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In this paper we analyse possible extensions of the classical Steklov eigenvalue
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1. Introduction

Of crucial importance in the study of boundary-value problems for differential oper-
ators are the Sobolev spaces and inequalities. Hence, the Sobolev inequalities and
their optimal constants is a subject of interest in the analysis of partial differential
equations (PDEs) and related topics. They have been widely studied in the past by
many authors and are still an area of intensive research – see the book [1] and the
survey [10] for an introduction to this field.

When analysing elliptic or parabolic problems with nonlinear boundary condi-
tions it turns out that among the Sobolev embeddings a fundamental role is played
by the Sobolev trace theorem. The study of the best constant in the Sobolev trace
theorem leads naturally to eigenvalue problems known in the literature as Steklov
eigenvalue problems.

Our main goal in this paper is to analyse a fractional approximation for Steklov
eigenvalues. Given a bounded domain Ω ⊂ R

n, s ∈ (0, 1) and p ∈ (1,∞), we aim
to study the non-local problem

Kn,p(1 − s)(−∆)s
pu + |u|p−2u =

λ

ε
χΩε |u|p−2u in Ω,

Ns,pu = 0 in Ωc = R
n \ Ω,

⎫⎬
⎭ (1.1)
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Torcuato Di Tella, Av. Figueroa Alcorta 7350 (C1428BCW), C. A. de Buenos Aires, Argentina.

499
c© 2017 The Royal Society of Edinburgh

https://doi.org/10.1017/S0308210517000361 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000361


500 L. M. Del Pezzo, J. D. Rossi and A. M. Salort

where s and ε are real numbers belonging to (0, 1) and Ωε := {x ∈ Ω : d(x, Ω) � ε}.
The fractional p-Laplacian is defined as

(−∆)s
pu(x) = 2 p. v.

∫
Rn

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|n+sp

dy,

where ