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We examined the diet of pelagic juveniles of Trachurus japonicus in the surface layer in April, and subsequent demersal
juveniles in the near bottom layer during May to June of the East China Sea (ECS) in 2005, 2008 and 2009. Diet compos-
ition of the pelagic juveniles showed a significant difference between 2005 and the other two years. That is, they preyed
mainly on Paracalanus parvus s.l. and occasionally on Calanus sinicus in 2008 and 2009, while they fed mainly on
Corycaeus affinis in 2005, partly corresponding with the between-year difference in prey densities. The demersal juveniles
depended heavily on the fifth copepodites and females of C. sinicus which store lipids in the body, i.e. high-energy food for
the juveniles, without a significant inter-annual difference. The markedly low occurrence of P. parvus s.l. and C. sinicus,
which are considered to be energetically more favourable than C. affinis, from the stomach of the pelagic juveniles in
2005 corresponded with the lowest growth rates of the pelagic juveniles in the three years. Potentially, this resulted in
the lowest observed recruitment level of the demersal juveniles for the ECS in 2005 over these three years.
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I N T R O D U C T I O N

The Japanese jack mackerel (Trachurus japonicus (Temminck
& Schlegel, 1844)) is a semi-pelagic fish distributed mainly on
the continental shelf of the East China Sea (ECS), western Sea
of Japan, and Pacific coast of southern and central Japan
(Ochiai & Tanaka, 1986). It is commercially fished by the
countries adjacent to the ECS, one of the largest marginal
seas of the western Pacific (Seikai National Fisheries
Research Institute, 2001; FAO, 2013). Catches of the
Japanese fisheries during 1980–2015 have fluctuated from
50 to 319 thousand metric tons (Watanabe et al., 2017;
Yoda et al., 2017). The catches have reflected the year-to-year
variation in recruitment, therefore it is necessary to examine
the mechanism underlying the recruitment variability.

The primary spawning ground of T. japonicus is found in
the shelf-break region of the southern part of the ECS south
of 288N during February to April (Sassa et al., 2016), although
they also spawn on a smaller scale in the coastal region off
Japan (Ochiai & Tanaka, 1986; Kanaji et al., 2009). The
Kuroshio and Kuroshio Branch Current north of Taiwan
have been shown to affect transport processes of eggs, larvae
and juveniles of T. japonicus from the spawning ground of
the southern ECS into the nursery grounds in the downstream
areas (Figure 1) (Sassa et al., 2006, 2008b; Kasai et al., 2008).
During the juvenile stage, the habitat and behaviour of T.

japonicus change greatly, as well as physiological changes
such as rate of digestion and absorption (Ochiai & Tanaka,
1986). The juveniles of �10–30 mm standard length (SL)
occur in the pelagic layer (hereafter referred to as ‘pelagic
juveniles’), and associate with gelatinous zooplankters, drift
algae and flotsam (Uehara & Mitani, 2002; Sassa et al., 2006;
Masuda et al., 2008). Swimming ability of the juveniles mark-
edly increases from �30 mm SL (Ochiai et al., 1982). After
reaching approximately 30–50 mm SL, T. japonicus begin to
occur near the bottom layer in the shelf-break region of the
southern and central ECS mainly at the depth of 70–140 m
between 278 and 318N (hereinafter referred to as ‘demersal
juveniles’), which subsequently forms the ECS stock (Sassa
et al., 2009; Takahashi et al., 2012).

Recruitment variability of fish is thought to be largely
determined during the early life stages, when the larvae and
juveniles are vulnerable to a variety of physical and biological
factors that can affect their survival (Houde, 1987; Chambers
& Trippel, 1997; Fuiman & Werner, 2002). In T. japonicus,
survival from the larval to demersal juvenile stages is esti-
mated to vary among years in the ECS, which is considered
to be a key process for understanding the fluctuations in
recruitment (Kasai et al., 2008; Sassa et al., 2014, 2016).
Importance of the growth rate during the early life stages
for subsequent recruitment has been suggested in various
marine fishes (Anderson, 1988; Litvak & Leggett, 1992;
Bailey et al., 1996; Meekan & Fortier, 1996; Takahashi et al.,
2008). Takahashi et al. (2012, 2016) suggested that growth
rates during the late larval and pelagic juvenile stages are asso-
ciated with recruitment success of demersal juveniles and sub-
sequent year-class strength of T. japonicus in the ECS. Feeding
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as well as habitat temperature is directly related to growth of
fishes (Takahashi & Watanabe, 2005; Zenitani et al., 2009),
thus detailed information on feeding habits during the early
life stages is essential for understanding the mechanism of
year-to-year variations in recruitment of fishes. Recent
papers have detailed the dietary composition, prey size, daily
ration and inter-annual variability in diet of T. japonicus
larvae in the southern ECS during late winter (Sassa et al.,
2008a; Sassa & Tsukamoto, 2012; Hirota et al., 2016).
However, information on ontogenetic changes and inter-
annual variations in feeding habits of T. japonicus juveniles
is not available in the literature. Any variations in feeding
behaviour might have implications for growth and subsequent
recruitment to the ECS stock.

The goal of this study was to examine the feeding habits of
T. japonicus juveniles in the surface and near bottom layers
of the ECS in the three years of 2005, 2008 and 2009. The
results are discussed in relation to reported growth rates
and recruitment levels (Takahashi et al., 2012; Yoda et al.,
2017).

M A T E R I A L S A N D M E T H O D S

Sample collection
Specimens were sampled during six cruises in the shelf-break
region of the ECS in 2005, 2008 and 2009 (Figure 1). Pelagic
juveniles of T. japonicus were sampled at 9, 9 and 13 stations
during 19–29 April 2005, 18–29 April 2008 and 17–29 April
2009, respectively, from the RV ‘Yoko-Maru’ (Seikai National
Fisheries Research Institute) (Figure 1). A neuston net (mouth
size 1.3 × 0.75 m; mesh size 1.0 mm; Oozeki et al., 2001) was
towed for 10 min with a vessel speed of 3.5 knots during the
daytime. This net is designed to be towed horizontally in the
upper 0.75 m layer, with a buoy attached on each side of the
frame for keeping it on the surface. Specimens were first
fixed in 10% borax-buffered formalin seawater for 6 h, forma-
lin rinsed out with fresh water, and then transferred to 95%
ethanol for preservation.

