the azimuthal
modes m = 1, 2 were shown to be associated with the elliptic instability. Near the
blade tip at ψ = 45◦, the axisymmetric mode was found to be as equally significant in
energy as the helical mode due to the vortex roll-up process that occurs at inception.
At higher vortex ages, the axisymmetric mode was found to manifest features similar
to those of an axisymmetric swirling jet, which further enhances flow entrainment
and diffusion mechanisms. Together, all the above large-scale motions were found to
be responsible for the distinguishable asymmetries in the TKE inside the tip vortex.
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FIGURE 12. (a) Mean axial vorticity, ωz/Ω× (−0.1) and (b) (TKE/V2
t )×103 at ψ =180◦.

(c) Swirl velocity, (VΘ/Vt)× 10 (C), and (TKE/V2
t )× 103 ( ) along the vortex slice ξ at

ψ = 180◦.
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Appendix A. Effects of vortex centring on the spatial modes

An important question that we seek to address is the effect of vortex centring on
the spatial modes obtained by way of POD or harmonic decomposition. To address
this matter, two approaches are considered. The first is evaluated in the main body
of this paper, whereby the Γ1 method is exercised. Because Γ1 is an integral-based
approach, it bypasses concerns regarding divergence-based schemes (such as the Q,
λ, vorticity, etc.), which might otherwise elevate noise. The condition that we wish
to satisfy is that the in-plane turbulence goes to zero at the vortex centre. The Γ1
approach achieves this, as is illustrated in figures 3 and 4. The issue however is
whether having aligned the inner core region with the Γ1 approach causes the outer
intermittent and turbulent regions to be smeared; it is postulated that the asymmetries
in the TKE profiles are partially attributed to the misalignment of the outer turbulent
structures. Therefore, a second approach is examined, which aims to align the outer
turbulent structures by biasing the vortex centring technique with features associated
with the outer portions of the vortex core. This is accomplished by aligning each
vortex by way of its geometric centre. This geometric centre (hereafter referred
to as GC) is determined based on the location of peak swirl velocity. Details of
this technique are well documented by Mula et al. (2013). The effect of using this
kind of approach on the average vorticity and TKE is shown in figure 12 for the
vortex filament at ψ = 180◦ vortex age. A cross-examination of figure 3(a,c) with
figure 12(a,b) shows how the geometric centring approach has a minor effect on the
mean vorticity field, while the TKE is characterized by a top-hat profile that is fairly
uniform in azimuth. The values registered along the line ξ in figure 12(b) are shown
in figure 12(c) to further demonstrate the elevated turbulence levels at the vortex
centre. So, while we have shown the differences in the statistical properties of the
vortex due to the centring technique employed, the question that we will now focus
on is the degree to which the centring technique affects the various modes associated
with the inner, intermittently transitional and turbulent regions of the vortex.
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FIGURE 13. (Colour online) Radial profile of the normalized energy of the Fourier-
azimuthal modes of the TKE at ψ = 180◦ using (a) Γ1 and (b) GC methods for aligning
the PIV snapshots. Locations of peak TKE (♦) and peak swirl velocity (E) are shown.
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FIGURE 14. Radial profile of the normalized energy of the first three Fourier-azimuthal
modes at (a) ψ = 180◦ and (b) ψ = 495◦ using the Γ1 (filled symbols) and GC (open
symbols) methods. The mean core radius using the Γ1 (solid line) and GC (dashed line)
methods are also identified.

In figure 13(a,b), the ensemble-averaged normalized Fourier-azimuthal mode
spectrum (from (4.2)) associated with the ψ = 180◦ vortex is shown for each radial
position emanating from the vortex centre using the Γ1 and GC approach, respectively.
This is being performed prior to decomposing the radial structure using POD. Thus,
for a given Fourier-azimuthal mode, we wish to determine the radial position where
its maximum energy resides, which is achieved by simply dividing Bii(r, ψ; m) (in
the Einstein notation) by its maximum value for a particular vortex age and mode
number m. While appreciable differences are observed in the statistical properties
of the vortex (by comparing figures 3a,c and 12a,b), the higher Fourier-azimuthal
modes illustrated in figure 13(a,b) appear to be unaffected by the centring technique
chosen; the differences in the topographies between figure 13(a) and 13(b) are quite
subtle. Additional lines have been added to this illustration identifying the location
of peak swirl velocity and peak TKE. The only significant differences reside in the
first few modes, which are re-illustrated for closer inspection in figure 14(a,b) for
the m = 0, 1 and 2 modes. Here it is clearly shown how the geometric centring
approach significantly changes the helical mode, which contributes predominantly
to artificially elevated turbulence levels near the vortex centre. Subtle differences in
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FIGURE 15. (a) Fourier mode energy spectra of the first (n= 1) POD mode for m= 0
(E), 1 ( ) and 2 (♦) for all vortex ages based on the GC method. (b) Effect of vortex
centring method on the POD and Fourier mode spectra at ψ = 180◦.

the axisymmetric and double helical modes also appear, but only near or outside
the vortex core radius. Hence, only the most unstable mode (m = 1) associated
with elliptic instabilities is significantly affected by the centring technique employed.
Similar effects were observed for all other vortex ages.

As for the radial structure of the vortex filament (using POD), the convergence
of the Fourier-azimuthal modes in figure 15(a) for the first (n = 1) POD mode
demonstrates how the geometric centring approach produces exactly the opposite
behaviour from the Γ1 method where the axisymmetric mode and helical mode
contributions are concerned. At early vortex ages (ψ = 45◦) the turbulent kinetic
energy is governed almost entirely by the axisymmetric mode, which immediately
changes to equal levels of contribution from the axisymmetric and helical modes at all
other vortex ages. These findings are further studied in figure 15(b), where both the
POD modes (integrated over all Fourier-azimuthal modes) and the Fourier-azimuthal
modes (of the first POD mode) reflect similar overall rates of convergence, aside from
the effects induced by the reshuffling of energy in the first few Fourier-azimuthal
modes. In particular, the POD functional basis for the vortex turbulence is shown
to be compatible with the k−5/3 inertial range spectrum that is expected even of
inhomogeneous turbulence (Moser 1994).

Where the POD spatial structure is concerned (effectively Φ(n)
i (r, ψ;m)), figure 16

shows how the first six (m = 0–5) Fourier-azimuthal modes associated with the first
POD mode contribute to the resolved TKE along the radial coordinate at ψ = 180◦.
These profiles, normalized by their maximum values, are computed using the standard
expression

B(1)
ii (r, ψ;m)=Λ1(ψ;m)Φ(1)

i (r, ψ;m)Φ(1)∗
i (r, ψ;m), (A 1)

with subscripts written in the Einstein notation. Contrary to figure 14, the axisymmetric
and double helical modes associated with the first POD mode are shown in figure 16
to be significantly affected by the choice of the centring technique. That is, the m= 0
and m = 2 spatial structures are located further outwards radially from the vortex
centre using the Γ1 method relative to the GC method. It is also interesting to see
how Fourier-azimuthal mode numbers m= 3, 4 and 5 peak at further distances, where
the turbulent eddies are expected to mix and eventually diffuse their energy to the
outer mean flow. This illustrates the exchange of energy between the larger scales
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FIGURE 16. Radial profile of the normalized energy at ψ = 180◦ for the first six Fourier-
azimuthal modes associated with the first POD mode using the Γ1 (filled symbols) and
GC (open symbols) methods.

(residing near the vortex core) and the smaller scales (residing further away in the
outer peripheries of the vortex), and is complementary to the findings displayed in
figure 13.
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