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Abstract

Coupling-from-the-past (CFTP) methods have been used to generate perfect samples
from finite Gibbs hard-sphere models, an important class of spatial point processes con-
sisting of a set of spheres with the centers on a bounded region that are distributed
as a homogeneous Poisson point process (PPP) conditioned so that spheres do not
overlap with each other. We propose an alternative importance-sampling-based rejec-
tion methodology for the perfect sampling of these models. We analyze the asymptotic
expected running time complexity of the proposed method when the intensity of the
reference PPP increases to infinity while the (expected) sphere radius decreases to
zero at varying rates. We further compare the performance of the proposed method
analytically and numerically with that of a naive rejection algorithm and of popular
dominated CFTP algorithms. Our analysis relies upon identifying large deviations decay
rates of the non-overlapping probability of spheres whose centers are distributed as a
homogeneous PPP.
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1. Introduction

Perfect sampling, that is, the generation of unbiased samples from a target distribution
(also referred to as perfect simulation or exact sampling), is an important and exciting area of
research in stochastic simulation. In this paper, we introduce and investigate a novel methodol-
ogy for generating perfect samples of finite Gibbs hard-sphere models, which are an important
family of Gibbs point processes. Roughly, a Gibbs hard-sphere model can be described as a
set of spheres such that their centers constitute a Poisson point process (PPP) on a bounded
Euclidean space, conditioned that no two spheres overlap with each other. The proposed
methodology combines importance sampling (IS) and acceptance–rejection (AR) techniques
to achieve substantial performance improvement in certain important regimes of interest. In
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statistical physics, there is a large body of work related to Gibbs hard-sphere models; see,
e.g., [1, 2, 6, 24, 28, 30, 35, 37]. These models are important also in modeling adsorption of
latexes or proteins on solid surfaces (see [38, 40] and references therein). For the analysis of
wireless communication networks, it is common to use Gibbs hard-sphere models to model
base-stations in a cellular network, because normally no two base-stations are to be placed
closer than a certain distance from each other [18, 39]. Our results can be used to assess the
stationary behavior of code-division multiple access wireless networks.

Literature review: The existing literature offers several perfect sampling methods for Gibbs
hard-sphere models. Among these, the dominated coupling-from-the-past (CFTP) methods are
most prominent; these are based on the seminal paper by Propp and Wilson [36] (see [22,
25–27]). Another well-known perfect sampling method for the Gibbs hard-sphere models is
the backward–forward algorithm by Ferrari et al. [12]; see also [16, 23]. For some of the
applications of perfect sampling for these models, refer to [7, 8, 34]. For other related literature
on perfect sampling for spatial point processes, refer to [19, 32].

As mentioned in [16], all the existing methods are, in some sense, complementary to
each other. They take advantage of the important property that the distribution of a Gibbs
hard-sphere model can be realized as an invariant measure of a spatial birth-and-death pro-
cess, called the interaction process. For example, the main ingredient of the dominated CFTP
method is to construct a birth-and-death process backward in time, starting from its steady state
at time zero, such that it dominates the interaction process, and then use thinning on the dom-
inating process to construct coupled upper and lower bound processes forward in time such
that the coalescence of these two bounding processes assures a perfect sample from the tar-
get measure, which is the invariant measure of the interaction process. The backward–forward
algorithm is based on the construction of the clan of ancestors, which uses thinning of a dom-
inating process and extends the applicability to infinite-volume measures. A crucial drawback
of the naive AR and the dominated CFTP methods is that they are guaranteed to be efficient
only if the intensity of the Gibbs hard-sphere model is close to the intensity of the reference
PPP; see [23] for details. In addition, most of the dominated CFTP methods suffer from the so-
called impatient-user bias (a bias that is induced when a user aborts long runs of the algorithm);
see [13, 14, 41].

Our contributions: AR methods are free of the impatient-user bias and involve neither
thinning nor coupling (which are crucial for the other methods). Despite being an obvious
alternative to the existing methods, to the best of our knowledge, the use of AR methods is
still largely unexplored in the context of Gibbs point processes (except for brief discussions,
e.g. in [15, 23]). AR methods for Gibbs hard-sphere models are amenable to further algorith-
mic enhancements that may substantially decrease the expected running time of the algorithm.
The methodology proposed here provides one such enhancement. To highlight the significance
of the proposed methodology, we compare its running time complexity with that of both the
naive AR and the dominated CFTP methods. This effectiveness analysis is based on our large
deviations analysis of the non-overlapping probability. A brief summary of our results is as
follows:

• Our first key contribution is that we conduct a large deviations analysis of the probability
of spheres not overlapping with each other when their centers constitute a homogeneous
PPP. More specifically, we consider a homogeneous marked PPP on [0, 1]d with inten-
sity λ, where the points are the centers of spheres with independently and identically
distributed (i.i.d.) radii as marks, which are independent of the centers and identical in
distribution to R/λη for a positive bounded random variable R and a constant η > 0. We
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establish large deviations of the probability that spheres do not overlap with each other,
as λ↗∞. This analysis is useful in the study of the asymptotic behavior of the expected
running time complexities of the proposed and the existing perfect sampling methods
for the Gibbs hard-sphere models. This analysis may also be of independent interest.

• Our second key contribution is that we propose a novel IS-based AR algorithm for gen-
erating perfect samples of the Gibbs hard-sphere model obtained by considering the
homogeneous marked PPP conditioned on no overlap of the spheres. This is achieved
by partitioning the underlying configuration space and arriving at an appropriate change
of measure on each partition. The applicability of the proposed algorithm is illustrated
in two scenarios. In the first scenario, all the spheres are assumed to be of a fixed size
(i.e., R is a fixed positive constant). We develop a grid-based IS technique under which
spheres are generated sequentially so that the chance of spheres overlapping is small, and
the corresponding likelihood ratio has a better deterministic upper bound that improves
the acceptance probability in each iteration of the algorithm. In the second scenario,
we consider the general case where spheres have i.i.d. radii. In this scenario, we divide
the underlying configuration space into two sets. On one set, the sum of the volumes
of spheres is bounded from below, and on the other set, the volume sum takes small
values so that the set consists of only rare configurations. For the first set, we develop a
grid-based IS method that is similar to the one described above, and for the second set,
we use an exponential twisting on the sphere volume distribution. In both the scenar-
ios, the new method provably substantially improves the performance of the algorithm
compared to the naive AR method.

• We analytically and numerically compare the performance of the proposed IS-based AR
method with that of some of the dominated CFTP methods. The numerical results sup-
port our analytical conclusions that the proposed method is substantially more efficient
than the existing methods over the high-density regime, where ηd≤ 1 and λ is large.

Organization: Section 2 provides a definition of the hard-sphere model. Section 3 presents
the large deviations of the non-overlapping probability. In Section 4, we first review a naive
AR method and analyze its expected running time complexity, then propose and analyze the
IS-based AR method. Section 5 gives a review of the well-known dominated CFTP methods
for the hard-sphere models. Section 6 illustrates the efficiency of the proposed methodology
using numerical experiments. Section 7 provides a brief conclusion. All proofs are presented
in Appendix A.

2. Preliminaries

First we introduce some notation. X∼ F denotes that the distribution of a random object
X is F. Poi(λ) and Bern(p) denote, respectively, Poisson distribution with mean λ > 0 and
Bernoulli distribution with success probability p. The uniform distribution on [0,1] is denoted
by Unif(0, 1). For an event A, the indicator function I(A) is equal to 1 if A occurs, and to 0 oth-
erwise. A measure μ1 is absolutely continuous with respect to a measure μ2 on a measurable
set A if μ1(B∩ A)= 0 for any measurable B such that μ2(B∩ A)= 0. For any probability mea-
sure μ, Pμ(A) denotes the probability of an event A under μ, and Eμ[ · ] denotes the associated
expectation. We drop the subscript μ when it is not relevant. For any non-negative real-valued
functions f and g, we write f (x)=O(g(x)) if lim supx→∞ f (x)/g(x)≤ c for some constant c > 0,
f (x)=Ω(g(x)) if g(x)=O(f (x)), and f (x)= o(g(x)) if lim supx→∞ f (x)/g(x)= 0. We write
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f (x)=�(g(x)) if both f (x)=O(g(x)) and f (x)=Ω(g(x)). For any real number x, the largest
integer n such that n≤ x is denoted by 	x
, and the smallest integer n such that n≥ x is denoted
by �x. The set of all the non-negative integers is denoted by N0.

A random finite subset X= {X1, . . . , XN} of an observation window W ⊂R
d is called a

Poisson point process (PPP) with a finite intensity measure ν on W if N ∼Poi(ν(W)) and
for every n∈N0, conditioned on N = n, the points X1, . . . , Xn are i.i.d. with distribution
ν(dx)/ν(W). A PPP on [0, 1]d is called a λ-homogeneous PPP with intensity λ > 0 if the
intensity measure ν(dx)= λ dx, where dx is Lebesgue measure on W. To each point Xi of
the λ-homogeneous PPP on [0, 1]d we associate a mark, which is a non-negative number inter-
preted as the radius of a sphere centered at Xi. In particular, a λ-homogeneous marked PPP on
[0, 1]d is a PPP on W = [0, 1]d × [0,∞) with the intensity measure ν(dx× dr)= λdx× F(dr),
where F is the distribution of each radius. That is, the centers constitute a λ-homogeneous
PPP on [0, 1]d which is independent of the radii, and the radii are i.i.d. with distribution F. A
realization of the marked PPP with n points is denoted by x= {(y1, r1), . . . , (yn, rn)}, where
ri ≥ 0 is the radius of the sphere centered at yi ∈ [0, 1]d. Define G=∪n∈N0Gn, where

Gn =
{
x= {(y1, r1), . . . , (yn, rn)} : (yi, ri) ∈ [0, 1]d × [0,∞), for i= 1, . . . , n

}
.

Now we define a Gibbs hard-sphere model. Suppose that μ0 is the distribution of a λ-
homogeneous marked PPP as defined above, with F being the distribution of R/λη for a
constant η > 0 and a non-negative random variable R. Let A⊂ G be the set of all configurations
with no two spheres overlapping with each other. Then the distribution μ of the Gibbs hard-
sphere model is absolutely continuous with respect to μ0, with the Radon–Nikodym derivative
given by

dμ

dμ0 (x)= I (x∈A)

P(λ)
, x∈ G, (2.1)

where the normalizing constant P(λ) is the non-overlapping probability given by

P(λ)= Pμ0 (X ∈A) . (2.2)

We refer to the Gibbs hard-sphere model as a torus-hard-sphere model if the boundary of
the underlying space [0, 1]d is periodic; that is, a sphere S(x, a) centered at x ∈ [0, 1]d with
radius r is defined by

S(x, r)=
{

(y1 mod 1, . . . , yd mod 1) : y= (y1, . . . , yd) ∈Rd, ‖x− y‖< r
}

,

where ‖ · ‖ is the d-dimensional Euclidean norm and mod denotes the modulo operation [9].
If the boundary is not periodic, we refer to the model as a Euclidean-hard-sphere model.

From now on, the phrase ‘hard-sphere model’ refers to either of these two models, and we
assume that R is bounded from above by a constant r > 0. In particular, if R is a constant, we
take r= R. Furthermore, we assume that 2r/λη < 1 to avoid certain trivial difficulties such as
the possibility of a sphere on the torus overlapping with itself.

3. Large deviations results

In this section, we obtain large deviations results for the non-overlapping probability P(λ).
We use these results in analyzing the running time complexity of both the naive and the IS-
based AR methods. Hereafter, γ = πd/2/	(d/2+ 1), where 	( · ) is the gamma function. Note
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that the volume of a sphere with radius r is given by γ rd . Define m1 :=E[(R+ R̂)d], where R̂
is independent and identical in distribution to R, and let

γ ′ =
⎧⎨⎩γ if [0, 1]d is treated as the torus,

γ /2d otherwise.
(3.1)

Theorem 3.1. The non-overlapping probability P(λ) satisfies

lim
λ→∞P(λ)=

⎧⎨⎩1 if ηd > 2,

exp
(− γ m1

2

)
if ηd= 2,

lim
λ→∞

[
1

λ2−ηd
logP(λ)

]
=−γ m1

2
if 1 < ηd < 2,

lim
λ→∞

[
1

λ
logP(λ)

]
=−1 if 0 < ηd < 1.

When ηd= 1, the limit

δ := lim
λ→∞

[
1

λ
logP(λ)

]
exists and −1≤ δ < 0. Furthermore, δ↗ 0 if γ m1↘ 0, and

δ ≤−1

2

(
1− 1

γ ′rd

)2

if R≡ r and γ ′rd > 1. In addition, for the torus-hard-sphere model,

lim
λ→∞

[
P(λ) exp

(γ m1

2
λ2−ηd

)]
= 1 if 5/3 < ηd < 2.

An important and fundamental characteristic of a Gibbs point process is its intensity; see,
for example, [29] and references therein, as well as [5]. Roughly speaking, the intensity of a
Gibbs point process is the expected number of points of the process per unit volume. There
is an interesting connection between the regimes considered in Theorem 3 and the asymptotic
intensity of the torus-hard-sphere model. To see this, assume that each sphere has a fixed radius
r/λη. Since the underlying space is [0, 1]d, the intensity ρ(λ) of the model is exactly equal to
the expected total number of points in a realization of the model. Equivalently, we may consider
the fraction of the volume VF(λ) occupied by the spheres, given by VF(λ)= ρ(λ)γ rdλ−ηd .
For the torus-hard-sphere model, the volume fraction VF(λ) is bounded from above by ρmaxγ ,
where ρmax is the closest packing density, defined by ρmax = limn→∞ Nn/(n+ 1)d, with Nn

being the maximal number of mutually disjoint unit-radius spheres which are included in the
hypercube [− (n+ 1/2), (n+ 1/2)]d; see [29]. Proposition 3 describes the asymptotic behavior
of VF(λ) as λ→∞ for different values of ηd. In particular, the regime with ηd > 1 is a low-
density regime, while the regime with ηd < 1 is a high-density regime. In the high-density
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regime, the intensity of the hard-sphere model is much smaller than the intensity λ of the
reference PPP.