For zooplankton sampling, we used a conical Norpac net
with an opening of 45 cm in diameter and with 100 mm

Fig. 1. Sampling locations of Japanese jack mackerel (Trachurus japonicus) juveniles during the six cruises in the shelf-break region of the southern and central
East China Sea in 2005, 2008 and 2009. The size of circles indicates the number of fish analysed at each site. N, total number of sampling stations. KBCNT,
Kuroshio Branch Current north of Taiwan; KBCWK, Kuroshio Branch Current west of Kyushu; TSWC, Tsushima Warm Current; CCC, China Coastal
Current. YS, Yellow Sea; WNP, western North Pacific.
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mesh size (Motoda, 1957). The net was towed vertically from
50 m to the surface at each station where the samplings of
pelagic juveniles were conducted. The volume of water filtered
by the Norpac net was measured with a flowmeter mounted at
the net mouth. Plankton samples were fixed with 5% buffered
formalin seawater immediately after collection.

Demersal juveniles of T. japonicus were sampled at 16, 20
and 19 stations using a bottom otter trawl net from 12 May to
1 June 2005, from 21 May to 20 June 2008, and from 18 May
to 15 June 2009, respectively, from the RV ‘Kumamoto-Maru’
(Kumamoto Prefecture) (Figure 1). The net had a mouth
opening of 22 m (width) × 9.4 m (depth) and variable mesh
size from 180 mm at the mouth to 66 mm at the cod-end,
which was covered with a 18 mm cod-end cover. The net was
towed for 30 min at a vessel speed of 3 knots during the
daytime. Subsamples of T. japonicus were sorted out from the
trawl catch and immediately frozen at 210 8C onboard, and
fixed in 10% borax-buffered formalin fresh water in laboratory.

During the six cruises, a conductivity-temperature-depth
profiler (CTD, Alec Electronics Co., Ltd, Tokyo, Japan) was
used at each sampling station from surface to 5 m above the
bottom to obtain hydrographic data.

We analysed only specimens sampled between sunrise and
sunset, since T. japonicus juveniles are daytime visual feeders
(Suzuki, 1965; Kozasa, 1970). Number of the pelagic juveniles
collected by the neuston net was ,10 individuals at 77% of the
stations, while .20 demersal juveniles were always sampled by
the bottom otter trawl net. To pool a sufficient number of the
pelagic juveniles each year for describing the diet composition,
we examined all specimens at the stations where ,20 individuals
occurred, and up to 20 randomly selected specimens at the sta-
tions where≥20 individuals occurred (Figure 1). In the demersal
juveniles, we randomly selected from 10 to 15 individuals from
each sampling station for the stomach contents analysis. As a
whole, a total of 82–100 pelagic juveniles (8.0–29.8 mm SL)
and 205–269 demersal juveniles (26.5–105.3 mm SL) were
examined during the three years (Figure 2).

Laboratory analysis
For each specimen, SL was measured to the nearest 0.1 mm.
Thereafter, stomachs were dissected and the contents
removed. Since the identification of prey items at the species
or genus level is fundamental to understand the trophic rela-
tionships within a food web, we identified prey items to the
lowest possible taxon, based on Chihara & Murano (1997).
Copepod species were categorized into the developmental
stages of adult female, male and copepodite; euphausiids
into calyptopis, furcilia and juvenile; decapods into zoea,
mysis, megalopa and juvenile. Body lengths and widths of
prey items in good condition were measured to the nearest
0.01 mm for each category under a microscope fitted with
an ocular micrometer to estimate mean dimensions. The
mean dimensions of each prey category were converted to
the approximate dry weight (DW) based on equations from
Anraku et al. (1986) for copepods, ostracods and decapods;
Ikeda (1990) for amphipods; Iguchi & Ikeda (1999) for
euphausiids; and Beers (1966), Anraku et al. (1986) and Uye
et al. (1996) for the other taxa.

The results presented below indicated that pelagic juveniles
of T. japonicus preyed mainly on Paracalanus parvus s.l.,
Calanus sinicus and Corycaeus affinis. Consequently, we
used the densities of these three copepods as indices of the

food availability. To assess inter-annual variations in the
food availability for the pelagic juveniles, the three species
were identified and counted in the Norpac net samples from
each tow in the three years. Since the pelagic juveniles were
collected in the top 0.75 m of the water column in this
study, the sampling layers of juveniles and zooplankton
were largely different. Consequently, applying a selectivity
index to the data was not considered adequate. However, in
the shelf-break region of the ECS, copepods distribute fairly
evenly in the upper 50 m layer during late winter when the
mixed layer depth is observed to �60–100 m (Hirota et al.,
2016). In spring, the mixed layer depth becomes shallower,
but it is still �40–60 m in the study area (Sassa et al.,
2006). Therefore, we assumed that the densities of the three
copepods in the upper 50 m layer would be representative of
the food availability for the pelagic juveniles.

Data analysis
The sampling locations were relatively evenly distributed
across the whole area with a similar survey effort in all the

Fig. 2. Length-frequency distributions of Japanese jack mackerel (Trachurus
japonicus) juveniles examined for stomach contents in 2005, 2008 and 2009,
where n is the total number of juveniles examined.
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three years (Figure 1). Consequently, the data were pooled for
each year to represent the inter-annual variation in the diet
composition.

The habitat temperature for the pelagic juveniles in each
year was defined as the mean sea surface temperature (SST)
across all the stations in April. In the same way, the mean tem-
perature in the near bottom layer in May–June each year
represented the habitat for the demersal juveniles. The
habitat temperatures for the juveniles were compared
among the three years by one-way ANOVA followed by
Tukey–Kramer post-hoc test.

The pelagic juveniles were separated into two size classes of
,15 and ≥15 mm SL, and the demersal juveniles into ,60
and ≥60 mm SL to assess ontogenetic changes in the diet.
Stomach data were partitioned into subsets according to
these size classes and years. The modified index of relative
importance (IRI), i.e. using DW rather than wet weight of
prey items (Pinkas et al., 1971; Landingham et al., 1998),
was calculated for each data subset to characterize the diet
and to rank prey taxa:

IRI = (%N + %W) × %F (1)

where %N is percentage of each prey item to the total number
of identifiable prey items, %W is percentage DW of each prey
item to the total DW of identifiable prey items, %F is fre-
quency of occurrence of each prey item in the total number
of stomachs examined (excluding empty stomachs). The IRI
was expressed as the percentage of total IRI (%IRI) for each
data subset (Cortés, 1997). The diversity of prey items was
analysed using Levins’ diet breadth index (B; Levins, 1968):

B =
∑n

i=1

p 2
i

( )−1

(2)

where pi is the %IRI of each prey category in the diet.
The Bray–Curtis similarity index (BC; Bray & Curtis,

1957) was used to compare the %IRI of all prey items identi-
fied among the three years and between the two size classes of
both the pelagic and demersal juveniles. The index comparing
the two data sets of stomach contents (A and B) was calculated
using the following equation:

BC = 100 × 1 −
∑n

i=1 piA − piB

∣∣ ∣∣∑n
i=1 piA +

∑n
i=1 piB

( )
(3)

where piA and piB are the %IRI of prey item i in data sets of
stomach contents of A and B, respectively. To reduce the
influence of dominant prey items, the %IRI values were
square root transformed prior to analysis. Clustering by
UPGMA (unweighted pair-group method using the arith-
metic average) was used to construct similarity matrices.
Cluster analysis was performed with PRIMER v6 software
package (Clarke & Gorley, 2006).

