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Abstract

The principal aim of this article is to attach and study p-adic L-functions to coho-
mological cuspidal automorphic representations Π of GL2n over a totally real field F
admitting a Shalika model. We use a modular symbol approach, along the global lines
of the work of Ash and Ginzburg, but our results are more definitive because we draw
heavily upon the methods used in the recent and separate works of all three authors.
By construction, our p-adic L-functions are distributions on the Galois group of the
maximal abelian extension of F unramified outside p∞. Moreover, we work under a
weaker Panchishkine-type condition on Πp rather than the full ordinariness condition.
Finally, we prove the so-called Manin relations between the p-adic L-functions at all
critical points. This has the striking consequence that, given a unitary Π whose stan-
dard L-function admits at least two critical points, and given a prime p such that Πp is
ordinary, the central critical value L(1

2 ,Π⊗ χ) is non-zero for all except finitely many
Dirichlet characters χ of p-power conductor.
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Introduction

A crucial result in Shimura’s work on the special values of L-functions of modular forms concerns
the existence of a twisting character to ensure that a twisted L-value is non-zero at the center
of symmetry (see [Shi77, Theorem 2]). Since then, it has been a very important problem in the
analytic theory of automorphic L-functions to find characters to render a twisted L-value non-
zero. Rohrlich [Roh89] proved such a non-vanishing result in the context of cuspidal automorphic
representations of GL2 over any number field. This was then generalized to GLN over any number
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field by Barthel and Ramakrishnan [BR94] and further refined by Luo [Luo05]. However, neither
[BR94] nor [Luo05] can prove this at the center of symmetry if N � 4 (for us the functional
equation will be normalized so that s = 1

2 is the center of symmetry). There have been other types
of analytic machinery that have been brought to bear on this problem, for example, see [CFH05].
Even for simple situations involving L-functions of higher degree this problem is open. For
example, suppose π is the unitary cuspidal automorphic representation associated to a primitive
holomorphic cusp form for GL2 /Q, then it has been an open problem to find a Dirichlet character
χ so that the twisted symmetric cube L-function L(1

2 , (Sym3 π)⊗ χ) is non-zero at the center.
In this article, we prove the following result.

Theorem A. Let F be a totally real field and Σ∞ the set of all its real places. Let Π be a

unitary cuspidal automorphic representation of GL2n /F admitting a Shalika model and such

that Π∞ is cohomological with respect to a pure dominant integral weight μ such that

μσ,n > μσ,n+1, for all σ ∈ Σ∞. (1)

Assume that for all primes p above a given prime number p, Πp is unramified and Q-ordinary,

where Q is the parabolic of type (n, n) of GL2n /F (see (65)).

Then, for all but finitely many Dirichlet characters χ of p-power conductor we have

L
(

1
2 ,Π⊗ (χ ◦NF/Q)

)
�= 0.

For notions and notation that are not defined in the introduction, the reader should consult
the main body of the paper. A more general statement is proven in Theorem 4.8. Furthermore,
we can prove a stronger non-vanishing result covering the nearly ordinary case (see Corollary
4.9) as well as a simultaneous non-vanishing result (see Corollary 4.10). For example, with a
classical normalization of L-functions, it follows from our results that there are infinitely many
Dirichlet characters χ such that

L(6,Δ⊗ χ) · L(17,Sym3(Δ)⊗ χ) �= 0,

for the Ramanujan Δ-function. Our methods are purely arithmetic and involve studying p-adic
distributions on C�+F (p∞), the Galois group of the maximal abelian extension of F unramified
outside p∞, that are attached to suitable eigenclasses in the cohomology of GL2n.

Let us now describe our methods and results in greater detail. We begin with a purely
cohomological situation, without any reference to automorphic forms or L-functions. Let OF
be the ring of integers of F and d its different. Take a pure dominant integral weight μ for
G = ResOF /Z GL2n, and let V μ

E be the algebraic irreducible representation of G(E), for some
‘large enough’ p-adic field E. If O is the ring of integers of E, then we also consider an O-lattice
V μ
O stabilized by G(O). For any open compact subgroup K of GL2n over the finite adeles of F ,

let VμO be the associated sheaf on the locally symmetric space SGK of G with level structure K
and let us consider the compactly supported cohomology Hq

c(S
G
K ,V

μ
O) endowed with the usual

Hecke action. Assume that for p dividing p, Kp is the parahoric subgroup corresponding to the
parabolic Q and consider an eigenclass φ ∈ Ht

c(S
G
K ,V

μ
O) having a non-zero eigenvalue αp for a

particular Hecke operator Up. Here and throughout the paper t = |Σ∞|(n2 + n− 1) denotes the
top degree supporting cuspidal cohomology. The weight μ determines a contiguous string of
integers Crit(μ), which would correspond to the set of critical points for an L-function. For each
j ∈ Crit(μ) we attach an E-valued distribution μjφ on C�+F (p∞) and show that it is O-valued
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p-adic L-functions and non-vanishing

when φ is Q-ordinary, that is, it is a measure (see diagram (36) for a quick overview of the sheaf-
theoretic maps that are involved in the construction). Most importantly we prove in Theorem
2.3 a Manin-type relation, namely for all j, j′ ∈ Crit(μ) we have

εj
′−j

cyc (μjφ) = μj
′
φ ,

where ε : C�+F (p∞)→ Z×
p is the p-adic cyclotomic character and εcyc is the automorphism of

O[[C�+F (p∞)]] sending [x] to ε([x])[x], allowing us to define a measure μφ = ε−jcyc(μ
j
φ) that is

independent of j.
Next we apply these considerations to the situation when φ is related to a cuspidal automor-

phic representation Π of GL2n /F such that Π∞ is cohomological with respect to the weight μ
(see § 4.1.3). Friedberg and Jacquet related the period integral of cusp forms in Π over the Levi
subgroup H of Q to the standard L-function L(s,Π), and for the unfolding of this integral to see
the Eulerian property the representation is assumed to have a Shalika model (see § 4.1). Such a
cohomological interpretation was used in [GR14] to deduce algebraicity results for the critical
values of L(s,Π⊗ χ). The following result further investigates their p-adic integrality properties.
A more general p-adic interpolation statement is proven in Theorem 4.7 under the assumption
that Πp admits a Q-regular refinement Π̃p for p | p (see Definition 3.5), which is shown to be
always fulfilled when Πp is Q-ordinary (see Lemma 4.4).

Theorem B. Let Π be a cuspidal automorphic representation of GL2n /F admitting a (ψ, η)-
Shalika model and such that Π∞ is cohomological of weight μ. Assume that for all primes p above

a given prime number p, Πp is spherical and Q-ordinary, and let αp denote the corresponding

Up-eigenvalue. Given any isomorphism ip : C
∼−→ Q̄p, there exists a bounded p-adic distribution

μΠ̃ on C�+F (p∞) such that for any j ∈ Crit(μ) and for any finite order character χ of C�+F (p∞)
of conductor βp � 1 at all p | p one has

i−1
p

(∫
C�+F (p∞)

εj(x)χ(x) dμΠ̃(x)
)

= γ ·Njn
F/Q(d) ·

∏
p|p

(
α−1

p q
n(j+1)
p

)βp · G(χf )n · L
(
j +

1
2
,Πf ⊗ χf

)
ζ∞

(
j +

1
2
;W (εjχη)∞

Π∞,j

)
,

where G(χf ) is the Gauss sum, the zeta factor is non-zero by (76), and γ ∈ Q× is as in (77).

Let us hint on how we deduce Theorem A. Theorem B, the formulation of which implicitly
uses the earlier established Manin relations, gives congruence relations between successive critical
values, whereas (1) translates into 3

2 ∈ Crit(μ). As the complex L-function of the unitary cuspidal
automorphic representation Π does not vanish for �(s) � 1 we deduce that L(3

2 ,Π⊗ χ) never
vanishes, which, in turn, implies the non-vanishing of L(1

2 ,Π⊗ (χ ◦NF/Q)) for all but finitely
many Dirichlet characters χ (see the proof of Theorem 4.8).

Let us mention some relevant studies in the literature. First, Ash and Ginzburg [AG94]
started the study of p-adic L-functions for GL2n over a totally real field by considering the
analytic theory developed by Friedberg and Jacquet [FJ93]. However, to quote the authors
of [AG94], their results are definitive only for GL4 over Q and for cohomology with constant
coefficients. Furthermore, they constructed their distributions on local units while only suggesting
that one should really work, as we do in this paper, on C�+F (p∞). This article uses the more recent
techniques developed in independent papers by all three of the current authors; namely, [Dim13],
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[GR14], and [Jan15]. Finally, we mention Gehrmann’s thesis [Geh18], which also constructs
p-adic L-functions in essentially a similar context, but his methods are entirely different from
ours.

To conclude the introduction, our emphasis is on the purely sheaf-theoretic nature of the
construction of the distributions attached to eigenclasses in cohomology, which leads to a purely
algebraic proof of Manin relations in a very general context. When specialized to a cohomology
class related to a representation Π of GL2n, we obtain p-adic interpolation of the critical values
of the standard L-function L(s,Π), and Manin relations give non-vanishing of twists L(s,Π⊗ χ)
at the center of symmetry. A non-vanishing theorem in the realms of analytic number theory
admitting a decidedly algebraic proof is philosophically piquant.

1. Automorphic cohomology

Recall that F is a totally real number field with ring of integers OF and set of infinite places
Σ∞. For a set of places Σ, we denote by A(Σ) the topological ring of adeles of Q outside Σ. Let
AF = A⊗Q F (respectively, AF,f ) be the group of adeles (respectively, finite adeles) of F .

We consider G = ResOF /Z(GL2n) as a reductive group scheme over Z, quasi-split over Q

and let Z = ResOF /Z(GL1) be the center of G. The standard Borel subgroup B ⊆ G is defined
as the restriction of scalars of the standard Borel subgroup of all upper triangular matrices in
GL2n /OF . We have B = TN , where N is the unipotent radical of B and T is the standard torus
of all diagonal matrices. Let H = ResOF /Z(GLn×GLn), and ι : H ↪→ G be the map that sends
(h1, h2) to

(
h1 0
0 h2

)
. Let Q = HU be the standard parabolic subgroup of type (n, n) whose Levi

subgroup is H and unipotent radical is U . Finally, the Shalika subgroup S of G is defined as
S =

{(
h 0
0 h

)(
1 X
0 1

)
| h ∈ GLn, X ∈ Mn

}
.

For any commutative ring A, we let gA, bA, qA, tA, hA, nA, and uA denote the Lie algebras
of G, B, Q, T , H, N , and U over A, respectively. For aA any amongst these, we let U(aA)
denote the enveloping algebra over A. In the particular case A = R, let g∞ = gR ⊗R C denote
the complexification and likewise for the other groups. The reader is referred to [Jan03] as a
general reference for integral Lie algebras and their enveloping algebras.

For any real reductive Lie group G, we let G◦ denote the connected component of the identity.
Let G∞ = G(R), and similarly Z∞ = Z(R).

1.1 Pure weights
We identify integral weights μ of T with tuples of weights μ = (μσ)σ∈Σ∞ , μσ = (μσ,1, . . . , μσ,2n) ∈
Z2n. A weight μ is B-dominant if

μσ,1 � · · · � μσ,2n, for all σ ∈ Σ∞. (2)

Let X∗
+(T ) be the set of all such dominant integral weights. For μ ∈ X∗

+(T ) denote by V μ the
unique algebraic irreducible rational representation of G of highest weight μ. For any field E

over which μ is defined, we denote by V μ
E its E-valued points. Denote by μ∨ the highest weight

of the contragredient (V μ)∨ of V μ which we consider as a rational character of B.
We call μ pure if there exists w ∈ Z, called the purity weight of μ, such that

V μ = V μ∨ ⊗ (NF/Q ◦det)w,
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where NF/Q : ResF/Q(GL1)→ GL1 denotes the norm homomorphism. If μ is pure, then

μσ,i + μσ,2n−i+1 = w, for all σ ∈ Σ∞ and for all 1 � i � n. (3)

In particular,
∑2n

i=1 μσ,i = wn is independent of σ. We let X∗
0 (T ) ⊂ X∗

+(T ) denote the pure
dominant integral weights of T . Given any μ ∈ X∗

0 (T ), define the set

Crit(μ) = {j ∈ Z | μσ,n � j � μσ,n+1,∀σ ∈ Σ∞}. (4)

It is well known that only pure weights support cuspidal cohomology, and the motivation for
this definition comes from the fact proved in [GR14, Proposition 6.1] that if Π is a cuspidal
automorphic representation of G(A) that is cohomological with respect to μ (see § 4.1.3), then
1
2 + j with j ∈ Z is critical for the standard L-function L(s,Π⊗ χ) for any finite order character
χ if and only if j ∈ Crit(μ). Note that the central point (w + 1)/2 of L(s,Π⊗ χ) is critical (i.e.
w/2 ∈ Crit(μ)) if and only if w is even.