Proposition 3.1. For the torus-hard-sphere model with a fixed radius R= r,

lim
λ↗∞

VF(λ)

γ rdλ1−ηd
= 1 if ηd > 1,

lim
λ↗∞VF(λ)= ρmaxγ if ηd < 1,

lim
λ↗∞VF(λ) < ρmaxγ if ηd= 1.

4. Acceptance–rejection-based algorithms

In Section 4.1, we present a naive AR algorithm for generating perfect samples of the hard-
sphere model and analyze its expected running time complexity. We then proceed to present
and analyze our IS-based AR algorithm, where the key idea is to partition the configuration
space G so that a well chosen IS technique can be implemented on each partition. One such IS
for the hard-sphere model is the reference IS presented in Section 4.3, where spheres are gen-
erated sequentially so that, whenever possible, the center of each sphere is selected uniformly
over the region on [0, 1]d that guarantees no overlap with the existing spheres. However, gen-
erating samples from this IS measure can be computationally challenging when d≥ 2. The
grid-based IS introduced in Sections 4.4 and 4.5 overcomes this difficulty by imitating the
reference IS; interestingly, it is more efficient than the reference IS.

In every algorithm presented in this paper, the running time complexity is calculated under
the assumption that checking overlap of a newly generated sphere with an existing sphere is
done in a sequential manner. That is, if there are n existing spheres, the expected running time
complexity of the overlap check is proportional to n. However, if enough computing resources
are available, the overlap check can be done in parallel so that its running time complexity is a
constant. We omit the discussion of this parallel overlap check because it is easy to modify the
results to accommodate the parallel case, and this does not change the key conclusions of the
paper.

4.1. Naive acceptance–rejection algorithm

Algorithm 4.1 is a naive AR algorithm for generating perfect samples of the Gibbs
hard-sphere model. The basic idea of the algorithm is standard [11], and its correctness is
straightforward and hence omitted.

Let TNAR be the expected running time complexity of Algorithm 4.1, where the running time
complexity denotes the number of elementary operations performed by the algorithm; every
elementary operation takes at most a fixed amount of time. Note that the acceptance probability
of each iteration is P(λ). Thus the expected total number of iterations of the algorithm is
1/P(λ). Suppose Citr(λ) is the expected running time complexity of an iteration. Then

TNAR = Citr(λ)

P(λ)
. (4.1)

We now establish bounds on TNAR, and then establish its asymptotic behavior as λ↗∞
using Theorem 3. In each iteration of Algorithm 4.1, spheres are generated in a sequential
order until we see an overlap or a configuration with N non-overlapping spheres. The key

https://doi.org/10.1017/apr.2021.1 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.1


Perfect simulation for Gibbs hard-sphere models 845

Algorithm 4.1 Naive AR Method

1: repeat
2: Generate N ∼Poi(λ)
3: X←∅

4: if N �= 0 then
5: i← 0
6: repeat
7: i← i+ 1
8: Generate Yi independently and uniformly distributed on [0, 1]d

9: Generate a copy Ri of R independently of everything else
10: X←X∪ {(Yi, Ri/λ

η)}
11: until i=N or X /∈A
12: end if
13: until X ∈A
14: return X

to proving Proposition 4.1 is to establish that the expected number of spheres generated per
iteration is �

(
λmin{ηd,2}).

Proposition 4.1. The expected running time complexity Citr(λ) of an iteration of the naive AR
algorithm, Algorithm 4.1, satisfies

Citr(λ)=�
(
λmin{ηd,2}) . (4.2)

Furthermore, the expected total running time TNAR satisfies

TNAR =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
(
λ2
)

if ηd≥ 2,

�
(
ληd exp

(
(γ m1/2+ o(1)) λ2−ηd

))
if 1 < ηd < 2,

�
(
ληd exp (δλ)

)
, forsome 0 < δ ≤ 1, if ηd= 1,

�
(
ληd exp

(
(1+ o(1))λ

))
if 0 < ηd < 1.

Remark 4.1. From (4.2) and Theorem 3.1, we see that for large values of λ and for ηd < 2,
TNAR is mainly governed by P(λ), which can be very small for large λ. This suggests that any
rejection-based perfect sampling algorithm with a significant improvement in the acceptance
probability will have a significantly improved running time complexity.

4.2. Importance-sampling-based acceptance–rejection algorithm

A sequence of tuples {(
Dn,k, μn,k, σn,k

)K
k=1

}
n∈N0

with some K <∞ is called a stable IS sequence if for each n ∈N0,
(
Dn,k

)K
k=1 is a partition of

Gn, and (μn,k)K
k=1 is a sequence of probability measures such that μ0 is absolutely continuous
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with respect to μn,k on Dn,k ∩A, and the corresponding likelihood ratio

Ln,k(xn) := dμ0

dμn,k
(xn)

satisfies

Ln,k(xn)≤ σn,k ≤ 1 if xn ∈Dn,k ∩A,

for k= 1, . . . , K. Under the stability condition, for every measurable subset B⊆ G,

μ(B)∝ Pμ0 (X ∈B∩A)=
∑
n∈N0

e−λ λn

n!

(
K∑

k=1

Pμ0

(
Xn ∈Dn,k ∩B∩A

) )

=
∑
n∈N0

e−λ λn

n!

(
K∑

k=1

Eμn,k

[
I
(
Xn ∈Dn,k ∩B∩A

)
Ln,k(Xn)

])

=
∑
n∈N0

e−λ λnσ̃ (n)

n!

(
K∑

k=1

σn,k

σ̃ (n)
Eμn,k

[
I(Xn ∈Dn,k ∩B∩A)Ln,k(Xn)

σn,k

])

=
∑
n∈N0

λnσ̃ (n)

n!

(
K∑

k=1

σn,k

σ̃ (n)
Pμn,k

(
J = 1, Xn ∈Dn,k ∩B∩A

))
, (4.3)

where σ̃ (n) := ∑K
k=1 σn,k, U∼Unif(0, 1), and

J ∼Bern
(

Ln,k(Xn)

σn,k

)
.

Let M be a non-negative integer-valued random variable with the probability mass function
(PMF) defined by

P (M =m)= 1

Cλ

λmσ̃ (m)

m! , m ∈N0, (4.4)

where

Cλ :=
∞∑

n=0

λnσ̃ (n)

n! .

The PMF (4.4) is well defined because E [̃σ (N)] is finite under the stability condition. Now
consider Algorithm 4.2.

Proposition 4.2. Algorithm 4.2 generates a perfect sample of the Gibbs hard-sphere model.
Furthermore, let N ∼Poi(λ). Then the probability of accepting the configuration generated in
an iteration of Algorithm 4.2 is given by

Pacc(λ)= P(λ)

E[̃σ (N)]
. (4.5)
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Algorithm 4.2 IS-based AR method

1: repeat
2: Generate a sample of M with PMF (4.4)
3: Generate J1 with PMF P(J1 = k)= σM,k/σ̃ (M), k= 1, . . . , K
4: Generate a realization X of M points under the measure μM,J1

5: Generate

J2 ∼Bern
(

LM,J1 (X)I
(
X∈DM,J1∩A

)
σM,J1

)
6: until J2 = 1
7: return X

We omit the proof of Proposition 4.2 because the correctness easily follows from (4.3), and
(4.5) holds from the observation that

Pacc(λ)= 1

Cλ

∑
n∈N0

λnσ̃ (n)

n!

(
K∑

k=1

σn,k

σ̃ (n)
Eμn,k

[
Ln,k(Xn)

σn,k
;Xn ∈Dn,k ∩A

])
.

Note that the expected number of iterations of Algorithm 4.2 is 1/Pacc(λ). Corollary 4.2 is an
important and trivial consequence of Proposition 4.2.

Corollary 4.1. For all stable IS sequences{(
Dn,k, μn,k, σn,k

)K
k=1

}
n∈N0

with the same E[̃σ (N)]=∑K
k=1 E

[
σN,k

]
, the expected number of iterations of Algorithm 4.2

is the same.

Suppose that C̃itr(λ) is the expected running time complexity of an iteration of Algorithm
4.2. Then the expected total running time of the algorithm is given by

TISAR = C̃itr(λ)E[̃σ (N)]

P(λ)
, (4.6)

where N ∼Poi(λ). Recall that the acceptance probability of the naive AR method is P(λ). It is
reasonable to seek a valid stable IS sequence{(

Dn,k, μn,k, σn,k
)K

k=1

}
n∈N0

so that C̃itr(λ)E[̃σ (N)] is smaller than Citr(λ). In Subsections 4.4 and 4.5, we present
applications of Algorithm 4.2 where TISAR is indeed much smaller than TNAR.

Remark 4.2. (Extension of IS-based AR to general Gibbs point processes.) Suppose that μ is
the distribution of a Gibbs point process that is absolutely continuous with respect to μ0, with
the corresponding Radon–Nikodym derivative given by

dμ

dμ0 (x)= exp (−β V(x))

Z
, x ∈ G,
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FIGURE 1. Illustration of the reference IS method for a Euclidean-hard-sphere model on [0, 1]2 with
spheres of fixed radius r/λη . In (a) (respectively, (b)), the grey region represents the blocking area when
generating the second circle (respectively, when generating the third circle).

where the constant β ∈R is known as inverse temperature, V is called the non-negative
potential function, and Z =Eμ0

[
exp (−β V(X))

]
is the normalizing constant. If the stability

condition holds true when I(xn ∈A) is replaced by exp (−β V(xn)), then Algorithm 4.2 can
generate perfect samples from μ if in line 4.2 of the algorithm,

J2 ∼Bern
(

LM,J1 (X) exp (−β V(X)) I
(
X ∈DM,J1

)
σM,J1

)
.

To see that the hard-sphere model is a special case of such a Gibbs point process, take β > 0 and
assume that V(x)= 0 if x is a non-overlapping configuration of spheres; otherwise, V(x)=∞.

4.3. Reference importance sampling

We now introduce an IS measure, called reference IS and denoted by μ̃n for each n, such that
{(Gn, μ̃n, σn)}n∈N0

is a stable IS sequence (with K = 1) that can be used in Algorithm 4.2 for
generating perfect samples of the hard-sphere model for an appropriate choice of the sequence
{σn : n∈N0}. Under μ̃n, we first generate an i.i.d. sequence R1, . . . , Rn identical in distribution
to R, and then generate n spheres sequentially as follows. Generate the center of the first sphere
uniformly distributed on [0, 1]d. Suppose that i− 1 spheres are already generated. For the ith
sphere generation, a subset Bi ⊆ [0, 1]d is called the blocking region if Bi is the largest set
such that if the center Yi of the ith sphere fell in this region (that is, Yi ∈Bi), the ith sphere
would overlap with one of the existing i− 1 spheres. The center of the ith sphere is generated
with uniform distribution over the non-blocking region [0, 1]d \Bi. If, for some sphere i≤ n,
the entire space is blocked (that is, Bi = [0, 1]d), we select the centers of spheres i, . . . , n
arbitrarily. Figure 1 illustrates this for d= 2 and n= 1, 2. In conclusion, μ̃n is the distribution
of an output of Algorithm 4.3.

Observe that μ0 is absolutely continuous with respect to μ̃n on Gn ∩A, and the associated
likelihood ratio satisfies

L̃n(xn)= dμ0

dμ̃n
(xn)=

n∏
i=1

(1− Bi) (4.7)
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Algorithm 4.3 Reference IS

1: Input: The total number of spheres n
2: X←∅

3: if n �= 0 then
4: B0 =∅ and i← 0
5: repeat
6: i← i+ 1
7: Generate a copy Ri of R independently of everything else so far generated
8: if Bi = [0, 1]d then
9: Select the center Yi of the ith sphere arbitrarily over [0, 1]d

10: else
11: Identify the non-blocking region Bc

i
12: Generate Yi uniformly distributed over Bc

i
13: end if
14: X←X∪ {(Yi, Ri/λ

η)}
15: until i= n
16: end if
17: Return X

for all xn ∈ Gn ∩A and n∈N0, where Bi is the volume of Bi and L̃0 = 1. Note that L̃n(xn)= 0
if and only if xn /∈A, because for any xn /∈A, there exists i≤ n such that Bi = 1.

Observe that the blocking volume added by the ith sphere is at least γ ′ (Ri/λ
η)d when it

does not overlap with any of the existing spheres. This is because, for the torus-hard-sphere
model, the entire volume within an accepted sphere is added to the blocking volume, and for
the Euclidean-hard-sphere model, at least 1/2d of an accepted sphere is added to the blocking
volume. Thus,

Bi ≥ γ ′

ληd

i−1∑
j=1

Rd
j (4.8)

for every configuration xi−1 ∈ Gi−1 ∩A. In particular, if all the spheres are of the same size
with a fixed radius r,

I(xn ∈A)̃Ln(xn)≤
n∏

i=1

(
1− (i− 1)

γ ′

ληd
rd
)+
=: δn (4.9)

for all n ∈N0 and xn ∈ Gn, where x+ =max (0, x) and δ0 = 1. Then the stability condition
is satisfied with K = 1, Dn,1 = Gn, μn,1 = μ̃n, and σn,1 = δn for n ∈N0. Thus, Algorithm 4.2
generates perfect samples of the fixed-radius hard-sphere model, and from Proposition 4.2, the
corresponding acceptance probability is

Pacc(λ)= P(λ)

E[̃σN]
= P(λ)

E[δN]
.