The number of the three copepods of P. parvus s.l., C.
sinicus and C. affinis sampled in the plankton net was standar-
dized to the number per 1 m3 in the upper 50 m layer.
Densities of each species were log10 (x + 1) transformed
prior to the analyses to normalize the data and decrease the
variance. Median prey densities were compared among
the three years by the Kruskal–Wallis test followed by the

Steel–Dwass post-hoc test. The significance level for the stat-
istical test was set at a ¼ 0.05.

R E S U L T S

Overall diet composition
Mean habitat temperature for pelagic juveniles ranged from
19.3 to 19.9 8C and for demersal juveniles from 17.6 to
18.2 8C in the three years, without a significant inter-annual
difference (ANOVA, P . 0.05; Table 1).

The 44 different prey categories detected in the stomachs of
pelagic juveniles are listed in Table 2. Copepods were highly
abundant and the most diverse prey categories, including
four orders, 19 genera and 37 species or species groups, while
occurrence of the other taxa was less. The number of taxa
that occurred in the stomachs was markedly different among
years, and Levins’ index B was highest in 2008 (Table 2).

In the stomachs of the demersal juveniles, a total of 82 prey
categories were identified (Table 3). Copepods were the most
abundant and diverse prey categories, including three orders,
25 genera and 56 species or species groups, although ostra-
cods, amphipods, euphausiids and decapods were also occa-
sionally abundant. The B values of the demersal juveniles
were higher than the values of the pelagic juveniles in the
three survey years (Table 3).

Ontogenetic changes and inter-annual
variations in diet
In 2005, Corycaeus affinis dominated in the stomach contents
of pelagic juveniles in both size classes, and the %IRI values
were 65.6–85.0% of the total prey identified (Figure 3).
Euphausia spp. juveniles were also preyed on by juveniles
≥15 mm SL, constituting 20.2% of %IRI. In 2008 and 2009,
in contrast, Paracalanus parvus s.l. was the most dominant
prey item in juveniles ,15 mm SL, accounting for %IRI
values of 50.9 and 84.9%, respectively, of the total prey iden-
tified (Figure 3). In 2008, P. aculeatus and C. affinis were
also preyed on by juveniles ,15 mm SL, which constituted
17.5 and 11.8% of %IRI, respectively. In 2008 and 2009, juve-
niles ≥15 mm SL predated heavily on P. parvus s.l., with %IRI
values of 35.8–75.6%. In addition, the importance of Calanus
sinicus was markedly higher in juveniles ≥15 mm SL, which
constituted 17.7–55.3% of %IRI values.

In the demersal juveniles, C. sinicus was the most important
prey item in all survey years in terms of %N, %W, and %F
(Table 3), and the %IRI values in juveniles ,60 and
≥60 mm SL ranged from 30.8–55.5% and 29.3–62.2%,

Table 1. Mean+standard deviation of the habitat temperature (8C) of
Japanese jack mackerel (Trachurus japonicus) juveniles, as represented
by sea surface temperatures in April, and temperature in the near
bottom layer in May–June for pelagic and demersal juveniles, respectively.

Year Pelagic juveniles Demersal juveniles
(April) (May–June)

2005 19.3+2.3 17.9+0.6
2008 19.3+2.8 18.2+1.5
2009 19.9+1.5 17.6+0.8
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respectively (Figure 4). Planktonic halocypridid ostracods were
also dominant prey items of demersal juveniles during the three
years in terms of %F (Table 3), resulting in %IRI values of 0.9–
54.6 and 6.0–26.1% in juveniles ,60 and ≥60 mm SL, respect-
ively (Figure 4). In addition, the demersal juveniles preyed

considerably on C. affinis and Euphausia nana in 2005, and
on Paraeuchaeta plana in 2008 and 2009, all of which
accounted for .10% of %IRI values (Figure 4). The %IRI
values of hyperiid amphipods in juveniles ≥60 mm SL was
higher than those in juveniles ,60 mm SL in the three years.

Table 2. Summary of prey items in the pelagic juveniles of Japanese jack mackerel (Trachurus japonicus) in the epipelagic layer in the southern and
central East China Sea in 2005, 2008 and 2009.

Year 2005 2008 2009
No. stomachs examined 82 87 100
Total no. prey items identified 660 1642 434
Levins’ diet breadth index (B) 1.43 2.72 1.45
Prey taxon %N %W %F %IRI %N %W %F %IRI %N %W %F %IRI

Copepoda
Nauplius – – – – 0.3 ,0.1 3.9 ,0.1 0.2 0.1 1.9 ,0.1
Calanoid copepodite

Calanus sinicus 1.2 14.3 7.8 1.4 21.4 75.0 30.3 37.7 5.3 44.3 16.7 9.9
Canthocalanus pauper – – – – 0.7 0.5 6.6 0.1 – – – –
Cosmocalanus darwini 0.2 1.8 2.0 ,0.1 0.2 0.7 3.9 ,0.1 – – – –
Undinula vulgaris – – – – 0.2 0.6 2.6 ,0.1 – – – –
Calanidae spp. – – – – 0.2 0.2 2.6 ,0.1 – – – –
Clausocalanus furcatus – – – – 0.1 ,0.1 2.6 ,0.1 0.9 0.7 7.4 0.1
Clausocalanus spp. – – – – 0.1 ,0.1 1.3 ,0.1 0.7 0.4 5.6 0.1
Ctenocalanus vanus – – – – 0.4 0.3 3.9 ,0.1 – – – –
Eucalanus sp. – – – – 0.2 0.4 3.9 ,0.1 – – – –
Euchaeta rimana – – – – 0.1 0.8 1.3 ,0.1 – – – –
Paraeuchaeta concinna – – – – 0.1 0.7 1.3 ,0.1 – – – –
Paraeuchaeta plana – – – – – – – – 0.2 5.7 1.9 0.1
Euchaetidae spp. – – – – 1.8 3.0 18.4 1.2 1.6 8.5 7.4 0.9
Pleuromamma gracilis – – – – – – – – 0.2 0.7 1.9 ,0.1
Acrocalanus gracilis – – – – 0.9 0.5 10.5 0.2 2.8 4.1 3.7 0.3
Paracalanus aculeatus – – – – 3.8 1.7 27.6 2.0 2.8 2.7 14.8 1.0
Paracalanus parvus s.l. 1.8 0.7 17.6 0.5 43.5 8.5 69.7 46.9 64.5 26.1 75.9 82.5
Paracalanidae spp. – – – – 2.9 0.2 25.0 1.0 7.4 1.8 25.9 2.8
Temora discaudata 0.2 0.8 2.0 ,0.1 – – – – – – – –
Temora turbinata 0.2 0.4 2.0 ,0.1 1.0 0.5 13.2 0.3 – – – –
Temora sp. – – – – – – – – 0.2 0.3 1.9 ,0.1
Tortanus sp. – – – – – – – – 0.2 0.2 1.9 ,0.1

