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Abstract

Mudflats are exposed for short periods after flood water drawdown. They support fast-growing
annual herbs with a ruderal strategy. To optimize their recruitment success, seeds of mudflat
species germinate better under fluctuating temperatures, full illumination and aerobic envir-
onments that indicate the presence of optimal (non-flooded) conditions for plant growth and
development. Here, we hypothesize that prior exposure of mudflat seeds to hypoxic (flooded)
environment interferes with the germination process and results in more vigorous germin-
ation once aerobic conditions are regained. To test this hypothesis, seeds of five mudflat spe-
cies were incubated in both aerobic and hypoxic environments at four (14/6, 22/14, 22/22 and
30/22°C) temperature regimes, reflecting different (seasonal) conditions when drawdowns
may occur. All species responded positively to four temperature regimes; however, moderate
22/14 and 22/22°C temperatures were optimum for high percentages and rates (speed) of seed
germination. Since seeds of four species germinated exclusively under aerobic conditions, they
were moved from hypoxic to aerobic conditions. Prior exposure of seeds to hypoxic environ-
ment facilitated high percentages, rates and synchronization of germination of Limosella
aquatica, Peplis portula and Samolus valerandi seeds compared to incubation under strict aer-
obic conditions. However, prior exposure to hypoxic environment induced secondary dor-
mancy in non-dormant seeds of Hypericum humifusum but broke dormancy in Lythrum
hyssopifolia seeds that otherwise required cold stratification to overcome physiological dor-
mancy. All species that have a narrow ecological niche (strictly occurring in mudflat habitats)
showed positive responses to prior exposure to hypoxic environments. In contrast, H. humi-
fusum that has a wide ecological niche (from mudflats to moist sandy grasslands) showed a
negative response. We conclude that the hypoxic environment may strongly affect seed ger-
mination behaviour once the aerobic environment is regained. The most striking effect is
the acceleration of the germination process and, therefore, life cycle supporting the survival
in an ephemeral habitat.

Introduction

Available information indicates that seeds of several wetland species can tolerate flooding and
remain viable even after long periods of submergence (Parolin et al., 2003; Lucas et al., 2012;
de Melo et al., 2015; Poschlod and Rosbakh, 2018). Some of them can germinate or even form
seedlings while they are submerged under water (de Oliveira Wittmann et al., 2007; Ferreira
et al., 2007; Phartyal et al., 2018; Valdez et al., 2019), whereas others may not tolerate flooding
at all (de Melo et al., 2015; Valdez et al., 2019). However, to our knowledge, there is very little
information available (Phartyal et al., 2020; Rosbakh et al., 2020) on how seed germination of
wetland species such as mudflat species that remain viable under long flooded (hypoxic) con-
ditions respond to non-flooding (aerobic) conditions immediately after water drawdown.

Regenerative traits like seed dormancy, germination timing and seedling establishment
(Poschlod et al., 2013; Saatkamp et al., 2019; Phartyal et al., 2020; Rosbakh et al., 2020) are
extremely sensitive to abiotic factors, including temperature, light, moisture and aerobic/hyp-
oxic conditions, that represent the major bottleneck to species recruitment (Fenner and
Thompson, 2005). A slight mismatch between regenerative traits and abiotic factors may nega-
tively affect the synchronization of seed germination with the most favourable conditions not
only for seedling development but also for juvenile plant recruitment (Saatkamp et al., 2019).
Thus, the present study investigated how does prior exposure to flooding impacts the seed ger-
mination process of wetland (mudflat) species.

In temperate regions, the wetland habitats along the margin of rivers, streams, backwaters
and oxbow lakes are often flooded during the winter season and the period of water drawdown
coincides with the growing summer season (Voigtlander and Poppe, 1989). These recently
exposed nutrient-rich muddy sediments support quick growth and dominance of annual
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herbs (Webb et al., 1988; Baskin et al., 1993, 2004; Phartyal et al.,
2020). This kind of mudflat habitats are temporal, unpredictable
and unstable in nature, often existing only for a few weeks at
every part of the hydroperiod gradient, provided they are drained,
open and free of litter. In some extreme cases, they may remain
under flooded (hypoxic) conditions for decades or even centuries
(Poschlod and Rosbakh, 2018). This unpredictable environment
exposes seeds of mudflat species to a quick transition from hyp-
oxic to aerobic conditions and alters their regeneration pattern
either by promoting or inhibiting the seed germination process
(Baskin et al., 1994; Böckelmann et al., 2017; Phartyal et al.,
2020; Rosbakh et al., 2020).