Remark 4.3. In dimension d= 1, spheres become line segments and thus it is easy to generate
samples from the IS measure μ̃n. However, for d≥ 2, generating samples under the reference
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IS is difficult, because every time a new sphere is generated, we need to know the volume of the
blocking region created by the existing spheres, and then we need to generate a point uniformly
on this non-blocking region; see line 11 in Algorithm 4.3. One possible way to implement the
reference IS is by combining a well-known method called power tessellation and a simple
rejection method in two steps: (i) using the power tessellation, we can compute the blocking
volumes exactly (see e.g. [4, 33]); (ii) we then use a simple AR method, repeatedly generating
a point independently and uniformly on [0, 1]d until it falls within the non-blocking region.

Unfortunately, implementing the power tessellation method is computationally prohibitive.
Besides, even if we have an efficient implementation of the power tessellation method,
the above simple rejection step can be expensive when the non-blocking region is small.
Fortunately, we can overcome both these difficulties by using a simple grid on [0, 1]d. From
(4.6), it is evident that if there are two IS methods with the same E[̃σN], it is computation-
ally preferable to use the method that has smaller per-iteration expected running time, C̃itr(λ).
In Subsection 4.4, we introduce a hypercubic-grid-based IS method that continues to gener-
ate perfect samples while the blocking regions are closely approximated by grid cells. With
a careful choice of the cell-edge length, we make sure that the inequality (4.9) holds for the
grid IS as well (and thus E[̃σN] is same as that of the reference IS). As a consequence of
Corollary 4.1, the expected number of iterations of Algorithm 4.2 is the same as that of the
reference IS method. However, the grid method is easy to implement and has a much smaller
expected iteration cost C̃itr(λ) than the reference IS. The choice of the hypercubic grid is just
an option that simplifies the implementation; however, the method can be implemented using
other kinds of grids. In the two-dimensional case, for example, it is possible to use a hexagonal
grid to implement the IS method.

4.4. Grid-based importance sampling for fixed-radius case

Consider the hard-sphere model with a fixed radius r/λη. The process of generating n
spheres under the following grid-based IS measure μ̂n starts with a partitioning of the under-
lying space [0, 1]d into a hypercubic grid with a cell-edge length ε > 0 such that 1/ε is an
integer. The centers of the spheres are generated sequentially, as follows. Suppose that i− 1
spheres with centers Y1, . . . , Yi−1 have already been generated. At the time of generation of
the ith sphere, a cell C in the grid is labeled as fully-blocked if the cell is completely inside
a sphere with radius 2r/λη centered at an existing point, that is, C⊆ S(Yj, 2r/λη) for some
j≤ i− 1; otherwise, the cell is labeled as non-fully-blocked. A non-fully-blocked cell C is
called partially-blocked if C ∩ S(Yj, 2r/λη) �=∅ for some j≤ i− 1; otherwise, it is called non-
blocked. The center Yi of the ith sphere is selected uniformly over the non-fully-blocked cells,
because selecting Yi over a fully-blocked cell will certainly result in the ith sphere overlapping
with an existing sphere. We then check for overlap only if Yi is generated over a partially-
blocked cell, because overlap is not possible if Yi is generated over a non-blocked cell. If
either there is an overlap or all the cells are fully-blocked by the existing spheres, the cen-
ters Yi, . . . , Yn of the remaining spheres are selected arbitrarily (such a selection results in an
overlapping configuration). Otherwise, for the generation of the next sphere, i+ 1, we repeat
the same procedure by relabeling the non-fully-blocked cells, considering spheres 1, . . . , i as
the existing spheres. Note that at the beginning of each iteration all the cells are labeled as
non-blocked. Also note that since all the spheres have the same radius, for the relabeling of the
cells we only need to focus on the cells that might interact with the last sphere generated. See
Figure 2 for an illustration of this sequential procedure.
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FIGURE 2. A realization with five circles on the unit square [0, 1]2 generated using the grid-based IS
method for a Euclidean-hard-sphere model with a fixed radius (smaller circles). The grid size is 50× 50
and the radius is 0.1. The bigger circle around each point is the actual region blocked by the circle. For
the sixth circle generation, grey cells are fully-blocked, hatched cells are partially-blocked, and white
cells are non-blocked.

Suppose that μ̂n is the probability measure under which n spheres are generated by the
above procedure. Then μ0 is absolutely continuous with respect to μ̂n on Gn ∩A and the
corresponding likelihood ratio is

L̂n(xn) := dμ0

dμ̂n
(xn)=

n∏
i=1

(
1− B̂i

)
, xn ∈ Gn ∩A,

where B̂i is the volume of fully-blocking cells for the ith sphere generation; that is, B̂i equal
to the product of the number of fully-blocked cells and εd . To apply Algorithm 4.2 for the
fixed-radius hard-sphere model, take K = 1, and for each n ∈N0, take Dn,1 = Gn, μn,1 = μ̂n,
and σn,1 = δn. Thus, σ̃ (n)= δn and Ln,1(xn)= L̂n(xn) for all xn ∈ Gn ∩A.

Selection of the cell-edge length ε: Observe that the longest diagonal length of a cell is√
d ε. Since we focus only on the non-overlapping configurations, in the implementation, we

generate a sphere only if all the existing spheres are non-overlapping. Suppose that the cell-
edge length ε is selected so that

√
d ε≤ r/λη. Then for the ith sphere generation, every cell that

has non-empty intersection with S(Yj, r/λη), for any j= 1, . . . , i− 1, has to be fully-blocked,
because such a cell is a subset of S

(
Yj, 2r/λη

)
. Thus, the non-overlapping condition of the

existing spheres imply that

∪i−1
j=1S(Yj, r/λη)
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is a subset of the union of the fully-blocked cells, and hence

B̂i ≥ γ ′(i− 1)rd

ληd
.

Thus, for n≥ 1,

I(xn ∈A)̂Ln(xn)≤ δn =
n∏

i=1

(
1− (i− 1)

γ ′rd

ληd

)+
, xn ∈ Gn. (4.10)

This upper bound is same as the one we obtained in the case of the reference IS; see the
inequality (4.9). Since the acceptance probability Pacc(λ)=P(λ)/E[δN] is the same for both
the grid IS and the reference IS methods, we need to choose the cell-edge length ε≤ r/λη so
that the expected per-iteration running time C̃itr(λ) is minimum. It is easy to see that the higher
the value of ε, the smaller C̃itr(λ), for the following reasons:

1. Labeling of the cells is faster if they are bigger in size.

2. Increasing the cell size increases the chances of overlap of the new sphere with the
existing spheres, and hence on average each iteration generates fewer spheres.

In conclusion, we choose ε = 1/	λη/r
 for the implementation of the grid IS method.
To reduce the per-iteration complexity of the algorithm, we make some changes to Steps 4

and 5 in Algorithm 4.2. Observe that a realization Xn generated under μ̂n is accepted only if
Xn ∈A and J= 1, where J ∼Bern

(̂
Ln(Xn)/δn

)
. In the implementation, we generate an i.i.d.

sequence U1, . . . , Un ∼Unif(0, 1) independent of everything else so far generated, and take

Ji = I

(
Ui ≤ 1− B̂i

(1− (i− 1)γ ′rdλ−ηd)

)
for i≤ n. Since J and the product

∏n
i=1 Ji are Bernoulli random variables with the same success

probability L(Xn)/δn, to reduce the per-iteration cost, we generate the ith sphere only if Ji = 1
and the existing spheres do not overlap with each other.

Algorithm 4.4 implements the grid-based IS for a given n with the above-mentioned
enhancements. Algorithm 4.2 is restated as Algorithm 4.5.

Algorithm 4.4 Grid-based IS for fixed radius

1: Input: The total number of spheres n≥ 1 and a grid on [0, 1]d

2: Output: (X, Status) ∈ G× {True, False}. Where Status= True if X ∈A and
Status= False otherwise

3: Label every cell as non-blocked
4: X←∅, i← 0 and B̂← 0
5: repeat
6: i← i+ 1
7: Generate U ∼Unif(0, 1)

8: if U > 1−B̂
1−(i−1)γ ′rdλ−ηd

then

9: return (X, False)
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10: else
11: Generate Yi uniformly distributed over the non-fully-blocked cells

(and independently of everything else so far generated)
12: if Yi is on a partially-blocked cell and there is an overlap then
13: return (X, False)
14: end if
15: Update the cell labels
16: Compute the volume B̂ of the fully-blocked cells
17: end if
18: X←X∪ {(Yi, r/λη)}
19: until i= n
20: return (X, True)

Algorithm 4.5 Perfect sampling for hard-sphere model using grid-based IS

1: Partition [0, 1]d into a hypercube grid with cell-edge length ε = 1/	λη/r

2: repeat
3: Generate a sample of M with PMF (4.4)
4: if M = 0 then
5: (X, Status)← (∅, True)
6: else
7: Obtain an output (X, Status) from Algorithm 4.4 with M and the grid as input
8: end if
9: until Status= True

10: return X

Remark 4.4. (The PMF of M.) Note that, for the current setup, the PMF of M, given by (4.4),
becomes

P (M =m)= 1

Cλ

λmδm

m! ,

m ∈N0, where the normalizing constants are

Cλ =
∑
n∈N0

λnδn

n! .

The support of the PMF is finite because δm = 0 for all m≥ ληd/(γ ′rd)+ 1. To increase the
performance of the algorithm, we can further truncate the support of the PMF. Using the max-
imum packing density, we can obtain an integer mmax such that X /∈A for all m≥mmax and
configurations X with |X| =m. In that case, we can take

P (M=m)= 1

Cλ

λmδm

m! , 0≤m≤mmax,

with

Cλ =
mmax∑
n=0

λnδn

n! .
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For example, refer to [29] for finding maximum packing densities for d= 2 and d= 3.

We now focus on the expected running time analysis of Algorithm 4.5. By Proposition 4.2,
the acceptance probability Pacc(λ) of Algorithm 4.5 is P(λ)/E[̃σ (N)]=P(λ)/E[δN]. A proof
of Proposition 4.3 is given in Section A.4.

Proposition 4.3. For the fixed-radius hard-sphere model, there exists a constant c > 0 such
that

TISAR ≤ c E [δN]
λmin{ηd,1}

P(λ)
, (4.11)

where N ∼Poi(λ). Furthermore,

lim sup
λ↗∞

[
1

λ2−ηd
logE [δN]

]
≤−γ ′rd

2
if ηd > 1, and

lim sup
λ↗∞

[
1

λ
logE [δN]

]
≤−b if 0 < ηd≤ 1, for some constant b > 0.

The following result is a trivial consequence of Propositions 4.1 and 4.3.

Corollary 4.2. For the fixed-radius hard-sphere model, if ηd≥ 2, both TISAR and TNAR
are of the same order, and if 0 < ηd < 2, there exists a constant c > 0 such that TISAR ≤
c E [δN] TNAR.

Remark 4.5. (Better choice of δn for the Euclidean-hard-sphere model) If the spheres are
Euclidean, further improvements in the choice of δn can be obtained by accounting for bound-
ary effects. For instance, for d= 2, the four corners of [0, 1]2 are covered by at most four
circles, each of which contributing a blocking area of at least γ ′r2/λ2η = πr2/4λ2η, while
each of the remaining circles contributing a blocking area of at least 2γ ′r2/λ2η = πr2/2λ2η.
Let b0 = 0,

bi = (i− 1)
πr2

4λ2η

for 1≤ i≤ 5, and

bi = πr2

λ2η
+ (i− 4)

πr2

2λ2η

for i≥ 6. Then, for this particular scenario, a better choice of δn in (4.9) (as well as in (4.10))
is δn =∏n

i=1 (1− bn)
+, n ∈N0.

4.5. Random-radii case

We now consider another application of Algorithm 4.2 for the hard-sphere model when
under the marked PPP the radii of the spheres are i.i.d. For the fixed-radius case presented
in Section 4.4, the proposed IS method ensured a uniform bound δn on the likelihood ratio
over Gn for every n∈N0, as shown in (4.10). Such upper bounds are possible for a random-
radii hard-sphere model if the radii are bounded below by a positive constant. Furthermore,
a similar analysis can be established when the spheres are replaced with i.i.d. convex shapes
such that each shape occupies a minimum positive volume. However, when the radii are not
bounded from below almost surely, the associated blocking volumes can be arbitrarily small.
We address this issue by partitioning Gn into two sets Dn,1 and Dn,2 for each n so that the IS on
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Dn,1 is a grid-based IS method that is similar to Algorithm 4.4, and the IS on Dn,2 is obtained
by exponentially twisting the distribution of Rd to put high probability mass on configurations
with lower-volume spheres.

We first introduce the exponential twisting of the distribution, say G, of Rd. Recall that R
is assumed to be a bounded non-negative random variable. Without loss of generality further
assume that α :=E[Rd] > 0. Thus the logarithmic moment generating function of Rd, defined
by �(θ ) := log

(
E
[
exp (θRd)

])
, is finite for every θ ∈R. Furthermore, the derivative

�′(θ )= d�(θ )

dθ
= E

[
Rd exp (θRd)

]
E
[
exp (θRd)

]
is finite and positive for all θ ∈R, and in particular, �′(0)= α. In fact, using the results in
Chapter 2 of [10], it can be seen that �(θ ) is strictly convex. As a consequence, �′(θ ) is
strictly increasing and hence

αmin := lim
θ→−∞�′(θ ) < α.

Let θ̂ be such that �′(θ̂)= � for some � ∈ (αmin, α). Therefore, θ̂ < 0. Now consider the
distribution G̃ obtained by exponentially twisting G by the amount θ̂ , that is, dG̃(t)=
exp

(
θ̂ t−�(θ̂ )

)
dG(t). Fix a constant a ∈ (0, 1), and for each integer n≥ 1, define

Hn :=
{

(t1, t2, . . . , t�na) ∈R�na
+ :

1

�na
�na∑
i=1

ti < �

}
.