Cyclopoid copepodite
Oithona nana – – – – 2.0 0.1 11.8 0.3 1.4 0.1 7.4 0.1
Oithona similis – – – – 1.3 0.1 10.5 0.2 3.7 0.7 13.0 0.7
Oithona spp. – – – – 0.7 0.2 11.8 0.1 1.2 0.5 9.3 0.2

Poecilostomatoid copepodite
Corycaeus affinis 72.4 50.1 58.8 83.1 9.0 2.0 46.1 6.6 2.1 1.0 13.0 0.5
Corycaeus agilis – – – – 0.1 ,0.1 2.6 ,0.1 – – – –
Corycaeus crassiusculus 0.5 1.2 3.9 0.1 0.1 0.1 1.3 ,0.1 – – – –
Corycaeus pacificus 0.2 0.1 2.0 ,0.1 0.2 0.1 3.9 ,0.1 0.5 0.2 3.7 ,0.1
Farranula concinna – – – – – – – – 0.2 0.1 1.9 ,0.1
Farranula gibbula – – – – 0.4 0.1 6.6 ,0.1 – – – –
Corycaeidae spp. 11.5 1.9 45.1 7.0 4.3 0.4 40.8 2.5 0.5 ,0.1 3.7 ,0.1
Oncaea venusta f. typica – – – – 0.2 0.1 3.9 ,0.1 0.2 0.1 1.9 ,0.1
Oncaea venusta f. venella 6.2 3.5 33.3 3.7 0.3 0.1 6.6 ,0.1 0.2 0.1 1.9 ,0.1
Oncaea spp. – – – – 1.0 0.1 15.8 0.2 2.3 0.4 16.7 0.5
Oncaeidae spp. 1.1 0.2 7.8 0.1 0.1 ,0.1 2.6 ,0.1 – – – –

Harpacticoid copepodite
Euterpina acutifrons – – – – – – – – 0.2 ,0.1 1.9 ,0.1

Euphausiidae
Calyptopis 0.5 0.2 5.9 ,0.1 1.0 0.1 11.8 0.2 – – – –
Furcilia 0.6 2.2 3.9 0.1 0.9 0.6 10.5 0.2 0.5 1.1 3.7 0.1
Euphausia spp. juvenile 1.1 18.5 11.8 2.7 0.4 2.3 3.9 0.1 – – – –

Chaetognatha
Sagittidae sp. – – – – 0.1 ,0.1 1.3 ,0.1 – – – –

Gastropoda larva 0.2 0.2 2.0 ,0.1 – – – – – – – –
Bivalvia umbo larva 2.4 3.9 15.7 1.1 0.2 0.1 2.6 ,0.1 – – – –

%N is numerical percentage, %W is dry weight percentage, %F is frequency of occurrence percentage of fish with prey item i, and %IRI is per cent of total
IRI (index of relative importance) for all prey taxa. IRI ¼ (%N + %W ) × %F. – , no occurrence.
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Table 3. Summary of prey items in the demersal juveniles of Japanese jack mackerel (Trachurus japonicus) in the near bottom layer in the southern and
central East China Sea in 2005, 2008 and 2009.

Year 2005 2008 2009
No. stomachs examined 205 269 254
Total no. prey items identified 1619 5269 3919
Levins’ diet breadth index (B) 2.66 4.46 3.49
Prey taxon %N %W %F %IRI %N %W %F %IRI %N %W %F %IRI

Foraminiferida
Globigerinidae sp. – – – – – – – – 0.3 ,0.1 1.5 ,0.1

Ostracoda
Halocyprididae spp. 8.0 9.8 39.0 11.5 3.7 2.7 44.3 5.0 21.7 18.9 67.9 35.2