There is contrasting evidence on how flooding affects plant
regeneration in wetlands. On the one hand, flooding has been
shown to facilitate seed dormancy break and enhance germin-
ation in seeds of Cyperus erythrorhizos, C. flavicomus (Baskin
et al., 1993), Rotala ramosior (Baskin et al., 2002a),
Schoenoplectus purshianus (Baskin et al., 2000a), Scirpus jun-
coides, S. mucronatus, S. smithii and S. wallichii (Watanabe and
Miyahara, 1989). On the other hand, flooding was shown to
induce secondary dormancy and suppressed germination in
seeds of Bidens tripartita (Benvenuti and Macchia, 1997),
Echinochloa crus-galli (Honěk and Martinkova, 1992; Holguín
et al., 2020), Lobelia dortmanna (Farmer and Spence, 1987) and
Vallisneria americana (Jarvis and Moore, 2008). As for mudflat
plants, the seeds of many species have been demonstrated to
come out of dormancy in a higher percentage under flooded
(hypoxic) than under non-flooded (aerobic) conditions (Baskin
et al., 2002b). In temperate regions, where mudflat habitats are
flooded during the unfavourable (winter) season and remain non-
flooded during the favourable (summer) season, dormancy will be
broken while seeds are still flooded. However, in seeds of the sum-
mer annual Leucospora multifidi, dormancy release is initiated in
late autumn during non-flooded conditions and continues even
during winter flooding. The non-dormant seeds germinated in
summer but, if seeds were flooded prior to the onset of dormancy
release, flooding prevented dormancy break in seeds of this spe-
cies (Baskin et al., 1994). Therefore, this adaptation can result
in much higher germination percentages and rates and a more
synchronized germination when the water recedes (Baskin and
Baskin, 2014). Another adaptation of seeds of mudflat species is
that high summer temperatures do not cause flooded seeds to
re-enter dormancy (Baskin et al., 1993). Thus, regardless of
when waters recede during the growing season (from early spring
to early autumn), seeds remain non-dormant and can germinate
(Baskin and Baskin, 2014) if exposed to an appropriate tempera-
ture regime.

Considering the quick transition from flooding to non-
flooding, we hypothesized that there should be a close integration
of physiological responses of germinating seeds with a change in
oxygen and temperature regimes. We were specifically interested
to know whether or not hypoxic conditions interfere with the
induction/release of seed dormancy in mudflat species exposed
to different temperature regimes. Flooding and non-flooding con-
ditions at an appropriate temperature regime (season) are sup-
posed to play a crucial role in triggering germination at a time
most suitable for seedling growth or to induce dormancy to
avoid an unfavourable time for seedling survival. For example,
seeds of the winter annual grass (Alopecurus carolinianus) flooded
in autumn did not enter secondary dormancy during exposure to
low winter temperatures in Kentucky (USA), but those buried in
non-flooded (moist) soil and exposed to the same temperatures

did so. Thus, it is indicated that hypoxic conditions prevented
the induction of dormancy in non-dormant seeds (Baskin et al.,
2000b). Taking all these factors into account, in the present
study, we specifically asked the following questions: (1) Does
prior exposure of seeds of mudflat species to hypoxic conditions
help them germinate in high percentages, rates (speed), and in
a more synchronized manner when shifted to aerobic conditions?
(2) Does exposure of dormant seeds to hypoxic conditions substi-
tute for requirements of a cold stratification treatment to break
dormancy, if any? (3) Does prior exposure of non-dormant
seeds to hypoxic conditions induce secondary dormancy or sup-
press germination?

Material and methods

Study species

We selected five mudflat species: Hypericum humifusum
L. (Hypericaceae); Limosella aquatica L. (Scrophulariaceae);
Lythrum hyssopifolia L. (Lythraceae); Peplis portula L. (Lythraceae)
and Samolus valerandi L. (Primulaceae), typically inhibiting mudflat
habitats of Central Europe.H. humifusum primarily belongs to moist
sandy grasslands/trampled communities alongmudflats, L. aquatica,
L. hyssopifolia and P. portula occur only inmudflats, whereas S. valer-
andi mainly occurs in salt marshes along with mudflat habitats
(Oberdorfer, 2001). In our previous research, seeds of L. hyssopifolia,
P. portula and S. valerandi germinatedmoderatelywell in bothaerobic
and hypoxic conditions irrespective of temperature fluctuation with
full illumination andwere categorized as ‘flood-resistant mudflat spe-
cies’, whereas the seeds ofL. aquaticagerminatedwell only under fully
illuminated aerobic conditions at fluctuating temperatures and were
categorized as ‘truemudflat species’. In contrast, the seeds ofH.humi-
fusum had a high germination percentage and rate only under aerobic
conditions at both constant and fluctuating temperatures with and
without light and were categorized as ‘facultative mudflat species’
(Phartyal et al., 2020).