We later see that a= 1/2 is a good choice for increasing performance of the algorithm. Let
�∗( · ) be the Legendre–Fenchel transform of �, that is, �∗(t)= supθ∈R{θ t−�(θ )}. This
corresponds to the large deviations rate function associated with the empirical average of
i.i.d. samples from G. From the definition of θ̂ and the fact that �(θ ) is strictly convex,
�∗(�)= θ̂�−�(θ̂ ) > 0. Since θ̂ < 0, for all (t1, t2, . . . , t�na) ∈Hn,

exp

⎛⎝θ̂

�na∑
i=1

ti − �na�(θ̂)

⎞⎠= exp

⎛⎝θ̂

�na∑
i=1

(ti − �)+ �na�∗(�)

⎞⎠≥ exp
(�na�∗(�)

)
,

and thus,

�na∏
i=1

dG

dG̃
(ti)≤ exp

(−�na�∗(�)
)≤ exp

(−na �∗(�)
)

. (4.12)

Recall the definition of the distribution μ of the hard-sphere model given by (2.1). To apply
Algorithm 4.2, select K = 2 and define

Dn,1 =
{

xn = {(x1, r1/λ
ηd), . . . , (xn, rn/λ

ηd)} ∈ Gn : (rd
1, . . . , rd�na) ∈Hc

n

}
and Dn,2 = Gn \Dn,1, for each n, where Hc

n is the complement of Hn within [0, r]�na. To
apply Algorithm 4.5, we are now left with identifying the IS measures μn,1 and μn,2 and the
corresponding bounds σn,1 and σn,2 for each n ∈N0.

The measure μn,1 on Dn,1 is again a grid-based IS method similar to the grid method intro-
duced for the fixed-radius case in Subsection 4.4. First, i.i.d. copies {R1, . . . , Rn} of R are
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generated. Then we construct a new grid and label each cell every time a new sphere is gener-
ated, as follows. For the generation of the ith, sphere with radius Ri/λ

η, we take the cell-edge
length ε= 1/�λη/Ri. A cell C in the grid is labeled as fully-blocked if C⊆ S(Xj, (Rj + Ri)/λη)
for an existing sphere j≤ i− 1 with the center Xj and the radius Rj/λ

η; otherwise, the cell
is labeled as non-fully-blocked. A non-fully-blocked cell C is called partially-blocked if
C ∩ S(Xj, (Rj + Ri)/λη) �=∅ for some j≤ i− 1; otherwise, it is called non-blocked. Then the
next center Xi is generated uniformly over the non-fully-blocked cells. Just as in the case of
fixed radius, X1 is generated uniformly over [0, 1]d, and we check the possibility of the overlap
of ith sphere with an existing sphere only if Xi falls in a partially-blocked cell.

The measure μ0 is absolutely continuous with respect to μn,1 on Dn,1 ∩A, and the
associated likelihood ratio Ln,1 is given by

Ln,1(xn)=
n∏

i=1

(
1− Bi

)
, xn ∈Dn,1 ∩A,

where B̂i is the volume of all the fully-blocked cells for the generation of the ith sphere.
By (4.8) and the fact that the cell-edge length is 1/�λη/Ri, we have

Bi ≥min
(

1,
γ ′�na

ληd
�
)

on Dn,1 ∩A for all i≥ �na+ 1, because

1

�na
�na∑
j=1

Rd
j ≥ �

over the set Hc
n . Consequently,

I(xn ∈A)Ln,1(xn)≤
[(

1− γ ′�na
ληd

�

)+]n(1−a)

=: σn,1, xn ∈Dn,1.

The measure μn,2 is induced by the following procedure. Generate i.i.d. samples
Rd

1, . . . , Rd�na from G̃, and independently of this, generate i.i.d. samples Rd
�na+1, . . . , Rd

n from

G. For i= 1, . . . , n, the radius of the ith sphere is Ri/λ
d , and the center is generated uni-

formly distributed over the non-blocking region created by the existing i− 1 spheres. Since
Rd

1, . . . , Rd�na are sampled from G̃, by (4.12),

I(xn ∈A)Ln,2(xn)=
�na∏
i=1

dG

dG̃
(rd

i )≤ exp
(−na �∗(�)

) =: σn,2 for all xn ∈Dn,2.

In summary, {(
Dn,k, μn,k, σn,k

)2
k=1

}
n∈N0

is a stable IS sequence, and hence Algorithm 4.2 generates perfect samples from μ. However, to
reduce the per-iteration complexity (as in the fixed-radius case), we make some modifications
to the algorithm. Algorithm 4.6 is similar to Algorithm 4.4, and Algorithm 4.2 is restated as
Algorithm 4.7.

https://doi.org/10.1017/apr.2021.1 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.1


Perfect simulation for Gibbs hard-sphere models 857

Algorithm 4.6 Grid-based IS for random-radii case

1: Input: The total number of spheres n≥ 1
2: Output: (X, Status) ∈ G× {True, False}. Where Status= True if X ∈A and

Status= False otherwise
3: i← 0
4: X←∅

5: repeat
6: i← i+ 1
7: Generate a copy Ri of R independently of everything else so far generated
8: Construct a grid on [0, 1]d with the cell-edge length ε= 1/�λη/Ri
9: Identify the label of each cell in the new grid
10: Compute the volume B̂ of the fully-blocked cells and generate U∼Unif(0, 1)
11: if

U >
1− B̂(

1− γ ′�na�λ−ηd
)1−a

then
12: return (X, False)
13: else
14: Generate Yi uniformly distributed over the non-fully-blocked cells

(and independently of everything else so far generated)
15: if Yi is on a partially-blocked cell and there is an overlap then
16: return (X, False)
17: end if
18: end if
19: X←X∪ {(Yi, Ri/λ

η)}
20: until i= n
21: return (X, True)

We now focus on the running time complexity of Algorithm 4.7. Notice that σ̃ (n)= σn,1 +
σn,2 for each n∈N0. By Proposition 4.2, Pacc(λ)=P(λ)/E [̃σ (N)] with N ∼ Poi(λ). Observe
that

σn,1 ≤ exp

(
−γ ′n2 a(1− a)

ληd
�

)
.

The proof of Proposition 4.3 can be extended to the current scenario to show that

lim sup
λ↗∞

[
1

λ2−ηd
logE

[
σN,1

]]≤−γ ′ a(1− a)� if ηd > 1, and

lim sup
λ↗∞

[
1

λ
logE

[
σN,1

]]≤−b if 0 < ηd≤ 1, for some constant b > 0.

It is now clear that a good choice for a is 1/2, because it maximizes a(1− a). Furthermore,
using the moment generating function of Poisson random variables, we have

E
[
σN,2

]≤ exp
(
−λ

(
1− e−�∗(�)/2

))
.
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Algorithm 4.7 Perfect sampling for hard-sphere model with random radii

1: repeat
2: Generate a sample of M with PMF (4.4)
3: Generate J with PMF P(J= k)= σM,k/σ̃ (M), k= 1, 2
4: if J = 1 then
5: Obtain an output (X, Status) of Algorithm 4.6 with M as input
6: else
7: Generate X under μM,2

8: if Bern

(
LM,2(X)I

(
X ∈DM,2 ∩A

)
σM,2

)
= 0 then

9: Status← False
10: end if
11: end if
12: until Status= True
13: return X

Recall that TISAR ≤E [̃σ (N)] C̃itr(λ)/P(λ). The per-iteration complexity C̃itr(λ) is mainly
determined by the relabeling of cells in the new grid for each sphere generation. The grid
size for the ith sphere generation is of order ληd/Rd

i , and the total number of spheres generated
in each iteration is at most of order λmin{ηd,1}. Therefore, for ηd≤ 2, we can show that C̃itr(λ)
is of order λmin{ηd,1}

E[1/Rd].

Remark 4.6. If � is selected to equal

argmin�∈(αmin,α) (σn,1 + σn,2)

for each n= 1, 2, . . . , then E [̃σ (N)] is minimum. Note that σn,1 decreases and σn,2 increases
as functions of �. The above decompositions were chosen to illustrate ideas simply. More
complex decompositions are easily created for further performance improvement. For instance,
we could have defined Hn above as

Hc
n :=

{
(r1, . . . , rn)∈Rn+ :

1

m

m∑
i=1

ri ≥ �m, ∀m≤ n

}
,

and then arrived at appropriate {�m}m≤n and appropriate changes of measures for configura-
tions in Hn and Hc

n . While this should lead to substantial performance improvement, it also
significantly complicates the analysis.

5. Dominated coupling-from-the-past methods

In this section, we review some of the well-known dominated CFTP algorithms for the hard-
sphere models. We refer to [27] for a general description of dominated CFTP for Gibbs point
processes (this method was first proposed for area-interaction processes by Kendall [25]).

Let D= {D(t) : t ∈R} be the so-called dominating birth-and-death process on [0, 1]d,
with births arriving as a Poisson process with rate λ, where each birth is a uniformly and
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independently generated marked point on [0, 1]d denoting the center of a sphere, with the mark
being its radius. Each birth is alive for an independent random time exponentially distributed
with mean one. It is well known that the steady-state distribution of D is μ0. Furthermore,
it is easy to generate the dominating process D both forward and backward in time so that
D(t)∼μ0 for all t. To see this, let · · ·< t−2 < t−1 < 0 < t1 < t2 < . . . be the event instants of
the process D, where an event can be either a birth or a death. Assume that with each birth
there is an additional mean-one exponentially distributed independent mark to determine its
lifetime. Since the births are arriving as a Poisson process, the interarrival times are expo-
nential with mean 1/λ. Generate D(0)∼μ0, determine the next event instant t1, and take
D(t)=D(0) for 0≤ t < t1. If the next event is a birth, generate a new independent (marked)
point; otherwise, remove the existing point with the smallest lifetime. Continue the same
procedure starting with D(t1) to generate the process over [t1, t2), and so on. For generat-
ing the dominating process D backward in time, observe that D is time-reversible, and hence
we can generate {D(t) : − T ≤ t≤ 0} for any finite T > 0 just by generating an independent
copy {D̃(t) : 0≤ t≤ T} of the dominating process {D(t) : 0≤ t≤ T} and taking D(− t)= D̃(t)
for 0≤ t≤ T.

Since the distribution μ of the hard-sphere model is absolutely continuous with
respect to μ0, using coupling, it is possible to construct a spatial birth-and-death process
Z= {Z(t) : t ∈R}, called the interaction process, such that Z(t)⊆D(t) and Z(t)∼μ for all
t ∈R; see [27]. Each iteration of any dominated CFTP method essentially involves the
following two steps:

1. Fix n > 0 and construct {D(t) : t−n ≤ t≤ 0} backward in time starting at time zero with
D(0)∼μ0.

2. Then, as detailed in Sections 5.1–5.3, use thinning on the dominating pro-
cess {D(t) : t−n ≤ t≤ 0} to obtain an upper bounding process {Un(t) : t≥ t−n}
with Un(t−n)=D(t−n) and a lower bounding process {Ln(t−n) : t≥ t−n} with
Ln(t−n)=∅ forward in time, such that for t≥ t−n, Ln(t)⊆Z(t)⊆Un(t)⊆D(t) and
Lm(t)⊆Ln(t)⊆Un(t)⊆Um(t) for m≤ n.

If Un and Ln coalescence at time 0, that is, Un(0)=Ln(0), then Un(0) is a perfect sample
from the target distribution μ. If there is no coalescence, then repeat the steps by increasing n
and extending the dominating process {D(t) :− t−n ≤ t≤ 0} further backward to time t−n and
repeat the same procedure. It is well known that a good strategy for increasing n is to double
it after every iteration. The criteria for thinning depend on the coupling used for constructing
Z. However, the dominating process D depends only on λ. In summary, a dominated CFTP
algorithm is described by Algorithm 5.1.

Consider the backward coalescence time N∗ =min {n∈N0 : Ln(0)=Un(0)}. The average
running time complexity of Algorithm 5.1 depends on the number of operations involved
within N∗, which further depends on the construction of the interaction process and the bound-
ing processes. At each iteration, the length of the dominating process D is doubled on average
backwards in time. Hence, on average the running time complexity doubles at each iteration.
From the definition of N∗, the length of the last iteration is

2�log2 N∗ ≥N∗.
Let Nf =min {n ∈N0 : L0(tn)=U0(tn)} be the forward coalescence time. Because of the
reversibility of the dominating process, it can be shown that N∗ and Nf are identical in
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Algorithm 5.1 Dominated CFTP

1: Generate {D(t) : t−1 ≤ t≤ 0} with D(0)∼μ0

2: n← 1
3: repeat
4: n← 2 ∗ n
5: Extend D backwards from {D(t) : t−n/2 ≤ t≤ 0} to {D(t) : t−n ≤ t≤ 0}
6: Construct {Ln(t) : t−n ≤ t≤ 0} and {Un(t) : t−n ≤ t≤ 0}
7: until Ln(0)=Un(0)
8: return Ln(0)

distribution [3], and hence the expected computational effort for constructing the dominat-
ing, upper bounding, and lower bounding processes up to the forward coalescence time Nf ,
starting from time 0, is a lower bound on the expected running time of the algorithm.

Below we consider three dominated CFTP methods applicable to the hard-sphere models.

5.1. Method 1

This method is based on [27]. Note that the Papangelou conditional intensity of the hard-
sphere model is given by

�(x, x) := I (x∪ {x} ∈A)

I (x ∈A)
= I (x∪ {x} ∈A ), (5.1)

with the convention that 0/0= 0. The interaction process Z= {Z(t):t ∈ (−∞,∞)} is con-
structed as follows. Suppose x is a birth to D that sees Z in a state x∈ G. Then x is added to Z
if and only if �(x, x)= 1. Every death in D reflects in Z; that is, if there is a death of a point y
in D, then y is removed from the process Z as well if it is present. It can be shown that μ is the
unique invariant probability measure of Z; see, e.g., [16] or [12].