1.2 Integral lattices
Let E be a finite extension of Qp and let O be its ring of integers. Given μ ∈ X∗

+(T ), we consider
V μ
E as a representation of G(E).

Let v0 ∈ V μ
E be a non-zero lowest-weight vector. Then the unipotent radical N−(E) of the

Borel subgroup B−(E) of lower triangular matrices fixes v0, whereas T (E) acts on v0 via the
character −μv = w2n(μ) where w2n is the Weyl group element of longest length.

Observe that

V μ
O = U(nO)v0, (5)

is an O-lattice V μ
E endowed with a natural action of G(O).

We fix once and for all uniformizers �p ∈ Fp and put tp = ι(�p · 1n,1n) ∈ GL2n(Fp). Define
for any integral multi-exponent β = (βp)p|p the element

tβp =
∏
p|p
t
βp
p ∈ T (Qp), (6)

and consider the semi-group

Δ+
p = {tβp | βp ∈ Z�0, ∀ p | p}. (7)

Then by our choice of dominance condition, we have for any t ∈ Δ+
p :

Ad(t)Q(O) = tQ(O)t−1 ⊆ Q(O) and Ad(t−1)U−(O) = t−1U−(O)t ⊆ U−(O). (8)

Consider the standard maximal parahoric subgroup Jp =
∏

p|p Jp ⊂ G(Zp), where

Jp = t−1
p GL2n(OF,p)tp ∩GL2n(OF,p). (9)

As Jp ⊃ Q(Zp), the parahoric decomposition is given by

Jp = (Jp ∩ U−(Zp))Q(Zp) = Q(Zp)(Jp ∩ U−(Zp)). (10)

Using (8) and (10) one sees that

Λp = JpΔ+
p Jp = Q(Zp)Δ+

p (Jp ∩ U−(Zp)), (11)
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is a semi-group. Moreover, because U−(Zp) ⊂ N−(Zp) acts trivially on v0, the Jp-action on V μ
O

extends uniquely to an action • of the semi-group Λp by letting Δ+
p act trivially on the lowest

weight vector v0. Then for all t ∈ Δ+
p and v ∈ V μ

O one has

t • v = μ∨(t)(t · v). (12)

In fact, by (5), one can write v = m · v0 for some m ∈ U(nO) and using (8) one finds

t • v = t • (m • v0) = Ad(t)(m) • (t • v0) = Ad(t)(m) · v0 = μ∨(t)Ad(t)(m)(t · v0) = μ∨(t)(t · v).

1.3 Local systems on locally symmetric spaces for GL2n

The standard maximal compact subgroup of G∞ is denoted by C∞ =
∏
σ∈Σ∞ Cσ, where Cσ �

O2n(R). The determinant identifies the group of connected components C∞/C◦
∞ with F×

∞/F
×◦
∞ ∼=

{±1}Σ∞ . Let K∞ = C∞Z∞ and for any open compact subgroup K of G(Af ) consider the locally
symmetric space:

SGK = G(Q)\G(A)/KK◦
∞ = G(Q)\

(
(G∞/K

◦
∞)×G(Af )/K

)
. (13)

Note that K◦
∞ = C◦

∞Z
◦
∞ = C◦

∞Z∞ because 2n is even. In general, SGK is only a real orbifold. In
the sequel, we assume that K is sufficiently small in the sense that for all g ∈ G(A),

G(Q) ∩ gKK◦
∞g

−1 = Z(Q) ∩KK◦
∞, (14)

which implies in particular that SGK is a real manifold.
Given a left G(Q)-module V, one can define VK as the sheaf of locally constant sections of

the local system:

G(Q)\(G(A)× V )/KK◦
∞ → SGK ,

where γ(g, v)k = (γgk, γ · v) for all γ ∈ G(Q), k ∈ KK◦
∞. Consider the canonical fibration π :

(G(R)/K◦
∞)×G(Af )/K → SGK given by going modulo the left action ofG(Q). Then, for any open

U ⊂ SGK , one has the sections VK(U) over U to be the set of all locally constant s : π−1(U)→ V

such that s(γ · x) = γ · s(x) for all γ ∈ G(Q), x ∈ π−1(U).We denote by VμK,E the sheaf associated
to V μ

E . The sheaf VμK,E is non-trivial if and only if

μ(Z(Q) ∩KK◦
∞) = {1}. (15)

Condition (15) is always satisfied if μ is pure, because det(F× ∩KK◦
∞) ⊂ O×

F ∩ F×◦
∞ .

In order to attach a sheaf to V μ
O we need a slightly different construction. Given a left

K-module V satisfying (15) define VK instead as the sheaf of locally constant sections of

G(Q)\(G(A)× V )/KK◦
∞ → YK ,

with left G(Q)-action and right KK◦
∞-action given by γ(g, v)k = (γgk, k−1 · v). As K acts on

V μ
O through its p-component Kp ⊂ G(Zp) ⊂ G(O) we obtain a sheaf VμO on SGK .

When the actions of G(Q) and K on V extend compatibly into a left action of G(A), the two
resulting local systems are isomorphic by (g, v) �→ (g, g−1 · v), justifying the abuse of notation.

1.4 Hecke operators
For any open compact subgroups K ′ ⊆ K of G(Af ) the natural map pK′,K : SGK′ → SGK induces
an isomorphism of sheaves p∗K′,KVK

∼→ VK′ .
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When the K-action on V extends to an action of a semi-group containing K and γ, then one
can define a Hecke operator [KγK] as a composition of three maps:

[KγK] = Tr(pγKγ−1∩K,K) ◦ [γ] ◦ p∗K∩γ−1Kγ,K : Hq
c(S

G
K ,VK)→ Hq

c(S
G
K ,VK),

where p∗K∩γ−1Kγ,K is the pull-back, Tr(pγKγ−1∩K,K) is the finite flat trace and

[γ] : Hq
c(S

G
K∩γ−1Kγ ,VK∩γ−1Kγ)→ Hq

c(S
G
γKγ−1∩K ,VγKγ−1∩K),

is induced by the morphism of local systems given by (g, v) �→ (gγ−1, γ · v) in the case of a right
K-action.

When Kp ⊂ Jp, the above construction applies to V μ
O on which the semi-group Λp acts

by the •-action (see (11)) yielding for each t ∈ Δ+
p a Hecke operator [KtK] on Hq

c(S
G
K ,V

μ
K,O).

Note that although the natural inclusion V μ
O ⊆ V

μ
E is Kp-equivariant, it is not Λp-equivariant

(see (12)). As a consequence, the natural map Hq
c(S

G
K ,V

μ
K,O)→ Hq

c(S
G
K ,V

μ
K,E) is equivariant for

the •-action of [KtK] on the source and the action of the optimally integral Hecke operator
[KtK]◦ = μ∨(t)[KtK] on the target. To ensure compatibility with extension of scalars, we also
denote by [KtK]◦ the Hecke operator [KtK] acting (via the •-action) on Hq

c(S
G
K ,V

μ
K,O).

For any prime p | p of F , the following Hecke operators play an important role:

Up = [KtpK] and U◦
p = μ∨(tp)Up. (16)

For β = (βp)p|p with βp ∈ Z�0 we let Upβ = [KtpβK] and U◦
pβ = μ∨(tpβ )Upβ .

As the image of Hq
c(S

G
K ,V

μ
O) in Hq

c(S
G
K ,V

μ
E) is a finitely generated O-module, we may assume

that E is large enough so that all U◦
p -eigenvalues belong to O.

2. Distributions attached to cohomology classes for GL2n

Let Fp = F ⊗Q Qp =
∏

p|p Fp. For a prime p | p of F we denote by Ip (respectively, Jp) the
standard Iwahori (respectively, parahoric) subgroup of K◦

p = GL2n(OF,p) consisting of elements
whose reduction modulo the p belongs to B(OF /p) (respectively, to Q(OF /p)).

We let K = K(p) ×
∏

p|pKp be an open compact subgroup of G(Af ) such that:

(K1) K(p) is the principal congruence subgroup of modulus m, an ideal of OF which is relatively
prime to p, and K(p)G(Zp) satisfies (14);

(K2)
( Tn(OF,p) Mn(OF,p)

0n Tn(OF,p)

)
⊆ Kp ⊆ Jp for all p | p.

An important role will be played by the matrix ξ ∈ GL2n(AF ), where

ξp =
(
1n wn
0n wn

)
∈ GL2n(OF,p), for all p | p, and ξv = 12n, for all v � p. (17)

Here 1n and 0n are the n× n identity and zero matrices, respectively, and wn is the longest
length element in the Weyl group of GLn, whose (i, j)-entry is δi,n−j+1.

We have ξ−1
p =

(
1n −1n
0n wn

)
. Once and for all we record the identities

ξ−1
p ·

(
A B

C D

)
· ξp =

(
A− C (A−D +B − C)wn
wnC wn(C +D)wn

)
(18)
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and

ξp ·
(
A B

C D

)
· ξ−1

p =

(
A+ wnC wnDwn −A+Bwn − wnC
wnC wnDwn − wnC

)
. (19)

2.1 Automorphic cycles
For any open-compact subgroup L ⊂ H(Af ) we consider the locally symmetric space:

S̃HL = H(Q)\H(A)/LL◦
∞, where L∞ = H∞ ∩K∞. (20)

Note that for each σ ∈ Σ∞ one has L◦
σ �

( SOn(R) 0
0 SOn(R)

)
R×◦. As in (14), S̃HL is a real manifold

when L is sufficiently small in the sense that for all h ∈ H(A),

H(Q) ∩ hLL◦
∞h

−1 = Z(Q) ∩ LL◦
∞. (21)

Recall the notation tp = ι(�p · 1n,1n) where �p is an uniformizer at p | p. Recall also that
for β = (βp)p|p with βp ∈ Z�0 we let pβ =

∏
p|p�

βp
p and tβp =

∏
p|p t

βp
p ∈ G(Qp).

For any ideal m of OF , we denote by I(m) the open-compact subgroup of A×
F,f of modulus

m, and we consider the strict idele class group:

C�+F (m) = F×\A×
F /I(m)F×◦

∞ .

We let Lβ = L(p)
∏

p|p L
βp
p be an open compact subgroup of H(Af ) such that:

(L1) L(p) = K(p) ∩H is the principal congruence subgroup of modulus m; and
(L2) L

βp
p = H(Fp) ∩Kp ∩ ξtβp

p Kpt
−βp
p ξ−1 for all p | p.

Note that conditions (K1) and (L1) imply (21), in particular that S̃HLβ
is a real manifold.

Lemma 2.1. L
βp
p consists of elements (h1, h2) ∈ GLn(OF,p)×GLn(OF,p) such that

ι(h1, h2) ∈ Kp ∩
(
1n

wn

)
Kp

(
1n

wn

)
, and h1h

−1
2 ∈ 1 +�

βp
p Mn(OF,p).

Proof. By (18) for all (h1, h2) ∈ H(Fp) ∩Kp = GLn(OF,p)×GLn(OF,p) one has

t
−βp
p ξ−1

(
h1

h2

)
ξt
βp
p =

(
h1 �−βp (h1 − h2)wn

wnh2wn

)
.

Hence, h1 − h2 ∈ �βp
p Mn(OF,p), and as

( 1n Mn(OF,p)
0n 1n

)
⊆ Kp, we obtain (h1, wnh2wn) ∈ Kp. �

Lemma 2.1 implies that the map (1 +�
βp
p Mn(OF,p))×O×

F,p→ det(Lβp
p ) sending (x, y) to

(xy, y) is an isomorphism. By the strong approximation theorem for SLn(AF ) the map

(h1, h2) �→
(

det(h1)
det(h2)

,det(h2)
)
,

identifies the set of connected components of S̃HLβ
with a product of two idele class groups:

π0(S̃HLβ
) ∼−→ C�+F (pβm)× C�+F (m). (22)
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It is easy to see that the fiber S̃HLβ
[δ] of [δ] ∈ π0(S̃HLβ

) is connected of dimension

t = |Σ∞|(n2 + n− 1). (23)

If we consider a cohomology class on SGK in degree t, and pull it back to S̃HLβ
[δ], then we end

up with a top-degree class. The degree t happens to be the top-most degree with non-vanishing
cuspidal cohomology of SGK . This magical numerology is at the heart of what ultimately permits
us to give a cohomological interpretation to an integral representing an L-value (see [GR14]) and
allows us to study its p-adic properties.

2.2 Evaluation maps
Fix μ ∈ X∗

0 (T ).

2.2.1 Automorphic symbols. By condition (L2), the map

ιβ : S̃HLβ
→ SGK , [h] �→ [ι(h)ξtβp ], (24)

is well-defined. As ιβ is proper by a well-known result of Borel and Prasad (see, for example,
[Ash80, Lemma 2.7]) one can consider the pull-back:

ι∗β : Hq
c(S

G
K ,V

μ
O) −→ Hq

c(S̃
H
Lβ
, ι∗βV

μ
O). (25)

2.2.2 Twisting. By condition (L1), the map ι : S̃HLβ
→ SGK , [h] �→ [ι(h)] is well-defined and

proper. As ξtβp ∈ Λp, using the •-action from (12) one can consider the map

H(A)× V μ
O → H(A)× V μ

O , (h, v) �→ (h, (ξtβp ) • v),

inducing a homomorphism of sheaves τ◦β : ι∗βV
μ
O −→ ι∗VμO, hence a map in cohomology

τ◦β : Hq
c(S̃

H
Lβ
, ι∗βV

μ
O) −→ Hq

c(S̃
H
Lβ
, ι∗VμO). (26)

Similarly, using the natural action of G(E) on V μ
E instead of the •-action one defines a map

τβ : Hq
c(S̃

H
Lβ
, ι∗βV

μ
E) −→ Hq

c(S̃
H
Lβ
, ι∗VμE), (27)

and τβ = μ∨(t−βp )τ◦β , because by (12) one has (ξtβp ) • v = μ∨(tβp )(ξt
β
p ) · v for all v ∈ V μ

E .

2.2.3 Critical maps. For j1, j2 ∈ Z let V (j1,j2) be the 1-dimensional H-representation

(h1, h2) �→ NF/Q(det(h1)j1 det(h2)j2).

Let V (j1,j2)
O be a free rank one O-module on which the previously defined natural H(Zp)-

action is extended to a H(Qp)-action by letting p ∈ Q×
p act trivially. Note that this action is

similar to the Λp-action on V μ
O defined in § 1.2.

It follows from [GR14, Proposition 6.3] that j ∈ Crit(μ) (see (4)) if and only if

dim(HomH(V μ, V (j,w−j))) = 1. (28)

Fix a non-zero κj ∈ HomH(V μ, V (j,w−j)) normalized so as to obtain an integral map:

κj : V μ
O → V

(j,w−j)
O .
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Denoting by V(j,w−j)
O the sheaf on S̃HLβ

attached to V (j,w−j)
O by the construction described in § 1.3,

one obtains a homomorphism:

κj : Hq
c(S̃

H
Lβ
, ι∗VμO) −→ Hq

c(S̃
H
Lβ
,V(j,w−j)

O ). (29)

Putting (25), (26) and (29) together, for each j ∈ Crit(μ), we obtain a map:

κj ◦ τ◦β ◦ ι∗β : Hq
c(S

G
K ,V

μ
O) −→ Hq

c(S̃
H
Lβ
,V(j,w−j)

O ). (30)

2.2.4 Trivializations. Given any δ ∈ H(Af ) the map

trivδ : H(Q)δLβH◦
∞ × V

(j,w−j)
O → H(Q)δLβH◦

∞ × V
(j,w−j)
O , (γδlh∞, v) �→ (γδlh∞, l−1

p · v),

is well-defined because H(Q) ∩ LβH◦
∞ ⊂ ker(NF/Q ◦det) acts trivially on V (j,w−j)

O . An easy check
shows that trivδ induces a homomorphism of local systems

S̃HLβ
[δ]× V (j,w−j)

O →
(
V(j,w−j)
O

)
|S̃H

Lβ
[δ],

where [δ] denotes the image of δ in π0(S̃HLβ
), hence yields a homomorphism:

triv∗
δ : Hq

c(S̃
H
Lβ

[δ],V(j,w−j)
O )→ Hq

c(S̃
H
Lβ

[δ],Z)⊗ V (j,w−j)
O .

We now render the trivializations independent of the choice of δ ∈ [δ] ∈ π0(S̃HLβ
). By

definition, for any δ′ ∈ H(Q)δlH∞ one has

triv∗
δ′ = (id⊗l−1

p ) · triv∗
δ = N−1

Fp/Qp

(
det(l1,p)j det(l2,p)w−j) triv∗

δ . (31)

The p-adic cyclotomic character ε seen as idele class character F×\A×
F → Z×

p sends y to
NFp/Qp

(yp)|yf |F
∏
σ∈Σ∞ sgn(yσ), is trivial on F×◦

∞ and given by NFp/Qp
on (OF ⊗ Zp)×. Hence,

triv∗
[δ] = ε

(
det(δj1δ

w−j
2 )

)
triv∗

δ : Hq
c(S̃

H
Lβ

[δ],V(j,w−j)
O )→ Hq

c(S̃
H
Lβ

[δ],Z)⊗ V (j,w−j)
O , (32)

is independent of the particular choice of δ ∈ [δ] ∈ π0(S̃HLβ
).

2.2.5 Connected components and fundamental classes. Recall that for each [δ] ∈ π0(S̃HLβ
),

S̃HLβ
[δ] is a t-dimensional connected orientable real manifold and that choosing an orientation

amounts to choosing a fundamental class, that is, a basis θ[δ] of its Borel–Moore homology
HBM
t (S̃HLβ

[δ]) � Z. We choose such orientations in a consistent manner when β and [δ] vary as
follows. First, we fix, once and for all, an ordered basis on the tangent space of the symmetric
space H◦

∞/L
◦
∞ yielding fundamental classes θβ of the connected components of identity S̃HLβ

[1],

when β varies. Then for each [δ] ∈ π0(S̃HLβ
), we consider the isomorphism S̃HLβ

[1] ·δ−→
∼

S̃HLβ
[δ] and

define θ[δ] = δ∗θβ , which is clearly independent of the particular choice of δ ∈ [δ]. Capping with

θ[δ] and fixing a basis of V (j,w−j)
O (later in (40) we fix a particular basis in order to compare

evaluations at different j) yields an isomorphism:

Ht
c(S̃

H
Lβ

[δ],Z)⊗ V (j,w−j)
O

∼−→ V
(j,w−j)
O

∼−→ O.
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Combining this with (30) and (32) gives homomorphisms:

Ej,wβ,δ = (−∩θ[δ]) ◦ triv∗
δ ◦κj ◦ τ◦β ◦ ι∗β : Ht

c(S
G
K ,V

μ
O)→ O,

Ej,wβ,[δ] = ε
(
det(δj1δ

w−j
2 )

)
· Ej,wβ,δ = (−∩θ[δ]) ◦ triv∗

[δ] ◦κj ◦ τ◦β ◦ ι∗β : Ht
c(S

G
K ,V

μ
O)→ O.

(33)

2.2.6 Summing over the second component. Consider a finite order O-valued idele class char-
acter η0 of F that is trivial on I(m), in particular unramified at all places above p. The character
η = η0| · |−w

F later plays a role when we discuss Shalika models for automorphic representations
of G. The following map provides a section of (22):

δ(x, y) = (diag(xy, 1, . . . , 1),diag(y, 1, . . . , 1)) ∈ H. (34)

When (x, y) ∈ (A×
F )2 runs over a set of representatives of C�+F (pβm)× C�+F (m), S̃HLβ

[δ(x, y)] runs

over the set of connected components of S̃HLβ
. Define the level β evaluation:

Ej,ηβ =
∑

[x̄]∈C�+F (pβ)

Ej,ηβ,[x̄][x̄], where Ej,ηβ,[x̄] =
∑

[y]∈C�+F (m)

∑
[x]

η0([y])Ej,wβ,[δ(x,y)], (35)

where the last sum runs over all [x] ∈ C�+F (pβm) mapping to [x̄] under the natural projection.
The following diagram recapitulates the steps in the construction of Ej,ηβ .

Ht
c(S

G
K ,V

μ
O)

κj◦τ◦β◦ι∗β
��

Ej,η
β

��

Ht
c(S̃

H
Lβ
,V(j,w−j)

O )

∑
[δ]∈π0(S̃H

Lβ
)

(−∩θ[δ])◦triv∗
[δ]

��

O[C�+F (pβ)] O[C�+F (pβm)× C�+F (m)]
[(x,y)]
→η0([y])[x̄]
�� O[π0(S̃HLβ

)]

(36)

2.3 Distributions on C�+
F (p∞)

The object of this section is to relate when β varies the evaluation maps Ej,ηβ whose definition is
summarized in (36).

2.3.1 The distributive property. Fix a β = (βp)p|p with βp ∈ Z>0 for all p | p.

Theorem 2.2. Given a prime p | p we let pβ
′
= pβp and consider the canonical projection prβ′,β :

C�+F (pβ
′
)→ C�+F (pβ). For all [x] ∈ C�+F (pβ) we have Ej,ηβ ◦ U◦

p = prβ′,β ◦Ej,ηβ′ , that is,

Ej,ηβ,[x] ◦ U
◦
p =

∑
[x′]∈pr−1

β′,β([x])

Ej,ηβ′,[x′].

Proof. Using (33), (34), and (35) one has to show that for all [x] ∈ C�+F (pβm), [y] ∈ C�+F (m):

Ej,wβ,δ(x,y) ◦ U
◦
p =

∑
[x′]∈pr−1

β′,β([x])

Nj
Fp/Qp

(ux′) · Ej,wβ′,δ(x′,y),
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where ux′ ∈ I(pβ) is such that x′ ∈ F×xux′F×◦
∞ . We proceed as in the proof of [BDJ, Proposition

3.4]. Pulling back the definition of the Hecke operator U◦
p (see § 1.4) by the automorphic symbols

(see § 2.2.1) and the twisting operators (see § 2.2.2) yields the following commutative diagram
(we use implicitly that pK0(p),K and prβ′,β have the same degree as Lβ/Lβ′ �Mn(O/p))

Ht
c(S

G
K ,V

μ
K)

p∗
K0(p),K

��

ι∗
β′

��

Ht
c(S

G
K0(p),V

μ
K0(p))

ι∗
β′

��

[tp ]
�� Ht

c(S
G
K0(p),V

μ
K0(p)

)
Tr(pK0(p),K)

��

ι∗β
��

Ht
c(S

G
K ,V

μ
K)

ι∗β
��

Ht
c(S̃

H
Lβ′ , ι

∗
β′VμK)

τ◦
β′

��

Ht
c(S̃

H
Lβ′ , ι

∗
β′VμK0(p))

[tp ]
��

τ◦
β′

��

Ht
c(S̃

H
Lβ′ , ι

∗
βV

μ
K0(p)

)
Tr
(

prβ′,β
)

��

τ◦β
��

Ht
c(S̃

H
Lβ
, ι∗βV

μ
K)

τ◦β
��

Ht
c(S̃

H
Lβ′ , ι

∗VμK) Ht
c(S̃

H
Lβ′ , ι

∗VμK0(p)) Ht
c(S̃

H
Lβ′ , ι

∗Vμ
K0(p)

)
Tr(prβ′,β)

�� Ht
c(S̃

H
Lβ
, ι∗VμK)

where the upper [tp] is induced by the morphism (g, v) �→ (g · t−1
p , tp • v) of local systems, whereas

the lower [tp] is induced by the morphism (h, v) �→ (h, tp • v). Then

Ht
c(S̃

H
Lβ′ [δ(x

′, y)],V(j,w−j)
O )

Tr
(

prβ′,β
)

��

triv∗
δ(x′,y)

��

Ht
c(S̃

H
Lβ

[δ(x, y)],V(j,w−j)
O )

triv∗
δ(x,y)

��

Ht
c(S̃

H
Lβ

[δ(x′, y)],Z)⊗ V (j,w−j)
O

·Nj
Fp/Qp

(ux′ )
�� Ht

c(S̃
H
Lβ

[δ(x, y)],Z)⊗ V (j,w−j)
O

is another commutative diagram by (31), hence the claim. �

2.3.2 Distributions for finite slope eigenvectors. Let φ ∈ Ht
c(S

G
K ,V

μ
O) be an eigenvector for

U◦
p with eigenvalue α◦

p for all p | p. Then, for all β = (βp)p|p, it is an eigenvector for U◦
pβ with

eigenvalue α◦
pβ =

∏
p|p(α

◦
p)
βp . We say that φ is of finite slope if α◦

p �= 0 and in which case we
define its slope as vp(α◦

p). A eigenvector φ of slope 0 is called Q-ordinary. Being Q-ordinary is
equivalent to saying that the Up-eigenvalue αp satisfies |αp|p = |μ∨(tp)|−1

p for all p | p (see § 4.2
for more details).