Fully ripened fruits of these species were harvested in several
natural populations from randomly chosen individuals (>50 indi-
viduals per species) growing at a step-away distance from each
other and thoroughly mixed. After collection, seeds were sepa-
rated from the fruits by hand, air-dried for several days, cleaned
and kept dry in a cold room at 4°C until the beginning of the ger-
mination experiments (Baskin and Baskin, 2014). Seeds of all
study species were non-dormant except for L. hyssopifolia that
possess physiological dormancy and require cold moist stratifica-
tion to overcome dormancy (Phartyal et al., 2020).

Seed germination experiments

To determine optimum conditions for high percentages, rates
(speed) and synchronization of germination, seeds of each species
were incubated under different combinations of temperature and
oxygen. In each incubation treatment, five replicates of 20 seeds
were placed on two layers of moist filter paper in a Petri dish.
All the experiments were conducted in germination chambers
(RUMED GmbH, Laatzen, Germany) at one constant (22/22°C)
and three diurnal fluctuating temperatures (14/6, 22/14 and
30/22°C – representing climate of cool spring, mild and warm
summer seasons in temperate mudflat habitats) in 14/10 h of
the light/dark regime.

To simulate hypoxic conditions, Petri dishes supplied with
vents to provide consistent gas exchange were placed in a
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desiccator and their air volume was substituted with pure nitro-
gen. We repeated this procedure each time when germination
was scored. Dishes to which this treatment was not applied are
referred to as aerobic. The number of seeds germinated was
scored every third day for 6 weeks. Germination was defined as
the protrusion of a radicle through the seed coat. As highlighted
above, mudflat habitats can experience flooding to non-flooding
conditions in a very short period of time, which exposes seeds a
rapid transition from hypoxic to aerobic conditions during the
germination process. Since seeds of none of the study species ger-
minated under strict hypoxic conditions they were, therefore,
shifted to aerobic conditions at a similar temperature and light/
dark conditions for another 6 weeks (see Table 1 for treatment
details), to determine how prior exposure to hypoxic conditions
affects seed germination.

Statistical analysis

Seed germination percentages, mean germination time (MGT)
and germination synchronization index (Z ) were calculated
using GerminaR package for R (Lozano-Isla et al., 2019). A
lower value of MGT reflects faster rates (speed) of seed germin-
ation in a particular incubation treatment. In the case of the syn-
chronization index, a Z-value close to one indicates that
germination of all seeds occurs at the same time (more synchro-
nized germination), while a Z-value close to zero indicates that
seed germination of at least two seeds occurred at a different
time (less synchronized germination). To infer statistically signifi-
cant differences among the incubation treatments, Fisher’s exact
test was used. Seed germination percentages at any given treat-
ments were displayed using mean values and binomial confidence
intervals. All statistical analyses were carried out using R 3.4.3 (R
core development team, 2020).

Results

None of the seeds of any study species germinated under strict
hypoxic conditions at any temperature regimes, except those of
L. hyssopifolia, within 6 weeks of incubation. Only 5% seeds of
L. hyssopifolia germinated under strict hypoxic conditions at the
warm (30/22°C) temperature regime. However, prior exposure
to hypoxic conditions significantly (P < 0.05) stimulated seed ger-
mination percentage, MGT and germination synchrony of three
study species (L. aquatica, P. portula and S. valerandi) at almost

all temperature regimes when seeds were moved to aerobic condi-
tions (Figs 1–3).

On the contrary, germination percentage, MGT and germin-
ation synchrony of H. humifusum seeds were significantly (P <
0.05) suppressed by prior exposure to hypoxic conditions at
most of the tested temperature except at the cool temperature
(14/6°C) regime (Figs 1–3). The seeds germinated equally well
(>90%) in both strict aerobic conditions and when moved from
hypoxic to aerobic conditions at the cool temperature regime.

In contrast to seeds of the other four study species, those of
L. hyssopifolia either failed to germinate or had a low (0–37) ger-
mination percentage when incubated only under strict aerobic
conditions. Whereas a prior exposure to hypoxic conditions sig-
nificantly (P < 0.05) stimulated seed germination (58–93%),
MGT and germination synchrony at all test temperature regimes
(Figs 1–3).

