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Abstract Suppose that G is a simple reductive group over Q, with an exceptional Dynkin type and with
G(R) quaternionic (in the sense of Gross–Wallach). In a previous paper, we gave an explicit form of the

Fourier expansion of modular forms on G along the unipotent radical of the Heisenberg parabolic. In this
paper, we give the Fourier expansion of the minimal modular form θGan on quaternionic E8 and some
applications. The Sym8(V2)-valued automorphic function θGan is a weight 4, level one modular form on

E8, which has been studied by Gan. The applications we give are the construction of special modular
forms on quaternionic E7, E6 and G2. We also discuss a family of degenerate Heisenberg Eisenstein series
on the groups G, which may be thought of as an analogue to the quaternionic exceptional groups of the

holomorphic Siegel Eisenstein series on the groups GSp2n .
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1. Introduction

This paper is a sequel to paper [18]. In [18], we studied ‘modular forms’ on the

quaternionic exceptional groups, following the beautiful work of Gan–Gross–Savin [6] and

Wallach [21]. We proved that these modular forms possess a refined Fourier expansion,
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similar to the Siegel modular forms on the symplectic groups GSp2n . This is, in a sense,

a purely Archimedean result: The representation theory at the infinite place on the

quaternionic exceptional groups forces the modular forms to have a robust theory of the

Fourier expansion.

Suppose that G/Q is a quaternionic exceptional group of adjoint type. The maximal

compact subgroup K∞ ⊆ G(R) is (SU(2)× L)/µ2 for a certain group L. Denote by Vn =

Sym2n(V2)� 1 the representation of K∞ = (SU2×L)/µ2 that is the (2n)th symmetric

power of the defining representation V2 of SU(2) and the trivial representation of L.

Recall from [18] that if n > 1 is an integer, a modular form on G of weight n is a smooth,

moderate growth function F : G(Q)\G(A)→ V∨n that satisfies

(1) F(gk) = k−1
· F(g) for all k ∈ K∞ ⊆ G(R) and

(2) Dn F = 0.

Here, Dn is a certain first-order differential operator, closely related to the so-called

Schmid operator for the quaternionic discrete series representations on G(R). It is that

F is annihilated by Dn that is the crucial piece of the definition of modular forms.

There is a weight 4, level one modular form on quaternionic E8 that is associated

with the automorphic minimal representation, studied by Gan [2, 3], which we denote

by θGan . The automorphic minimal representation is spherical at every finite place, but

is not spherical at infinity; at the Archimedean place, it has minimal K∞-type V4. If

v ∈ V4, then pairing θGan with v gives the vector in the minimal representation that is

v at the Archimedean place and spherical at all the finite places. Our main result is

the complete and explicit Fourier expansion of this modular form. See Theorem 1.0.1.

Using θGan , we construct special modular forms on E7, E6 and G2; see Corollaries 1.0.2

and 1.0.3. Moreover, we study a family of absolutely convergent Eisenstein series on the

quaternionic exceptional groups and prove that all their nontrivial Fourier coefficients

are Euler products; see Theorem 3.2.5.

To set up the statements of these results, let us recall from [18] the shape of the

Fourier expansion of modular forms on the quaternionic exceptional groups. Thus suppose

G = G J is a quaternionic exceptional group of adjoint type, associated with a cubic norm

structure J over Q with positive definite trace form. Then G has a rational Heisenberg

parabolic PJ = HJ NJ , with Levi subgroup HJ and unipotent radical NJ . The group NJ ⊇

N0 is a two-step unipotent group, with center N0 = [N , N ] and abelianization N/N0 '

WJ . Here WJ = Q⊕ J ⊕ J∨⊕Q is Freudenthal’s defining representation of the group HJ
(see [17, 18]).

Suppose F is a modular form of weight n for G. Denote by F0 the constant term of F
along N0, i.e.,

F0(g) =
∫

N0(Q)\N0(A)
F(ng) dn.

A simple argument using the left invariance of F under G(Q) proves that F0 determines

F for the groups studied in [18]. The Fourier expansion of F0 is then given as follows:

For x ∈ (N/N0)(R) ' WJ (R) and g ∈ HJ (R),

F0(xg) = F00(g)+
∑

ω∈WJ (Q),ω>0

aF (ω)e2π i〈ω,x〉W2πω(g),
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where the notation is as follows:

• F00 denotes the constant term of F along N ;

• aF (ω) is the Fourier coefficient associated with ω;

• 〈·, ·〉 is Freudenthal’s symplectic form on WJ ;

• Wω : HJ (R)→ V∨n is a special function on HJ (R) defined in terms of the K -Bessel

functions Kv(·) for v ∈ {−n,−n+ 1, . . . , n− 1, n} and the element ω ∈ WJ (R).
Denote by x, y the fixed basis of V2 from [18] so that {x2n, x2n−1 y, . . . , xy2n−1, y2n

} is a

basis of Vn . The basis elements xn+v yn−v of Vn are essentially characterized by the fact

that k · xn+v yn−v
= j (k, i)vxn+v yn−v for k ∈ K 1

H a certain compact subgroup of HJ (R)
and j the factor of automorphy on HJ specified in loc. cit.; see [18, § 9]. Then

Wω(g) =
∑

−n6v6n

Wv
ω(g)

xn+v yn−v

(n+ v)!(n− v)!
(1)

with

Wv
ω(g) = ν(g)

n
|ν(g)|

(
|〈ω, gr0(i)〉|
〈ω, gr0(i)〉

)v
Kv(|〈ω, gr0(i)〉|) (2)

and r0(i) = (1,−i,−1, i) ∈ WJ ⊗C. Here, ν : HJ → GL1 is the similitude character of

HJ . Moreover, the constant term

F00(g) = ν(g)n|ν(g)|

(
8(g)

x2n

(2n)!
+β

xn yn

n!n!
+8′(g)

y2n

(2n)!

)

for some holomorphic modular form 8 of weight n on HJ and 8′(g) = 8(gw0) for a

specific element w0 ∈ HJ that exchanges the upper and lower half-spaces H±J .

With this result recalled, let us now state the Fourier expansion of θGan . Denote by 20
Coxeter’s integral octonions [1, (5.1)] and J0 = H3(20) the associated integral lattice in
the exceptional cubic norm structure J . The Freudenthal space WJ has a natural integral

lattice WJ (Z) = Z⊕ J0⊕ J∨0 ⊕Z. For ω ∈ WJ (Z), define 1(ω) to be the largest positive

integer so that ω ∈ 1(ω)WJ (Z). For T ∈ J0, define 1(T ) analogously.

Recall Kim’s modular form HK im(Z) [13] on the exceptional tube domain, which has

Fourier expansion

HK im(Z) =
1

240
+

∑
T∈J0,T>0 rank one

σ3(1(T ))qT .

Denote by 8K im the automorphic form on HJ = G E7 so that j (g, i)48K im(g) descends

to H±J , is holomorphic on H+J , antiholomorphic on H−J , and on H+J one has HK im(Z) =
j (g, i)48K im(g) if Z = g · i .

Theorem 1.0.1. Let the notations be as above. Then

θGan,0(xg) = θGan,00(g)+
∑

ω∈WJ (Z) rank one

σ4(1(ω))e2π i〈ω,x〉W2πω(g)
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with

θGan,00(g) = |ν(g)|5
(

12ζ(5)
(2π)4

x4 y4

4!4!
+ 8

(
8K im

x8

8!
+8′K im

y8

8!

))
.

There is a degenerate Heisenberg Eisenstein series on each of the quaternionic

exceptional groups, which we write as E(g, s; n). This is a function E(g, s; n) =
EG(g, s; n) : G(Q)\G(A)→ V∨n (depending on s) satisfying E(gk, s; n) = k−1 E(g, s; n)
for all k ∈ K∞. When G is quaternionic E8 and n = 4, it turns out that the Eisenstein

series E(g, s; 4) is regular at s = 5, and θGan is defined [2] (up to a nonzero scalar multiple)

as the value of this Eisenstein series at this point.

Combining the Archimedean results of [18] with the work of Gan [2–4], Kim [13],
Gross–Wallach [10], Kazhdan–Polishchuk [12] and Gan–Savin [7], most of Theorem 1.0.1

was known. See the discussion in § 2.2. What is left is to pin down a couple of constants.

We do this by analyzing the Fourier expansion EG2(g, s = 5; 4) of the weight 4 Eisenstein

series on G2 and applying the Siegel–Weil theorem of [3], which relates θGan to this

Eisenstein series on G2.

The Eisenstein series EG2(g, s = 5; 4) is easier to compute with in relation to E E8(g, s =
5; 4) (which defines θGan) because s = 5 is in the range of absolute convergence of

EG2(g, s; 4) but not of E E8(g, s; 4). In fact, we study absolutely convergent degenerate

Heisenberg Eisenstein series EG(g, s; n) on the quaternionic exceptional groups G in

general, which is our second main result. More precisely, if n is even and the special point

s = n+ 1 is in the range of absolute convergence, the Eisenstein series E(g, s = n+ 1; n)
is a modular form on G of weight n. We prove that at such an n, all of the nontrivial

Fourier coefficients of E(g, s = n+ 1; n) are Euler products. This is the analogue to the

exceptional groups of the corresponding classical fact about holomorphic Siegel Eisenstein

series on symplectic groups [19]; we defer a precise statement of this result to § 3. The

proof is an easy consequence of a weak form of the main result of [18]: The Fourier

expansion of E(g, s; n) has many terms, some of which are Euler products and some of

which are not. However, applying [18], one can deduce that all of the terms that are not

Euler products vanish at s = n+ 1 for purely Archimedean reasons.

We also give a few applications of Theorem 1.0.1 to modular forms on E7, E6 and

G2. Namely, one can pull back the minimal modular form θGan on E8 to the simply

connected quaternionic E7 and E6. Denote these pull-backs by θ
(2)
E7

and θ
(4)
E6

, respectively.

These pull-backs give interesting singular and distinguished modular forms on E sc
7 and

E sc
6 . The modular form θ

(2)
E7

is singular in that it has no rank three or rank four Fourier

coefficients, but it does have nonzero rank two Fourier coefficients. The modular form θ
(4)
E6

is not singular – it has nonzero rank four Fourier coefficients. However, it is distinguished

in that it has only one orbit of nonzero rank four Fourier coefficients.

Corollary 1.0.2. The automorphic functions θ
(2)
E7

and θ
(4)
E6

define nonzero modular forms

on E sc
7 and E sc

6 of weight 4. Moreover, we have the following:

(1) The modular form θ
(2)
E7

has nonzero rank two Fourier coefficients, but all of its rank

three and rank four Fourier coefficients are 0.
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(2) The modular form θ
(4)
E6

is distinguished: it has only one orbit of nonzero rank four

Fourier coefficients.

The distinguished nature of these Fourier expansions is a more or less immediate

consequence of the results of [17, §§ 7 and 8].

Note that Theorem 1.0.1 says that (a scalar multiple of) θGan just fails to have integral

Fourier coefficients. All the rank one Fourier coefficients are integers, and all the Fourier

coefficients of 8K im are integers. Thus, it is reasonable to ask for a nonzero modular form

on an exceptional group for which all of its Fourier coefficients are integers. Our final

application of Theorem 1.0.1 is to produce such a modular form on G2.

Following [1, 5, 6], there is a unique (up to scaling) automorphic function ε on a certain

anisotropic form of F4, which is right invariant under F4(Ẑ)F4(R) and orthogonal to the

constant functions. Denote by F1 the theta lift of ε to G2 via θGan . The modular form

F1 is discussed in [6] and [5]. The following is an essentially immediate corollary of

Theorem 1.0.1 and results of loc. cit.

Corollary 1.0.3. The modular form F1 has rational Fourier coefficients with bounded

denominators. Its constant term is proportional to Ramanujan’s function 1.

1.1. Notation

Throughout the paper, the notation is as in [18]. In particular, F denotes a field of

characteristic 0, J denotes a cubic norm structure over F , and gJ or g(J ) the Lie algebra

associated with J in [18, § 4]. The field F will frequently be Q or R. We will assume

that J is either F or H3(C) with C a composition algebra over F . Thus g(J ) is of type

G2, F4, E6, E7 or E8.