Given any Up-eigenvector φ of finite slope and any j ∈ Crit(μ) by Theorem 2.2 one has a
well-defined element

μj,ηφ = ((α◦
pβ )−1Ej,ηβ (φ))β , (37)

which is thought of as an E-valued distribution on C�+F (p∞).
We write Ht

c(S
G
K ,V

μ
O)Q−ord for the maximal O-submodule of Ht

c(S
G
K ,V

μ
O) on which the oper-

ators U◦
p are invertible for all p | p (it is a direct O-factor). Given any (not necessarily U◦

p -eigen)
non-torsion element φ ∈ Ht

c(S
G
K ,V

μ
O)Q−ord one defines

μj,ηφ = (Ej,ηβ ((U◦
pβ )−1(φ)))β ∈ O[[C�+F (p∞)]] = lim←−

β

O[C�+F (pβ)], (38)

which can be reinterpreted as a measure (i.e. a bounded distribution) on C�+F (p∞).
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2.4 Manin relations
Consider the p-adic cyclotomic character ε : C�+F (p∞)→ Z×

p defined by composing the norm
NF/Q : C�+F (p∞)→ C�+Q(p∞) with the p-adic cyclotomic character over Q. In this section, we
prove the following result.

Theorem 2.3. Let μ ∈ X∗
0 (T ) and suppose that j and j + 1 both belong to Crit(μ).

For φ ∈ Ht
c(S

G
K ,V

μ
O)Q−ord the following equality holds in O[[C�+F (p∞)]]:

εcyc(μ
j,η
φ ) = μj+1,η

φ ,

where εcyc denotes the automorphism of O[[C�+F (p∞)]] sending [x] to ε([x])[x]. Hence,

μηφ = ε−jcyc(μ
j,η
φ ) ∈ O[[C�+F (p∞)]], (39)

is independent of j ∈ Crit(μ).

The overdetermination of μηφ in the Q-ordinary case, when there are at least two critical
values, plays a pivotal role in the proof of main theorem. Before embarking on the proof of this
theorem, we begin with some technical preparation (see [Jan18, § 3]).

2.4.1 Lie theoretic considerations. By the distributive property (see Theorem 2.2) we may
reduce to strict pβ-power level with integral exponents β ∈ Z>0, ignoring the finer components
p | p for simplicity of notation. Recall that b = t⊕ n and q = h⊕ u. With the notation tp =
ι(p1n,1n), we observe for any β � 0 the relations

tβpnOt
−β
p ⊆ nO, tβpuOt

−β
p = pβuO.

Recall the matrix ξ =
(

1n wn
0n wn

)
. A superscript ξ(−) denotes left conjugation action by ξ.

Proposition 2.4. We have the relations:

(i) gO = hO + ξ b−O; and

(ii) ξ
(
nO ∩ hO

)
⊆ [h, h]O + ξ n−O.

Proof. (i) As ξ ∈ G(O), it suffices to verify it over E, where it amounts to show that dimE(hE ∩
ξ b−E) = n. To this end, let l1, l2 be lower triangular matrices in Mn(E) and u ∈Mn(E). Then

ξ ·
(
l1
u l2

)
· ξ−1 =

(
l1 + wnu wnl2wn − l1 − wnu
wnu wnl2wn − wnu

)
,

lies in hE if and only if u = 0 and l1 = wnl2wn. Therefore, l1 and l2 are diagonal matrices
determining each other uniquely.

(ii) Conjugation by ξ−1 reduces the claim to the problem of solving(
n1

n2

)
=

(
h1 (h1 − h2)wn

wnh2wn

)
+
(
n̄1

n̄2

)
,

for given ι(n1, n2) ∈ h ∩ nO and unknowns ι(h1, h2) ∈ [hO, hO] and ι(n̄1, n̄2) ∈ n−. The choice

h1 = h2 = n1 + wnn2wn, n̄1 = −wnn2wn, n̄2 = −wnn1wn,

is a solution with the desired properties. �
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Corollary 2.5. For any β � 0, the following relations hold inside U(gO):

(i) U(gO) = U(hO) · U(ξb−O); and

(ii) U(ξt
β
p nO) ⊆ U([h, h]O + pβhO) · U(ξn−O + pβ ξb−O).

Proof. (i) This is a consequence of Proposition 2.4(i) and the Poincaré–Birkhoff–Witt theorem.
(ii) The decomposition nO = (hO ∩ nO)⊕ uO, gives tβpnOt

−β
p = (hO ∩ nO)⊕ pβuO. Conjugat-

ing by ξ, we obtain

ξtβpnOt
−β
p ξ−1 = ξ

(
hO ∩ nO

)
⊕ pβ ξuO.

Applying Proposition 2.4(ii) to the first summand and Proposition 2.4(i) to the second we obtain

ξtβpnOt
−β
p ξ−1 ⊆

(
[h, h]O + pβhO

)
+
(
ξn−O + pβ ξb−O

)
.

One concludes again by the Poincaré–Birkhoff–Witt theorem, because the sums within the
parentheses on the right-hand side are Lie O-algebras. �

2.4.2 Lattices and the projection formula. Recall from (5) the lowest weight vector v0 ∈ V μ
E

and the G(O)-lattice V μ
O = U(gO) · v0 = U(nO) · v0. Recall also the •-action of the semi-group

Λp on V μ
O as in (12).

Given j ∈ Crit(μ) recall from § 2.2.3 the map κj : V μ
O → V

(j,w−j)
O . By Corollary 2.5(i)

V μ
O = U(hO) · ξv0,

which implies that κj(ξv0) is an O-basis of V (j,w−j)
O yielding a surjective O-linear map

κ◦j : V μ
O → O, defined by κj(v) = κ◦j (v)κj(ξv0). (40)

It is independent from the choice of κj because of (28), and κ◦j (ξv0) = 1. We now come to the
main technical result that is at the heart of our proof of the Manin relations.

Proposition 2.6. For any β � 0, v ∈ (ξtβp ) • V μ
O ⊂ V

μ
O , and for all j, j′ ∈ Crit(μ), we have

κ◦j (v) ≡ κ◦j′(v) (mod pβ). (41)

Proof. By (12) for v ∈ (ξtβp ) • V μ
O there exists m ∈ U(nO) with

v = ξ · tβp • (mv0) = ξtβpm · ξ(tβp • v0) = ξtβpm · ξv0 ∈ U(ξt
β
p nO) · ξv0.

By Corollary 2.5(ii) we can write

ξtβpm = xy, with x ∈ U([h, h]O + pβh) and y ∈ U(ξn−O + pβξb−O).

Let x0, y0 ∈ O be the degree zero terms of x and y, respectively, and let

x1 = x− x0 ∈ ([h, h]O + pβh) · U([h, h]O + pβh),

y1 = y − y0 ∈ (ξn−O + pβξb−O) · U(ξn−O + pβξb−O),
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be the higher degree terms in their respective enveloping algebras. Then

κ◦j (v) = κ◦j (xy · ξv0) = x · κ◦j (y · ξv0) (because κ◦j is H-equivariant)

≡ x · κ◦j (y0 · ξv0) (mod pβ) (because ξn−O acts trivially on ξv0)

≡ x0 · κ◦j (y0 · ξv0) (mod pβ) (because [h, h]O acts trivially on a line)

= x0y0 · κ◦j (ξv0) = x0y0,

which does not depend on j as claimed. �

2.4.3 Proof of Theorem 2.3. As O[[C�+F (p∞)]] = lim←−β(O/p
βO)[C�+F (pβ)] and because ε

(mod pβ) factors through C�+F (pβ), it is enough to check that given β � 1 and [x] ∈ C�+F (pβ)
one has

ε([x])Ej,ηβ,[x](φ) ≡ Ej+1,η
β,[x] (φ) (mod pβ).

As, by (32), one has triv∗
[δ(x,y)] = ε(xjyw) triv∗

δ(x,y), it suffices to show that (see (36))

Ej,ηβ,δ(φ) = (−∩θ[δ]) ◦ triv∗
δ ◦κj ◦ τ◦β ◦ ι∗β(φ) ≡ (−∩θ[δ]) ◦ triv∗

δ ◦κ∗j+1 ◦ τ◦β ◦ ι∗β(φ) (mod pβ).

Now, by definition, the homomorphism of sheaves τ◦β defined in § 2.2.2 factors as

ι∗βV
μ
O −→ ι∗

(
(ξtβp ) • V

μ
O
)
−→ ι∗VμO.

Hence, Proposition 2.6 translates to the statement that (for the choice of basis of V (j,w−j)
O as in

(40)) (−∩θ[δ]) ◦ triv∗
δ ◦κj ◦ τ◦β ◦ ι∗β(φ) (mod pβ) is independent of j ∈ Crit(μ). �

3. Local considerations

We delineate some local calculations that are needed in the global considerations of the next
section. For only this section, F denotes a finite extension of Qp, O its ring of integers, P the
maximal ideal, � ∈ P a uniformizer, q = #(O/P), and δ the valuation of the different. We
use local notation corresponding to the global notation introduced at the beginning of § 1. For
example, G = GL2n(F ) ⊃ H = GLn(F )×GLn(F ).

3.1 Parahoric invariants
Let K = GL2n(O) be the standard maximal compact subgroup of G. Define the parahoric
(respectively, Iwahori) subgroup J (respectively, I) of K consisting of matrices whose reduction
modulo P belongs to Q(O/P) (respectively, to B(O/P)). One has

J =
{(

a b

c d

)
∈ K

∣∣∣∣ a, d ∈ GLn(O), c ∈Mn(P), b ∈Mn(O)
}
. (42)

Let Π be an algebraic unramified and generic representation of G. Then there exists an
unramified character λ = ⊗2n

i=1λi : T → Q̄× i∞−−→ C× such that

Π = IndGB(| · |(2n−1)/2λ), (43)
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where the right-hand side is the normalized parabolic induction, which differs from the usual
induction by δ1/2B where

δB(t1, t2, . . . , t2n) = |t1|2n−1|t2|2n−3 · · · · · |t2n|1−2n.

Recall Jacquet’s exact functor sending an admissible G-representation V to the space of
its co-invariants of U defined as VU = V/〈{u · v − v | u ∈ U, v ∈ V }〉, which is an admissible
H-representation. The Weyl groups of G ⊃ H are given by S2n �WG ⊃WH � (Sn ×Sn).
The group WG acts on the right on characters of T . There is a natural bijection:

WG/WH
∼−→ {τ ⊂ {1, 2, . . . , 2n}|#τ = n}, ρ �→ {ρ(1), . . . , ρ(n)}. (44)

Lemma 3.1. The semi-simplification of the Jacquet module ΠU is isomorphic to⊕
τ∈WG/WH

δ
1/2
Q · IndHB∩H(| · |(2n−1)/2λτ ), (45)

where δQ(t1, t2, . . . , t2n) = |t1 . . . tn · t−1
n+1 . . . t

−1
2n |n. The semi-simplification can be omitted if Π is

regular in the sense that αi = λi(�) are pairwise distinct for 1 � i � 2n.

The characteristic polynomial of the Hecke operator UP = [Jt�J ] acting on ΠJ equals

∏
τ∈WG/WH

(
X − qn(1−n)/2

∏
i∈τ

αi

)
.

Proof. The semi-simplification of the Jacquet module ΠN with respect to B is given by⊕
ρ∈WG

δ
1/2
B | · |(2n−1)/2λρ. (46)

As IndGB = IndGQ IndHB∩H , Frobenius reciprocity implies that any irreducible sub-quotient of the
Jacquet module of Π with respect to Q is isomorphic to one of the summands in (45). The first
claim then follows by a simple dimension count based on (46) and the transitivity of the Jacquet
functors. By Bruhat decomposition,

G =
∐
ρ∈WG

BρI =
∐

ρ∈WG/WH

BρJ, K =
∐
ρ∈WG

(B ∩K)ρI =
∐

ρ∈WG/WH

(B ∩K)ρJ, (47)

the dimension of ΠJ is #(WG/WH). By the Iwasawa decomposition H = (B ∩H) · (H ∩ J),(
IndHB∩H(δ1/2Q | · |(2n−1)/2λτ )

)H∩J

is a line on which the central element ι(1n, �1n) acts by qn(1−n)/2
∏
i∈τ αi. Under the assumption

that Π is regular, the image of ΠJ by the Jacquet functor equals the direct sum of the above lines
when τ runs over WG/WH , hence the second claim. The proof of the third claim is a standard
double coset computation based on (47) (see also [Hid98]). �

3.2 Twisted local Shalika integrals
We review the theory of global Shalika models and L-functions in § 4.1. The computations in
this section are needed in § 4.3 to evaluate the twisted local zeta integral.