Prior exposure to hypoxic conditions induced dormancy in
non-dormant seeds of H. humifusum except at low cool (14/6°
C) temperature, whereas it acted as a dormancy-breaking treat-
ment for dormant seeds of L. hyssopifolia.

Overall, majority of the germination parameters (germination
percentage, MGT and synchrony index) performed significantly
(P < 0.05) well at moderately warm fluctuating (22/14°C) tem-
peratures followed by constant (22/22°C) temperatures in com-
parison to warm (33/22°C) and cool (14/6°C) temperature
regimes, which were found to be comparatively sub-optimal for
seed germination in most of the study species (Figs 1–3).

Discussion

Seed germination of none of the study species displayed any posi-
tive response only to strict hypoxic (except for L. hyssopifolia)
conditions but generally displayed a positive response to strict
aerobic conditions. This confirms our previous findings that the
majority of mudflat species need aerobic conditions to germinate
(Phartyal et al., 2020; Rosbakh et al., 2020). However, the overall
trends indicate that prior exposure of seeds to hypoxic conditions
stimulates germination in the majority of our study species, thus
confirming our hypothesis (Table 2).

Non-dormant seeds of H. humifusum germinated in a moder-
ately broad range of environments including dark except under
hypoxic conditions (Phartyal et al., 2020). Seeds of this species
had a higher percentage, faster rate and more synchronized ger-
mination only in aerobic conditions in all tested temperature
regimes. However, seeds responded poorly when moved from

Table 1. Outline of the seed incubation treatments

Treatment abbreviations
Treatment details (arrow ‘→’ indicates seeds moved from hypoxic to aerobic condition at

the same temperature regime after 6 weeks of incubation)

22/22 Aerobic Constant temperature (22/22°C) + Aerobic condition

22/22 Hypoxia Constant temperature (22/22°C) + Hypoxic condition→ Aerobic condition

30/22 Aerobic Fluctuating temperature (30/22°C) + Aerobic condition

30/22 Hypoxia Fluctuating temperature (30/22°C) + Hypoxic condition→ Aerobic condition

22/14 Aerobic Fluctuating temperature (22/14°C) + Aerobic condition

22/14 Hypoxia Fluctuating temperature (22/14°C) + Hypoxic condition→ Aerobic condition

14/10 Aerobic Fluctuating temperature (14/10°C) + Aerobic condition

14/10 Hypoxia Fluctuating temperature (14/10°C) + Hypoxic condition→ Aerobic condition

270 S.S. Phartyal et al.

https://doi.org/10.1017/S0960258520000240 Published online by Cambridge University Press

https://doi.org/10.1017/S0960258520000240


Fig. 1. Bar plots illustrating median and quartiles of seed germination percentage of mudflat species incubated under a wide range of environmental conditions.
Letters represent subsets with significant (P < 0.005) differences.

Fig. 2. Box plots illustrating median, quartiles and outliers (o) of MGT of mudflat species incubated under a wide range of environmental conditions. Letters
represent subsets with significant (P < 0.05) differences.
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Fig. 3. Box plots illustrating median, quartiles and outliers (o) of germination synchronization index of mudflat species incubated under a wide range of environ-
mental conditions. Letters represent subsets with significant (P < 0.05) differences.

Table 2. A summary of seed response to prior exposure to hypoxic environments. Values in column 3 and 4 represent the overall mean of four incubation
temperature regimes