Copepoda
Calanoid copepodite

Aetideus sp. – – – – ,0.1 ,0.1 0.6 ,0.1 – – – –
Euchirella amoena – – – – ,0.1 ,0.1 0.6 ,0.1 – – – –
Aetideidae sp. – – – – ,0.1 ,0.1 0.6 ,0.1 – – – –
Calanoides philippinensis 0.2 0.1 2.9 ,0.1 0.1 ,0.1 0.6 ,0.1 0.1 0.1 2.2 ,0.1
Calanus sinicus 40.3 28.0 51.4 58.1 28.5 10.3 46.7 32.2 37.2 20.0 53.0 38.7
Cosmocalanus darwini 0.6 0.3 2.9 ,0.1 4.7 1.4 13.2 1.4 – – – –
Nannocalanus minor 0.1 ,0.1 1.0 ,0.1 1.0 0.2 4.2 0.1 – – – –
Neocalanus gracilis – – – – 0.1 0.1 1.2 ,0.1 – – – –
Undinula vulgaris 0.1 0.1 1.0 ,0.1 2.3 1.7 19.8 1.4 – – – –
Calanidae spp. – – – – 0.3 0.1 2.4 ,0.1 0.1 ,0.1 2.2 ,0.1
Candacia bipinnata 0.1 ,0.1 1.0 ,0.1 – – – – 0.1 ,0.1 1.5 ,0.1
Candacia catula – – – – ,0.1 ,0.1 1.2 ,0.1 – – – –
Candacia discaudata – – – – 0.1 ,0.1 0.6 ,0.1 – – – –
Candacia ethiopica – – – – ,0.1 ,0.1 0.6 ,0.1 – – – –
Candacia pachydactyla – – – – 0.6 0.2 7.2 0.1 – – – –
Candaciidae spp. – – – – 0.6 0.1 10.2 0.1 – – – –
Clausocalanus arcuicornis 1.2 0.1 4.8 0.1 0.1 ,0.1 2.4 ,0.1 – – – –
Clausocalanus parapergens 1.5 0.2 8.6 0.2 0.1 ,0.1 1.8 ,0.1 – – – –
Clausocalanus spp. 0.3 ,0.1 1.9 ,0.1 ,0.1 ,0.1 1.2 ,0.1 0.2 ,0.1 4.5 ,0.1
Rhincalanus cornutus 0.1 0.3 1.9 ,0.1 ,0.1 ,0.1 0.6 ,0.1 ,0.1 ,0.1 0.7 ,0.1
Eucalanus crassus – – – – 0.2 0.2 4.8 ,0.1 – – – –
Eucalanus subtenuis – – – – 0.1 0.1 1.2 ,0.1 – – – –
Eucalanus spp. – – – – 0.2 0.1 3.0 ,0.1 0.1 0.1 2.2 ,0.1
Euchaeta rimana 0.4 1.1 5.7 0.1 2.0 2.6 13.8 1.1 0.2 0.4 3.0 ,0.1
Paraeuchaeta concinna 0.4 0.6 4.8 0.1 2.0 1.8 17.4 1.2 5.0 6.6 17.9 2.6
Paraeuchaeta longicornis – – – – ,0.1 ,0.1 0.6 ,0.1 – – – –
Paraeuchaeta plana 0.8 1.5 3.8 0.1 18.3 19.7 49.1 33.0 6.7 11.5 29.1 6.8
Paraeuchaeta russelli 0.1 0.2 1.0 ,0.1 0.9 1.5 6.6 0.3 4.7 12.9 11.9 2.7
Euchaetidae spp. 3.0 3.5 18.1 1.9 6.1 2.0 37.7 5.4 4.4 4.2 32.1 3.5
Lucicutia flavicornis 0.2 ,0.1 3.8 ,0.1 ,0.1 ,0.1 0.6 ,0.1 – – – –
Pleuromamma abdominalis 0.1 0.1 1.0 ,0.1 0.1 0.2 1.2 ,0.1 – – – –
Pleuromamma gracilis 1.0 0.3 11.4 0.2 0.3 ,0.1 6.0 ,0.1 0.2 ,0.1 3.0 ,0.1
Pleuromamma indica 0.6 0.4 7.6 0.1 0.5 0.1 9.0 0.1 0.3 0.2 6.0 ,0.1
Pleuromamma spp. 0.5 0.5 4.8 0.1 – – – – – – – –
Acrocalanus gibber 0.1 ,0.1 1.0 ,0.1 – – – – – – – –
Paracalanus aculeatus 0.1 ,0.1 1.0 ,0.1 0.1 ,0.1 1.8 ,0.1 0.1 ,0.1 1.5 ,0.1
Paracalanus parvus s.l. 8.9 0.2 26.7 4.0 0.3 ,0.1 3.6 ,0.1 6.2 0.2 23.9 1.9
Scolecithrix danae – – – – 2.4 0.6 14.4 0.8 ,0.1 ,0.1 0.7 ,0.1
Scolecitrichidae spp. – – – – – – – – ,0.1 ,0.1 0.7 ,0.1
Temora discaudata 0.1 ,0.1 1.0 ,0.1 – – – – – – – –
Temora turbinata – – – – – – – – ,0.1 ,0.1 0.7 ,0.1
Temora sp. – – – – ,0.1 ,0.1 0.6 ,0.1 – – – –

Cyclopoid copepodite
Oithona similis 0.1 ,0.1 1.0 ,0.1 – – – – – – – –

Poecilostomatoid copepodite
Corycaeus affinis 21.5 1.0 31.4 11.7 ,0.1 ,0.1 0.6 ,0.1 – – – –
Corycaeus flaccus – – – – ,0.1 ,0.1 0.6 ,0.1 – – – –
Corycaeus furcifer 0.2 0.1 3.8 ,0.1 – – – – – – – –
Corycaeus limbatus – – – – ,0.1 ,0.1 0.6 ,0.1 – – – –
Corycaeus speciosus 0.1 ,0.1 1.9 ,0.1 – – – – – – – –
Corycaeus typicus 0.1 ,0.1 1.9 ,0.1 – – – – ,0.1 ,0.1 0.7 ,0.1
Corycaeus spp. – – – – – – – – 0.2 ,0.1 6.0 ,0.1
Oncaea media – – – – 0.1 ,0.1 2.4 ,0.1 – – – –

Continued
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The cluster analysis of the compiled data of diet compos-
ition (%IRI) showed the level of similarities among years
and juvenile types (Figure 5). Three clusters were delineated
at a similarity level of 40%. Cluster I included only the
pelagic juveniles in 2005, cluster II included the pelagic juve-
niles in 2008 and 2009, while cluster III included the demersal
juveniles from all three surveys.

Sex and developmental stages of prey items
In the stomach contents of the pelagic juveniles, percentages
of adult females of P. parvus s.l. were higher than percentages
of males and earlier copepodite stages (Table 4). On the con-
trary, a preponderance of adult males over females was signifi-
cant in C. affinis found in the stomachs of pelagic juveniles. In
the stomachs of both pelagic and demersal juveniles, percen-
tages of adult females and the fifth copepodite stage (CVs)
of C. sinicus were markedly higher than percentages of

males and fourth copepodite stage (CIVs), constituting
.80% of the total (Table 4).

Based on the mean body size and the reported body size–
carbon relationship, carbon content of P. parvus s.l. females
was approximately twice as high as that of C. affinis males
(Table 5). Carbon contents of adult females and CVs of C.
sinicus were �23 and 13 times higher than the value of P.
parvus s.l. females.

Zooplankton in the water column
The density of zooplankton in April showed both inter-annual
and spatial variations (Figure 6). Median density of P. parvus
s.l. in 2005 was significantly lower than in 2008 and 2009
(Kruskal –Wallis test and Steel–Dwass test, P , 0.05). The
interquartile range of density of C. sinicus in 2005 was lower
than in the other two years, while median density of C.
affinis was markedly higher in 2005 (Figure 6). However,
the densities of C. sinicus and C. affinis were not significantly

Table 3. Continued

Year 2005 2008 2009
No. stomachs examined 205 269 254
Total no. prey items identified 1619 5269 3919
Levins’ diet breadth index (B) 2.66 4.46 3.49
Prey taxon %N %W %F %IRI %N %W %F %IRI %N %W %F %IRI