Fix an additive character ψ : F → C× of conductor �−δ and a multiplicative character η :
F× → C×.
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Definition 3.2. We say that an admissible representation Π of G has a local (η, ψ)-Shalika
model if there is a non-trivial (and, hence, injective) intertwining of G = GL2n(F )-modules

Sηψ : Π ↪→ IndGS (η ⊗ ψ).

For any W ∈ IndGS (η ⊗ ψ) and for any quasi-character χ : F× → C× the zeta integral

ζ(s;W,χ) =
∫

GLn(F )
W

((
h 0
0 1n

))
χ(det(h))|det(h)|s−1/2 dh (48)

is absolutely convergent for �(s)� 0. The following result is due to Friedberg and Jacquet.

Proposition 3.3 [FJ93, Propositions 3.1 and 3.2]. Assume that Π has an (η, ψ)-Shalika model.

Then for each W ∈ Sηψ(Π), there is a holomorphic function P (s;W,χ) such that

ζ(s;W,χ) = L(s,Π⊗ χ)P (s;W,χ).

One may analytically continue ζ(s;W,χ) by re-defining it as L(s,Π⊗ χ)P (s;W,χ) for all s ∈ C.

Moreover, there exists a vector WΠ ∈ Sηψ(Π) such that all unramified quasi-characters χ : F× →
C× and every s ∈ C one has

P (s;WΠ, χ) = (qs−1/2χ(�))δn.

If Π is spherical, then WΠ can be taken to be the spherical vector W ◦
Π ∈ S

η
ψ(Π) normalized by

the condition W ◦
Π(12n) = 1.

For ramified twists, we need the following refinement of Proposition 3.3.

Proposition 3.4. Let W ∈ Sηψ(Π) be a parahoric invariant vector, that is,

W

((
h

h

)(
1n X

1n

)
gk

)
= η(deth)ψ(trX)W (g), (49)

for all h ∈ GLn(F ), X ∈Mn(F ), g ∈ G and k ∈ J . Then for every finite order character χ :
F× → C× of conductor β � 1, and for all s ∈ C with �(s)� 0 one has

ζ(s;W (− · ξtβ�), χ) = G(χ)n · qβn(1−n)+(β+δ)n(s−1/2)W (t−δ� ).

Proof. For any h ∈ GLn(F ) and X ∈Mn(O), the Shalika property (49) implies that

W

((
h

1

)
ξtβ�

)
= W

((
h

1

)
ξtβ�

(
1 X

1

))
= ψ(tr(h�βXwn)) ·W

((
h

1

)
ξtβ�

)
,

hence, the zeta integral is supported over GLn(F ) ∩�−β−δMn(O). In addition, for h ∈ GLn(F ):

W

((
h

1

)
ξtβ�

)
= W

((
1n h

1n

)(
h

wn

)
tβ�

)
= ψ(trh) ·W

((
h�β

1n

))
.
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Using this and changing the variable h �→ h�−β′
with β′ = β + δ yields

ζ(s;W (− · ξtβ�), χ)

=
∫

GLn(F )∩Mn(O)
W

((
h�−δ

1n

))
ψ(tr(h�−β′

))(χ| · |s−1/2)(det(h�−β′
)) dh. (50)

Denote by (eij)1�i,j�n the standard basis of Mn(O). As W is parahoric invariant, for any
i �= j and c ∈ O, right translation by 1n + ceij ∈ SLn(O) in (50) yields

ζ(s;W (− · ξtβ�), χ)

=
∫
dhW

((
h�−δ

1n

))
ψ(tr(h�−β′

))(χ| · |s−1/2)(det(h�−β′
))
∫
O
dcψ(chji�−β′

),

and observe that
∫
O ψ(chji�−β′

) dc = 0 unless hji ∈ Pβ.
Similarly, right translation by 1n + (c− 1)eii with c ∈ O× shows that (50) equals∫
W

((
h

1n

))
ψ((tr(h)− hii)�−β′

)(χ| · |s−1/2)(det(h�−β′
))
(∫

O×
ψ(chii�−β′

)χ(c)d×c
)
dh,

and
∫
O× ψ(chii�−β′

)χ(c) d×c = 0 unless hii ∈ O× as β � 1 equals the conductor of χ.
Therefore, one can further restrict the domain of integration in (50) to the congruence

subgroup ker(GLn(O)→ GLn(O/Pβ)) · Tn(O), which, by the Iwahori decomposition, may be
identified to the product N−

n (Pβ)× Tn(O)×Nn(Pβ), where Tn denotes the diagonal subgroup
of GLn and Nn denotes the unipotent radical of the standard Borel subgroup Bn. Hence,

ζ(s;W (− · ξtβ�), χ) = qβ
′n(s−1/2)W (t−δ� )

∫
N−

n (Pβ)Tn(O)Nn(Pβ)
ψ(tr(k�−β′

))χ(det(k�−β′
)) dk,

which can be simplified as

qβn(1−n)+β′n(s−1/2)W (t−δ� )
∏

1�i�n

∫
O×

ψ(ti�−β′
)χ(ti�−β′

) d×ti

= qβn(1−n)+(β+δ)n(s−1/2)W (t−δ� ) · G(χ)n,

as desired. �

3.3 Non-vanishing of a local twisted zeta integral
In order to ensure the non-vanishing of the local twisted Shalika integral in Proposition 3.4,
which is crucial for our applications, one has to exhibit a parahoric-spherical Shalika function
W on G such that W (t−δ� ) �= 0. Assume that Π is a spherical representation isomorphic to
IndGB(| · |(2n−1)/2λ) as in (43) and let αi = λi(�), 1 � i � 2n. Consider an unramified character
η of F×.

Definition 3.5. Let τ ∈WG/WH thought of as an n-element subset of {1, . . . , 2n} (see (44)).
We say that Π̃ = (Π, τ) is Q-regular if it satisfies the following two conditions:

(i) qn(1−n)/2
∏
i∈τ αi is a simple eigenvalue for UP = [Jt�J ] acting on ΠJ ;

(ii) there exists ρ ∈ S2n such that for all i ∈ τ, ρ(i) /∈ τ and αiαρ(i) = q2n−1η(�).
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Assume that Π̃ = (Π, τ) is Q-regular. Then condition (i) together with Lemma 3.1 implies

∏
i∈τ,j /∈τ

(αi − αj) �= 0, (51)

whereas condition (ii) implies by [AG94, Proposition 1.3] that Π admits a (η, ψ)-Shalika model.
Without loss of generality assume from now on that τ = {n+ 1, . . . , 2n} and that ρ ∈ S2n

is the order 2 element such that ρ(i) = n+ i for all 1 � i � n. In [AG94, (1.3)] the authors
construct an (η, ψ)-Shalika functional on Π sending f ∈ IndGL2n

B2n
(| · |(2n−1)/2λ) to

S(f)(g) =
∫
Bn\GLn

∫
Mn

f

((
1n

1n X

)(
h

h

)
g

)
η−1(det(h))ψ̄(tr(X)) dX dh. (52)

By [AG94, Lemma 1.5], this integral converges in a certain domain and, when multiplied
by (51), can be analytically continued to C2n, thus makes sense whenever (51) is non-zero.
Let f0 ∈ IndGB(| · |(2n−1)/2λ) be the unique parahoric-spherical function supported on Bw2nJ

and characterized by f0

(( 1n

�−δ1n

)
w2n

)
= q−δn

2
. The following analogue of [AG94, Lemma 1.4]

holds.

Lemma 3.6. Let W = S(f0). Then W (t−δ� ) = 1. Moreover, UP · f0 = qn(1−n)/2(
∏2n
i=n+1 αi)f0.

Proof. By the Iwasawa decomposition GLn = BnKn and as ι(Kn,Kn) ⊂ J we see that

W (t−δ� ) = S(f0)(t−δ� ) =
∫
Mn

f0

((
1n

1n X

)
t−δ�

)
ψ̄(tr(X)) dX

=
∫
Mn

f0

((
1n

�−δ1n

)((
1n

1n �δX

))
ψ̄(tr(X)) dX

= f0

((
1n

�−δ1n

)
w2n

)
qδn

2

∫
Mn

f0

((
1n

1n X

))
ψ̄(tr(�−δX)) dX = 1.

One checks that
(

1n
1n X

)
∈ Bw2nJ if and only if X ∈Mn(O), in which case ψ(tr(�−δX)) = 1.

The parahoric decomposition of J = (J ∩ U−)(J ∩Q) = (J ∩ U−)(J ∩Q) implies

Jt�J =
⊔

m∈Mn(O/P)

(
1n m

1n

)
t�J. (53)

By (47) it suffices to compute (UP · f0)(ρ) for all ρ ∈WG. By the previous decomposition,

(UP · f0)(ρ) =
∑

m∈Mn(O)/Mn(P)

f0

(
ρ

(
�1n m

1n

))
.

Note that ρ
(

1n m
1n

)
t� belongs to the support Bw2nJ = Bw2nt�J = Bw2nJ

−t� of f0 if and only
if ρ

(
1n m

1n

)
∈ K ∩Bw2nJ

− = (K ∩B)w2nJ
− = w2nJ

− (see (47)), which implies ρ = w2n and
m ∈Mn(P). Hence, (UP · f0)(ρ) = 0 for all ρ �= w2n, while (UP · f0)(w2n) = f0

(
w2n

(
�1n

1n

))
=

f0

((
1n

�1n

)
w2n

)
= qn(1−n)/2(

∏2n
i=n+1 αi)f0(w2n). �
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4. L-functions for GL2n

4.1 Global Shalika models and periods
This subsection contains a brief review of the necessary ingredients from [GR14] and a discus-
sion involving p-adically integrally refined Betti–Shalika periods. Henceforth, Π denotes a (not
necessarily unitary) cuspidal automorphic representation of G(A) = GL2n(AF ). Keeping multi-
plicity one for GL2n in mind, we let Π also denote its representation space within the space of
cusp forms for G(A). Fix the non-trivial additive unitary character ψ : AF /F −→ A/Q −→ C×

where the first map is the trace, whereas the second is the usual additive character ψ0 on A/Q

characterized by ker(ψ0|Q�
) = Z� for every prime number � and ψ0|R(x) = exp(2πix). We remark

that (�−δv
v ), where δv is the valuation at v of the different d of F , is the largest ideal contained

in ker(ψv). The discriminant of F is NF/Q(d).

4.1.1 Global Shalika models. Let η : F×\A×
F → C× be a Hecke character such that ηn equals

the central character ωΠ of Π. We obtain an automorphic character:

η ⊗ ψ : S(F )\S(AF )→ C×,

(
h hX

0 h

)
�→ η(det(h))ψ(Tr(X)).

For a cusp form ϕ ∈ Π and g ∈ G(A) consider the integral

W η
ϕ(g) =

∫
Z(A)S(F )\S(AF )

ϕ(sg)(η ⊗ ψ)−1(s) ds, (54)

where Haar measures are normalized as in [GR14, § 2.8]. It is well-defined by the cuspidality of
the function ϕ (see [JS90, § 8.1]) and, hence, yields a function W η

ϕ : G(A)→ C such that

W η
ϕ(sg) = (η ⊗ ψ)(s) ·W η

ϕ(g),

for all g ∈ G(A) and s ∈ S(A). In particular, we obtain an intertwining of G(A)-modules

Sηψ : Π→ IndG(A)
S(A) (η ⊗ ψ), ϕ �→W η

ϕ . (55)

The following theorem, due to Jacquet and Shalika, gives a necessary and sufficient conditions
for the existence of a non-zero intertwining as in (55).

Theorem 4.1 [JS90, Theorem 1]. The following assertions are equivalent.

(i) There exists ϕ ∈ Π such that W η
ϕ �= 0.

(ii) There exists an injection of G(A)-modules Π ↪→ IndG(A)
S(A) (η ⊗ ψ).

(iii) The twisted partial exterior square L-function
∏
v/∈ΣΠ

L(s,Πv,∧2 ⊗ η−1
v ) has a pole at s = 1,

where ΣΠ is the set of places where Π is ramified.

This is proved in [JS90] for unitary representations and its extension to the non-unitary case
is easy. If Π satisfies any one, and hence all, of the equivalent conditions of Theorem 4.1, then
we say that Π has an (η, ψ)-Shalika model, and we call the isomorphic image Sηψ(Π) of Π under
(55) a global (η, ψ)-Shalika model of Π. Then clearly Π⊗ χ has an (ηχ2, ψ)-Shalika model for
any Hecke character χ, by keeping the same model and only twisting the action.

The following proposition (see [AS14]) gives another equivalent condition for Π to have a
global Shalika model.
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Proposition 4.2. Let Π be a cuspidal automorphic representation of GL2n(AF ) with central

character ωΠ. Then the following assertions are equivalent:

(i) Π has a global (η, ψ)-Shalika model for some character η satisfying ηn = ωΠ;

(ii) Π is the transfer of a globally generic cuspidal automorphic representation π of

GSpin2n+1(AF ).