For each n≥ 1, the bounding processes are constructed as follows. As mentioned ear-
lier, take Ln(t−n)=∅ and Un(t−n)=D(t−n). Suppose that xl =Ln(ti) and xu =Un(ti) for
−n≤ i < 0, then assign Ln(t)= xl and Un(t)= xu for ti < t < ti+1. In case it is a birth x in
the dominating process D at time ti+1, set Ln(ti+1)= xl ∪ {x} if �(xu, x)= 1; otherwise, it
will remain unchanged, that is, Ln(ti+1)= xl. Similarly, set Un(ti+1)= xu ∪ {x} if �(xl, x)= 1;
otherwise, set Un(ti+1)= xu. Every death in the dominating process reflects in both lower
and upper bound processes. Note that a birth is accepted by the lower bounding process
if the resulting state of the upper bounding process is in A. Similarly, a birth in D is
accepted in the upper bounding process if the resulting state of the lower bounding process
is in A.

Theorem 5.1. The expected running time complexity TDC1 of the above dominated CFTP
algorithm satisfies

TDC1 ≥ c
λ

P(λ)
, (5.2)
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for some constant c > 0. In particular,

TDC1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ω
(
λ
)

if ηd≥ 2,

Ω
(
λ exp

((
γμ1

2 + o(1)
)
λ2−ηd

))
if 1 < ηd < 2,

Ω
(
λ exp

((
1+ o(1)

)
λ
))

if 0 < ηd≤ 1.

As highlighted by the numerical results in Section 6, the lower bound (5.2) is a loose bound,
because it is established by considering the running time complexity only up to the time at
which the lower bounding process receives its first arrival. This can be much smaller than the
running time complexity up to the coalescence of the upper and lower bound processes.

5.2. Method 2

This method is an improved version of Method 1, again based on [27]. Observe that at
any given time t ∈R, the interaction process Z(t) can have only non-overlapping spheres. This
suggests a better way of constructing the bounding processes, which we now describe. For
each n≥ 1, just as in Method 1, start with Ln(t−n)=∅ and Un(t−n)=D(t−n) to guarantee that
Ln(t−n)⊆Z(t−n)⊆Un(t−n). Suppose that the event at ti+1 is an arrival of sphere x. Irrespective
of whether Un(ti) ∈A or not, if x does not overlap with any sphere in the upper bounding
process Un(ti), then it cannot overlap with any sphere in Z(ti), and hence it is accepted to Z.
Thus, we add x to both the bounding processes. (Observe that in Method 1, such an x is added to
both the bounding processes only if Un(ti) ∈A, because of the Papangelou conditional intensity
(5.1).) If x overlaps with any sphere in the lower bounding process Ln(ti), then it must overlap
with a sphere in Z(ti) as well, and hence it is not added to any of the bounding processes L
and U. If x does not overlap with any sphere in Ln(ti), but does overlap with a sphere in Un(ti),
its presence in the process Z cannot be ruled out, and hence we keep it in the upper bounding
process, but not in the lower bounding process. Finally, every death in D is reflected in both the
bounding processes Ln and Un. Under this construction, the lower bounding process accepts
births more often, and hence the upper bounding process accepts births less often, compared
with the construction in Section 5.1. As a result the running time of Method 2 is shorter than
that of Method 1.

5.3. Method 3

A different approach for dominated CFTP for repulsive pairwise interaction processes has
been proposed by Huber [22]. Here, we discuss the main ingredients of the method for hard-
sphere models; refer to [22, 23] for more details. In this method, the interaction process Z is
different from the Z in Sections 5.1–5.2; it is known as the spatial birth–death swap process,
and its invariant distribution is again the distribution μ of the hard-sphere model. In addition
to births and deaths of spheres, this process also allows swap moves; here a swap move is an
event where an existing sphere is replaced by an arrival if it is the only sphere that overlaps
with the arrival. The lower and upper bounding processes are constructed as follows. As usual,
let Un(t−n)=D(t−n) and Ln(t−n)=∅. For any 0 < k < n, if t−k is the instant of a death in
the dominating process D(t), then the death is reflected in both the upper and lower bound
processes. Now suppose that x ∈D(t−k) is born at t−k.
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Case 1: If no sphere in Un(t−k) overlaps with x, then the arrival sphere x is added to both
Un(t−k) and Ln(t−k). If only one sphere y in Un(t−k) overlaps with x, then y is removed from
Un(t−k) (and from Ln(t−k) if it is present), and x is added to both Un(t−k) and Ln(t−k).

Case 2: There are at least two spheres in Ln(t−k) overlapping with x. Then x is rejected by
both Un(t−k) and Ln(t−k).

Case 3: At most one sphere in Ln(t−k) and at least two spheres in Un(t−k) overlap with x.
Then x is added to Un(t−k) (but not to Ln(t−k)). If y ∈Ln(t−k) is the one that overlaps with x,
then y is removed from Ln(t−k).

6. Simulations

We compare the performance of all the methods discussed in this paper using numerical
experiments, and illustrate the effectiveness of the proposed IS-based AR method in certain
regimes where the other methods fail to work. For this, we consider the torus-hard-sphere
model with a fixed radius r/λη on the two-dimensional square [0, 1]2. Thus, ηd= 2η. In the
first two experiments, by fixing values of η and r, we estimate the complexity of each algo-
rithm as a function of the intensity λ of the reference PPP by computing a sample average of
the number of spheres (or, in this case, circles) generated per generation of a perfect sample
of the hard-sphere model. Instead of estimating the expected running time complexities, we
take this approach to keep the discussion independent of the underlying data structures and
programming language used in the implementation of the algorithms. In addition, we estimate
the non-overlapping probability P(λ) using the conditional Monte Carlo rare event estimation
for Gilbert graphs proposed by [20]. The Gilbert graph under consideration is a random graph
where the nodes constitute a λ-homogeneous PPP on [0, 1]2 and there is an edge between two
points if they are within a distance of 2r/λη. Therefore, P(λ) is the probability that there are
no edges in the graph. The code for all the methods discussed in this paper is available at
https://github.com/saratmoka/PerfectSampling_HardSpheres.

For the implementation of the proposed IS-based AR method, the grid is constructed using
the cell-edge length ε = 1/	λη/r
; see Section 4.4 for more details on the selection of the
cell-edge length. The complexities of the algorithms are estimated using 1000 samples. In the
simulation results presented below, ŜNAR and ŜISAR denote the sample means of complexities
of the naive AR and the IS-based AR algorithms. Likewise, ŜDCM1, ŜDCM2, and ŜDCM3 respec-
tively are the corresponding estimates for the three dominated CFTP methods (Methods 1, 2,
and 3) presented in Section 5.

A standard program used for generating perfect samples of the hard-sphere model using
dominated CFTP is rHardcore(), which is a part of the R package Spatstat, available
at https://spatstat.org. Experiment 3 provides a perspective on the performance of the proposed
method in relation to rHardcore() by comparing their expected running times as a function
of r for a fixed λ. We note that rHardcore() does not support the torus-hard-sphere model.
However, when ‘expand=TRUE’ is selected, it reduces the boundary effects by generating a
perfect sample on a larger window, and then clipping the result to the original window [0, 1]2.

Experiment 1: In this experiment, we consider the high-density regime. Figure 3 compares
the performance of all the algorithms for η= 0.5 (that is, 2η= 1) and r= 1 (this is identical
to the regime where the underlying space is [0,

√
λ]2 and the radius of each sphere is r). This

experiment suggests that the proposed IS-based AR method can perform significantly better
than all the other methods. To show the rarity of the samples of the hard-sphere configurations
under μ0, we plot logP(λ) in Figure 4 and the expected intensity of the hard-sphere model in
Figure 5.
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FIGURE 3. Log of the expected number of points generated per perfect sample of the hard-sphere model,
as a function of λ, in the regime where η= 0.5, d= 2, and r= 1.

FIGURE 4. A plot of log P(λ) versus λ in the regime where η= 0.5, d= 2, and r= 1, where the non-
overlapping probability P(λ) is estimated using the conditional Monte Carlo method proposed in [20].
The plot shows that, in the high-density regime, the configurations with hard spheres can be extremely
rare under the measure μ0.

The significance of the proposed IS method in the high-density regime is more evident
when η= 0.25 (that is, 2η= 0.5) and r= 1. In this case, for values of λ greater than 50, almost
every time, the dominated CFTP algorithms terminated without producing any output. In par-
ticular, the rHardcore function terminated by producing the error ‘memory exhausted (limit
reached?)’. On the other hand, the IS-based method generated 1000 samples in 0.13, 0.21,
68.94, 508.60, and 4315.19 seconds, respectively, for λ values of 50, 100, 200, 300, and 400.

Experiment 2: In this experiment, we consider the low-density regime. Figure 6 compares
the performances of all the methods for 2η= 1.5 and r= 0.5 to illustrate the case where 1 <

ηd < 2. As we can see, for large values of λ, the dominated CFTP methods 2 and 3 perform
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FIGURE 5. The intensity of the hard-sphere model against λ in the regime where η= 0.5, d= 2, and
r= 1. Owing to the extreme rarity of the hard-sphere configurations under μ0, as shown in Figure 4, the
intensity of the hard-sphere model is much smaller than the intensity λ of the PPP.

FIGURE 6. Log of the expected number of points generated per perfect sample of the hard-sphere model,
as a function of λ, in the regime where η= 0.75, d= 2, and r= 0.5.

better than the other methods, including the proposed method. Figure 7 is a plot of log P(λ)
against λ, while Figure 8 is a plot of the intensity of the hard-sphere model against λ.

Experiment 3: Figure 9 compares the running times of the proposed IS-based AR method
and rHardcore() for generating 1000 samples. The same computer is used to run both
programs. Here, we vary r while fixing λ= 50 and 2η= 1. Observe that for large values of r
the density is higher, and the proposed method performs far better than the dominated CFTP
method. As we expect for this regime, as the radius r increases, the intensity of the hard-
sphere model decreases (Figure 11) while the rarity of the hard-sphere configurations under
μ0 increases (Figure 10).

7. Conclusion

In this paper we considered the problem of perfect sampling for Gibbs hard-sphere models
on [0, 1]d. We discussed the performance of the naive AR method and introduced IS-based
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FIGURE 7. A plot of log P(λ) versus λ in the regime where η= 0.75, d= 2, and r= 0.5, where the non-
overlapping probability P(λ) is estimated using the conditional Monte Carlo method proposed in [20].
Here we notice that the hard-sphere configurations are relatively less rare compared to the scenarios in
Experiment 1.

FIGURE 8. The intensity of the hard-sphere model against λ in the regime where η= 0.75, d= 2, and
r= 0.5. Unlike in Experiment 1, the intensity of the hard-sphere model is relatively close to the intensity
λ of the PPP.

enhancements to it. We also compared these methods to some of the popular CFTP-based
techniques prevalent in the existing literature. For performance analysis and comparison (of
expected running time complexity), we developed an asymptotic regime where the intensity
λ of the reference PPP increased to infinity, while the (random) volume of each sphere, of
the order of λ−ηd , decreased to zero, for different regimes of ηd > 0. One main conclusion
is that while the dominated CFTP methods perform better for 1 < ηd < 2 for large λ, our IS-
based methods provide a significant improvement for ηd≤ 1. En route, we established large
deviations results for the probability that spheres do not overlap with each other when their
centers constitute a PPP. We also conducted numerical experiments to validate our asymptotic
results.

The proposed IS-based AR methods rely on cleverly partitioning the underlying configu-
ration space and arriving at an appropriate change of measure on each partition. While we
have shown how this may be effectively conducted for hard-sphere models, further research
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FIGURE 9. Comparison between the running times of the proposed IS-based AR method and
rHardcore() for generating 1000 samples.

FIGURE 10. A plot of log P(λ) versus r in the regime where η= 0.5, d= 2, and λ= 50, where the
non-overlapping probability P(λ) is again estimated using the conditional Monte Carlo method.

FIGURE 11. Intensity of the hard-sphere model against r in the regime where η= 0.5, d= 2, and λ= 50.

https://doi.org/10.1017/apr.2021.1 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.1


Perfect simulation for Gibbs hard-sphere models 867

is needed to develop effective implementations for perfect sampling from a broader class of
Gibbs point processes.
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Appendix A. Proofs

The following lemmas are useful for proving Theorem 3, Proposition 4.1, and
Proposition 4.3. Lemma A.1 is a standard Chernoff bound for Poisson random variables, and
Lemma A.2 is Hoeffding’s inequality for U-statistics [21].

Lemma A.1. (Chernoff bound for Poisson) Let N ∼ Poi(λ). Then, for any 0 < ε < 1,

P (N ≤ (1− ε)λ)≤ exp

(
−λε2

2

)
and P (N ≥ (1+ ε)λ)≤ exp

(
−λε2

3

)
.

Lemma A.2. (Hoeffding, 1963) Suppose that ξ1, ξ2, . . . , ξn are i.i.d. random variables and
g:Rk→ [0, 1] is a measurable function. Set

Zn =
∑

1≤i1<i2<···<ik≤n

g
(
ξi1 , ξi2, . . . , ξik

)

for a positive integer k≤ n (this is known as a U-statistic of order k). Then, for any ε > 0,

P

(
Zn ≥ n

k

(
E[g(ξ1, ξ2, . . . , ξk)]+ ε

))
≤ 2 exp

(
−2	n/k
ε2

)
.

The same estimate holds for P
(

Zn ≤ n
k

(
E[g(ξ1, ξ2, . . . , ξk)]− ε

) )
.

A.1. Proof of Theorem 3.1

Recall that λ > 0, η > 0, and R1
λη , . . . , Rn

λη are the radii of n spheres whose respective centers
Y1, . . . , Yn are independently and uniformly generated on the d-dimensional unit cube [0, 1]d,
where R1, . . . , Rn are i.i.d. positive random variables bounded from above by a constant r and
are independent of Y1, . . . , Yn. Define mi :=E

[
(R1 + R2)id

]
, for all i= 1, 2, . . . . Let Pn(λ)

be the probability that these n spheres do not overlap with each other. Since the number of
spheres in a λ-homogeneous marked PPP on [0, 1]d is a Poisson random variable with mean
λ, the non-overlapping probability is

P(λ)=E [PN(λ)] , (A.1)

where N ∼Poi(λ).
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In proving the theorem, we use the following lemmas, which exploit the reference IS
measure μ̃n introduced in Section 4.2. By (4.7) and the definition of Pn(λ),

Pn(λ)= Pμ0

(
X ∈A

∣∣|X| = n
)

=Eμ̃n

[
I (X ∈A)

n∏
i=1

(
1− Bi

)]

=Eμ̃n

[ n∏
i=1

(
1− Bi

)]
. (A.2)

The following bound holds trivially:

Bi ≤ γ

ληd

i−1∑
j=1

(
Rj + Ri

)d
, (A.3)

where the sum is taken to be zero when i= 1. Let

θn,λ = γ (2r)d n

ληd
.