Oncaea mediterranea 0.1 ,0.1 1.9 ,0.1 0.3 ,0.1 6.6 ,0.1 0.3 ,0.1 3.7 ,0.1
Oncaea venusta f. venella 0.1 ,0.1 1.0 ,0.1 0.2 ,0.1 3.6 ,0.1 0.2 ,0.1 3.7 ,0.1
Oncaea venusta f. typica 0.7 ,0.1 4.8 0.1 0.1 ,0.1 2.4 ,0.1 ,0.1 ,0.1 0.7 ,0.1
Triconia conifera 0.2 ,0.1 3.8 ,0.1 0.1 ,0.1 2.4 ,0.1 0.1 ,0.1 1.5 ,0.1
Sapphirina darwinii – – – – – – – – 0.1 0.1 3.0 ,0.1

Cirripedia
Cypris 0.1 ,0.1 1.9 ,0.1 – – – – – – – –

Mysidae
Mysidae spp. 0.1 0.1 1.9 ,0.1 – – – – – – – –

Amphipoda
Hyperiidae spp. 1.5 2.0 5.7 0.3 2.1 0.9 22.8 1.2 7.8 9.1 35.1 7.6
Anchylomera blossevillei – – – – 0.6 0.4 7.8 0.1 – – – –
Phrosinidae spp. – – – – 1.1 3.1 10.8 0.8 – – – –
Pronoidae spp. – – – – 0.6 1.2 10.8 0.4 – – – –
Platyscelidae spp. – – – – 1.9 1.6 13.8 0.9 – – – –

Euphausiidae
Calyptopis 0.2 ,0.1 1.9 ,0.1 – – – – – – – –
Furcilia – – – – – – – – ,0.1 ,0.1 0.7 ,0.1
Euphausia spp. juvenile 1.4 5.8 7.6 0.9 2.8 5.5 31.7 4.7 0.3 0.9 3.7 0.1
Euphausia nana 4.0 38.6 14.3 10.0 8.6 19.0 10.2 5.0 0.6 4.7 2.2 0.2
Nematoscelis sp. juvenile – – – – 0.8 7.5 5.4 0.8 – – – –

Decapoda
Sergestidae juvenile – – – – 0.2 2.3 2.4 0.1 – – – –
Leptochela sp. zoea – – – – 0.9 0.2 13.2 0.2 0.1 ,0.1 2.2 ,0.1
Leptochela sp. mysis 0.4 0.6 4.8 0.1 0.4 1.7 9.6 0.4 1.6 4.6 5.2 0.4
Leptochela sp. – – – – – – – – 0.2 4.7 1.5 0.1
Anomura zoea 0.1 0.5 1.0 ,0.1 0.5 2.9 9.0 0.5 – – – –
Brachyura megalopa 0.1 0.3 1.0 ,0.1 1.0 6.7 16.2 2.2 0.1 0.5 1.5 ,0.1

Chaetognatha
Sagittidae spp. – – – – 0.2 0.3 2.4 ,0.1 – – – –

Pteropoda
Creseis acicula – – – – 0.2 ,0.1 2.4 ,0.1 0.2 ,0.1 3.7 ,0.1

Gastropoda larva 0.1 ,0.1 1.9 ,0.1 1.1 0.4 7.2 0.2 0.3 0.1 5.2 ,0.1
Bivalvia umbo larva – – – – – – – – 0.4 ,0.1 7.5 ,0.1
Cephalopoda larva 0.1 3.0 1.0 ,0.1 0.4 0.1 4.8 ,0.1 – – – –
Osteichthyes larva 0.1 0.4 1.0 ,0.1 0.2 0.4 1.8 ,0.1 – – – –

%N is numerical percentage, %W is dry weight percentage, %F is frequency of occurrence percentage of fish with prey item i, and %IRI is per cent of total
IRI (index of relative importance) for all prey taxa. IRI ¼ (%N + %W ) × %F. – , no occurrence.
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Fig. 3. Dietary composition of pelagic juveniles of Japanese jack mackerel (Trachurus japonicus) in the surface layer in April from the East China Sea in 2005, 2008
and 2009, expressed as per cent of an index of the relative importance (%IRI) of each prey category in relation to two size classes of juveniles, where n represents the
total number of juveniles examined. Only prey categories that accounted for more than 5% of %IRI values of the total prey categories identified in at least one of the
years are shown.

Fig. 4. Dietary composition of demersal juveniles of Japanese jack mackerel (Trachurus japonicus) in the near bottom layer during May to June from the East
China Sea in 2005, 2008 and 2009, expressed as per cent of an index of the relative importance (%IRI) of each prey category in relation to two size classes of
juveniles, where n represents the total number of juveniles examined. Only prey categories that accounted for more than 5% of %IRI values of the total prey
categories identified in at least one of the years are shown.
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different among the years (Kruskal–Wallis test, P . 0.05 in
both species), which is probably driven by the variations
among locations within each year.

In P. parvus s.l., females were more abundant than males in
the water column, while in C. affinis males were more abun-
dant than females (Table 6). In C. sinicus, percentage of
CVs was highest (61.9%). Although the percentage of adults
was low in C. sinicus, females were more abundant than
males (Table 6).

D I S C U S S I O N

Diet composition of pelagic juveniles and its
inter-annual variations
Diet composition of the pelagic juveniles showed a signifi-
cant difference between 2005 and the other two years. That

is, in 2008 and 2009, the pelagic juveniles ,15 mm SL ate
mainly P. parvus s.l., and started to prey on C. sinicus
when they reached ≥15 mm SL. In 2005, on the other
hand, the pelagic juveniles predated heavily on C. affinis in
both size classes. The observed difference in diet partly cor-
responded with the between-year difference in the prey dens-
ities in the field. That is, in 2005, the median density of P.
parvus s.l. was significantly lower than in 2008 and 2009.
Also, the density of C. sinicus in the water column was
lowest in 2005, although the difference between the other
two years was much smaller compared with P. parvus s.l.
In contrast to these two species, C. affinis density in 2005
was highest among the three years. Therefore, the difference
in the prey densities in the field could be one of the main
factors influencing the between-year difference in the diet.
However, it must be noted that the prey density in the
upper 50 m layer, although well mixed, may be different
from the food availability for the pelagic juveniles occurring
in the surface layer (upper 0.75 m).

Fig. 5. Dendrogram by cluster analysis based on the Bray–Curtis similarity index on square root-transformed %IRI of prey items in the stomach contents of
Japanese jack mackerel (Trachurus japonicus) juveniles in the East China Sea in 2005, 2008 and 2009.

Table 4. Composition (%) of developmental stages of the dominant copepod species in the stomachs of pelagic juveniles of Japanese jack mackerel
(Trachurus japonicus) in the epipelagic layer in April and demersal juveniles in the near bottom layer during May to June in the shelf-break region

of the East China Sea.