In particular, if any of these equivalent conditions is satisfied, then Π is essentially self-dual,

that is, Π ∼= Π∨ ⊗ η. The character η may be taken to be the central character of π.

4.1.2 Period integrals and L-functions. The following proposition, due to Friedberg and
Jacquet, is crucial for much that follows. It relates the period integral over H of a cusp form ϕ

of G to a certain zeta integral of the function W η
ϕ in the Shalika model corresponding to ϕ over

one copy of GLn.

Proposition 4.3 [FJ93, Proposition 2.3]. Assume that Π has an (η, ψ)-Shalika model. For

ϕ ∈ Π,

Ψ(s, ϕ, χ, η) =
∫
Z(A)H(Q)\H(A)

ϕ

((
h1 0
0 h2

))
(χ| · |s−1/2)

(
det(h1)
det(h2)

)
η−1(det(h2)) dh1 dh2

converges absolutely for all s ∈ C. For �(s)� 0 it is equal to

ζ(s;W η
ϕ , χ) =

∫
GLn(AF )

W η
ϕ

((
h 0
0 1

))
χ(det(h))|det(h)|s−1/2 dh,

thus providing an analytic continuation of ζ(s;W η
ϕ , χ) to all of C.

Suppose the representation Π of G(A) = GL2n(AF ) decomposes as Π = ⊗′
vΠv, where Πv is

an irreducible admissible representation of GL2n(Fv).
If Π has a global Shalika model, then Sηψ defines local Shalika models at every place (see

Definition 3.2). The corresponding local intertwining operators are denoted by Sηv

ψv
and their

images by Sηv

ψv
(Πv), whence Sηψ(Π) = ⊗′

vS
ηv

ψv
(Πv). We can now consider cusp forms ϕ such that

the function Wϕ ∈ Sηψ(Π) is factorizable as Wϕ = ⊗′
vWϕv , where

Wϕv ∈ Sηv

ψv
(Πv) ⊂ IndGL2n(Fv)

S(Fv) (ηv ⊗ ψv).

Then the following factorization holds for �(s)� 0:

ζ(s;Wϕ, χ) =
∏
v

ζv(s;Wϕv , χv), (56)

where the non-Archimedean local zeta integrals ζv(s;Wϕv , χv) are related to L-functions in
Proposition 3.3.

Proposition 4.3 relates this Shalika zeta integral to a period integral over H, and the main
thrust of [AG94], refined and generalized in [GR14], is that the period integral over H admits a
cohomological interpretation, provided that Π is of cohomological type.

4.1.3 Shalika models and cuspidal cohomology. In this section, we recall some well-known
facts from Clozel [Clo90, § 3] (see also [GR14, § 3.4]). Assume from now on that the cuspidal
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automorphic representation Π is cohomological with respect to a dominant integral weight μ ∈
X∗

+(T ) (see (3)), that is,

Hq(g∞,K◦
∞; Π⊗ V μ

C ) = Hq(g∞,K◦
∞; Π∞ ⊗ V μ

C )⊗Πf �= 0

for some degree q. A necessary condition for the non-vanishing of this cohomology group is that
the weight μ is pure, that is, μ ∈ X∗

0 (T ). For each archimedean place σ ∈ Σ∞, Πσ can be described
explicitly as follows. For any integer � � 1 consider the unitary discrete series representation
D(�) of GL2(R) of lowest non-negative SO2-type �+ 1 and central character sgn�+1. Let P be
the parabolic subgroup of GL2n with Levi factor

∏n
i=1 GL2. Then

Πσ � IndGL2n(R)
P (R)

( n⊗
i=1

D(2(μσ,i + n− i) + 1− w)⊗ |det|−w/2

)
,

in particular ωΠσ = | · |−nw. The highest degree supporting cuspidal cohomology of G is t =
|Σ∞|(n2 + n− 1). For any character ε of K∞/K◦

∞ the ε-eigenspace of

Ht(g∞,K◦
∞; Π∞ ⊗ V μ

C ) = HomK◦∞
(
∧t (g∞/k∞),Π∞ ⊗ V μ

C

)
, (57)

is a line. If, in addition, Π admits an (η, ψ)-Shalika model, then η is forced to be algebraic of
the form η = η0| · |−w

F with η0 of finite order, w is the purity weight of μ (see [GR13, Theorem
5.3]). Using the multiplicity one theorem for local Shalika models [Nie09] (see also [CS20]), one
deduces that, for any character ε of K∞/K◦

∞,

Ht(g∞,K◦
∞;Sη∞ψ∞(Π∞)⊗ V μ

C )[ε],

is a line, a basis Ξε∞ of which we fix in way compatible with twisting (see [GR14, Lemma 5.1.1]).
The relative Lie algebra cohomology of Π as previously is a summand of the cuspidal cohomology,
which, in turn, injects into the cohomology with compact supports (see [GR13, § 2])

Ht(g∞,K◦
∞; ΠK ⊗ V μ

C ) ↪→ Ht
cusp(S

G
K ,V

μ
C) ↪→ Ht

c(S
G
K ,V

μ
C). (58)

We define an isomorphism Θε of G(Af )-modules as the composition

Sηf

ψf
(Πf )

∼−→ Sηf

ψf
(Πf )⊗Ht(g∞,K◦

∞;Sη∞ψ∞(Π∞)⊗ V μ
C )[ε]

∼−→ Ht(g∞,K◦
∞;Sηψ(Π)⊗ V μ

C )[ε] ∼−→ Ht(g∞,K◦
∞; Π⊗ V μ

C )[ε], (59)

where the first map is Wf �→Wf ⊗ Ξε∞, the second map is the natural one and the third map is
the map induced in cohomology by (Sηψ)−1 from (55). Taking K-invariants in (59) and composing
with (58) yields a Hecke equivariant embedding

Θε
K : Sηf

ψf
(Πf )K ↪→ Ht

c(S
G
K ,V

μ
C)[ε]. (60)

The reader should appreciate that the analytic condition on Π of admitting a Shalika model
and the algebraic condition of contributing to the cuspidal cohomology of G are of an entirely
different nature. One may construct examples of representations satisfying only one of these
conditions and not the other (see [GR14, § 3.5]).
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4.2 Ordinarity and regularity
For p dividing p, we let �p denote a uniformizer of Fp and let qp = |�p|−1

p denote the cardinality
of its residue field. Let Σ∞ =

∐
p|p Σp be the partition induced by ip : Q̄ ↪→ Q̄p, where Σp = {σ :

Fp ↪→ Q̄p}.
Recall from § 1.1 that a weight μ ∈ X∗

+(T ) yields a rational character μ : T = ResF/Q T2n →
GL1, therefore induces a character μp = ⊗p|pμp of T (Qp) =

∏
p|p T2n(Fp), where

μp : T2n(Fp)→ Q̄×
p is given by (μσ)σ∈Σp subject to the dominance condition

μσ,1 � μσ,2 � · · · � μσ,2n, for all σ ∈ Σp.
(61)

Recall the maximal (n, n)-parabolic subgroup Q ⊆ G. Given a cuspidal automorphic repre-
sentation Π of G(A) that is cohomological with respect to the weight μ ∈ X∗

+(T ), we say that
Πp is Q-ordinary (respectively, B-ordinary) as in [Hid95, Hid98].

Assume from now on that Πp is unramified for all p | p. As Π is cohomological, there exists
an unramified algebraic character λp : T2n(Fp)→ Q̄× ⊂ C× such that (see (43))

Πp = IndGL2n(Fp)
B2n(Fp) (| · |(2n−1)/2λp). (62)

Using ip : C
∼−→ Q̄p allows us to see the Hecke parameters αp,i = λp,i(�p), 1 � i � 2n, as

elements of Q̄×
p . Then Πp is B-ordinary relative to an ordering of its Hecke parameters αp,i if

and only if ∣∣μ∨p,i(�p) · q1−ip αp,2n+1−i
∣∣
p

= 1, for all 1 � i � 2n. (63)

where | · |p denotes the p-adic norm. The B-dominance condition (2) then implies that

|αp,1|p < |αp,2|p < · · · < |αp,2n|p, (64)

hence there exists at most one ordering of the Hecke parameters for which Πp is B-ordinary.
Moreover, this implies that a B-ordinary Πp is necessarily regular, that is, the αp,i are pairwise
distinct.

Similarly, Πp is Q-ordinary relative to τ ∈WG/WH if and only if∏
i∈τ
|αp,i|p =

∣∣qn(n−1)/2
p μ∨p (ι(�−1

p 1n,1n))
∣∣
p
. (65)

We make a key observation that Q-ordinarity implies Q-regularity (see Definition 3.5).

Lemma 4.4. Assume that the cuspidal automorphic representation Π of G(A) is cohomological

with respect to μ and admits an (η, ψ)-Shalika model. For p dividing p, if Πp is spherical and

Q-ordinary, then

vp(αp,i) < |Σp|
w + 2n− 1

2
< vp(αp,i′), for all i ∈ τ, i′ /∈ τ.

In particular, Πp is Q-ordinary only relative to τ . Moreover, Π̃p = (Πp, τ) is Q-regular, that is,

q
n(1−n)/2
p

∏
i∈τ αp,i is a simple eigenvalue of Up acting on ΠJp

p and λp,i �= λp,i′ for all i ∈ τ, i′ /∈ τ .

Proof. Consider the Hecke operators Up,n−1 = [Iptp,n−1Ip] acting on ΠIp
p,N , where tp,n−1 =

diag(�p1n−1,1n+1) ∈ GL2n(Fp). As μ∨p (tp,n−1) · Up,n−1 preserves p-integrality its eigenvalues on
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ΠIp
p,N are p-integral, in particular for any i ∈ τ we have∏

i�=i′∈τ
|αp,i′ |p �

∣∣μ∨p (t−1
p,n−1) · q

(n−1)(n−2)/2
p

∣∣
p
. (66)

Together with (65) this implies that |αp,i|p � |μ∨p,n(�−1
p )qn−1

p |p = |μp,n+1(�p)qn−1
p |p, that is,

vp(αp,i) �
∑
σ∈Σp

(n− 1 + μσ,n+1). (67)

The existence of (ηp, ψp)-Shalika model for Πp gives by [AG94, Proposition 1.3] an i′ = ρ(i) so
that

vp(αp,i) + vp(αp,i′) = |Σp|(2n− 1 + w). (68)

The latter equality together with (3) and (67) yields, for all i ∈ τ ,

vp(αp,i) �
∑
σ∈Σp

(n− 1 + μσ,n+1) < |Σp|
w + 2n− 1

2
<
∑
σ∈Σp

(n+ μσ,n) � vp(αp,ρ(i)).

All claims then follow easily as clearly ρ(τ) ∩ τ = ∅ as required by Definition 3.5. �

4.3 p-adic interpolation of critical values
We suppose in the sequel that Π is a cuspidal automorphic representation of G(A) that is
cohomological with respect to a pure weight μ ∈ X∗

0 (T ) and that Π admits an (η, ψ)-Shalika
model. Assume further that for all p | p, Πp is spherical and that Π̃p = (Πp, τ) is Q-regular for
τ = {n+ 1, . . . , 2n} in the sense of Definition 3.5.

4.3.1 Choice of local Shalika vectors. For v � p∞ we recall the vector WΠv ∈ S
ηv

ψv
(Πv) from

Proposition 3.3.
For p | p, Πp is spherical and Π̃p = (Πp, {n+ 1, . . . , 2n}) is Q-regular, in particular, αp =∏

n+1�i�2n αp,i is a simple eigenvalue for the Hecke operator Up acting on ΠJp
p . By Lemma 3.6

there exists a unique WΠ̃p
on the line Sηp

ψp
(Πp)Jp [Up− αp] normalized so that WΠ̃p

(t−δpp ) = 1. Let

WΠ̃f
= ⊗p|pWΠ̃p

⊗
⊗′
v�p∞WΠv ∈ S

ηf

ψf
(Πf ). (69)

In addition to conditions (K1) and (K2) on K (see § 2), we henceforth assume that:

(K3) K fixes WΠ̃f
and η is trivial on I(m), hence can be seen as a character of C�+F (m).

For the local vectors at infinity, given any character ε of K∞/K◦
∞ we recall the basis Ξε∞ of

the line Ht(g∞,K◦
∞;Sη∞ψ∞(Π∞)⊗ V μ

C )[ε] from § 4.1.3. As in [GR14, § 4.1], we define the following.