We write h(J ) for the Lie algebra of the Freudenthal group HJ and m(J ) for the Lie

algebra of the group that preserves the cubic norm on J up to similitude. Then (see [18,

§ 4] for our normalizations)

g(J ) = sl2⊕ h(J )0⊕ V2⊗WJ (3)

' sl3⊕m(J )0⊕ V3⊗ J ⊕ (V3⊗ J )∨.

The first displayed line above is a Z/2-grading on the Lie algebra g(J ), with sl2⊕ h(J )0

in degree 0 and V2⊗WJ in degree 1; we refer to this as the Z/2-model of g(J ). Similarly,

the second line gives a Z/3-grading of g(J ), with sl3⊕m(J )0 in degree 0, V3⊗ J in

degree 1 and (V3⊗ J )∨ in degree 2; we refer to this as the Z/3-model of g(J ). We will

sometimes use the Z/2-model to specify elements of the Lie algebra g(J ), and other times

the Z/3-model. See [18, § 4] for more on these Lie algebras and, in particular, refer to
paragraph 4.2.4 of loc. cit., where an explicit isomorphism is given between the Z/2-model

and the Z/3-model of g(J ).
When working in the Z/2-model of g(J ), we use the letters e, f for a fixed symplectic

basis of the V2 appearing in (3). If w ∈ WJ , then we consider e⊗w and f ⊗w as elements

of g(J ).
When working in the Z/3-model of g(J ), if i 6= j , we write Ei j for the element of

sl3 ⊆ g(J ) with a 1 in the (i, j) coordinate and 0’s elsewhere. One defines PJ = HJ NJ
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(or P = H N , if J is fixed) to be the Heisenberg parabolic of G J , which by definition is

the stabilizer of the line F E13 in g(J ). We write N0 = [N , N ], which is also the center

of N . The letter ν denotes the similitude character of P; one has ν : P → GL1 given by

p · E13 = ν(p)E13.

Recall that HJ preserves a symplectic form on WJ so that there is an induced map

h(J )0 → sp(WJ ) ' Sym2(WJ ). From the nondegeneracy of the Killing form, one obtains

an HJ -equivariant map Sym2(WJ )→ h(J )0, unique up to a scalar multiple. A specific

choice of such a map, together with an explicit formula is given in [18, § 3.4.2]: for

w1, w2 ∈ WJ , we denote by 8w1,w2 = 8w2,w1 this element of h(J )0.

The letter K or K∞ denotes the maximal compact subgroup of G J (R) defined in loc.
cit., where G = G J is the adjoint group associated with the Lie algebra g(J ). We write Vn
for the representation of K = (SU(2)× L)/µ2 on Sym2n(V2)� 1. Modular forms on G J
are by definition certain functions F : G J (Q)\G J (A)→ V∨n satisfying F(gk) = k−1

· F(g)
for all g ∈ G J (A) and k ∈ K , which are annihilated by a first-order differential operator

Dn .

Finally, if z ∈ C and j > 0 an integer, (z) j = z(z+ 1)(z+ 2) · · · (z+ j − 1) = 0(z+ j)
0(z) is

the Pochhammer symbol.

2. Statement of results, and applications

In this section, we state our main results more precisely and give the proofs of Corollaries

1.0.2 and 1.0.3. We begin by defining the degenerate Heisenberg Eisenstein series on the

quaternionic groups G J , as these Eisenstein series are central to everything that follows.

We then review what was known about the automorphic form θGan . Finally, we restate

Corollaries 1.0.2 and 1.0.3 and give the proofs of these results.

2.1. The degenerate Heisenberg Eisenstein series

In this subsection, we define the degenerate Heisenberg Eisenstein series E J (g, s; n) on the
quaternionic exceptional groups G J . By definition, such an Eisenstein series is associated

with a section f (g, s) ∈ I ndG J (A)
P(A) (|ν|

s). More precisely, we use the final parameter n
in E(g, s; n) to indicate that E(g, s; n) is V∨n -valued and satisfies E(gk, s; n) = k−1

·

E(g, s; n). Throughout, we will assume that n > 0 is even.

We now construct such an Eisenstein series explicitly; this makes it easier to

do computations. Suppose 8 f is a Schwartz–Bruhat function on gJ (A f ). We will

define a Vn-valued Schwartz function 8∞,n on gJ (R) satisfying 8∞,n(kv) = k ·8∞,n(v)
momentarily. With this definition, we set 8 = 8 f ⊗8∞,n and then

f (g,8, s) =
∫

GL1(A)
|t |s8(tg−1 E13) dt,

absolutely convergent for Re(s) > 1. It is clear that f (g,8, s) is a section in the induced

representation I ndG J
PJ
(|ν|s) (although not a flat section), and we set

E(g,8, s) =
∑

γ∈PJ (Q)\G J (Q)

f (γ g,8, s).
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We will be interested in this Eisenstein series at the special value s = n+ 1. When n >
dim(WJ )/2 = dim J + 1, the Eisenstein series converges absolutely at s = n+ 1 and defines

a modular form there; see the remarks after Corollary 1.2.4 in [18].

The special Archimedean function 8∞,n is defined as follows. Denote by k2 the su2
part of k, the Lie algebra of the maximal compact K , and denote by pr : g(J )→ k2 the

K -equivariant projection. This su2⊗C is identified with V1 = Sym2(V2) as follows. In [18,

§ 5.1], an sl2-triple (e`, h`, f`) of su2⊗C is specified, and under our identification su2⊗

C ' V1, e` 7→ x2, h` 7→ −2xy and f` 7→ −y2. For n > 0, define 8∞,n(v) = pr(v)ne−π‖v‖
2
.

Here pr(v)n is considered as an element of Vn and ‖v‖2 = Bg(v,−2(v)), with Bg and 2

defined in [17, § 4]. It is clear that 8∞,n(kv) = k ·8∞,n(v).

2.2. The minimal automorphic forms on quaternionic E8

In this subsection, we briefly discuss the automorphic minimal representation on

quaternionic E8. The reader should see [2] and [7] and the references contained therein

for more details.

For this subsection, let J = H3(2) with 2 the octonion algebra over Q whose

trace pairing is positive definite. Then G J is the quaternionic E8. Suppose that fs ∈

I ndG J (A)
PJ (A) (|ν|

s) is a flat section, and E J (g, fs) the associated Eisenstein series. It is proved

in [2] that for appropriate fs , E J (g, fs) has a simple pole at s = 24. Moreover, this pole

can be achieved when fs is spherical at every finite place. The automorphic minimal

representation 5 is defined [2] to be the space of residues of the E J (g, fs) at s = 24. By,

e.g., [16] and also [7], the space of such automorphic forms only has rank 1 and rank 0
Fourier coefficients along NJ ; for instance, this follows by the analogous local fact for one

finite place.

Denote by E J (g, s) the Eisenstein series associated with the flat section f J (g, s; n),
which has the following properties:

(1) f J (g, s; n) is valued in V∨n ' Vn , and satisfies f J (gk, s; n) = k−1 f J (g, s; n) for all
g ∈ G J (A) and k ∈ K ⊆ G J (R).

(2) f J is spherical at every finite place.

(3) f J (1, s; n) = xn yn

n!n! ∈ Vn .

One defines θGan to be a certain nonzero multiple of Ress=24(E J (g, s; 4)). It is proved

in [7] by a somewhat indirect method that θGan is nonzero, i.e., that E J (g, s; 4) does have

a nontrivial pole at s = 24.

In more detail, in [2] it is proved that the degenerate Heisenberg Eisenstein series

E J (g, fs) on G J has at most a simple pole at s = 24, and that this simple pole is attained

for a flat section that is spherical at all finite places. However, from [2] alone, one does not

know that the K -type V4 survives in the residue, i.e., that Ress=24(E J (g, s; 4)) is nonzero.

That this residue is nonzero follows from [7, Corollary 12.12] (see also the paragraph after

Theorem 12.9 of loc. cit.). Corollary 12.12 of [7] is proved somewhat indirectly, by using

minimality of the residue at a finite place and appealing to a rigidity property of these

representations proved by those authors.
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For the convenience of the reader, we give a direct proof of the fact that

Ress=24(E J (g, s; 4)) 6= 0, by computing an appropriate Archimedean intertwining

operator. This computation is done in § 4. More precisely, we shall use (and prove) the

following fact.

Proposition 2.2.1. The Eisenstein series E J (g, s; 4) is regular at s = 5, and defines a

modular form on G J of weight 4. Up to nonzero scalar multiples in each of the following

equalities,

E J (g, s = 5; 4) = Ress=24 E J (g, s; 4) = θGan .

As mentioned, this proposition is essentially contained in the union of [2, 3, 7, 10]. For

the reader reviewing this literature, the following remark may be helpful: Corollary 5.13

of [2] implies directly that E J (g, s; 4) is regular at s = 5. However, the remarks given

in [2] do not prove that corollary, and it may be false. Nevertheless, as it is stated, [2,

Corollary 5.13] is not used in [2, 3, 7], and this possible error does not impact the other

results of those papers.

Now, because θGan is a modular form on G J , the results of [18] imply that its Fourier

expansion takes the following shape. Denote by 20 Coxeter’s integral subring [1, (5.1)]

of 2, J0 = H3(20), and WJ (Z) = Z⊕ J0⊕ J∨0 ⊕Z ⊆ WJ (Q). Then for x ∈ NJ (R) and

m ∈ HJ (R), one has

θGan,0(n(x)m) = θ00(m)+
∑

ω∈WJ (Z)

aθ (ω)e2π i〈x,ω〉W2πω(m)

with the constant term θ00(m) given by

θ00(m) = β18(m)x8
+β0x4 y4

+β18
′(m)y8

for a holomorphic weight 4 modular form 8 on HJ = GE7. Because θGan is minimal,

aθ (ω) is nonzero only for ω rank one. Denote by 1(ω) the largest positive integer so that

ω ∈ 1(ω)WJ (Z). By [4, Theorem 2.3], which follows from [12, Theorem 1.1.3], we may

scale θGan so that

aθ (ω) =

σ4(1(ω)) if ω is rank one

0 if ω is rank two, three, or four.

Moreover, from [3], 8 is proportional to Kim’s [13] level one, weight 4 modular form

on HJ = GE7. Thus, applying the results of [2, 3, 7, 10, 12, 13, 18], what is left is to pin

down the constants β0 and β1. This is precisely what Theorem 1.0.1 does. We restate the
result now.

Theorem 2.2.2. The Eisenstein series E J (g, s; 4) is regular at s = 5 and defines a modular

form on G J = E8,4 of weight 4 at this point. The Fourier coefficient corresponding to

the rank one element (0, 0, 0, 1) ∈ WJ is nonzero. Denote by θGan the scalar multiple of

E J (g, s; 4) for which this Fourier coefficient is equal to 1. Moreover, denote by 8K im the

spherical automorphic form on HJ = G E7 so that HK im = j (g, i)48K im descends to H±J ,
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is holomorphic on H+J , antiholomorphic on HJ
−, and on H+J has the Fourier expansion

HK im =
1

240
+

∑
T∈J0,T>0 rank one

σ3(1(T ))qT .

Then one has

θGan,0 = |ν(g)|5
(

12ζ(5)
(2π)4

x4 y4

4!4!
+ 8

(
8K im

x8

8!
+8′K im

y8

8!

))
+

∑
ω∈WJ (Z), rank one

σ4(1(ω))W2πω(g).

We will prove this theorem in § 4 after understanding the Fourier expansion of

degenerate absolutely convergent Heisenberg Eisenstein series in § 3. We now detail and

prove the corollaries of Theorem 2.2.2 that were mentioned in § 1.

2.3. The singular modular form

In this subsection, we consider the singular modular form θ
(2)
E7

on the simply connected

quaternionic E7. This modular form is defined as follows. First, fix a quaternion algebra
B over Q, which is ramified at the Archimedean place. Recall that the quaternionic Lie

algebra e7 is g(H3(B)), in the notation of [18]. For ease of notation, we write JB = H3(B)
and J2 = H3(2).