Species
Germination
parameters

Seed incubation environments

Response Remarks
Aerobic
environment

Hypoxic→ Aerobic
environment

H. humifusum Germination (%) 96 27 Negative Induce secondary dormancy and suppress
seed germination process

MGT (days) 12.1 13.6

Synchrony Index 0.50 0.20

L. aquatica Germination (%) 73 83 Positive Stimulate seed germination process

MGT (days) 8.0 5.8

Synchrony Index 0.62 0.78

L. hyssopifolia Germination (%) 15 75 Positive Help to release physiological dormancy
without cold moist stratification

MGT (days) 18.6 9.9

Synchrony Index 0.12 0.78

P. portula Germination (%) 85 90 Positive Stimulate seed germination process

MGT (days) 8.1 4.2

Synchrony Index 0.73 0.84

S. valerandi Germination (%) 77 96 Positive Stimulate seed germination process

MGT (days) 18.6 7.2

Synchrony Index 0.27 0.67
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hypoxic to aerobic conditions at warmer temperatures (22/14, 22/
22 and 30/22°C) but not a low temperature (14/6°C). Thus, prior
exposure of seeds to hypoxic conditions induced secondary dor-
mancy except at low temperature, suitable for cold stratification.
This also confirms earlier reports that flooding (low oxygen
level) may induce secondary dormancy in seeds of several wetland
species (Farmer and Spence, 1987; Honěk and Martinkova, 1992;
Benvenuti and Macchia, 1997; Nishihiro et al., 2004a,b; Jarvis and
Moore, 2008; Holguín et al., 2020). Secondary dormancy may be
eventually broken by cold stratification. This is an unusual behav-
iour of a species of an ephemeral habitat such as mudflats that
might be explained by the main occurrence of H. humifusum in
moist sandy grasslands or trampled sites with a comparatively
low probability of flooding (Oberdorfer, 2001). Thus, our results
confirm the classification of this species by Phartyal et al.
(2020) as a ‘facultative mudflat species’ that demonstrated a
broad germination niche width (Phartyal et al., 2020) as the spe-
cies occurs not only in the mudflats.

Physiologically dormant seeds of L. hyssopifolia germinated over
a broad range of environmental conditions, including hypoxic con-
ditions after cold stratification (Phartyal et al., 2020). However, seeds
of this species either failed to germinate or germinated poorly under
aerobic conditions at all tested temperatures. However, if seeds were
exposed to hypoxic conditions then moved to aerobic conditions,
they had a higher percentage, rate and synchronization of germin-
ation even without a cold stratification treatment. A high proportion
of seeds of this species also germinated under hypoxic conditions at
low temperature (4°C) during cold stratification (S. Phartyal, per-
sonal observation). Thus, a high percentage of seeds of several mud-
flat species, including L. hyssopifolia, classified as a ‘flooded mudflat
species’ by Phartyal et al. (2020) come out of dormancy after they
have experienced flooded (hypoxic) conditions (Watanabe and
Miyahara, 1989; Baskin et al., 1993, 2000a, 2002a,b). This finding
is in agreement with the results from previous studies that lack of
oxygen can sometimes break dormancy even in terrestrial species,
especially if their seeds require cold stratification to overcome dor-
mancy (Come et al., 1991).

In contrast to the response of H. humifusum and L. hyssopifo-
lia seeds to hypoxic conditions, non-dormant seeds of L. aquatica
germinated only in a narrow range of environments of light, aer-
obic and fluctuating temperatures (Phartyal et al., 2020). Seeds
had a higher percentage, rate and synchronization of germination
when moved from hypoxic to aerobic conditions than if they were
exposed directly to aerobic conditions. These results justify the
classification of L. aquatica as ‘true mudflat species’ (Phartyal
et al., 2020) and its phytosociological classification into
‘Nano-Cyperetea’ (Oberdorfer, 2001). A similar effect of prior
exposure to hypoxic conditions was demonstrated in seeds of
P. portula and S. valerandi. This reveals that a flooding pretreat-
ment may help seeds to germinate as fast as possible immediately
after water drawdown, which would allow seedlings to take full
advantage of the short growing period in an unpredictable and
unstable environment, which is the case of mudflat habitats.
Prior exposure of seeds to flooding events was also reported to pro-
mote germination in other wetland species like Sphaeranthus indi-
cus (Shetty, 1967) and Panicum laxum (Cole, 1977). In a recent
study on dormant seeds of Echinochloa crus-galli, Peralta Ogorek
et al. (2019) reported that hypoxic conditions weaken primary
dormancy as well as hindered induction of secondary dormancy
at warm temperatures. They also reported that dormancy-breaking
signals are overridden during hypoxic conditions, which help to
prevent seed germination when submerged in water.

The majority of mudflat species produce non-dormant seeds
and show a narrow germination niche width (Phartyal et al.,
2020) as compared to the germination niche of other wetlands
species (Rosbakh et al., 2020). Thus, low seedling mortality and
optimize establishment may be promoted if seed germination is
only triggered by high oxygen concentrations that are typical
for exposed soils or sediment surfaces after water drawdown
(Coops and van der Velde, 1995). We conclude that in view of
the very short favourable growing period for mudflat species the
promotive effect of flooding (hypoxic condition) on percentage,
speed and synchronization of germination when the floods ends
is adaptive in the ephemeral mudflat habitat. This is another cru-
cial role hypoxic environment play, apart from seeds to persist in
submerged sediments (Poschlod and Rosbakh, 2018), to control
germination traits of mudflat species.
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