We have the following upper and lower bounds on Pn(λ).

Lemma A.3. For the above set-up,

Pn(λ)≥ exp

(
− n

∞∑
j=1

( γ n

ληd

)j mj

j(j+ 1)

)
. (A.4)

Furthermore, for any ε > 0,

Pn(λ)≤Nn,λ

[
exp

(
−γ n(n− 1)(m1 − ε)

2ληd

)
+ 2 exp

(
− (n− 1)ε2

(2r)2d

)]
(A.5)

for any n and λ such that θn,λ < 1, where Nn,λ is a function of n, λ, and r, defined by (A.8) in
the proof below, such that

lim
λ→∞

1

λ2−ηd
log Nλ,λ = 0 if ηd > 1. (A.6)

In particular, for the torus-hard-sphere model,

lim
λ→∞Nλ,λ = 1 if ηd > 3/2. (A.7)

Proof. Lower bound: To prove (A.4), notice that, by (A.2),

Pn(λ)=Eμ̃n

[
exp

(
n∑

i=1

log
(

1− Bi

))]
=Eμ̃n

⎡⎣exp

⎛⎝ n∑
i=1

∞∑
j=1

−1

j
Bj

i

⎞⎠⎤⎦ ,

https://doi.org/10.1017/apr.2021.1 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.1


Perfect simulation for Gibbs hard-sphere models 869

using the Taylor expansion log (1− x)=−∑∞j=1 xj/j for 0≤ x≤ 1. By Jensen’s inequality and
(A.3),

Pn(λ)≥ exp

(
−

n∑
i=1

∞∑
j=1

1

j
Eμ̃n [Bj

i]

)

≥ exp

(
−

n∑
i=1

∞∑
j=1

γ j

jλjηd
E

[( i−1∑
l=1

(Rl + Ri)d
)j])

≥ exp

(
−

n∑
i=1

∞∑
j=1

γ j (i− 1)j

jλjηd
E

[(
1

i− 1

i−1∑
l=1

(Rl + Ri)d
)j])

.

Again by Jensen’s inequality,(
1

i− 1

i−1∑
l=1

(
Rl + Ri

)d)j

≤ 1

i− 1

( i−1∑
l=1

(
Rl + Ri

)jd)
,

and thus

Pn(λ)≥ exp

(
−
∞∑

j=1

γ jmj

jλjηd

n∑
i=1

(i− 1)j
)

.

We establish (A.4) using
n∑

i=1

(i− 1)j ≤
∫ n

x=0
xj dx= nj+1

j+ 1
.

Upper bound: Let R(1), R(2), . . . , R(n) be the order statistics of R1, R2, . . . , Rn. Since the
non-overlapping probability Pn(λ) is independent of the order in which the spheres are gener-
ated, without loss of generality assume that the ith sphere has radius R(i). For each 1≤ j≤ i− 1,
let B̃i(j) be the volume of the blocked region for the ith sphere generation when the (j+ 1)th,
(j+ 2)th, . . ., (i− 1)th spheres are ignored, where B̃i(0)= 0. We can think of B̃i(j)− B̃i(j− 1)
as the blocking volume contributed by the jth sphere for the ith sphere. Under the new measure

μ̃n, the blocking volume seen by the ith sphere is Bi =
i−1∑
j=1

(̃
Bi(j)− B̃i(j− 1)

)
. Consider the

sets

N(i) :=
{

j ∈ {1, 2, . . . , i− 1} : B̃i(j)− B̃i(j− 1)= γ

ληd

(
R(j) + R(i)

)d
}

,

for i≤ n, and take N
(i)

:= {1, 2, . . . , i− 1} \N(i). Using the inequality 1− x≤ e−x and (A.2),

Pn(λ)≤Eμ̃n

[
exp

(
−

n∑
i=1

Bi

)]
=Eμ̃n

[
exp

(
−

n∑
i=1

i−1∑
j=1

(
B̃i(j)− B̃i(j− 1)

))]

≤Eμ̃n

[
exp

(
− γ

ληd

n∑
i=1

∑
j∈N(i)

(
R(j) + R(i)

)d
)]
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=Eμ̃n

[
exp

(
− γ (2r)d

ληd
Zn + γ

ληd

n∑
i=1

∑
j∈N (i)

(
R(j) + R(i)

)d
)]

≤Eμ̃n

[
exp

(
− γ (2r)d

ληd
Zn + γ (2r)d

ληd

n∑
i=1

|N (i)|
)]

,

where

Zn =
n∑

i=1

i−1∑
j=1

(
R(j)+ R(i)

2r

)d

,

and the last inequality holds from the assumption that each Ri ≤ r. Since R(i) is non-decreasing

with i, from the definition of N(i), it is easy to see that |N (i)| is non-decreasing with i.
Therefore,

Pn(λ)≤Eμ̃n

[
exp

(
−γ (2r)d

ληd
Zn + θn,λ|N (n)|

)]
=Eμ̃n

[
exp

(
−γ (2r)d

ληd
Zn

)
Eμ̃n

[
exp

(
θn,λ|N (n)|

) ∣∣∣R1, . . . , Rn

]]
.

We now show that |N (n)| is stochastically bounded by a binomial random variable, and as a
consequence, the conditional expectation

Eμ̃n

[
exp

(
θn,λ|N (n)|

) ∣∣∣R1, . . . , Rn

]
is uniformly bounded from above by a constant, which is a function of n, λ, and r. Let

qj = Pμ̃n

(
B̃n(j)− B̃n(j− 1) <

γ

ληd
(R(j)+ R(n))d

)
.

Clearly, qj is increasing with j, and therefore qj ≤ qn−1 for all j≤ n− 1. This implies that

|N (n)| is stochastically bounded by a binomial random variable with parameters n and qn−1,
and thus

Eμ̃n

[
exp

(
θn,λ|N (n)|

) ∣∣∣R1, . . . , Rn

]
≤
(

qn−1 exp
(
θn,λ

)+ (1− qn−1)
)n

.

Because of the boundary effect, qn−1 is not the same for the torus model (where boundary
spheres loop over to the opposite boundaries) and the Euclidean model. Observe that, for the
Euclidean model,

B̃n(n− 1)− B̃n(n− 2) <
γ (R(j)+ R(n))d

ληd

if either

(1) the center of the (n− 1)th sphere is within a distance of (R(j) + R(n−1) + 2R(n))/λη from
the center of the jth sphere for some j≤ n− 2, or

(2) the center of (n− 1)th sphere is within a distance of (R(n−1)+ R(n))/λη from the
boundary of the unit cube.
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Note that the boundary event (2) is irrelevant for the torus-hard-sphere model. The probability
of the event (1) is maximized by

γ

ληd

n−2∑
j=1

(
R(j) + R(n−1)+ 2R(n)

)d

1− Bn−1
,

while that of the event (2) is maximized by

1− (1− 2(R(n−1)+ R(n))/λη
)d

1− Bn−1
.

Since the Ri are bounded from above by r and Bn−1 ≤ θn,λ (from (A.3)), we have

qn−1 ≤ q̄n,λ :=
⎧⎨⎩

2dθn,λ

1−θn,λ
+ c

λη(1−θn,λ) for the Euclidean model,
2dθn,λ

1−θn,λ
for the torus model,

for any n and λ such that θn,λ < 1, and for some constant c. Let

Nn,λ =
(

1+ q̄n,λ

(
exp

(
θn,λ

)− 1
))n

; (A.8)

then

Pn(λ)≤Nn,λ Eμ̃n

[
exp

(
−γ (2r)d

ληd
Zn

)]
.

Using the definition of Zn, for any ε > 0,

Eμ̃n

[
exp

(
−γ (2r)d

ληd
Zn

)]
≤ exp

(
−γ n(n− 1)(m1 − ε)

2ληd

)
+ Pμ̃n

(
Zn <

n(n− 1)(m1 − ε)

2(2r)d

)
.

By Lemma 8 (with k= 2),

Pμ̃n

(
Zn <

n(n− 1)

2

(
m1 − ε

(2r)d

))
≤ 2 exp

(
− (n− 1)ε2

(2r)2d

)
,

and thus (A.5) is established.
It remains to prove (A.6) and (A.7) under the assumption that ηd > 1. For this case, we have

that limλ↗∞ θλ,λ = 0 and hence limλ↗∞ q̄λ,λ = 0. Since

Nλ,λ ≤ exp
(
λ q̄λ,λ

[
exp

(
θλ,λ

)− 1
])

,

using the Taylor expansion of the exponential function,

0≤ lim
λ↗∞

1

λ2−ηd
log Nλ,λ ≤ lim

λ↗∞

⎡⎣q̄λ,λ

∑
j∈N0

γ (j+1)(2r)(j+1)d

(j+ 1)! λj(ηd−1)

⎤⎦= 0.

Thus (A.6) holds. In particular, for the torus model with ηd > 3/2,

λ q̄λ,λ

[
exp

(
θλ,λ

)− 1
]
= λ

2dθλ,λ

1− θλ,λ

[
exp

(
θλ,λ

)− 1
]
= 2d

1− θλ,λ

∞∑
j=2

γ j(2r)jd

j! λ1−j(ηd−1)

goes to 0 as λ↗∞, and hence (A.7) holds. �
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Lemma A.4. Suppose that 1 < ηd≤ 2. Then, for any 0 < a < 0.5,

P(λ)≥ exp

⎛⎜⎝− ∞∑
j=1

λj(1−ηd)+1
(

1+ 1
λa

)j+1
γ j mj

j(j+ 1)

⎞⎟⎠ [1− o(1)] . (A.9)

Furthermore, let λ̄= �λ(1− 1
λa ) for some constant a such that 0 < a <

ηd−1
2 . Then, for any

ε > 0,

P(λ)≤Nλ,λ exp

(
−γ λ̄2 (m1 − ε)

2ληd

)
[1+ o(1)] , (A.10)

where Nλ,λ satisfies (A.6) and (A.7). In particular, (A.9) holds with ε = 0 if ηd > 5/3 and
2− ηd < a <

ηd−1
2 .

Proof. Lower bound: Fix a such that 0 < a < 0.5. Since Pn(λ) is a decreasing function of

n for any fixed λ, by Lemma 8.1, we can say that for all n < λ
(

1+ 1
λa

)
,

Pn(λ)≥ exp

⎛⎜⎝− ∞∑
j=1

λj(1−ηd)+1
(

1+ 1
λa

)j+1
γ j mj

j(j+ 1)

⎞⎟⎠ ,

and from (A.1) and the Chernoff bound for the Poisson variable N (see Lemma A.1),

P(λ)≥E

(
PN(λ); N < λ

(
1+ 1

λa

))

≥ P

(
N < λ

(
1+ 1

λa

))
exp

⎛⎜⎝− ∞∑
j=1

λj(1−ηd)+1
(

1+ 1
λa

)j+1
γ j mj

j(j+ 1)

⎞⎟⎠
≥
(

1− exp

(
−1

3
λ1−2a

))
exp

⎛⎜⎝− ∞∑
j=1

λj(1−ηd)+1
(

1+ 1
λa

)j+1
γ j mj

j(j+ 1)

⎞⎟⎠ .

Now (A.9) follows easily because exp
(
− 1

3λ1−2a
)
= o(1) as a function of λ.

Upper bound: From (A.1),

P(λ)=E[PN(λ)]≤E[PN(λ);N ≥ λ̄]+ P(N < λ̄)≤Pλ̄ (λ)+ P(N < λ̄), (A.11)

where the last inequality is due to the fact that Pn(λ) is a decreasing function of n for fixed λ.
We now analyze Pλ̄ (λ) and P(N < λ̄) separately.

By Lemma A.3, for any ε > 0,

Pλ̄ (λ)≤Nλ,λ

[
exp

(
−γ λ̄(λ̄− 1) (m1 − ε)

2ληd

)
+ 2 exp

(
− λ̄ ε2

(2r)2d

)]
≤Nλ,λ

[
exp

(
−γ λ̄2 (m1 − ε)

2ληd

)
exp

( γ m1

2ληd−1

)
+ 2 exp

(
− λ̄ ε2

(2r)2d

)]
,
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where we used the fact that λ̄≤ λ. We rewrite the above expression as follows:

Pλ̄ (λ)≤Nλ,λ exp

(
−γ λ̄2 (m1 − ε)

2ληd

)(
exp

( γ m1

2ληd−1

)
+ 2 exp

(
γ λ̄2 m1

2ληd
− λ̄ ε2

(2r)2d

))
.

Note that
γ λ̄2 m1

2ληd
=O

(
λ2−ηd

)
and

λ̄ ε2

(2r)2d
=� (λ) .

Since ηd > 1,

2 exp

(
γ λ̄2 m1

2ληd
− λ̄ ε2

(2r)2d

)
≤ 2 exp

(
−λ̄

(
ε2

(2r)2d
− γ m1

2ληd−1

))
−→ 0 as λ→∞, (A.12)

and since
lim

λ→∞ exp
( γ m1

2ληd−1

)
= 1,

we can say that the first term Pλ̄ (λ) in (A.11) satisfies the following inequality:

Pλ̄ (λ)≤Nλ,λ exp

(
−γ λ̄2 (m1 − ε)

2ληd

)
[1+ o(1)] .