Now, fix γ ∈ Q× not representing the identity coset in Q×/N (B×); in other words,

γ < 0. By the Cayley–Dickson construction, one can form an octonion algebra 2 out
of B and γ . See [17, § 8]. With such a γ , 2 is ramified at infinity. The Cayley–Dickson

construction induces an identification JB ⊕ B3
' J2, an embedding h(JB)→ h(J2), and

then consequently an embedding g(JB) ↪→ g(J2).
More precisely, denote by W6 the defining representation of GSp6, and define an

identification WJB ⊕W6⊗ B ' WJ2 as in [17, § 8.1.2]. From [17, Proposition 8.1.5], one

gets a group H ′B (this is the group G(γ,C) in the notation of that proposition) together

with maps H ′B → HJB and H ′B → HJ2 , where the first map induces an isomorphism of

Lie algebras. Consequently, one obtains a map h0(JB)→ h0(J2). As g(J ) = sl2⊕ h0(J )⊕
V2⊗WJ , one obtains a specific embedding g(JB)→ g(J2).

Denote by AB the connected component of the identity of the subgroup of G J2
that preserves g(JB). Write Bn=1 for the norm 1 elements of B. We define a map

Bn=1
→ AB as follows. First, define Bn=1

→ HJ2 via its action on WJ2 ' WJB ⊕ B6 as

s · (w, v) = (w, vs−1) for s ∈ Bn=1, w ∈ WH3(B) and v ∈ B6. Because the quadratic norm

on 2 is n2(x, y) = nB(x)− γ nB(y) for x, y ∈ B, it is easy to see directly that this action
preserves the symplectic and quartic form on WH3(2). Now because HJ2 → G J2 , this

defines Bn=1
→ G J2 . Finally, it is clear by construction that this Bn=1 preserves g(JB),

and thus we obtain Bn=1
→ AB , as claimed. At the Archimedean place, this Bn=1 is

a compact SU(2). In terms of the maximal compact subgroup K = (SU(2)× L)/µ2 of

G J (R), this SU(2) sits inside the image of L.

Denote by EB the connected component of the identity of the centralizer of Bn=1 in

AB .
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Lemma 2.3.1. The group EB is the simply connected quaternionic E7.

Proof. Indeed, one verifies without difficulty that g(J2)B1
= g(JB), and thus EB has the

correct Lie algebra. Moreover, the µ2 ⊆ B1 centralizes B1 in AB , and this µ2 sits in H ′B ;

see [17, Proposition 8.1.5]. Because H ′B is connected and centralizes B1, this proves that

µ2 is at the center of EB . Thus EB is connected, has Lie algebra equal to g(JB), and

contains µ2 at its center, so EB ' E sc
7,4.

At the Archimedean place, the subgroup SU(2)× EB(R) = SU(2)× E7,4 of E8,4 just
constructed was considered in [9, § 6]; see also [14, 15].

Denote by θ (2) the automorphic function that is the pull-back of θGan to EB via the
embedding E sc

7 ' EB → G J2 . We have the following result, which is a restatement of

Corollary 1.0.2 (1).

Proposition 2.3.2. The automorphic function θ (2) is a modular form on E sc
7 of weight

4. It has nonzero rank two Fourier coefficients, but all of its rank three and rank four

Fourier coefficients are 0.

The definitions and results of [18] were made for adjoint groups, not simply connected
ones. However, it is easy to see that they carry over immediately for the simply connected

E7. Indeed, because the µ2 that is the center of E sc
7 acts trivially on Vn , and because

the map of real groups E sc
7 (R)→ Ead

7 (R) is surjective [20, Table II], the Archimedean

theory is identical for modular forms on the adjoint E7 and modular forms on the simply

connected E7.

Proof of Proposition 2.3.2. To see that θ (2) is a modular form, one must only check the

condition D4θ
(2)
= 0. One way to do this is simply observe that since θGan satisfies the

equations of [18, Theorem 7.3.1 or Theorem 7.5.1], so too does θ (2). One can also reason

directly with the definition of D4 in terms of a basis of p(JB) and p(J2), or apply results

of [9, 14, 15].

For the analysis of the Fourier coefficients, this is a direct consequence of [17,
Theorem 8.1.4]. Namely, if x ∈ WJB is nonzero, and a(x) denotes the x-Fourier coefficient

of the modular form θ (2), then

a(x) =
∑

u∈W6(B)

aθGan (x + u).

(The sum has only finitely many nonzero terms.) Because all the numbers aθGan (ω) are
nonnegative, it is clear that θ (2) is nonzero. Finally, because aθGan (ω) is only nonzero for

ω rank one, all the rest of the claims of the proposition follow immediately from [17,

Theorem 8.1.4]. This completes the proof.

2.4. The distinguished modular form

Pulling back θGan to the semisimple simply connected quaternionic E6, we obtain a

modular form θ (4). In this subsection, we discuss the automorphic form θ (4) and explain

why it is distinguished.

Fix a quadratic imaginary extension K of Q. Recall that the Lie algebra g(H3(K ))
is the quaternionic Lie algebra of type E6. Using H3(K ) and some additional data, the
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so-called second construction of Tits produces an exceptional cubic norm structure J . We

will use this construction to define the map E sc
6 → G J ' E8,4 and analyze the Fourier

coefficients of θ (4).

Thus, suppose λ ∈ K×, S ∈ H3(K ) and that λλ∗ = N (S). In this subsection, we let JK
denote H3(K ) and B denote M3(K ). Set J = H3(K )⊕M3(K ) = JK ⊕ B. Then one can

make J into a cubic norm structure using λ and S; see, e.g., [17, § 7.1]. If S is positive

definite, then so is the trace pairing on J , and thus the Lie algebra g(J ) is of type E8
and quaternionic at infinity. We will choose λ = 1 and S = 13, so that J ' H3(2) over

Q, but other choices of λ, S should yield interesting results.1

Now, via this construction of Tits, we obtain JK → J and then h(JK )→ h(J ) and then
finally g(JK )→ g(J ). More precisely, from [17, § 7.2], there is an identification WJK ⊕

B2
' WJ . From [17, Proposition 7.2.2], there is a group H ′K (denoted by G in that

proposition) that comes with maps H ′K → HJK and H ′K → HJ , and it is easy to see that

the first map induces an isomorphism of Lie algebras. Consequently, as above, these

constructions define an embedding g(JK )→ g(J ).
Denote by AK the connected component of the identity of the subgroup of G J that

preserves g(JK ). We will construct explicitly the simply connected quaternionic E6 inside

AK , just as we did for E7 in the previous subsection. More precisely, consider the subgroup

SU3 of B× defined as the g ∈ B with det(g) = 1 and gSg∗ = S. Let this SU3 act on

J ' JK ⊕ B as g · (X, α) = (X, αg−1) for X ∈ JK , α ∈ B, and g ∈ SU3. It is clear from the

formulas defining the second construction of Tits [17, § 7.1] that this action preserves the

norm and pairing on J . It acts on WJ = WJK ⊕ B2 as g · (w, η) = (w, ηg−1), for w ∈ WJK

and η ∈ B2. Consequently, one obtains maps SU3 → HJ → G J , and this SU3 lands in AK
because its action on g(J ) fixes g(JK ). At the Archimedean place, this SU3 is compact

and sits inside the image of the L-piece of the maximal compact (SU(2)× L)/µ2 of

G J (R) = E8,4.

Denote by EK the connected component of the identity of the centralizer of this SU3
in AK .

Lemma 2.4.1. The group EK is the simply connected quaternionic E6.

Proof. Indeed, one verifies quickly that g(J )SU3 = g(JK ), and thus the Lie algebra of EK
is g(JK ). Moreover, the µ3 that is the center of SU3 is identified with the diagonal µ3 in

H ′K . Because H ′K is connected and in EK , this µ3 is in EK . Hence EK is connected, has

Lie algebra g(JK ) and contains µ3 at its center, which proves that EK ' E sc
6 .

Denote by θ (4) the automorphic function that is the pull-back to EK via the embedding

EK → G J . The following result proves Corollary 1.0.2 (2).

Proposition 2.4.2. The automorphic function θ (4) is a modular form on E6 of weight 4. It
has nonzero rank four Fourier coefficients. However, θ (4) is distinguished in the following

sense: if a(ω) denotes the Fourier coefficient associated with ω ∈ WJK and ω is rank four,

then a(ω) 6= 0 implies that q(ω) = κ2 for some κ ∈ K× with κ∗ = −κ.

1At this point, we have only understood the automorphic form θGan when J = H3(2) because in the
computations above and below, we used that θGan was spherical at every finite place.
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Note that the converse to Proposition 2.4.2 is false: if q(ω) = κ2 for some κ ∈ K× with

κ∗ = −κ, then a(ω) might still vanish. For example, this occurs if ω is not sufficiently

integral.

Because the quaternionic adjoint group is connected [20, Table II], there is literally

no difference between the Archimedean theory for the simply connected quaternionic E6
and the adjoint form. Thus, the definitions and results of [18] – which were proved in the

adjoint case – apply immediately to the group EK .

Proof of Proposition 2.4.2. To see that θ (4) is a modular form of weight 4, again it suffices

to check that D4θ
(4)
= 0, which may be done by, e.g., applying the results of [18, § 7].

Alternatively, one can apply results of [15]. The Fourier coefficients of θ (4) are controlled

by [17, Theorem 7.3.1], which gives the result.

More precisely, suppose ω ∈ WJK , and denote by a(ω) the Fourier coefficient of θ (4)

associated with ω. As explained in [17, § 7], if ω ∈ WJK and η ∈ B2, then ω+ η can be

regarded as an element of WJ , by applying the second Tits construction. Then for ω 6= 0,

a(ω) =
∑
η∈B2

aθGan (ω+ η).

Again, the sum has only finitely many nonzero terms. It follows immediately from [17,

Theorem 7.3.1 part (1)] that for a(ω) to be nonzero and ω rank four, we need q(ω) = κ2

for some κ ∈ K× with κ∗ = −κ.

To see that θ (4) has nonzero rank four Fourier coefficients for our particular choice

λ = 1, S = 1, one may proceed as follows. Suppose K = Q(κ) with κ∗ = −κ. Then set

η = 〈1,− κ2 〉 and ω =
(

0, 1, 0, κ
2

4

)
. Then

ω+ η =

(
0, (1, 1),

(
0,
κ

2

)
,
κ2

4

)
is rank one in WJ . As ω is rank 4, this completes the proof.

2.5. The integral modular form on G2

Recall from above that ε denotes the automorphic function on Fan
4 that takes on just

two values and is orthogonal to the constant function [5, 6]. More precisely, as mentioned
above and following [1, 5, 6], one has

#Fan
4 (Q)\Fan

4 (A)/Fan
4 (Ẑ)Fan

4 (R) = 2,

where Fan
4 is the stabilizer of the element I = 13 ∈ H3(20). The two double cosets are

denoted by UI and UE . Here

E =

 2 β β∗

β∗ 2 β

β β∗ 2


with β = 1

2 (−1+ e1+ e2+ e3+ e4+ e5+ e6+ e7) ∈ 20. See, e.g., [1]. The set UI has

measure 91
691 and the set UE has measure 600

691 [5]. The function ε takes the value 691
91

on UI and value − 691
600 on UE .
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Denote by 1 Ramanujan’s elliptic modular cusp form of weight 12, and recall that we

set

F1(g) =
∫

Fan
4 (Q)\Fan

4 (A)
θGan((g, h))ε(h) dh,

the θ-lift of ε to G2. The rank four Fourier coefficients of F1 are discussed in [6], and

it is explained there that F1 is a level one, weight 4 modular form on G2. The constant

term is essentially in [1, 5]. Thus much of the following result is contained in [6] and [5].

To state the Fourier expansion of F1, we make some notations. Suppose ω0 ∈ WF =

Sym3(V2). As in [3], define

�I (ω0) =

{
(a, b, c, d) ∈ W rk=1

J = (F ⊕ J ⊕ J∨⊕ F)rk=1
:

(
a,
(b, I #)

3
,
(c, I )

3
, d
)
= ω0

}
and similarly define

�E (ω0) =

{
(a, b, c, d) ∈ W rk=1

J = (F ⊕ J ⊕ J∨⊕ F)rk=1
:

(
a,
(b, E#)

3
,
(c, E)

3
, d
)
= ω0

}
.