Definition 4.5. Fix a basis {eα} of V μ
C and a basis {ωi} of

(
g∞/k∞

)∨. For i = (i1, . . . , it), with
1 � i1 < · · · < it � dim

(
g∞/k∞

)
, we let ωi = ωi1 ∧ · · · ∧ ωit ∈

∧t (g∞/k∞)∨.
Using (57), Ξε∞ can be written as a K◦

∞-invariant element

Ξε∞ =
∑
i,α

ωi ⊗W ε
∞,i,α ⊗ eα ∈ ∧t(g∞/k∞)∨ ⊗ Sη∞ψ∞(Π∞)⊗ V μ

C , (70)

for a unique choice of W ε
∞,i,α ∈ S

η∞
ψ∞(Π∞) called ‘cohomological vectors at infinity’.
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For i and α as previously, let ϕεi,α ∈ Π be the unique vector whose image under (55) equals

W η
ϕε

i,α
= WΠ̃f

⊗W ε
∞,i,α ∈ S

η
ψ(Π).

For each character ε of K∞/K◦
∞ the embedding Θε

K defined in (60) yields

Sηf

ψf
(Πf )

Θε
K−−→ Ht

c(S
G
K ,V

μ
C)[ε]

i∗p−→ Ht
c(S

G
K ,V

μ
Q̄p

)[ε]
(g,v) 
→(g,g−1·v)−−−−−−−−−−→ Ht

c(S
G
K ,V

μ
Q̄p

)[ε].

The image φε
Π̃

of WΠ̃f
under the composition of these three maps belongs to Ht

c(S
G
K ,V

μ
E)[ε] for

some finite extension E of Qp, and after possibly rescaling the maps Θε, that is, rescaling the
basis elements Ξε∞, one can render the cohomology class O-integral:

φε
Π̃
∈ Ht

c(S
G
K ,V

μ
O)[ε]. (71)

Recall that the Hecke operator U◦
pβ defines an endomorphism of Ht

c(S
G
K ,V

μ
O)[ε]. As WΠ̃f

is an

Upβ -eigenvector with eigenvalue αpβ =
∏

p|p α
βp
p , it follows (after possibly additionally rescaling

by a power of p killing the torsion in Ht
c(S

G
K ,V

μ
O)) that one can assume φε

Π̃
is an U◦

pβ -eigenvector

with eigenvalue α◦
pβ = μ∨(tβp )αpβ .

4.3.2 Interpolation formula at critical points. In this section, we relate the image of φε
Π̃

defined in (71) by the evaluation map Ej,ηβ,[δ] from (33), to the Friedberg–Jacquet integral from
Proposition 4.3.

Proposition 4.6. For any character ε of K∞/K◦
∞ and any [δ] ∈ C�+F (pβm)× C�+F (m) we have

i−1
p

(
μ∨(t−βp ) · Ej,wβ,[δ](φ

ε
Π̃
)
)

=
∫
S̃H

Lβ
[δ]
ϕε

Π̃,j
(hξtβp )|det(hj1h

w−j
2 )|F dh,

where ϕε
Π̃,j

=
∑

i

∑
α a

ε
i,α,j · ϕεi,α for suitable aεi,α,j ∈ C.

In this proposition, and henceforth,
∑

i denotes summing over all i = (i1, . . . , it) and
∑

α

denotes summing over all 1 � α � dim(V μ), as in Definition 4.5. A more careful choice of the
bases {eα} and {ωi} as in [Jan16, § 7] yields algebraic coefficients aεi,α,j ∈ Q̄.

Proof. We follow closely the proof of [BDJ, Proposition 4.1]. Consider the commutative diagram

Ht
c(S

G
K ,V

μ
E)

κj◦Tβ

��

∼

(g,v) 
→(g,g−1·v)
�� Ht

c(S
G
K ,V

μ
E)

κj◦τβ◦ι∗β
��

Ht
c(S̃

H
Lβ
,V(j,w−j)

E ) ∼

(h,v) 
→(h,h−1·v)
��

(−∩θ[δ])◦triv′
δ
∗

��

Ht
c(S̃

H
Lβ
,V(j,w−j)

E )

(−∩θ[δ])◦triv∗
δ

��
E ∼

NFp/Qp

(
det(δj

1,pδ
w−j
2,p )

)
�� E

where τβ = μ∨(t−βp )τ◦β is defined in (27), the horizontal maps are induced from the morphisms of
local systems written above them, the map Tβ is induced from the morphisms of local systems
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(h, v) �→ (hξtβp , v), and triv′
δ is induced from the morphisms of local systems:

H(Q)δLβH◦
∞ × V

(j,w−j)
Q(Π̃)

→ V(j,w−j)
Q(Π̃)|S̃H

Lβ
[δ]
, (γδ�h∞, v) �→ (γδ�h∞, γ−1 · v).

As Ej,wβ,[δ] = ε(det(δj1δ
w−j
2 ))Ej,wβ,δ , with εf = | · |F,f NFp/Qp

, the previous diagram shows that the
proposition is equivalent to

|det(δj1,fδ
w−j
2,f )|F

(
−∩θ[δ]) ◦ triv∗

δ ◦κj ◦ Tβ
)
(φε

Π̃
) =

∫
S̃H

Lβ
[δ]
ϕε

Π̃,j
(hξtβp )|det(hj1h

w−j
2 )|F dh, (72)

the left-hand side being considered over C via i−1
p : Q̄p

∼−→ C. By Definition 4.5

φε
Π̃

= (Sηψ)−1(WΠ̃f
⊗ Ξε∞) =

∑
i

∑
α

ωi ⊗ ϕεi,α ⊗ eα ∈
(
∧t (g∞/k∞)∨ ⊗Π⊗ V μ

C

)K◦∞ ,

yielding a V μ
C -valued differential t-form on G◦

∞/K
◦
∞. Now, recall the basis κj of the one-

dimensional HomH(V μ, V (j,w−j)) from (28) and consider the map

κj ◦ ι∗ : Ht(g∞,K◦
∞; Π∞ ⊗ V μ

C )→ Ht(h∞, L◦
∞; Π∞ ⊗ V (j,w−j)

C ).

We obtain

(κj ◦ Tβ)(φεΠ̃) =
∑
i

∑
α

ι∗ωi ⊗ ϕεi,α(− · ξtβp )⊗ κj(eα) ∈
(
∧t (h∞/l∞)∨ ⊗Π⊗ V (j,w−j)

C

)L◦∞ .

First, let κ◦j : V (j,w−j)
C

∼−→ C be the scalar extension of (40), and so κj(eα) corresponds to a
complex number. Next, after the discussion in the paragraph following (23), we can fix a basis
for the top exterior ∧t(h∞/l∞)∨ corresponding to the Haar measure dh∞; hence ι∗ωi is a scalar
multiple of dh∞. Putting both together, the restriction to S̃HLβ

[δ] of κj(Tβ(φεΠ̃)) can be seen as

V
(j,w−j)

C -valued top-degree differential form on H◦
∞/L

◦
∞ given by

∑
i

∑
α

aεi,α,j · ϕεi,α(δh∞ξtβp ) det(hj1,∞h
w−j
2,∞ ) dh∞

for suitable aεi,α,j ∈ C. Writing h = γδlh′∞ ∈ H(Q)δLβH◦
∞ ⊂ H(A), and using triv′δ(γδ�h

′
∞, v) =

(γδ�h′∞,det(γ−j1,∞γ
j−w
2,∞ )v) one obtains (72) and the proposition from

|det(δj1,fδ
w−j
2,f )|F det(γ−j1,∞γ

j−w
2,∞ ) det(hj1,∞h

w−j
2,∞ ) = |det(δj1,fδ

w−j
2,f )|F det(h′j1,∞h

′w−j
2,∞ )

= |det(hj1h
w−j
2 )|F . �

4.3.3 p-adic distributions attached to Π̃. Recall that Π is a cuspidal automorphic represen-
tation of G(A) admitting a global (ψ, η)-Shalika model, which is cohomological with respect
to a pure dominant integral weight μ. Recall also that Πp is spherical for all p | p and that
Π̃p = (Πp, {n+ 1, . . . , 2n}) is Q-regular (see Definition 3.5), which by Lemma 4.4 is automati-
cally fulfilled if Πp is Q-ordinary. In all cases ΠJp

p contains a unique line on which Up acts by αp.
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Finally recall the U◦
p -eigenvectors φε

Π̃
constructed in (71). Then

φΠ̃ =
∑

ε:F×∞/F×◦∞ →{±1}

φε
Π̃

(73)

is an U◦
p -eigenvector with same eigenvalue. When Π̃p is Q-ordinary, consider the element

μη
Π̃

= μηφΠ̃
= ε−jcyc(μ

j,η
φΠ̃

) ∈ O[[C�+F (p∞)]], (74)

constructed in (37) and (39), which defines a measure dμη
Π̃

on C�+F (p∞).

4.3.4 Main theorem on p-adic interpolation. Fix any character ε of K∞/K◦
∞ and any j ∈

Crit(μ). Consider the following cohomological test vector:

W ε
Π∞,j =

∑
i,α

aεi,α,jW
ε
∞,i,α. (75)

A crucial result of Sun [Sun19, Theorem 5.5] asserts the following non-vanishing:

ζ∞
(
j + 1

2 ;W ε
Π∞,j

)
∈ C×. (76)

Note that because Π∞ ⊗ sgn = Π∞ we have suppressed χ∞ from the notation.
In fact, using Künneth’s theorem, it is easy to see that ζ∞(j + 1

2 ;W ε
Π∞,j) is a product of

similar quantities parsed over the archimedean places. As we have multiplicity one for cuspidal
cohomology in top-degree (see (57)), we can only change the class Ξε∞ by a non-zero scalar, which
correspondingly scales the cohomological test vector and so also the zeta integral. The variation
of the complex period ζ∞(j + 1

2 ;W ε
Π∞,j) in j is studied in [Jan16]. The reader is also referred to

the discussion around [GR14, Theorem 6.6.2].
Recall the auxiliary ideal m from (L1) in § 2.1 and, for brevity, let us define

γ = #C�+F (m) ·# GLn(OF /m) ·# PGLn(OF /m) ·
∏
p|p

(
q−n

2

p ·# GLn(OF /p)
)
∈ Q×. (77)

Theorem 4.7. Let Π be a cuspidal automorphic representation of GL2n /F admitting a (ψ, η)-
Shalika model and such that Π∞ is cohomological of weight μ. Assume that for all p | p, Πp

is spherical and admits a Q-regular refinement Π̃p. Then for any j ∈ Crit(μ) and for any finite

order character χ of C�+F (p∞) of conductor βp � 1 at p | p:

i−1
p

(∫
C�+F (p∞)

χ(x) dμη,jφΠ̃
(x)
)

= γ ·Njn
F/Q(d) ·

∏
p|p

(
α−1

p q
n(j+1)
p

)βp

· G(χf )n · L
(
j +

1
2
,Πf ⊗ χf

)
ζ∞

(
j +

1
2
;W (εjχη)∞

Π∞,j

)
.

Proof. Using (37) and (35) we find that
∫
C�+F (p∞) χ(x) dμη,jφΠ̃

(x) equals

(α◦
pβ )−1

∑
[x]∈C�+F (pβm)

χ([x])Ej,ηβ,[x](φΠ̃) = α−1
pβ · μ∨(t−βp )

∑
[x]∈C�+F (pβm)

[y]∈C�+F (m)

χ([x])η0([y])Ej,wβ,[δ(x,y)](φΠ̃).
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As π0(S̃HLβ
) � C�+F (pβm)× C�+F (m) by (73) and Proposition 4.6 the integral equals

α−1
pβ ·

∑
ε:{±1}Σ∞→{±1}

∫
S̃H

Lβ

ϕε
Π̃,j

(hξtβp )χ
(

det(h1)
det(h2)

)∣∣∣∣det(h1)
det(h2)

∣∣∣∣
j

F

η−1(det(h2)) dh.

Note that the integrand is L◦
∞Z(Af )-invariant and L∞/L◦

∞Z∞ acts on it by εεj∞χ∞η∞, hence
the integral vanishes unless ε = (εjχη)∞. As Z(Af ) ∩ Lβ is independent of β, after some volume
computation, one further finds

i−1
p

(∫
C�+F (p∞)

εj(x)χ(x) dμη
Π̃
(x)
)

= γ ·Ψ
(
j +

1
2
, ϕ

(εjχη)∞
Π̃,j

(− · ξtβp ), χ, η
)∏

p|p
(α−1

p qn
2

p )βp .

By Proposition 4.3 the Friedberg–Jacquet integral has an Euler product for �(s)� 0:

Ψ(s, ϕε
Π̃,j

(− · ξtβp ), χ, η) =
∏
v�p∞

ζv(s;WΠv , χv) ·
∏
p|p
ζp(s;WΠ̃p

(− · ξtβp
p ), χp) · ζ∞(s;W ε

Π∞,j , χ∞).