Trachurus japonicus Prey items 2005 2008 2009

Pelagic juveniles Paracalanus parvus s.l.
F – 92.8 90.3
M – 0.4 3.8
CIV–V – 6.8 5.9

Corycaeus affinis
F 28.7 6.9 10.8
M 71.3 93.1 89.2

Calanus sinicus
F – 12.1 52.0
M – 1.1 0.0
CV – 86.0 38.7
CIV – 0.9 9.3

Demersal juveniles Calanus sinicus
F 37.5 53.8 15.1
M 5.1 18.6 2.7
CV 50.7 26.7 69.2
CIV 6.7 0.0 12.7

F, adult female; M, adult male; CIV, the fourth copepodite stage; CV, the fifth copepodite stage. – , total number of individuals sampled from the stomachs
was ,65.
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Paracalanus parvus s.l. is numerically the most dominant
small-sized copepod in the epipelagic layer of the ECS shelf
and its adjacent waters (Liang & Uye, 1996; Lan et al., 2008;
Chou et al., 2012). Except for 2005, pelagic juveniles of
T. japonicus depended on P. parvus s.l. adult females, while

larvae of T. japonicus preyed mainly on early developmental
stages of Paracalanus spp. copepodites (mainly P. parvus
s.l.) in the southern ECS (Sassa et al., 2008a; Sassa &
Tsukamoto, 2012). This indicated that various developmental
stages of P. parvus s.l. provide a wide size spectrum of prey
items, being a key species for the early survival of T. japonicus.
The density of P. parvus s.l. shows a peak from spring to early
summer on the ECS shelf (Chihara & Murano, 1997; Chou
et al., 2012; Kitajima, unpublished data), corresponding to
the seasonal peak abundance of the pelagic juveniles (Sassa
et al., 2006; Takahashi et al., 2016). This seasonal overlap
with P. parvus s.l. is most likely advantageous for the survival
of T. japonicus during the pelagic juvenile stage.

Corycaeus affinis is a neritic corycaeid copepod and com-
monly distributed in the epipelagic layer of the ECS shelf
(Chihara & Murano, 1997; Lan et al., 2008). In 2005 when
low densities of P. parvus s.l. were observed, pelagic juveniles
of both size classes ate mainly C. affinis. This indicated that
pelagic juveniles adapted their diet to the available prey
having a similar body size to P. parvus s.l. This also suggests
that they are opportunistic predators. However, based on
the carbon content, C. affinis would be energetically less
favourable prey than P. parvus s.l. and the pelagic juveniles
in 2005 had trophically poorer conditions than in 2008 and
2009. In addition, no ontogenetic variation in diet of the
pelagic juveniles in 2005 should have resulted in increased
intraspecific competition among the different size classes.

The predation by pelagic juveniles on C. sinicus in 2008 and
2009 was largely limited to the larger juveniles (≥15 mm SL).
Since a bimodal vertical distribution of C. sinicus is observed
on the ECS shelf, with the maximum abundance near the
bottom layer and another peak in the epipelagic layer (Wang
et al., 2003; Kitajima, unpublished data), not only the demersal
juveniles but also pelagic juveniles can encounter C. sinicus.
The occurrence of C. sinicus in stomachs of pelagic juveniles
≥15 mm SL can most likely be linked to larger mouth size
and increased swimming availability of T. japonicus. The
total length and width of C. sinicus found in stomachs
ranged from 2.2–2.6 mm and 0.6–0.8 mm, respectively, with
dimensions which were �2–3 times larger than those of P.
parvus s.l. The upper jaw length and mouth width, a proxy
of mouth size (Shirota, 1970), of T. japonicus at 15 mm SL
were 2.4 and 1.3 mm, respectively (Sassa, unpublished data),
which is considered to be large enough to begin eating C.
sinicus. Carbon contents of C. sinicus were 13–23 times
higher than that of P. parvus s.l., implying a higher energetic
gain for the pelagic juveniles. Accordingly, the occurrence of
C. sinicus in the stomachs of pelagic juveniles in 2008 and
2009 indicates that the food availability for the juveniles was
markedly higher than in 2005.

Table 5. Dimensions and carbon contents of the four major prey items taken by Japanese jack mackerel (Trachurus japonicus) juveniles.

Taxon Total length (mm) Prosome length
(mm)

Body width (mm) Carbon (mg)

Mean SD Mean SD Mean SD

Paracalanus parvus s.l. (F) 0.90 0.06 0.69 0.05 0.29 0.03 2.70
Corycaeus affinis (M) 0.91 0.05 0.54 0.04 0.25 0.02 1.43
Calanus sinicus (CV) 2.19 0.14 1.75 0.10 0.61 0.09 34.60
C. sinicus (F) 2.63 0.12 2.07 0.12 0.75 0.06 61.00

The mean prosome length was converted to the approximate carbon contents based on equations from Liang and Uye (1996) for P. parvus s.l.,
Satapoomin (1999) for C. affinis, and Uye (1988) for C. sinicus. F, adult female; M, adult male; CV, the fifth copepodite stage. SD, standard deviation.

Fig. 6. Box plots of log10 (x + 1) transformed densities (individuals per m3, 0–
50 m depth) of Paracalanus parvus s.l., Calanus sinicus and Corycaeus affinis
collected by Norpac net (0.1 mm mesh) in the shelf-break region of the
southern and central East China Sea in April 2005, 2008 and 2009. The total
number of stations in 2005, 2008 and 2009 were 9, 9 and 13, respectively.
The box plots denote median values and 25% and 75% interquartiles (IQ25
and IQ75 respectively); the lower and upper whiskers represent IQ25 2

1.5 × (IQ75 2 IQ25) and IQ75 + 1.5 × (IQ75 2 IQ25) respectively; dots
represent outliers. Different letters beside plots indicate statistical difference
(P , 0.05) among the three years.
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In this study, P. parvus s.l. and C. sinicus found in the
stomach of the pelagic juveniles were mostly females, while
C. affinis were mostly males in all the three years. Extremely
female-skewed sex ratios in the water column have been
observed in various copepods including P. parvus s.l. and C.
sinicus (Chen, 1964; Hirst et al., 2010; Gusmão et al., 2013;
this study). In C. affinis, on the contrary, males were more
abundant than females in the water column of the ECS
shelf, corresponding with the previous study of Böttger-
Schnack et al. (1989) in the Red Sea that showed a high per-
centage of Corycaeus spp. males. For the three copepod
species, the prosome length of the females is slightly larger
than of the males (�1.1 fold difference; Kitajima, unpublished
data). Thus, potential selection of larger prey by the juveniles
should hardly impact the sex ratios observed in the stomachs.
Consequently, the skewed sex ratios of prey items in the sto-
machs of the pelagic juveniles are considered to reflect the sex
ratios of the prey in the field.