(In our normalization, ω0 is integral if it has coefficients in Z⊕ Z
3 ⊕

Z
3 ⊕Z.)

The following is an immediate corollary of Theorem 1.0.1 and what has been said

above.

Corollary 2.5.1. The weight 4, level one modular form F1 on G2 is nonzero and has

rational Fourier coefficients with bounded denominators. If θGan is normalized to have
aθ ((1, 0, 0, 0)) = 1, then the constant term of F1 is

F1,00(g) = 24|ν(g)|5
(
81(g)

x8

8!
+8′1(g)

y8

8!

)
.

Here 81 is the automorphic form on GL2 with2 j (g, i)481(g) equal to Ramanujan’s 1

function. Moreover, for ω0 as above,

aF1(ω0) =

 ∑
ω∈�I (ω0)

σ4(1(ω))

−
 ∑
ω∈�E (ω0)

σ4(1(ω))

 .
Proof. The key point is that the ζ(5) term drops out because ε is orthogonal to the

constant functions. Everything else follows immediately from what has been said and the

fact [1] that ∫
Fan

4 (Q)\Fan
4 (A)

8K im((g, h))ε(h) dh = 381(g).

2Here, we are using the definition of the automorphy factor j (g, i) from [18]. This automorphy factor is
essentially the cube of the usual automorphy factor on GL2.
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In [3, Proposition 12.3], the Fourier coefficients aF1(ω0) for ω0 with 1(ω0) = 1 were

expressed in terms of the number of embeddings of a cubic ring corresponding to ω0
into integral cubic norm structures. See loc. cit. Proposition 6.9 for the relation between

#�I (ω0), #�E (ω0) and the number of these embeddings.

The automorphic function F1 and the Eisenstein series EG2(g, s = 5; 4) are modular

forms of weight four. With appropriated normalizations, their Fourier coefficients are

integers that are congruent modulo 691. That this congruence holds for the nondegenerate

coefficients is immediate from, e.g., [6, Proposition 10.1] and the Siegel–Weil theorem

of [3]. That the congruence continues to hold for the degenerate coefficients is now a

triviality, again using [3].

Corollary 2.5.2. Denote by E4(g) the scalar multiple of the Eisenstein series EG2(g, s =
5; 4) with Fourier coefficient aE4((1, 0, 0, 0)) = 691. Then 91F1 ≡ E4 modulo 691, in

the sense that all the nontrivial Fourier coefficients of F1 and E4 are integers, and

91aF1(ω0) ≡ aE4(ω0) (mod 691) for every ω0 ∈ Z⊕ Z
3 ⊕

Z
3 ⊕Z. Moreover, this congruence

is not trivial in the sense that not all the Fourier coefficients of F1 (or E4) are divisible
by 691.

Proof. Let 1UI denote the characteristic function of UI in F4(A) and similarly let 1UE

denote the characteristic function of UE . Define

FI (g) =
∫

Fan
4 (Q)\Fan

4 (A)
θGan((g, h))1UI (h) dh

and similarly define FU (g). Then FI and FU are modular forms of weight 4 on G2. To

compare with [6], set θI =
691
91 FI and θE =

691
600 FE , and these modular forms have integer

Fourier coefficients, with θI ((1, 0, 0, 0)) = θE ((1, 0, 0, 0)) = 1. This last fact follows from

Lemma 4.2.2 at the end of the paper.
The modular form F1 = θI − θE . By Gan’s Siegel–Weil theorem [3], E4(g) = 91θI +

600θE . Hence 91F1 has all of its Fourier coefficients integers, and congruent modulo 691
to those of the Eisenstein series E4(g).

To see that the congruence is not trivial, i.e., that the Fourier coefficients of F1 are

not all divisible by 691, we compute that the Fourier coefficient aF1((0, 1,−1, 0)) = 6.

To see this, first note that one has

�I ((0, 1,−1, 0)) = {(0, X, Y, 0) ∈ W rk=1
J : (X, I #) = 1, (Y, I ) = 1}

and similarly for �E ((0, 1,−1, 0)). Now, for X ∈ J and Y ∈ J∨, one has that (0, X, Y, 0)
is rank at most one if and only if X#

= 0, Y #
= 0, (X, Y ) = 0, and 8Y,X = 0, where

8Y,X : J → J is the linear map

8Y,X (z) = −Y × (X × z)+ (Y, z)X + (Y, X)z.

If X 6= 0, then these conditions are equivalent to X#
= 0, Y ∈ X × J and Y #

= 0.

By [1, Proposition 5.5], it follows that �E ((0, 1,−1, 0)) is empty. Recall the

element e11 = diag(1, 0, 0) ∈ J , and set e22 = diag(0, 1, 0), e33 = diag(0, 0, 1). Again, by

[1, Proposition 5.5], one now obtains that �I ((0, 1,−1, 0)) consists of the six elements

(0, ei i ,−e j j , 0) with i 6= j . This completes the proof.
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3. Fourier expansion of the Heisenberg Eisenstein series

In this section, we prove results about the degenerate Heisenberg Eisenstein series on

G J . In the first subsection, we give an abstract discussion of its Fourier expansion, not

utilizing any of the Archimedean results of [18]. In the second subsection, we analyze the

Fourier expansions of the special values of E J (g, s,8; n) at s = n+ 1 when this point is in

the range of absolute convergence for the Eisenstein series. It is proved that the Fourier

coefficients are Euler products. Finally, in the third and fourth subsections, we analyze

the constant term and rank one Fourier coefficients of these Eisenstein series directly.

3.1. Abstract Fourier expansion

In this subsection, we give the ‘abstract’ Fourier expansion of a Heisenberg Eisenstein
series E(g, s). Thus, we assume that E(g, s) =

∑
γ∈P(F)\G(F) f (γ g, s) for f (g, s) a section

in I ndG
P (|ν|

s), but we do not assume anything special about this section.

Lemma 3.1.1. Suppose that J 6= F, so that G = G J is not G2. Then P(F)\G(F)/P(F)
has five elements, represented by {w0 = 1, w1, w2, w3, w4} with w1(E13) ∈ e⊗WJ ,

w2(E13) ∈ h(J )0, w3(E13) ∈ f ⊗WJ and w4(E13) = E31. The Lie algebra elements

w1(E13) and w3(E13) are rank one when considered in WJ , and w2(E13) in the minimal

orbit in h(J )0. If J = F so that G J = G2, then the double coset P(F)\G(F)/P(F) has

four elements, and is represented by {w0 = 1, w1, w3, w4}, with these wi as above.

Proof. Recall from [18, § 4.1.2] the nondegenerate G J -invariant symmetric form Bg on

the Lie algebra g(J ), proportional to the Killing form. Say an element X – or the line

spanned by X – in the Lie algebra g(J ) is minimal if [X, [X, y]] + 2Bg(X, y)X = 0 for

all y ∈ g(J ). The orbit G(F)E13 consists of the nonzero elements X ∈ gJ (F) spanning a

minimal line; see, e.g., [18, § 4.3.2]. The double coset P(F)\G(F)/P(F) is thus identified

with the P(F)-orbits on the minimal lines in gJ .

Denote by h the element
( 1 0

0 −1
)
∈ sl2 ⊆ g(J ). By the Bruhat decomposition, the

coset representatives wi for P(F)\G(F)/P(F) can be chosen to be normalizers of a

maximal torus; thus we may assume that the vectors wi (E13) are eigenvectors for the

one-parameter subgroup with Lie algebra spanned by h. Consequently, we may assume

that the elements wi (E13) only have one nonzero component of the 5-grading on g(J )
determined by the Levi subgroup HJ of P; see [18, § 4.3.1]. In particular, representatives

can taken to be in F E13, e⊗WJ , Fh⊕ h(J )0, f ⊗WJ , and F E31. Here recall from § 1.1

that e, f are a symplectic basis of the V2 in (3).

It is easy to see that there exist w1, w3, and w4 as in the statement of the lemma, and

that furthermore that there is one M(F)-orbit of such wi ’s. Thus, there are at least four
P(F)-orbits on the minimal lines in gJ (F) in all cases. When J = F so that G J = G2,

these are the only orbits. One can verify this by hand – it is because there are no rank

two elements in WJ=F – or see, e.g., [11, Equation (9)].

Now suppose J = H3(C), so that G is not G2. Suppose X ∈ Fh+ h(J )0 spans a minimal

line. We claim that X ∈ h(J )0. Indeed, write X = µh+φ ∈ Fh⊕ h(J )0. By taking y =
E13 in [X, [X, y]] + 2Bg(X, y)X = 0, one sees that µ = 0. Thus X ∈ h(J )0 as claimed. The

elements so obtained in h(J )0 are the minimal elements of this Lie algebra, i.e., are in
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the orbit of the highest root. In particular, the group HJ (F) acts transitively on them.

This completes the proof of the lemma.

Via the lemma, we have E(g, s) =
∑4

i=0 Ei (g, s), with Ei (g, s) =∑
γ∈P(F)\P(F)wi P(F) f (γ g, s). Thus, E0(g, s) = f (g). For G = G2, we understand

E2(g, s) = 0. We now write out more explicit expressions for the other Ei .

Recall that if ` ⊆ WJ is a rank one line, there is associated with it a flag

WJ ⊇ (`)
⊥
⊇ W (`) ⊇ ` ⊇ 0

with W (`) a certain maximal isotropic subspace. Precisely,

W (`) = {x ∈ WJ : 〈x, µ〉 = 0 and 8x,µ = 0 for all µ ∈ `}.

Here, recall 8•,• : Sym2(WJ )→ h(J )0 is the H(J )-equivariant map described in § 1.1.

Lemma 3.1.2. Assume that Re(s)� 0 so that the sum defining E(g, s) converges

absolutely. Then one has the following expressions for the Ei (g, s).

(1) For each rank one line ` in e⊗WJ , select γ (`) ∈ G(F) with γ (`)E13 ∈ `. Then

E1(g, s) =
∑

`⊆W rk=1
J

∑
µ∈(`)⊥N0(F)\N (F)

f (γ (`)−1µg, s).

(2) For each minimal line Fφ ⊆ h(J )0, select γ (φ) ∈ G(F) with γ (φ)E13 ∈ Fφ. Then

E2(g, s) =
∑

Fφ⊆h(J )0 minimal

∑
µ∈(ker(φ)N0(F))\N (F)

f (γ (φ)−1µg, s).

(3) For each minimal line F` ∈ f ⊗WJ , select γ (`) ∈ G(F) with γ (`)E13 ∈ `. Then

E3(g, s) =
∑

`⊆W rk=1
J

∑
µ∈W (`)\N (F)

f (γ (`)−1µg, s).

(4) One has

E4(g, s) =
∑

µ∈N (F)

f (w−1
4 µg, s).

Proof. The expression for E4(g, s) is clear. The rest follows easily from what has already

been said. The only thing that must still be computed is the stabilizers in N (F) of the

minimal lines in e⊗WJ , h(J )0, and f ⊗WJ . And for this, it suffices to work on the level

of Lie algebras. We write n = e⊗ x + cE13 for a typical element of the Lie algebra of

N (F).
We separate into cases. For E1(g, s), write a typical rank one element of e⊗WJ as

e⊗ v. Then [n, e⊗ v] = 〈x, v〉E13, thus verifying the expression for E1(g, s). For E2(g, s),
suppose that φ ∈ h(J )0 spans a minimal line. Then [n, φ] = [e⊗ x, φ] = e⊗φ(x). This

gives the stated expression for E2(g, s). Finally, suppose f ⊗ v ∈ f ⊗WJ is a rank one

element. Then [n, f ⊗ v] = ce⊗ v+
(
〈x, v〉 e f

2 +
1
28x,v

)
. Thus [n, f ⊗ v] = 0 if and only if

c = 0 and x ∈ W (`), where ` = Fv. This completes the proof of the lemma.
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We now consider the Fourier expansions of the Ei (g, s) along N (F); because the Ei (g, s)
are P(F)-invariant, this makes sense. Fix an additive character ψ : F\A→ C×. For v ∈

WJ , define χv : N (F)\N (A)→ C× as χv(n) = ψ(〈v, n〉), where n denotes the image of

n ∈ N/[N , N ] ' WJ . We set

Evi (g, s) =
∫

N (F)\N (A)
χ−1
v (n)Ei (ng, s) dn.