By Lemma A.1,

P
(
N ≤ λ̄

)≤ P

(
N ≤ λ

(
1− 1

λa

))
≤ exp

(
−λ1−2a

2

)
. (A.13)

Since 2a < 1 (because ηd≤ 2), we have 1− 2a > 2− ηd, and hence, using (A.13) and the fact
that Nλ,λ ≥ 1,

exp
(

γ λ̄2(m1−ε)
ληd

)
P
(
N ≤ λ̄

)
Nλ,λ

≤ exp

(
γ λ̄2(m1 − ε)

2ληd
− λ1−2a

2

)
−→ 0 as λ→∞. (A.14)

Therefore (A.10) follows from (A.11) and (A.14).
In particular if ηd > 5/3, we choose a such that 2− ηd < a <

ηd−1
2 . Let ε = 1/λa. Then

(A.12) and (A.14) hold. We complete the proof using the fact that

lim
λ→∞ exp

(
γ λ̄2 ε

2ληd

)
= 1. �

Proof of Theorem 3.1. The following upper and lower bounds together complete the proof.
Lower bounds: Consider the inequality (A.9).
Case: ηd > 2. Since R≤ r, we have mj ≤ (2r)jd. Thus, for ηd > 2, all the terms in the

exponent of the right-hand side of (A.9) go to zero asymptotically. In other words, for any
0 < a < 0.5,

lim
λ→∞

∞∑
j=1

λj(1−ηd)+1
(

1+ 1
λa

)j+1
γ j mj

j(j+ 1)
= 0.
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This means that limλ→∞ P(λ)= 1 for ηd > 2.
Case: 3/2 < ηd ≤ 2. Using (A.9),

P(λ) exp
(γ m1

2
λ2−ηd

)
is bounded from below by

exp

⎛⎜⎝O
(
λ2−ηd−a

)
−
∞∑

j=2

λj(1−ηd)+1
(

1+ 1
λa

)j+1
γ j mj

j(j+ 1)

⎞⎟⎠ [1− o(1)] .

By fixing a > 2− ηd, we see that the right-hand side of the above expression goes to 1 as
λ↗∞. Thus,

lim inf
λ→∞

[
P(λ) exp

(γ m1

2
λ2−ηd

)]
≥ 1.

Case: 1 < ηd ≤ 3/2. By applying log on both sides of (A.9), we have for any 0 < a < 0.5
that

logP(λ)≥ log (1− o(1))−
∞∑

j=1

λj(1−ηd)+1
(

1+ 1
λa

)j+1
γ j mj

j(j+ 1)
,

and we see that

1

λ2−ηd

∞∑
j=1

λj(1−ηd)+1
(

1+ 1
λa

)j+1
γ j mj

j(j+ 1)
=
(

1+ 1
λε

)2
γ m1

2
+
∞∑

j=2

(
1+ 1

λa

)j+1
γ j mj

λ(j−1)(ηd−1)j(j+ 1)
.

Thus

lim inf
λ→∞

1

λ2−ηd
logP(λ)≥−γ m1

2

for ηd > 1.
Case: 0 < ηd ≤ 1. Configurations with one sphere or no sphere are always accepted; that is,

P1(λ)=P0(λ)= 1. The probability of generating no sphere is e−λ. Consequently,P(λ) > e−λ,
and for any ηd > 0,

lim inf
λ→∞

[
1

λ
logP(λ)

]
≥−1. (A.15)

In particular, assume that ηd= 1. For this case, first we show that the limit

δ := limλ→∞
[

1
λ

logP(λ)
]

exists. To prove this, partition the cube [0, 1]d into a cubic grid

of cell-edge length x1/d ∈ (0, 1). Ignore the cells at the boundary that have edge length strictly
smaller than x1/d. The total intensity of the underlying PPP over a cell is then λx.

When ηd= 1, the radius of each sphere is identical in distribution to R/λ. Observe that
the non-overlapping probability of the spheres restricting to a cell is P(λx) (see the defini-
tion of the non-overlapping probability). Since the total number of cells is at least 1/x, the

non-overlapping probability P(λ)≤ (P(λx))
1
x , and thus 1

λ
logP(λ)≤ 1

λx logP(λx). We can
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increase λ and decrease the cell-edge length x1/d so that y := λx is fixed. Then the following
inequality holds:

lim sup
λ→∞

[
1

λ
logP(λ)

]
≤ 1

y
logP(y) < 0.

Now the existence of the required limit is established by applying the limit on y:

lim sup
λ→∞

[
1

λ
logP(λ)

]
≤ lim inf

y→∞

[
1

y
logP(y)

]
.

To show that δ↗ 0 as γ m1↘ 0, assume that γ m1 < ε for a constant ε ∈ (0, 1). By (A.2) and
(A.3),

Pn(λ)≥E

⎡⎣n−1∏
i=1

(
1− γ

λ

i∑
k=1

(Rk + Ri)d

)+⎤⎦ .

Consider the following partial order on R
n+: for any y, y′ ∈Rn+, we say that y� y′ if yi ≤ yi

′ for
all i= 1, . . . , n. A function f : Rn+→R is called increasing (or decreasing) if f (y)≤ f (y′) (or
f (y)≥ f (y′)) for all y, y′ ∈Rn+ such that y� y′. If f and g are either increasing or decreasing
functions, then Theorem 2.4 of [17] (the Fortuin–Kasteleyn–Ginibre (FKG) inequality) can be
trivially extended to show that E[f (Y)g(Y)]≥E[f (Y)]E[g(Y)]. Clearly the following function
fi is a decreasing function on R

n+:

fi(y)=
(

1− γ

λ

i∑
k=1

(yk + yi)d

)+
.

Therefore,

E

⎡⎣n−1∏
i=1

(
1− γ

λ

i∑
k=1

(Rk + Ri)
d

)+⎤⎦≥ n−1∏
i=1

E

⎡⎣(1− γ

λ

i∑
k=1

(Rk + Ri)
d

)+⎤⎦ .

Using the convexity of the function x+ and Jensen’s inequality, for each i,

E

⎡⎣(1− γ

λ

i∑
k=1

(Rk + Ri)d

)+⎤⎦≥ (1− i
γ m1

λ

)+
,

and thus

Pn(λ)≥
n−1∏
i=1

(
1− i

γ m1

λ

)+
.

With λ= 	λ+ λ0.75
 and N ∼ Poi(λ),

P(λ)=
∞∑

n=0

e−λ λn

n! Pn(λ)≥
λ∑

n=0

e−λ λn

n! Pn(λ)≥Pλ(λ)P
(
N ≤ λ

)
.
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By applying log on both the sides of the above inequality and scaling with 1/λ, we obtain

1

λ
logP(λ)≥ 1

λ
logPλ(λ)+ 1

λ
log P

(
N ≤ λ

)
.

From the definition of λ and Lemma A.1, the second term, 1
λ

log P
(
N ≤ λ

)
, goes to zero as

λ↗∞. We now focus on the first term, 1
λ

logPλ(λ). Since γ m1 < ε < 1, for all i≤ λ,

i

λ

γ m1

ε
<

λ

λ

γ m1

ε
≤
(

1+ 1

λ0.25

)
γ m1

ε
≤ 1,

for large values of λ. Thus, we can write using Bernoulli’s inequality that

Pλ(λ)≥
λ∏

i=1

(
1− i

γ m1

λ

)
=

λ∏
i=1

(
1− ε

iγ m1

ελ

)
≥

λ∏
i=1

(1− ε)
iγ m1
ελ

for large values of λ. Therefore, by combining the trivial bound (A.15) and the above
conclusions,

δ ≥max

(
−1,

γ m1

2

[
log (1− ε)

ε

])
−→ 0 as γ m1↘ 0.

Upper bounds: We have a complete proof of the large deviations of P(λ) for the case
ηd > 2. So it remains to prove the theorem for 0 < ηd≤ 2. We first prove the required upper
bounds for the case 1 < ηd≤ 2. If 0 < a < 0.5 and λ̄= �λ(1− 1

λa ), then from Lemma A.4, for
any ε > 0,

P(λ)≤Nλ,λ exp

(
−γ λ̄2 (m1 − ε)

2ληd

)
[1+ o(1)] . (A.16)

(A.17)

Case: ηd > 1. By applying log on both sides of (A.16) and then dividing by λ2−ηd, we see
that

1

λ2−ηd
log P(λ)≤−γ (m1 − ε)

2

(
1+ 1

λa

)2

+ 1

λ2−ηd
log Nλ,λ + 1

λ2−ηd
log [1+ o(1)].

As a consequence of Lemma A.3,

lim sup
λ→∞

1

λ2−ηd
log P(λ)≤−γ (m1 − ε)

2
.

Now take ε↘ 0.
In particular, consider the torus-hard-sphere model with 5/3 < ηd≤ 2. We can fix a such

that 2− ηd < a <
ηd−1

2 . From Lemma A.4, (A.16) holds with ε = 0. Therefore,

P(λ) exp
(γ m1

2
λ2−ηd

)
≤Nλ,λ exp

(
O
(
λ2−ηd−a

))
[1+ o(1)] ,
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and hence
lim sup
λ→∞

[
P(λ) exp

(γ m1

2
λ2−ηd

)]
≤ 1

from Lemma A.3.
Case: 0 < ηd < 1. Let λ=	λ 1+ηd

2 
 and N ∼ Poi(λ). From the definition,

P(λ)=E [PN(λ)]≤ P
(
N ≤ λ

)+E
[
PN(λ); N ≥ λ+ 1

]
. (A.18)

For any ε > 0, let Hn(ε) :=
{

1
n

∑n
i=1 Rd

i > ε
}

. From (4.8),

Pn+1(λ)≤E

⎡⎣ n∏
i=1

⎛⎝1− γ ′

ληd

i∑
j=1

Rd
j

⎞⎠+⎤⎦≤ P

(
Hc

n

(
ληd

γ ′n

))
≤ P

(
Hc

n

(
ληd

γ ′λ

))
,

where the second inequality holds because⎛⎝1− γ ′

ληd

n∑
j=1

Rd
j

⎞⎠+ = 0

on Hn

(
ληd

γ
′n
)

. Since ηd < (ηd+ 1)/2 < 1, we see that ληd

γ
′
λ
↘ 0 as λ↗∞, and thus for every

ε > 0 there exists λε such that

Pn+1(λ)≤ P
(
Hc

n (ε)
)

for all λ > λε and n > λ.
Suppose there is a constant c > 0 such that R≥ c. Then for all sufficiently small values of ε,

P
(
Hc

n (ε)
)= 0 for all n > λ. Thus for large values of λ, P(λ)≤ P

(
N ≤ λ

)≤ e−λλλ, and from
the definition of λ,

lim sup
λ→∞

1

λ
logP(λ)≤−1+ lim sup

λ→∞

[
λ log λ

λ

]
=−1.

So we can assume that P(R < ε) > 0 for every ε > 0. Recall that P(R > 0)= 1 and �(θ ) is
the logarithmic moment generating function of Rd. As a consequence of positivity of R, we
see that �(θ )↘−∞ as θ↘−∞. Let �∗(x)= supθ∈R {θx−�(θ )}. As a consequence of the
assumption that P(R < ε) > 0 for every ε > 0, we can show that �∗(x)↗∞ as x↘ 0. From
Theorem 2.2.3 of [10],

P
(
Hc

n (ε)
)≤ 2 exp

(
−n inf

x≤ε
�∗(x)

)
= 2 exp

(−n�∗(ε)
)

for all n > λ and ε <E[Rd
1], where the last inequality holds because �∗(x) is non-decreasing

over 0 < x≤E[Rd
1]. By (A.18),

P(λ)≤ P
(
N ≤ λ

)+ P
(
Hc

N (ε) ;N ≥ λ+ 1
)≤ P

(
N ≤ λ

)+ P
(
Hc

N (ε)
)

≤ P
(
N ≤ λ

)+ 2 exp
(
−λ

(
1− e−�∗(ε)

))

https://doi.org/10.1017/apr.2021.1 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.1


878 S. JUNEJA ET AL.

for all λ≥ λε . To conclude that lim supλ→∞ 1
λ

logP(λ)≤−1, we see from the definition of
Poisson distribution and λ that

P
(
N ≤ λ

)= λ∑
n=0

e−λ λn

n! ≤ λe−λ

(
λλ

λ!
)
≤ e−λλλ,

where we used the fact that λn−1/(n− 1)!< λn/n! for all n < λ. Hence,

P(λ)≤ 2 exp
(
−λ

(
1− e−�∗(ε)

)) (
1+ λλ exp

(−λ�∗(ε)
))

= 2 exp
(
−λ

(
1− e−�∗(ε)

)) (
1+ exp

(
−λ

(
�∗(ε)− λ

λ
log λ

)))
.

From the definition of λ, we see that λ

λ
log λ↘ 0 as λ↗∞. As a consequence, as λ↗∞,

exp
(
−λ

(
�∗(ε)− λ

λ
log λ

))
goes to zero. Therefore,

lim sup
λ→∞

1

λ
logP(λ)≤−

(
1− e−�∗(ε)

)
.

We have the required result by taking ε↘ 0.
Case: ηd = 1. It remains to show that

δ ≤−1

2

(
1− 1

γ ′rd

)2

if R≡ r and γ ′rd > 1. Since, from (4.8),

Pn+1(λ)≤
n∏

i=1

(
1− γ ′

λ
ird
)+
= 0

for all n > λ λ

γ
′rd , we have P(λ)≤ P

(
N ≤ λ λ

γ
′rd

)
. Now the proof is complete by

Lemma A.1. �

A.2. Proof of Proposition 3.1

From [29], the intensity of the torus-hard-sphere model is given by

ρ(λ)=
∑∞

n=1 n λn

n! Pn(λ)∑
n∈N0

λn

n! Pn(λ)
= λ

∑
n∈N0

λn

n! Pn+1(λ)∑
n∈N0

λn

n! Pn(λ)
,

where Pn(λ) is the non-overlapping probability of n uniformly and independently generated
spheres with radius r/λη.