Importance of C. sinicus as prey for demersal
juveniles
After the habitat transition from the surface to the near
bottom layer, the index of importance of P. parvus s.l. and
C. affinis as prey items for T. japonicus juveniles decreased
greatly. Instead, C. sinicus became the dominant prey item
for the demersal juveniles in the three survey years. Also,
the demersal juveniles occasionally fed on halocypridid ostra-
cods and Paraeuchaeta plana as numerically dominant prey
items. No difference in the diet composition was observed
between the two size classes of the demersal juveniles,
although the juveniles ≥60 mm SL would have sufficient
swimming ability and a large mouth to feed on larger prey
items. Jiang et al. (2013) also found C. sinicus in the
stomach of T. japonicus juveniles (mostly 65–85 mm SL) in
the ECS during spring. In addition, stomach contents of the
age-0 T. japonicus (80–140 mm SL) mainly consisted of cala-
noid copepods (probably C. sinicus based on the body width)
in the northern ECS in summer (Tanaka et al., 2006). This
suggests that T. japonicus prefers C. sinicus for at least three
months after the habitat transition to the near bottom layer.
Calanus sinicus is one of the key components of the ecosystem
on the ECS shelf and adjacent waters, supporting the produc-
tion of commercially important fishes including both pelagic
and demersal species (Chen, 1994; Uye, 2000; Wang et al.,
2003; Hwang & Wong, 2005; Xu & Chen, 2007). Density of
C. sinicus shows a strong monthly variation, with a single

peak season from May to June on the ECS shelf (Chen,
1994; Wang et al., 2003; Xu & Chen, 2007). This corresponds
to the seasonal peak abundance of the demersal juveniles
(Sassa et al., 2009), and is likely advantageous for survival of
T. japonicus during the demersal juvenile stage.

In the stomachs of the demersal juveniles, percentages of CVs
and adult females of C. sinicus were markedly higher than of the
other developmental stages. This corresponds to the compos-
ition of C. sinicus in the southern Yellow Sea and the ECS
during spring to summer (Wang et al., 2003; Pu et al., 2004;
Hwang & Wong, 2005; Wang et al., 2014). The CVs and
females of C. sinicus store lipids in the body, and the total
lipid content in CVs and females are 22.4–40.1% and 5.4–
17.2% of their body DW, respectively, in the ECS and Yellow
Sea (Wang et al., 2014), i.e. they are high-calorie prey items.

Implications of diet for growth and
recruitment
Growth during the larval and juvenile stages has been sug-
gested to be an important factor determining survival and
recruitment success of fishes including both pelagic and
demersal species, even if competing alternative hypotheses
for recruitment variation exist as well (Anderson, 1988;
Chambers & Trippel, 1997; Fuiman & Werner, 2002; Robert
et al., 2007). Early growth is directly related to feeding and
habitat temperature (Takahashi & Watanabe, 2005; Zenitani
et al., 2009). In this study, diet composition of the pelagic juve-
niles showed a significant difference between 2005 and the
other two years, although no difference was observed in the
habitat temperature. Takahashi et al. (2012, 2016) reported
that growth rates of T. japonicus during the late larval and
pelagic juvenile stages in 2005 were lower than in 2008 and
2009 in our study area. Also, they discussed that this lower
growth rate potentially resulted in the lowest observed recruit-
ment level of the demersal juveniles for the ECS in 2005 over
these three years (Yoda et al., 2017). The diet composition of
the pelagic juveniles in the three years studied, likely impacted
the growth and recruitment of the stock for these years. That
is, the markedly low occurrence of P. parvus s.l. and C. sinicus,
which are considered to be energetically more favourable than
C. affinis, from the stomach of the pelagic juveniles in 2005
potentially relates to the lower growth rate that year and con-
sequently poor recruitment.

In the upper 50 m water column, the density of P. parvus
s.l. in 2005 was significantly lower than in 2008 and 2009.
Also, the density of C. sinicus tended to be low in 2005,

Table 6. Composition (%) of developmental stages of the three copepod species collected by Norpac net (0.1 mm mesh) in the shelf-break region of the
East China Sea in April.

Prey items % Prey items %

Paracalanus parvus s.l. Calanus sinicus
F 90.5 F 8.2
M 9.5 M 2.8

CV 61.9
Corycaeus affinis CIV 22.1

F 28.4 CIII 1.8
M 71.6 CII 1.4

CI 1.8

F, adult female; M, adult male; CI–V, copepodite stages I–V. Data in 2005, 2008 and 2009 was pooled for C. affinis, while data in 2008 and 2009 for P.
parvus s.l. and C. sinicus.
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although a significant difference was not detected between the
other two years. This suggests that the availability of the two
prey items in 2005 may have been lower compared with the
other two years. However, our results of stomach contents
are just a snapshot picture of the three years. We need to
analyse the relationships among the diet, growth, and recruit-
ment levels for other years that show significantly different
levels of recruitment.

In contrast to the pelagic juveniles, there was no difference in
the diet of the demersal juveniles among the three years. This
indicates that food availability did not differ greatly during the
study period and/or the prey items were abundant enough for
their feeding, although we have no data on prey density in the
near bottom layer in May–June to confirm this conclusion.
This would also be related to the active feeding behaviour of
demersal juveniles that have enough swimming ability to
search for their favourable prey items. Our results suggest that
if T. japonicus successfully survive the pelagic juvenile stage,
they can reach a habitat with favourable food conditions in
the near bottom layer of the southern and central ECS where
C. sinicus densities are consistently high (Chen, 1994; Wang
et al., 2003; Xu & Chen, 2007). Thus, we conclude that the sur-
vival rate during the demersal juvenile stage is relatively stable
among years. Inter-annual variations in abundance of demersal
juveniles in May–June have been shown to correlate with the
recruitment of the T. japonicus stock in the ECS (Yoda et al.,
2017), which supports our conclusion.

Our results suggested that inter-annual fluctuations in food
availability, especially P. parvus s.l. and C. sinicus, during spring
is one of the key factors determining the growth and survival of
the pelagic juveniles, and possibly subsequent year-class
strength in the ECS. As a next step, we need to analyse the
mechanism of fluctuations in densities of P. parvus s.l. and C.
sinicus during spring in the nursery ground of T. japonicus in
detail. In addition, factors other than food availability, such as
transport processes of larvae and pelagic juveniles and abun-
dances of predators and competitors for prey may also affect
fluctuations in early survival of T. japonicus. Comprehensive
information on factors potentially affecting early survival is
needed for understanding of the mechanism of inter-annual
variations in recruitment of T. japonicus to allow forecasts of
annual recruitment levels.
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