Our measure is normalized so that if U is a closed algebraic subgroup of N , then [U ] :=
U (F)\U (A) has volume 1.

Recall that elements of WJ have a rank, which is 0, 1, 2, 3 or 4.

Lemma 3.1.3. If rank(v) > i , then Evi (g, s) = 0.

Proof. Let us write

Ei (g, s) =
∑
`

∑
µ∈N`(F)\N (F)

f (γ (`)−1µg, s) (4)

for the expression given in Lemma 3.1.2. Then

Evi (g, s) =
∑
`

∫
[N ]
χv(n)−1

 ∑
µ∈N`(F)\N (F)

f (γ (`)−1µng, s)

 dn

=

∑
`

∫
N (`)(F)\N (A)

χ−1
v (n) f (γ (`)−1ng, s) dn

=

∑
`

∫
N (`)(A)\N (A)

(∫
[N (`)]

χ−1
v (r) dr

)
χ−1
v (n) f (γ (`)−1ng, s) dn

=

∑
`,χv |N (`)=1

∫
N (`)(A)\N (A)

χ−1
v (n) f (γ (`)−1ng, s) dn.

It follows that Evi (g, s) vanishes if χv restricted to N (`) is nontrivial for all ` appearing

in sum (4). If rank(v) > i , then it is not hard to see that this indeed happens. We consider

the different cases:

(1) First, assume i = 1. Then N (`) = (`)⊥N0 ⊆ N for ` a rank one line in WJ . Thus

χv|N (`) = 1 implies v ∈ `, so rank(v) = 0 or 1.

(2) Suppose next that i = 2. Then N (`) = ker(φ)N0 ⊆ N for some φ ∈ h(J )0 in the orbit

of the highest root. Then χv|N (`) = 1 implies v ∈ I (φ) := ker(φ)⊥ ⊆ WJ . Denote by

e11 ∈ J the element e11 =

 1
0

0

. Without loss of generality, we can assume

φ = nL(e11), in which case I (φ) is easily computed to be (0, Fe11, e11× J, F). If

v ∈ (0, Fe11, e11× J, F), then indeed rank(v) = 0, 1, 2, as desired.

(3) Finally, assume i = 3. Then N (`) = W (`) ⊆ N for some rank one line ` ⊆ WJ .

One has χv|N (`) = 1 implies v ∈ W (`)⊥ = W (`). Without loss of generality, one

can assume ` = (0, 0, 0, F) ⊆ WJ , in which case W (`) = (0, 0, J∨, F) and v ∈ W (`)

implies rank(v) 6 3, as desired.
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Lemma 3.1.4. If i = rank(v), then Evi (g, s) is Eulerian. More precisely, we have the

following:

(1) Suppose v is rank one. Define N 1
v = (Fv)

⊥N0 ⊆ N . Then

Ev1 (g, s) =
∫

N 1
v (A)\N (A)

χ−1
v (n) f (γ (`v)−1ng, s) dn.

(2) Suppose v is rank two. Recall the element 8v,v ∈ h(J )0, and write ker(8v,v) for its

kernel when considered as an endomorphism of e⊗WJ . Define N 2
v = ker(8v,v)N0 ⊆

N , and take γ (8v,v) ∈ G J (F) with γ (8v,v)E13 = 8v,v ∈ h(J )0. Then∫
(N 2

v )(A)\N (A)
f (γ (φ)−1ng, s)χ−1

v (n) dn.

(3) Suppose v is rank three. Recall the element v[ = t (v, v, v) (e.g., [18, § 3.4.2]), which

is rank one because v is rank three. Define N 3
v = W (Fv[) ⊆ N , and take γ (v[) with

γ (v[)E13 = f ⊗ v[. Then

Ev3 (g, s) =
∫

N 3
v (A)\N (A)

χ−1
v (n) f (γ (v[)−1ng, s) dn.

(4) Suppose v is rank four. Then

Ev4 (g, s) =
∫

N (A)
χ−1
v (n) f (w−1

4 ng, s) dn.

Proof. The cases of v rank one and v rank four follow immediately from Lemma 3.1.3.

Consider first the case of v rank two. For φ ∈ h(J )0 spanning a minimal line, define

I (φ) = kerφ⊥. Then χv is 1 on kerφ(A) if and only if v ∈ I (φ). Thus we have

Ev2 (g, s) =
∑

Fφ with v∈I (φ)

∫
(ker(φ)N0)(A)\N (A)

f (γ (φ)−1ng, s)χ−1
v (n) dn.

If v is rank two, the only minimal line Fφ with v ∈ I (φ) is F8v,v, so in this case Ev2 (g, s)
is Eulerian, as in the statement of the lemma.

Now consider the case of v rank three. One has that χv is 1 on W (`)(A) ⊆ N (A) if and

only if v ∈ W (`)⊥ = W (`). Thus

Ev3 (g, s) =
∑

` rank one with v∈W (`)

∫
W (`)(A)\N (A)

χ−1
v (n) f (γ (`)−1ng, s) dn.

Thus, if v is rank three, then F` = Fv[, so the line ` is determined by v and Ev3 (g, s) is

Eulerian as specified above. This completes the proof of the lemma.

For the constant term E0
1(g, s), we record now that

E0
1(g, s) =

∑
`⊆W rk=1

J

∫
N 1
` (A)\N (A)

f (γ (`)−1ng, s) dn.

This function is as an Eisenstein series for the Levi subgroup HJ attached to the parabolic

that stabilizes a rank one line in WJ .
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3.2. Euler product

The purpose of this subsection is to prove that the special (modular form) values of

the Heisenberg Eisenstein series have nonconstant Fourier coefficients that are Euler

products. More precisely, for v ∈ WJ set

Ev(g, s; n) =
∫

N (F)\N (A)
χ−1
v (u)E(ug, s; n) du.

We know from the previous section that if v ∈ WJ is nonzero, then Ev(g, s; n) =∑
i>rk(v) Evi (g, s; n), and that the term Evrk(v)(g, s; n) is an Euler product. In this

subsection, we prove that if the special value s = n+ 1 is in the range of absolute

convergence for the Eisenstein series, then the terms Evi (g, s, n) vanish at this point

when i > rank(v).

Proposition 3.2.1. Suppose n is even, and n > dim(J )+ 1 so that the sum defining

E(g, s; n) converges absolutely at s = n+ 1 and defines a modular form of weight n at

this point. Then if v 6= 0 and i > rank(v), Evi (g, s; n) vanishes at s = n+ 1.

We will prove Proposition 3.2.1 by applying the following corollary of the main result

of [18].

Lemma 3.2.2. Suppose ω ∈ WJ is nonzero, m ∈ HJ (R), and F is a modular form on G J
of weight n. Denote by Fω the ω Fourier coefficient of F, and set m̃ = ν(m)m−1. Then if

m̃ω = ω, Fω(mg) = ν(m)n|ν(m)|Fω(g). For the constant term F00, one has the following:

F00 is the sum of two terms f1 and f2, which are distinguished by the following properties.

For z ∈ Z H ' GL1(R), one has f1(zg) = z2n+2 f1(g) and f2(zg) = zn+2 f2(g).

Remark 3.2.3. We have derived Lemma 3.2.2 as a consequence of the complete formula

for the function Wω(g), which is [18, Theorem 1.2.1] or see equations (1) and (2). However,

the lemma is useful by itself. Can it be proved directly, by a ‘softer’ method?

The idea of the proof of Proposition 3.2.1 is to show that Evi (g, s) is an absolutely

convergent sum of terms, each of which vanishes at s = n+ 1 because it does not satisfy

the required equivariance property enforced by Corollary 3.2.2. We now make some

preparatory remarks that we will use to carry out this strategy.
For ω ∈ WJ , recall that we denote χω(n) = ψ(〈ω, n〉). Suppose we have an absolutely

convergent integral

f ω(g, s) =
∫

Y (R)
f (w−1 yg, s)χω(y)−1 dy,

and m ∈ HJ with m̃ω = ω, and m preserves Y . Here Y ⊆ N . Furthermore, assume

f (pg, s) = |ν(p)|s f (g, s) for p ∈ P the Heisenberg parabolic, and that w−1mw ∈ P. Then

we have

f ω(mg, s) = J (m, Y )|ν(w−1mw)|s f ω(g, s),
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where

J (m, Y ) =

∣∣∣∣∣d(mym−1)

dy

∣∣∣∣∣
Y

is the measure term that comes from a change of variable in the integral.

For a rank one line ` ⊆ g(J ), and g ∈ G J stabilizing `, define µ`(g) ∈ GL1 to be the

element with g` = µ`(g)`. Then ν(w−1mw) = µwE13(m). Thus, with assumptions and

notations as above, we have

f ω(mg, s) = J (m, Y )|µwE13(m)|
s f ω(g, s).

We will now analyze term C(m, Y, s) := J (m, Y )|µwE13(m)|
s for the integrals that

appear in the previous subsection. We first consider the constant term, i.e., ω = 0.

(1) The case i = 0. We have f0(zg, s) = |ν(z)|s f0(g, s) = |z|2s f0(g, s). At s = n+ 1, this

character is z2n+2.

(2) The case i = 1. Fix ` ∈ e⊗WJ rank one, and set Y1 = N 1
` \N . We have J (z, Y1) = |z|.

Because γ (`)E13 ∈ e⊗WJ , µγ (`)E13(z) = z. Thus, C(z, Y1, s) = |z|s+1, which gives

zn+2 at s = n+ 1.

(3) The case i = 2. Fix φ ∈ h(J )0 spanning a minimal line, and set Y2 = ker(φ)N0\N .

Then J (z, Y2) = |z|4+dim(C), where recall J = H3(C). In this case, γ (φ)E13 ∈ h(J )0,

so µw(z) = 1. Thus C(z, Y 0
2 , s) = |z|4+dim(C), independent of s.

(4) The case i = 3. Fix ` ⊆ f ⊗WJ a rank one line, and set Y3 = W (`)\N . In this

case, J (z, Y3) = |z|dim(J )+3. (Note that z scales the measure on N0 by |z|2.)

Furthermore, γ (`)E13 ∈ f ⊗WJ , and thus µwE13(z) = z−1. Hence C(z, Y3, s) =
|z|dim(J )+3−s , which specializes to |z|dim(J )+2−n at s = n+ 1.

(5) The case i = 4. Set Y4 = N . Then J (z, Y4) = |z|dim WJ+2
= |z|2 dim(J )+4. We

have µw4 E13(z) = z−2; thus C(z, Y4, s) = |z|2 dim(J )+4−2s , which at s = n+ 1 is

|z|2 dim(J )+2−2n .

We obtain the following lemma. Recall our running assumption that n > 0 is even.

Lemma 3.2.4. Suppose that the meromorphic continuation of E(g, s, n) to s = n+ 1 is

regular and defines a modular form of weight n at this point. Suppose moreover that n and

J are such that the numbers 2n+ 2, n+ 2, 4+ dim(C), dim(J )+ 2− n, and 2 dim(J )+ 2−
2n are pairwise distinct. If G = G2, then exclude the term 4+ dim(C). Then only E0(g, s)
and E1(g, s) contribute to the constant term of E(g, s, n) at s = n+ 1.

Note that in Lemma 3.2.4, we do not need to assume that the Eisenstein series E(g, s, n)
converges absolutely at s = n+ 1.

Proof of Lemma 3.2.4. If E(g, s, n) is regular at s = n+ 1, then so is its constant term.