Case ηd > 1. In this regime, we show that ρ(λ) is of the order of γ rdλ1−ηd . Using
inequalities (4.8) and (A.3),(

1− nγ rdλ−ηd
)
Pn(λ)≥Pn+1(λ)≥

(
1− nγ 4rdλ−ηd

)
Pn(λ).
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Therefore,

ρ(λ)≥ λ

∑
n∈N0

λn

n!
(
1− n4rdλ−ηd

)
Pn(λ)∑

n∈N0
λn

n!Pn(λ)
≥ λ− γ 4rdλ1−ηdρ(λ),

and

ρ(λ)≤ λ

∑
n∈N0

λn

n!
(
1− nrdλ−ηd

)
Pn(λ)∑

n∈N0
λn

n!Pn(λ)
≤ λ− γ rdλ1−ηdρ(λ).

Consequently,(
1

1+ γ 4rdλ1−ηd

)
γ rdλ1−ηd ≤ ρ(λ)γ rdλ−ηd ≤

(
1

1+ γ rdλ1−ηd

)
γ rdλ1−ηd,

and thus

lim
λ↗∞

VF(λ)

γ rdλ1−ηd
= 1.

Case ηd ≤ 1. We now show that limλ↗∞ VF(λ)≤ ρmaxγ with equality if and only if

ηd < 1. Towards this end, we first consider another torus-hard-sphere model on [0, λη/r]d

with unit-radius spheres and absolutely continuous with respect to a κ-homogeneous PPP for
some intensity κ > 0. Let ρ(κ, λ) be the intensity of this new hard-sphere model. We can eas-
ily see that when κ = rdλ1−ηd, the fraction of the volume occupied by the spheres in the new
hard-sphere model is also VF(λ).

The proofs of Propositions 1 and 2 in [29] can easily be modified to show that ρ(κ, λ) is
strictly increasing in κ for any fixed λ > 0, and

lim
κ→∞ ρ(κ, λ)= ρmax,

where ρmax is the closest packing density. On the other hand, by fixing κ , we can further
show, using [29], that the limit limλ→∞ ρ(κ, λ) exists and is equal to the intensity of the
stationary hard-sphere model on R

d with unit-radius spheres and the reference PPP being κ-
homogeneous. (In fact, the difference between ρ(κ, λ) and the limit limλ→∞ ρ(κ, λ) is known
to be insignificant for large values of λ; see, for example, [5].)

From the above discussion, when ηd < 1, for sufficiently small ε > 0, there exist constants
κε and λε such that ρ(κ, λ) > ρmax − ε for all λ > λε and κ > κε . If we take κ = rd λ1−ηd, since
ηd < 1,

lim
λ→∞VF(λ)= lim

λ→∞

[
ρ(rdλ1−ηd, λ)γ

]
= ρmaxγ,

which is the maximum packing intensity.
Finally, if ηd= 1 and κ = rd , the limit limλ→∞ ρ(rd, λ) is strictly less than ρmax. Hence,

we have limλ→∞ VF(λ) < ρmaxγ .

A.3. Proof of Proposition 4.1

Let N′ be the number of spheres generated sequentially, independently and identically,
before seeing an overlap. Let N ∼Poi(λ) independently of N′. Then from the construction
of Algorithm 4.1,

c E

⎡⎣min (N,N′)∑
n=1

(n− 1)

⎤⎦≤Citr(λ)≤ c′
⎛⎝log (λ)+E

⎡⎣min (N,N′)∑
n=1

(n− 1)

⎤⎦⎞⎠ (A.19)
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for some positive constants c and c′. In the above expression, log (λ) appears because the cost
to generate a sample of N is at most of order log (λ) (see e.g. [11]). Observe that

E

⎡⎣min (N,N′)∑
n=1

(n− 1)

⎤⎦=E

[
N−1∑
n=0

nI(N′> n)

]
=E

[
N−1∑
n=1

nPn(λ)

]
, (A.20)

where the last equality follows from the fact that P(N′ > n)=Pn(λ).

Upper bound: For ηd≥ 2, since Pn(λ)≤ 1, we can bound (A.20) from above by a constant
times E[N2], which is further bounded from above by a constant times λ2. Therefore we just
need to consider the case ηd < 2. From (A.2),

Pn(λ)=Eμ̃n

[
n∏

i=1

(
1− Bi

)]
.

As a consequence of (4.8),

Pn(λ)≤E

⎡⎣exp

⎛⎝− γ ′

ληd

∑
1≤j<i≤n

Rd
j

⎞⎠⎤⎦=E

⎡⎣exp

⎛⎝−γ ′rd

ληd

∑
1≤j<i≤n

Rd
j

rd

⎞⎠⎤⎦ .

Let α=E[Rd
1]. Since r is an upper bound on the Ri, by Hoeffding’s inequality (Lemma A.2)

on the sequence {Rd
1/rd, . . . , Rd

n/rd} with ε = α/2rd , k= 2, and g(x, y)= x, we have

Pn(λ)≤ exp

(
− γ ′

2ληd

n(n− 1)

2
α

)
+ P

⎛⎝ ∑
1≤j<i≤n

Rd
j

rd
≤ α

2rd

⎞⎠
≤ exp

(
−γ ′(n− 1)2

4ληd
α

)
+ exp

(
− nα2

4r2d

)
.

Let a=
√

2ληd

γ
′
α

. Then from the above expression,

∞∑
n=1

n Pn(λ)≤
∞∑

n=1

n exp

(
− (n− 1)2

2a2

)
+
∞∑

n=1

n exp

(
− nα2

4r2d

)
. (A.21)

Select λ large enough so that b > 0. Then with p= 1− exp (− α2/(4r2d)), the second term on
the right side of (A.21) is 1/p times E [Z] for a geometric random variable Z with success prob-
ability p and support {1, 2, 3, . . . }. Since E [Z]= 1/p, the term

∑∞
n=1 n exp

(−nα2/(4r2d)
)

is
bounded from above by a constant.

On the other hand, since

n exp
(
−(n− 1)2/(2a2)

)
≤
∫ n−1

n−2
(x+ 2) exp

(
− x2

2a2

)
for any non-negative integer n, we can write that

∞∑
n=1

n exp

(
− (n− 1)2

2a2

)
≤ 1+

∫ ∞
0

(x+ 2) exp

(
− x2

2a2

)
dx= 1+ a

√
π

2
E
[(∣∣Z∣∣+ 2

)]
,
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where Z is a Gaussian random variable with mean 0 and variance a2. Since E[|Z|]= a
√

2/π ,
using the definition of a, the first term in (A.21) is bounded from above by a constant times
ληd . Thus, the required upper bound on (A.19) is established as a consequence of (A.20) and
(A.21).

Lower bound: Let ε′ =min (1, ηd/2). Then from (A.20),

Citr(λ)≥ P

(
N > λε

′
/2
) 	λε

′
/2
+1∑

n=1

nPn(λ)≥ c P	λε
′
/2
(λ)

(
λε
′

2

)2

for a constant c > 0. From (A.4),

P	λε
′
/2
(λ)≥ exp

⎛⎝−λε
′

2

∞∑
j=1

(
γ λε
′

2ληd

)j
mj

j(j+ 1)

⎞⎠≥ exp

⎛⎝−λε
′

2

∞∑
j=1

(
γ λε
′

2ληd

)j
mj

j

⎞⎠ ,

where mj =E
[
(R1 + R2)jd

]
. Note that mj ≤ (2r)jd since R≤ r. Therefore,

P	λε
′
/2
(λ)≥ exp

⎛⎝−λε
′

2

∞∑
j=1

1

j

(
γ (2rd)

2ληd−ε
′

)j
⎞⎠ .

Using the Taylor expansion of log (1− x) for 0 < x < 1, along with the fact that

γ (2rd)

2ληd−ε
′ < 1

for sufficiently large values of λ, we have

P	λε
′
/2
(λ)≥ exp

(
λε
′

2
log

(
1− γ (2rd)

2ληd−ε
′

))
=
(

1− γ (2rd)

2ληd−ε
′

) λε
′

2

.

From the definition of ε′,

lim
λ→∞

⎡⎢⎢⎣
(

1− γ (2rd)

2ληd−ε
′

) λε
′

2

⎤⎥⎥⎦=
{

1 if ηd > 2,

exp
(−γ (2r)d/4

)
if 0 < ηd≤ 2.

In addition, from Lemma A.1, limλ→∞ P

(
N > λε

′
/2
)
= 1. Therefore, there exists a constant

c such that Citr(λ)≥ c λ2ε
′
. The proof of Proposition 4.1 is then complete by Theorem 3.1 and

(4.1).

A.4. Proof of Proposition 4.3

First note that the sphere volume is at most a constant times the cell volume for all λ.
Thus, after generating a sphere, the complexity of relabeling cells around the center of the
new sphere plus the complexity of the overlap check is a constant. For ηd > 1, the number of
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spheres generated in an iteration of Algorithm 4.5 is stochastically dominated by a Poisson
random variable with rate λ. Therefore, there exists a constant c such that C̃itr(λ)≤ c λ. On the
other hand, if 0 < ηd≤ 1, the expected number of spheres generated per iteration is of order
ληd , because the expected volume of each sphere is of order 1/ληd . It is clear that there exists
a constant c > 0 such that C̃itr(λ)≤ c ληd. Thus, by (4.6) and Proposition 4.1,

TISAR ≤ c
λmin (1,ηd)

Pacc(λ)
= c E[̃σ (N)]

λmin (1,ηd)

P(λ)
.

Thus, (4.11) holds, because σ̃ (n)= δn for each n∈N0. Furthermore, from the definition of
σ̃ ( · ) and N,

E [δN]≤E

[
exp

(
−

N∑
i=0

(i− 1)γ ′ rd

ληd

)]
=E

[
exp

(
−γ ′ rd

2ληd

(N − 1)N

2

)]
.

By the Chernoff bound (Lemma A.1), for any 0 < ε < 1,

E

[
exp

(
−γ ′ rd

ληd

(N − 1)N

2

)]
≤E

[
exp

(
−γ ′ rd

ληd

(N − 1)N

2

)
; N > λ (1− ε)

]
+ P (N ≤ λ (1− ε))

≤ exp

(
−γ ′rd

2
(1− ε) λ2−ηd

)
+ exp

(
−λε2

2

)
.

If ηd > 1, then the second term on the right-hand side of the above expression decreases faster
than the first term, and thus the claim holds true. For ηd= 1, take ε = 1/2; then we have
the required result with b=min

(
1/8, γ rd/4

)
. Furthermore, if 0 < ηd < 1 then the first term

decreases faster than the second one, and hence the proof is completed by taking b= 1/2.

A.5. Proof of Theorem 5.1

To derive the lower bound on TDC1, we view the entire dominating process D as a Poisson
Boolean model on a higher-dimensional space and use an extension of the FKG inequality [31]
(alternatively, see Theorem 2.2 in [31]). Let s0 = 0, and let si be the instant of the ith arrival
in the dominating process after time zero. Let C(x, xu, xl) be the running time complexity of
updating the dominating, upper bound, and lower bound processes at the instant of an arrival
when their respective states are x, xu, and xl.

Since U0(0)=D(0) and L0(0)=∅, on
⋂i

j=0{D(sj) /∈A}, for all t≤ si,

L0(t)=∅ and U0(t)=D(t). (A.22)

Thus, L0(t) �=U0(t) for all t≤ si on
⋂i

j=0{D(sj) /∈A}. Now take

τ = inf {i ∈N0 : D(si) ∈A} .
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From the above conclusion, it is clear that Nf ≥ τ . Then,

TDC1 ≥E

⎡⎣ Nf∑
i=0

C
(

D(si), U0(si), L0(si)
)⎤⎦

≥E

[
τ∑

i=0

C
(

D(si), U0(si), L0(si)
)]

=
∞∑

i=0

E

[
C
(

D(si), U0(si), L0(si)
)

; τ ≥ i
]

=
∞∑

i=0

E

⎡⎣C
(

D(si), U0(si), L0(si)
)

;
i−1⋂
j=0

{
D(sj) /∈A

}⎤⎦
=
∞∑

i=0

E

⎡⎣C
(

D(si), D(si),∅
)

;
i−1⋂
j=0

{
D(sj) /∈A

}⎤⎦ ,

where I
(
∩−1

j=0

{
D(sj) /∈A

})= 1 and the last equality follows from (A.22).

Suppose that D is the state space of the entire process {D(t) : t ∈R}. Then we can define
a simple partial order on D as follows. For any ω, ω′ ∈D, we say ω�ω′ if and only if
every sphere present in ω is also present in ω′; that is, either ω′ =ω or ω′ is obtained by
adding spheres to ω. We then define the following notion of increasing functions: a real-valued
function on D is increasing if f (ω)≤ f (ω′) for all ω, ω′ ∈D such that ω� ω′.

At each arrival, if there are n points in the upper bounding process, the cost of deciding
whether to accept the new point is at least the cost of checking the overlap condition in the

upper bounding process, and that cost is of order n. Therefore, C
(

D(si), U0(si),∅
)
= c|U0(si)|

for some constant c. Since |U0(si)| is a non-decreasing function on D as per the partial order
stated above, by the FKG inequality (Theorem 2.2 in [31]),

E

⎡⎣C
(

D(si), D(si),∅
)

;
i−1⋂
j=0

{
D(sj) /∈A

}⎤⎦
is bounded from below by

E

[
C
(

D(si), D(si),∅
)] i−1∏

j=0

P
(
D(sj) /∈A

)
.

Thus,

TDC1 ≥
E

[
C
(

D(s1), D(s1),∅
)]

1− P (D(s1) /∈A)
= Eμ0 [|X|]

Pμ0 (X ∈A)
= c

λ

P(λ)

for some constant c > 0. Then (5.2) follows from (4.1) and (4.2). The proof is completed using
Theorem 3.1.
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