As L(s,Π⊗ χ) has trivial Euler factors at all places p | p (as Πp is spherical while χp is
ramified), Proposition 3.3 implies that

∏
v�p∞

ζv

(
j +

1
2
;WΠv , χv

)
= Njn

F/Q(d(p))χ(d−1)nL
(
j +

1
2
,Πf ⊗ χf

)
.

The factor at p | p is computed in Proposition 3.4, which together with Lemma 3.6 gives

q
βpn2

p ζp
(
j + 1

2 ;WΠ̃p
, χp

)
= G(χp)n · qβpn+(βp+δp)jn

p WΠ̃p
(12n) = Njn

F/Q(dp)G(χp)n · qβpn(j+1)
p .

As G(χf ) = χ(d−1)
∏

p|p G(χp) and d = dpd
(p) we obtain the desired formula. �

Proof. By Lemma 4.4, for each p | p, the Q-ordinary refinement Π̃p of Πp is Q-regular, hence
Theorem 4.7 applies. The interpolation formula in Theorem B then follows immediately because
by Theorem 2.3 one has∫

C�+F (p∞)
εj(x)χ(x) dμη

Π̃
(x) =

∫
C�+F (p∞)

χ(x) dμη,jφΠ̃
(x). �

4.4 Non-vanishing of twists
4.4.1 The main theorem. Having established the Manin relations in our context (see Theorem

2.3), we can now prove a non-vanishing result for twisted L-functions using a method that
goes back to Manin and Greenberg. Such a technique to prove non-vanishing of twists has also
been used recently by Januszewski [Jan18] for Rankin–Selberg L-functions and Eischen [Eis] for
L-functions of unitary groups. However, our results, Theorem 4.8 and Corollary 4.10, are not
only independent of these other recent works but are also beyond the scope of results in both
[Jan18] and [Eis] as well as previous results obtained by analytic number theoretic methods
[Roh89, BR94, Luo05, CFH05].

Theorem 4.8. Let μ be a pure dominant integral weight such that

μσ,n > μσ,n+1, for all σ ∈ Σ∞. (78)
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Let Π be a cuspidal automorphic representation that is cohomological with respect to the weight

μ and admitting an (η, ψ)-Shalika model. Assume that for all primes p above a prime number p,

Πp is unramified and Q-ordinary. Then for all j ∈ Crit(μ) and for all but finitely many Dirichlet

characters χ of F of p-power conductor, we have

L

(
1
2

+ j,Π⊗ (χ ◦NF/Q)
)
�= 0.

We begin with a few comments. As Π◦ = Π⊗ | · |w/2 is a unitary cuspidal automorphic
representation, we see that (1 + w)/2 is the center of symmetry for the L-function of Π:

L

(
1 + w

2
,Π⊗ χ

)
= L

(
1
2
,Π◦ ⊗ χ

)
.

By regularity one knows that Crit(μ) is non-empty and condition (78) is equivalent to assuming
that Crit(μ) has at least two elements. If Π is unitary, then w = 0 and 1

2 ∈ Crit(Π⊗ χ) = Crit(μ),
whence Theorem A is a particular case of Theorem 4.8.

If Leopoldt’s conjecture holds for F at p, then one readily obtains a statement for all but
finitely many p-power conductor Hecke characters, as opposed to Dirichlet characters.

We show non-vanishing of critical values of twisted L-functions by showing non-vanishing
statement about distributions on the cyclotomic Zp-extension of F . Recall the p-adic cyclotomic
character

ε : C�+Q(p∞) ∼−→ Z×
p = μ2p × (1 + 2pZp)

the first component of which is given by the Teichmüller character ω, whereas the fixed field
of the kernel of the second component εω−1 is the cyclotomic Zp-extension of Q. Then by a
well-known result due to Serre there is an isomorphism O[[1 + 2pZp]] � O[[T ]] sending 1 + 2p
to 1 + T . Composing with the norm map NF/Q : C�+F (p∞)→ C�+Q(p∞) allows us to lift Dirichlet
characters to Hecke characters over F , thus to push-forward of a measure on C�+F (p∞), such as
μΠ̃, to a measure on C�+Q(p∞). Further composing with ωm : μ2p → O× for 0 � m � p− 1 allows
us to define a measure on 1 + 2pZp, that is, an element ωm(μΠ̃) ∈ O[[T ]].

Proof. We first show that ωm(μΠ̃) �= 0 for all m ∈ Z. By the interpolation property in Theorem
4.7, the measure ωm(μΠ̃) interpolates the algebraic parts of L(1

2 + j,Π⊗ ωm−jχ) for j ∈ Crit(μ)
and χ runs over all Dirichlet characters of (non-trivial) p-power order and conductor. Our hypoth-
esis (78) implies that we find j ∈ Crit(μ) satisfying j > w/2, hence 1

2 + j lies outside the interior
of the critical strip w/2 < �(s) < w/2 + 1 for L(s,Π) and, thus, L(1

2 + j,Π⊗ ωm−jχ) �= 0.
Therefore, ωm(μΠ̃) �= 0 as claimed.

By the Weierstrass preparation theorem, a non-zero element of O[[T ]] admits only finitely
many zeros in Z̄p. Again by Theorem 4.7 this means that, given any j ∈ Crit(μ) and m, there
are at most finitely many Dirichlet characters χ of p-power order and conductor such that
L(1

2 + j,Π⊗ ωm−jχ) = 0. As any p-power conductor Dirichlet character is of that form for some
0 � m � p− 1, the theorem follows. �
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4.4.2 Variations.

Corollary 4.9 Nearly ordinary case. Under the hypotheses of Theorem 4.8, let ν be a finite

order character of C�+F (p∞). Then for all but finitely many Dirichlet characters χ of finite order

and with p-power conductor, we have

L

(
w + 1

2
,Π⊗ νχ

)
�= 0.

Proof. Use the twisted norm map [x] �→ ν(x)[NF/Q x] to push-forward μΠ̃ to a measure on
C�+Q(p∞). Then proceed mutatis mutandis as in the proof of Theorem 4.8. �

This result is slightly stronger because the representation Π⊗ ν, even though of cohomolog-
ical type and admitting a Shalika model, is no longer ordinary at p, nor spherical.

The following corollary of Theorem 4.8 follows from the fact that we have non-vanishing for
all but finitely many Dirichlet characters χ of finite order and with p-power conductor.

Corollary 4.10 Simultaneous non-vanishing. For 1 � k � r fix nk ∈ Z>0 and let μk be a pure

dominant integral weight for GL2nk
over F . Suppose that each μk satisfies the regularity condition

in (78) and that its purity weight wk is even. Let Πk be a cuspidal automorphic representation

of GL2nk
(AF ) of cohomological weight μk admitting a Shalika model. For a prime number p,

suppose that each Πk is unramified and Q-ordinary at p. Then, for all but finitely many Dirichlet

characters χ of p-power conductor, we have

L

(
w1 + 1

2
,Π1 ⊗ χ

)
L

(
w2 + 1

2
,Π2 ⊗ χ

)
· · ·L

(
wr + 1

2
,Πr ⊗ χ

)
�= 0.

Let us note that this is a simultaneous non-vanishing result at the central point. We leave it to
the reader to formulate the stronger version of simultaneous non-vanishing combining Corollaries
4.9 and 4.10.

As a very concrete example illustrating an application of simultaneous non-vanishing to alge-
braicity results, let us consider the unitary cuspidal automorphic representation π(Δ) of GL2(A)
associated to the Ramanujan Δ-function. A particular case of Corollary 4.10 gives infinitely
many Dirichlet characters χ such that

L(17,Sym3(Δ)⊗ χ)L(6,Δ⊗ χ) = L
(

1
2 ,Sym3(π(Δ))⊗ χ

)
L
(

1
2 , π(Δ)⊗ χ

)
�= 0.

For such a character we obtain from [Rag10, Corollary 5.2] the following identity of L-values:

L
(

1
2 ,Sym5(π(Δ))⊗ χ

)
=

L
(

1
2 ,Sym3(π(Δ))× Sym2(π(Δ))

)
L
(

1
2 ,Sym3(π(Δ))⊗ χ

)
L
(

1
2 , π(Δ)⊗ χ

) .
Using the rationality result in [Rag10, Theorem 1.1] for the L-value in the numerator of the right-
hand side, and the [Rag10, Theorem 1.3] for the L-values in the denominator of the right-hand
side, we obtain a new rationality result for

L
(

1
2 ,Sym5(π(Δ))⊗ χ

)
= L

(
28,Sym5(Δ)⊗ χ

)
.

Similarly, using the results of [Rag16], and simultaneous non-vanishing for the central values of
the first and third symmetric power L-functions of a Hilbert cusp form, one may now generalize
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this to get new rationality results for the symmetric fifth power L-functions of a Hilbert cusp
form.
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forms, Shimura varieties, and L-functions, Vol. I, Perspectives in Mathematics, vol. 10 (Academic
Press, Boston, MA, 1990), 77–159.

Dim13 M. Dimitrov, Automorphic symbols, p-adic L-functions and ordinary cohomology of Hilbert
modular varieties, Amer. J. Math. 135 (2013), 1–39.

Eis E. Eischen, Applications of nonarchimedean developments to archimedean nonvanishing results
for twisted L-functions, Math. Res. Lett., to appear.

FJ93 S. Friedberg and H. Jacquet, Linear periods, J. Reine Angew. Math. 443 (1993), 91–139.
GR13 W. T. Gan and A. Raghuram, Arithmeticity for periods of automorphic forms. In Automorphic

representations and L-functions, Tata Institute of Fundamental Research Studies Mathematics
22 (Tata Institute of Fundamental Research, Mumbai, 2013), 187–229.

Geh18 L. Gehrmann, Shalika models and p-adic L-functions, Israel J. Math. 226 (2018), 237–294.
GR14 H. Grobner and A. Raghuram, On the arithmetic of Shalika models and the critical values of

L-functions for GL2n, Amer. J. Math. 136 (2014), 675–728.
Hid95 H. Hida, Control theorems of p-nearly ordinary cohomology groups for SL(n), Bull. Soc. Math.

France 123 (1995), 425–475.

2467

https://doi.org/10.1112/S0010437X20007551 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007551


p-adic L-functions and non-vanishing

Hid98 H. Hida, Automorphic induction and Leopoldt type conjectures for GL(n), Asian J. Math. 2
(1998), 667–710.

JS90 H. Jacquet and J. Shalika, Exterior square L-functions. In Automorphic forms, Shimura varieties,
and L-functions, Vol. II, Perspectives in Mathematics, vol. 10, eds L. Clozel and J. S. Milne
(Academic Press, Boston, MA, 1990), 143–226.

Jan03 J. C. Jantzen, Representations of algebraic groups, Mathematical Surveys and Monographs,
vol. 107 (American Mathematical Society, Providence, RI, 2003).

Jan15 F. Januszewski, On p-adic L-functions for GL(n)×GL(n− 1) over totally real fields, Int. Math.
Res. Not. IMRN 2015 (2015), 7884–7949.

Jan16 F. Januszewski, On period relations for automorphic L-functions II, Preprint (2016),
arXiv:1504.06973.

Jan18 F. Januszewski, Non-abelian p-adic Rankin-Selberg L-functions and non-vanishing of central
L-values, Preprint (2018), arXiv:1708.02616.

Luo05 W. Luo, Non-vanishing of L-functions for GLn(AQ), Duke Math. J. 128 (2005), 199–207.
Nie09 C. Nien, Uniqueness of Shalika models, Canad. J. Math. 61 (2009), 1325–1340.
Rag10 A. Raghuram, On the special values of certain Rankin-Selberg L-functions and applications to

odd symmetric power L-functions of modular forms, Int. Math. Res. Not. IMRN 2010 (2010),
334–372.

Rag16 A. Raghuram, Critical values of Rankin–Selberg L-functions for GLn×GLn−1 and the symmetric
cube L-functions for GL2, Forum Math. 28 (2016), 457–489.

RS08 A. Raghuram and F. Shahidi, On certain period relations for cusp forms on GLn, Int. Math.
Res. Not. IMRN 2008 (2008), rnn077.

Roh89 D. Rohrlich, Nonvanishing of L-functions for GL(2), Invent. Math. 97 (1989), 381–403.
Shi77 G. Shimura, On the periods of modular forms, Math. Ann. 229 (1977), 211–221.
Sun19 B. Sun, Cohomologically induced distinguished representations and cohomological test vectors,

Duke Math. J. 168 (2019), 85–126.

Mladen Dimitrov mladen.dimitrov@univ-lille.fr
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