Each Ei (g, s) contributes to the constant term. Now, under the assumptions of the

lemma, the constant terms of the Ei (g, s) transform by different characters under left

translation g 7→ zg for z ∈ Z H (R). It follows the constant terms of the Ei (g, s) are each

individually regular at s = n+ 1. Because they are regular at s = n+ 1, the values of

these constant terms at s = n+ 1 must transform by the characters {2n+ 2, n+ 2, 4+

https://doi.org/10.1017/S1474748020000213 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000213


The minimal modular form on quaternionic E8 623

dim(C), dim(J )+ 2− n, 2 dim(J )+ 2− 2n}. However, the constant term of a modular form

can only transform by z2n+2 and zn+2. Again, because these numbers are assumed all

distinct, only E0
0(g, s) and E0

1(g, s) contribute; the other E0
i (g, s) for i = 2, 3, 4 must

vanish at s = n+ 1.

We consider next the nonconstant Fourier coefficients. For the nonconstant terms, we

will need to assume that the sum defining the Eisenstein series converges absolutely. Let

the Yi be as above.

We will use the action of a maximal Q-split torus of the groups HJ ⊆ G J . For

convenience, we specify a particular choice of torus T when J = H3(C). We parametrize

the elements of T as ordered four-tuples t = (λ, t1, t2, t3). In these coordinates, set

δ(t) := t1t2t3. Then T acts on WJ as

t (a, b, c, d) = (λ−1δ−1(t)a, δ−1(t)(t · b), λδ(t)(t−1
· c), λ2δ(t)d),

where t · X = diag(t)X diag(t) for X ∈ H3(C). Moreover, one has ν(t) = λ and

Ad(t)nL(X) = λnL(t · X).
We set T 1

⊆ T the subtorus consisting of elements with λ = 1. Additionally, define

T ′ ⊆ T the subtorus consisting of those elements where t1 = t2 = t3; T ′ is a maximal

Q-split torus of G2. Then when G = G2, T ′ ⊆ P ⊆ G2 and T ′ acts on WJ by the same

formula for T just given. We are now ready to prove Proposition 3.2.1.

Proof of Proposition 3.2.1. Because of the assumption that the Eisenstein series

converges absolutely, we may analyze the terms Eωi (g, s) separately for each i . Assume

ω 6= 0.

The case i = 4: Consider first the case i = 4. Suppose m ∈ HJ . Then J (m, Y4) =

|ν(m)|dim J+2, and µw4 E13(m) = ν(m)
−1. Thus C(m, Y, s) = |ν(m)|dim J+2−s , which

specializes to dim(J )+ 1− n at s = n+ 1. Note that, if ω rank four and m̃ω = ω, then

necessarily |ν(m)| = 1. By contrast, if ω is rank 1, 2 or 3, there exists m ∈ M with m̃ω = ω
but |ν(m)| 6= 1. Indeed, if ω is rank two or three, then ω has an HJ (F)-translate ω′

of the form (0, ∗, 0, 0), and if ω is rank one, then ω has a translate ω′ of the form

(1, 0, 0, 0). In the first case, ω′ is fixed by t = (λ, (1, 1, 1)), while in the second, ω′ is fixed

by (λ3, (λ−1, λ−1, λ−1)). Thus, so long as dim J + 1− n 6= n+ 1, the term Eω4 (g, s) will

vanish for ω not rank 4. However, the condition dim(J ) = 2n is never satisfied for an

even n, as the allowable dim(J )’s are {1, 6, 9, 15, 27}.
The case i = 3: Now consider the case i = 3. Recall that we are analyzing

Eω3 (g, s) =
∑

`:ω∈W (`)

∫
W (`)(A)\N (A)

χ−1
ω (n) f (γ (`)−1ng, s) dn,

where γ (`)E13 spans ` ⊆ f ⊗WJ . We are interested in seeing if this vanishes at s = n+ 1
for ω of rank one or two.

Because of the absolute convergence, we may consider each term separately, and then

without loss of generality we may assume that ` is spanned by f ⊗ (0, 0, 0, 1) = E21,

so that W (`) = (0, 0, ∗, ∗). Recall that the condition on ω is ω ∈ W (`). If G = G2, then

necessarily ω is rank one and in (0, 0, 0, ∗). If G is not G2, then without loss of generality

we may assume that ω = (0, 0, ω2, 0), with ω2 ∈ e11× J ⊆ J∨, i.e., ω2 has (i, j) coefficient

equal to 0 if either i or j equals 1. We set Y3 = W (`)\N as above.
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Suppose first that G = G2, and t ′ = (λ, (t, t, t)) ∈ T ′. Then with notation as above,

J (t ′, Y2) = |t |−4. Furthermore, one has µE21(t
′) = λt3. Thus, C(t ′, Y3, s) = |λt3

|
s
|t |−4

=

|λt3
|
n+1
|t |−4 at s = n+ 1. Now, t̃ ′(0, 0, 0, 1) = λ−1t−3(0, 0, 0, 1), and thus the condition

t̃ ′ω = ω is λt3
= 1. Thus for such t ′, C(t ′, Y3, s = n+ 1) = |ν(t ′)|n+1 if and only if |t |−4

=

|λ|n+1
= |t |−3n−3. But 4 6= 3n+ 3, and we can find t ′ with t̃ ′ω = ω and |t | 6= 1. Thus, in

the case G = G2, this term vanishes.

Now suppose that G 6= G2. Consider the action of the subgroup of T 1 with t1 = 1 and

t2 = t3. Then this group fixes ω. One computes that J (t, Y3) = |δ|
−1−dim J/3. The term

µ`(t) = δ; thus C(t, Y3, s) = |δ|s−1−dim J/3. Because ν(t) = 1 but the elements (1, t, t) ∈ T
have δ 6= 1, this only transforms the right way at s = n+ 1 if 3n = dim(J ). But n > 2
is even, so this cannot occur for dim(J ) ∈ {6, 9, 15, 27}. This completes the proof of the

vanishing for i = 3.

The case i = 2: We are now left with the case of i = 2. This case cannot occur when

G = G2, so we assume J = H3(C) so that G 6= G2. Recall that we are interested in

Eω2 (g, s) =
∑

φ:ω∈I (φ)

∫
(ker(φ)N0)(A)\N (A)

χ−1
ω (n) f (γ (φ)−1ng, s) dn.

We would like to see that this vanishes at s = n+ 1 if ω is rank one. If φ is fixed, set

Y2 = ker(φ)N0\N .

By absolute convergence, we may consider the individual terms separately. As explained

in the proof of Lemma 3.1.3, we may assume that φ = nL(e11) and the condition on ω

is that ω ∈ I (φ) = (0, Fe11, e11× J, F). Without loss of generality, we may furthermore

assume that ω = (0, 0, 0, 1). Note that the subgroup of T 1 with δ = t1t2t3 = 1 fixes ω.

Now, for t ∈ T 1, we have µFφ(t) = t2
1 . Moreover, one computes J (t, Y2) = |t1|−(dim(C)+4).

Thus, C(t, Y2, s) = |t1|2s−dim(C)−4, which is |t1|2n−dim(C)−2 at s = n+ 1. However, ν(t) = 1,

so if |t1| 6= 1, this transforms the correct way only if 2n = dim(C)+ 2. But then n <
dim(J ), so this cannot occur. This completes the argument in the case i = 2.

Summarizing, we have proved the following result.

Theorem 3.2.5. Suppose n > dim(J )+ 1 is even, so that E(g, s; n) converges absolutely,

and defines a modular form at s = n+ 1. Then, the Fourier expansion of E(g, s; n) at

s = n+ 1 is given as follows:

(1) If ω is rank one, then

Eω(g, s = n+ 1; n) =
∫
((Fω)⊥N0)(A)\N (A)

χ−1
ω (u) f (γ (ω)−1ug, s = n+ 1) du,

where γ (ω)E13 = e⊗ω.

(2) If ω is rank two (which cannot occur in the case G = G2), then

Eω(g, s = n+ 1; n) =
∫
(ker(8ω,ω)N0)(A)\N (A)

χ−1
ω (u) f (γ (8ω,ω)−1ug, s = n+ 1) du,

where γ (8ω,ω)E13 = 8ω,ω.
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(3) If ω is rank three, then

Eω(g, s = n+ 1; n) =
∫
(W (ω[)(A)\N (A)

χ−1
ω (u) f (γ (ω[)−1ug, s = n+ 1) du,

where γ (ω[)E13 = f ⊗ω[.

(4) If ω is rank four, then

Eω(g, s = n+ 1; n) =
∫

N (A)
χ−1
ω (u) f (w−1

4 ug, s = n+ 1) du.

Finally, the constant term of E(g, s = n+ 1; n) is f0(g, s = n+ 1)+ E0
1(g, s = n+ 1; n),

where

E0
1(g, s = n+ 1; n) =

∑
`⊆W rk1

J

∫
(`)⊥N0(A)\N (A)

f (γ (`)−1ug, s = n+ 1) du

is an absolutely convergent Siegel Eisenstein series on HJ and γ (`)E13 spans e⊗ `.

3.3. Computation of constant term

We now compute the constant terms more explicitly.

3.3.1. The i = 0-term. The first thing that we do is compute the simplest term,

f0(g, s).

Lemma 3.3.1. Suppose g ∈ PHeis(A). Then

f0(g, s) = |ν(g)|sζ(s)
(−1)n/2

2n 0R(s+ n)xn yn,

which at s = n+ 1 becomes

f0(g, s = n+ 1) = |ν(g)|n+1ζ(n+ 1)
(−1)n/2

2n π−n(1/2)n xn yn .

Proof. Assume g ∈ P ⊆ G J the Heisenberg parabolic. Then we have

f0(g, s) =
∫

GL1(A)
|t |s8(tg−1 E13) dt

=

∫
GL1(A)

|t |s8(tν(g)−1 E13) dt

= |ν(g)|s
∫

GL1(A)
|t |s8(t E13) dt .

Thus, the contribution to f0(g, s) from the finite places is |ν(g)|sζ(s).
Let us now analyze the Archimedean section f (g,8n, s). Observe that for v ∈ g(J ),

pr(v) = B(v, f`)e`+
1
2

B(v, h`)h`+ B(v, f`)e`.

Also, recall [18, § 5.1]
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• e` = 1
4 (ie+ f )⊗ r0(i),

• f` = 1
4 (ie− f )⊗ r0(−i), and

• h` = i
2

(( 1
−1

)
+ nL(−1)+ n∨L (1)

)
,

and under the map pr : k→ Sym2(V2), e` 7→ x2, f` 7→ −y2, and h` 7→ −2xy [18, § 9].

Consequently,

pr(E13) = −
i
4

h` 7→
i
2

xy.

Thus if n is even,

f∞(1,8∞,n, s) = pr(E13)
n
∫

GL1(R)
|t |s+ne−π t2

dt =
(−1)n/2

2n 0R(s+ n)xn yn . (5)

Combining the finite places and the Archimedean place, we obtain the lemma.

3.3.2. The i = 1-term. Denote by `0 the line spanned by E23 = e⊗ (0, 0, 0, 1), and

suppose γ0 E13 = E23. Define

f 0
1 (g, s) =

∫
((`0)⊥N0)(A)\N (A)

f (γ−1
0 ng, s) dn.

Then for Re(s) large,

E0
1(g, s) =

∑
γ∈PSieg(Q)\HJ (Q)

f 0
1 (γ g, s),

where PSieg denotes the parabolic subgroup of HJ that stabilizes the line Q(0, 0, 0, 1).
Note that this sum defines a Siegel Eisenstein series on HJ .

Proposition 3.3.2. Suppose that 8v restricted to Qp E13⊕Qp E23 is the characteristic

function of ZvE13⊕ZvE23 for every v <∞. Then for p ∈ PSieg(A),

f 0
1 (p, s = n+ 1) =

ζ(n)0(n)
(4π)n

|ν(p)‖λ(p)|n(x2n
+ y2n)

with λ(p) defined by p(0, 0, 0, 1) = λ(p)(0, 0, 0, 1).

See also [3, § 13] and especially [3, Lemma 13.14], where the case of G2 is discussed.

Proof. We have

f 0
1 (g, s) =

∫
((`0)⊥N0)(A)\N (A)

f (γ−1
0 ng, s) dn

=

∫
GL1(A)

∫
A
|t |s8(tg−1n−1 E23) dn dt

=

∫
GL1(A)

∫
A
|t |s8(tg−1(E23− x E13)) dx dt .

Here we have used that if n = e⊗ (x, 0, 0, 0), then n−1 E23 = E23− x E13.

Now suppose g = p ∈ PSieg ⊆ HJ , the Siegel parabolic subgroup of the Levi HJ . Denote

by λ the character of PSieg that defines its Siegel Eisenstein series, i.e., pE23 = λ(p)E23.
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Then p−1(E23− x E13) = λ(p)−1 E23− xν(p)−1 E13. So, we must evaluate

f 0
1 (g, s) =

∫
GL1(A)

∫
A
|t |s8(tλ(p)−1 E23− xtν(p)−1 E13) dx dt

= |ν(p)‖λ(p)|s−1
∫

GL1(A)

∫
A
|t |s8(t E23− xt E13) dx dt,

where we have changed variables x 7→ ν(p)λ(p)−1x and t 7→ λ(p)t .
For a place v of Q, set

f 0
1,v(g, s) = |ν(p)||λ(p)|s−1

∫
Q×v

∫
Qv

|t |s8v(t E23− xt E13) dx dt .

Now, assuming that 8v is as in the statement of the proposition, the integral over t and

x gives ζv(s− 1). Thus, at the finite place v with 8v as above and p ∈ PSieg ⊆ HJ , we

get

f 0
1,v(p, s) = ζv(s− 1)|ν(p)||λ(p)|s−1.

We now must calculate f 0
1,v(g, s) when v = ∞ is the Archimedean place. We require

an explicit expression for pr(u) for u = e⊗ v+µE13. We have B(u, e`) = 1
4 〈v, r0(i)〉,

B(u, f`) = − 1
4 〈v, r0(−i)〉, and B(u, h`) = − i

2µ. Thus

−4pr(e⊗ v+µE13) = 〈v, r0(−i)〉e`+ iµh`−〈v, r0(i)〉 f`

7→ 〈v, r0(−i)〉x2
− 2iµxy+〈v, r0(i)〉y2.

Therefore

pr(E23−βE13) = −
1
4
(−x2

+ 2iβxy− y2) =
1
4
(x2
− 2iβxy+ y2).

Thus

f 0
1,∞(g, s) =

∫
R×

∫
R
|t |s8∞,n(t (E23−βE13)) dx dt

=

∫
R×

∫
R
|t |s+n pr(E23−βE13)

ne−π t2(1+β2) dβ dt

=
1
4n

∫
R×

∫
R
|t |s+n(x2

− 2iβxy+ y2)ne−π t2(1+β2) dβ dt .

The final integral is

1
4n

∑
06k6n, even

(
n
k

)
2k(−1)k/2(x2

+ y2)n−k(xy)k
∫

GL1

|t |s+ne−π t2
(∫

R
βke−π t2β2

dβ
)

dt .

The inner β-integral above gives∫
R
βke−π t2β2

dβ = |t |−k−1
∫

R
βke−πβ

2
dβ

= π−k/2
|t |−k−1

(
1
2

)
k/2
.
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Therefore, we obtain

|ν(p)|−1
|λ(p)|1−s f 0

1 (p, s) =
1
4n

∑
06k6n, even

(
n
k

)
2k(−1)k/2(x2

+ y2)n−k(xy)kπ−k/2
(

1
2

)
k/2

×0R(s+ n− k− 1)

s=n+1
=

π−n

4n

∑
06k6n, even

(
n
k

)
2k(−1)k/2(x2

+ y2)n−k(xy)k
(

1
2

)
k/2

×0(n− k/2).

Lemma 3.3.3. One has∑
06k6n, even

(
n
k

)
2k(−1)k/2(x2

+ y2)n−k(xy)k
(

1
2

)
k/2
0(n− k/2) = 0(n)(x2n

+ y2n).

Proof. The proof is by generating series. First, write u = x2, v = y2, n = 2m and k = 2 j .
Then we must evaluate∑

06 j6m

(
2m
2 j

)
22 j (−1) j (u+ v)2m−2 j (uv) j

(
1
2

)
j
0(2m− j).

Because
(

1
2

)
j
=

(2 j)!
22 j ( j !) , this is

n!
∑

06 j6m

(−1) j
(

2m− j
j

)
1

2m− j
(u+ v)2m−2 j (uv) j .

To evaluate this, ignore the n! and sum over all n (not just even n) to obtain∑
n>1

∑
06 j6n− j

(−1) j
(

n− j
j

)
1

n− j
(u+ v)(n− j)− j (uv) j

=

∑
p>1

∑
06 j6p

(−1) j
(

p
j

)
1
p
(u+ v)p− j (uv) j

=

∑
p>1

((u+ v)− uv)p

p
.

But this last sum is

− log(1− u− v+ uv) = − log(1− u)− log(1− v) =
∑
n>1

un
+ vn

n
.

This proves the lemma.

We have thus proved at s = n+ 1 the Archimedean section gives

f 0
1 (p, s = n+ 1) = |ν(p)‖λ(p)|n(4π)−n0(n)(x2n

+ y2n).

This completes the proof of the proposition.

https://doi.org/10.1017/S1474748020000213 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748020000213


The minimal modular form on quaternionic E8 629

3.4. The rank one Fourier coefficients

In [11], the authors computed the non-Archimedean part of the rank four Fourier

coefficients of the degenerate Heisenberg Eisenstein series on G2. The work of loc. cit.

is an involved computation, and in general, the rank two, three and four coefficients

of E(g,8, s = n+ 1) appear to be somewhat difficult to evaluate. However, the Fourier
coefficients Eω1 (g, s = n+ 1) for ω rank one can be computed directly. In this subsection,

we make this computation.

For ω ∈ WJ rank one, define

f ω1 (g, s) =
∫
(Fω)⊥N0\N

χ−1
ω (n) f (γ (ω)−1ng, s) dn,

where γ (ω)E13 = e⊗ω. We will assume that ω = ae⊗ (0, 0, 0, 1) = ae⊗ω0 with a ∈ F .

So, ω0 = (0, 0, 0, 1) in this subsection.

3.4.1. Evaluation at spherical finite places. First, we evaluate f ω1 (g, s) at

spherical finite places. The Fourier coefficient will vanish unless a ∈ O, so we can assume

a ∈ O = Zp. We get, as above,

f ω1 (g, s) =
∫
(`)⊥N0\N

χ−1
ω (n) f (γ−1

0 ng, s) dn

=

∫
Q×p

∫
Qp

ψ−1(ax)|t |s8(tg−1(E23+ x E13)) dx dt .

(We have changed variables x 7→ −x ; note that χω(n) = ψ(〈ω, n〉) = ψ(−ax).) Now,

because we are interested in the Fourier expansion of the spherical vector, we will take

g = 1 at the finite places. Thus, at the finite places, we obtain

f ω1 (1, s) =
∫

Q×p

∫
Qp

|t |sψ−1(ax)8(t E23+ t x E13) dx dt

=

∫
Q×p

∫
Qp

|t |s−1ψ−1(ax/t)8(t E23+ x E13) dx dt

=

∑
t |a

|t |s−1.

3.4.2. Evaluation at the Archimedean place. We now evaluate f ω1 (g, s) at the

Archimedean place. Suppose ω0 ∈ WJ is rank one, z ∈ WJ , n = n(z) = exp(e⊗ z), and

g ∈ HJ . Then

g−1n−1e⊗ω0 = g−1(e⊗ω0+〈ω0, z〉E13)

= ν(g)−1(e⊗ g̃ω0+〈ω0, z〉E13).

Here, recall that g̃ = ν(g)g−1. Thus we have

‖g−1n−1e⊗ω0‖
2
= |ν(g)|−2(

|〈g̃ω0, r0(i)〉|2+ |〈ω0, z〉|2
)

using that ω0 is rank one. Additionally, we have

pr(g−1n−1e⊗ω0) = −
1
4ν(g)

−1(
〈g̃ω0, r0(−i)〉x2

− 2i〈ω0, z〉xy+〈g̃ω0, r0(i)〉y2)
= −

1
4ν(g)

−1(α∗x2
− 2iβxy+αy2),
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where α = 〈ω0, gr0(i)〉 and β = 〈ω0, z〉. Thus we obtain

f ω1 (g, s) =
|ν(g)|s

4n

∫
R×

∫
R
ψ−1(〈ω, z〉)|t |s+n

(
α∗x2

− 2iβxy+αy2
)n

e−π t2(|α|2+β2) dz dt

=
|ν(g)|s

4n

∫
R×

∫
R
ψ−1(λβ)|t |s+n

(
α∗x2

− 2iβxy+αy2
)n

e−π t2(|α|2+β2) dβ dt,

where λ = a is the constant satisfying 〈ω, z〉 = λ〈ω0, z〉 = λβ.

Hence

f ω1 (g, s) =
|ν(g)|s

4n

∑
k

(
n
k

)
(xy)k(α∗x2

+αy2)n−k(−2i)k
∫

GL1

|t |s+ne−π t2
|α|2

×

(∫
R
βke−π t2β2

e−2π iλβ dβ
)

dt.

Because

t2β2
+ 2iλβ = (|t |β + iλ/|t |)2+ λ2/|t |2,

this inner integral is

e−πλ
2/|t |2

∫
R
βke−π(|t |β+iλ/|t |)2 dβ.

The k = 0 term then gives

k = 0 term =
|ν(g)|s

4n (α∗x2
+αy2)n

∫
R×
|t |s+n−1e−π(t

2
|α|2+λ2/t2) dt

= 2
|ν(g)|s

4n (α∗x2
+αy2)n

(
|λ|

|α|

)(s+n−1)/2

K(s+n−1)/2(2π |λ‖α|).

Note that we are using the normalization of the K -Bessel function

Ks(y) =
1
2

∫
∞

0
t se−y(t+t−1)/2 dt

t
for y > 0.

Thus, at s = n+ 1, the coefficient of x2n is

2
|ν(g)|n+1

4n |λ|n
(
α∗

|α|

)n

Kn(2π |λ‖α|)

= 2
|ν(g)|n+1

4n |λ|n
(
|〈2πω, gr0(i)〉|
〈2πω, gr0(i)〉

)n

Kn(|〈2πω, gr0(i)〉|)

= 2
|λ|n

4n Wn
2πω(g).

Here, recall that |λ‖α| = |〈ω, gr0(i)〉|, and we have used that n is even so that we do not

have to worry about the sign of λ.

Remark 3.4.1. By the multiplicity one result [18, Theorem 1.2.1], to compute f ω1 (g, s =
n+ 1) it is enough to compute the coefficient of x2n , which is what we have done. The

coefficient of xn+v yn−v with v 6= n comes from various terms with k > 0, and gives a

complicated mess of K -Bessel functions. However, by this multiplicity one result, these

K -Bessel functions must ultimately combine and simplify, using the various identities

among Bessel functions, to a single Kv(•).
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3.4.3. Combining finite and Archimedean. Combining the above computations

of f ω1 (g, s) at the finite and Archimedean places, we have proved the following.

Proposition 3.4.2. Suppose g ∈ HJ (R), ω = ae⊗ (0, 0, 0, 1), and 8p restricted to

Qp E13+Qp E23 is the characteristic function of OE13+OE23 = Zp E13⊕Zp E23 for every

finite prime p. Then

f ω1 (g, s = n+ 1) =
2(2n)!

4n σn(|a|)W2πω(g).

3.5. The degenerate Heisenberg Eisenstein series

Putting everything together, we have proved the following result.

Corollary 3.5.1. Suppose that n > 0 is even such that E(g,8, s; n) is a modular form
of weight n at s = n+ 1. Assume moreover that for all p <∞, 8p is such that when

restricted to Qp E13+Qp E23 it is the characteristic function of Zp E13⊕Zp E23. Denote

by Ehol(g, s, n) the Siegel Eisenstein series on HJ defined as

Ehol(g, s, n) =
∑

γ∈PSieg(Q)\HJ (Q)

f (γ g, n)

with f (p, s, n) = |ν(p)‖λ(p)|s for p ∈ PSieg(A) and f (gk, n) = j (k, i)−n f (g, n) for k ∈
K 1

H . Then for g ∈ HJ (R),

E(n(x)g,8, s = n+ 1)0 =
ζ(n)0(n)
(4π)n

(
Ehol(g, n)x2n

+ E ′hol(g, n)y2n
)

+ |ν(g)|n+1
ζ(n+ 1)(−1)n/2

(
1
2

)
n

(2π)n
xn yn

+

∑
ω∈WJ (Q)

a(ω)e2π i〈ω,x〉W2πω(g)

for some coefficients a(ω). If n > dim(J )+ 1 and ω = a(0, 0, 0, 1) with a ∈ Z, then a(ω) =
2(2n)!

4n σn(|a|).

4. The minimal modular form

In this section, we prove Theorem 2.2.2. In the first subsection, we prove Proposition 2.2.1.

In the second subsection, we put together all the pieces to complete the proof of

Theorem 2.2.2.

4.1. The value of the Eisenstein series at its special point

As mentioned, the purpose of this section is to spell out a proof of Proposition 2.2.1,

which is essentially contained in [2, 3, 7, 10]. Crucial to our arguments is the following

proposition.
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Proposition 4.1.1. Denote by w0 the element of the Weyl group that takes N to its

opposite, and by M(w0, s) the intertwiner, which for Re(s)� 0 is given by the absolutely

convergent integral

M(w0, s) f (g, s; 4) =
∫

N (R)
f (w−1

0 ng, s; 4) dn.

Here we are working on G(R) = E8,4(R) and f is our special inducing section

defined above. Then M(w0, s) f (g, s; 4) = h(s) f (g, 29− s; 4), where h(s) is a meromorphic

function of s, which is regular at s = 5 and vanishes there.

We give the proof of the proposition below. It is via factorization of the intertwining

operator and reduction to rational rank one. Denote by P0 the minimal standard parabolic
on G = E8, so that P0 defines a root system of type F4. We first prove the following

corollary of Proposition 4.1.1.

Corollary 4.1.2. The Eisenstein series E(g, s; 4) is regular at s = 5 and defines a modular

form of weight 4 at this point. Moreover, its constant term along P0 consists of just two

terms: f (g, s = 5; 4) and f 0
1 (g, s = 5; 4).

Proof. First, from the functional equation of Eisenstein series, one obtains

E(g, s; 4) = c f (w0, s)h(s)E(g, 29− s; 4). (6)

The Eisenstein series E(g, s; 4) is spherical at every finite place (because the octonions

are split at every finite place) and thus the finite part c f (w0; s) of the c-function can be

computed. In fact, one gets (e.g. [2, 8])

c f (w0; s) =
ζ(2s− 29)ζ(s− 28)ζ(s− 23)ζ(s− 19)

ζ(2s− 28)ζ(s)ζ(s− 5)ζ(s− 9)
.

It is clear that the left-hand side of (6) is nonzero at s = 5, by examining the

contribution of f (g, s; 4) to its constant term. Because h(5) = 0, it follows that E(g, s; 4)
has a pole at s = 24. Because, as proved in [2], the order of the pole is at most one at

s = 24, one concludes that E(g, s; 4) is regular at s = 5. More precisely, E(g, 5; 4) is a

nonzero constant times Ress=24 E(g, s; 4).
Now, as explained in [2], at most two terms contribute to the constant term along P0

of the residue Ress=24 E(g, s; 4). It follows that all but two terms in the constant term of
E(g, s; 4) along P0 vanish at s = 5. Since we have already seen two of these terms above,

f (g, s; n) and f 0
1 (g, s; n), these are the only terms that contribute to the constant term

of E(g, s; 4) at s = 5.

It follows immediately from our calculation of f (g, s = n+ 1; n) and f 0
1 (g, s = n+ 1; n)

above and [18, § 11] that D4 annihilates both f (g, s = 5; 4) and f 0
1 (g, s = 5; 4). Thus D4

annihilates the constant term of the E(g, s = 5; 4). Because applying D4 commutes with

taking the constant term, D4 E(g, s; 4) has constant term 0. But an easy application of

[18, Theorem 7.3.1] yields D4 E(g, s; 4) = (s− 5)E(g, f ′s ; 4) for another G(Ẑ)-spherical,

K -finite flat section f ′s . Thus the constant term of E(g, f ′s ; 4) is regular at s = 5, and so

E(g, f ′s ; 4) is regular, and thus D4 E(g, s = 5; 4) = 0. That is, E(g, s = 5; 4) is a modular

form on G of weight 4. This completes the proof of the corollary.
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4.1.1. Archimedean intertwiner. It remains to explain the proof of

Proposition 4.1.1.

Denote by αi the simple roots of our F4-root system, so that they are labeled (in order)

1, 2, 3, 4 when the root diagram is

◦−−−◦ ==>== ◦−−−◦.

That is, 1, 2 label the long simple roots and 3, 4 label the short simple roots. Denote by wi
the simple reflection in the root αi and [i1, i2, . . . , ik] for the composition wi1wi2 · · ·wik .

The long intertwiner [2] in this notation is w0 = [1, 2, 3, 2, 1, 4, 3, 2, 1, 3, 2, 4, 3, 2, 1].
To compute M(w0, s) at the Archimedean place, we factorize into the intertwiners

for the simple roots αi and use the cocycle property. The short roots, fortunately, give

spherical intertwiners on groups isogenous to SO(9, 1). Normalize the inner product (·, ·)

on the F4 root spaces so that the long roots have norm squared equal to 2. With this

normalization, if µ is a character of P0, the result is that the c-function is

c(wk, µ) = (nonzero constant)
0((µ, αk))

0((µ, αk)+ 4)

for k = 3, 4 corresponding to the short roots.

For the long roots, the intertwiners are no longer spherical, but we must only make a

GL2-computation. To do this, first denote by V+ the three-dimensional subspace of V4
spanned by

b2
2 := x8

+ y8, b1
2 =:= x2 y2(x4

+ y4), b0
2 := x4 y4.

As in [3, § 13], define f1 =
x+y

2 , f2 =
x−y

2 . Then V+ is also the span of

b2
1 := f 8

1 + f 8
2 , b1

1 := f 2
1 f 2

2 ( f 4
1 + f 4

2 ), b0
1 := f 4

1 f 4
2 .

When we compute M(w2, µ), it is convenient to use the first basis bi
2, and when we

compute M(w1, µ) it is convenient to use the basis b j
1 .

More precisely, denote by [µ, bk
j ] the K -equivariant inducing section for I ndG

P0
(δ

1/2
P0
µ)

whose value at g = 1 is bk
j . Then for i ∈ {1, 2}, j ∈ {1, 2} and k ∈ {0, 1, 2}, one has

M(wi , µ)[µ, bk
j ] =

ζR(s)
ζR(s+ 1)

(
1−s

2

)
k(

1+s
2

)
k

[wi (µ), bk
j ],

where s = 〈µ, α∨i 〉. Here ζR(s) = 0R(s) = π−s/20(s/2) and (s)k = s(s+ 1) · · · (s+ k− 1).
To carry out the computation of M(w0, s), one then just puts together the above

information. The change of basis matrix between the bi
2’s and the bi

1’s is

A =

 2 2 1
56 8 −4
140 −20 6


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as

x8
+ y8

= 2( f 8
1 + f 8
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Putting together the pieces, one gets the following proposition, which immediately
implies Proposition 4.1.1.

Proposition 4.1.3. Denote by λs = δ
−1/2
P0
|ν(s)|s the normalized character defining

f (g, s; n). Then up to exponential factors, the intertwiner

M(w0)[λs, b0
2] = Z(s)A(s)[λ29−s, b0

2]

with

Z(s) =
(
0R(2s− 29)0R(s− 28)0R(s− 19)0R(s− 11)0R(s− 2)
0R(2s− 28)0R(s− 26)0R(s− 17)0R(s− 9)0R(s)

)(
0C(s− 23)0C(s− 14)
0C(s− 11)0C(s− 2)

)
and

A(s) =
(s− 31)(s− 29)(s− 22)(s− 20)(s− 14)(s− 12)(s− 5)(s− 3)

(s− 26)(s− 24)(s− 17)(s− 15)(s− 9)(s− 7)s(s+ 2)
.

4.2. Proof of Theorem 1.0.1

At this point, we have shown that E J (g, s; 4) is regular at s = 5 and defines a modular

form there. By the fact that the local representation πp ⊆ I nd
G J (Qp)

PJ (Qp)
(|ν|5) generated by

the spherical vector is minimal [7, 16], E J (g, s = 5; 4) only has a constant term and rank

one Fourier coefficients; all of its rank two, three and four Fourier coefficients are 0.

Moreover, our computations above show the following.

Denote by PSieg the Siegel parabolic subgroup of HJ , which by definition is the stabilizer

of the line spanned by (0, 0, 0, 1) in WJ . Let Ehol(g, s; n) be the Siegel Eisenstein series

on HJ defined as

Ehol(g, s; n) =
∑

γ∈PSieg(Q)\HJ (Q)

f (γ g, n)

with f (p, s; n) = |ν(p)‖λ(p)|s for p ∈ PSieg(A) and f (gk, s; n) = j (k, i)−n f (g, s; n) for

k ∈ K 1
H . The Eisenstein series Ehol(g, s; 4) is regular at s = 4. The value Ehol(g, s =

4; 4) = 240|ν(g)|58K im(g), i.e., it corresponds to the holomorphic modular form that is

the multiple of HK im with constant term 1. Indeed, this is the result of [13].

Thus for g ∈ HJ (R) and x ∈ (N/N0)(R) ' WJ (R),

E(xg, s = 5,8; 4)0 =
ζ(4)0(4)
(4π)4

(
Ehol(g, s = 4; 4)x8

+ E ′hol(g, s = 4; 4)y8
)

+ |ν(g)|5
ζ(5)

(
1
2

)
4

(2π)4
x4 y4
+

∑
ω∈WJ (Q)

a(ω)e2π i〈ω,x〉W2πω(g)

for some coefficients a(ω).
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4.2.1. The nonconstant terms. To finish the proof, we must analyze the

nonconstant terms. We do this by applying Gan’s Siegel–Weil theorem [3] for G2× Fan
4 ⊆

G J = E8,4. Here recall that Fan
4 is the anisotropic F4 defined to be the fixator of 1J in

the exceptional cubic norm structure J = H3(2). We only require the following much

weaker form of it.

Theorem 4.2.1 (Gan). Denote by θ(1)(g) the theta lift of the constant function 1 on Fan
4

to G2, i.e.,

θ(1)(g) =
∫
[Fan

4 ]
E((g, h), 5; 4) dh.

Then the difference EG2(g, 5; 4)− θ(1)(g) is a weight 4, level one cuspidal modular form

on G2.

Gan’s Siegel–Weil theorem proves that the above difference is 0, and moreover that it

is 0 for a large family of inducing sections. However, we only require that the difference is

cuspidal, and only for this one particular section. These simplifications make the necessary

result easier to prove, which is why we state it in this weaker form.

Now, to finish the proof of Theorem 2.2.2, we must evaluate the rank one Fourier

coefficients of E(g, s = 5; 4). Because this modular form is spherical, it suffices to evaluate

aθ (a(0, 0, 0, 1)) for positive integers a. To do this, we will use Theorem 4.2.1, together

with the following lemma.
Recall the definitions of �I (ω0) and �E (ω0) from § 2.5.

Lemma 4.2.2. Suppose ω0 = (α, β, γ, δ) ∈ WF is rank one. Then �I (ω0) and �E (ω0)

are each singletons, consisting of the elements (α, β I, γ I #, δ) and (α, βE, γ E#, δ),

respectively.

Proof. By equivariance and scaling, we may suppose that ω0 = (1, 0, 0, 0). But then,

�E ((1, 0, 0, 0)) = {(1, X, X#, N (X)) : (X, E#) = (X#, E) = N (X) = 0}.

However, the only such X is 0, and similarly with I in place of E . This proves the

lemma.

Because modular forms that are cusp forms only have rank four coefficients, it follows

from Lemma 4.2.2 that the rank one Fourier coefficients of E J (g, s = 5; 4) are equal to the

rank one Fourier coefficients of the similar Eisenstein series on G2. But these coefficients

were computed in Corollary 3.5.1. This completes the proof of Theorem 2.2.2.
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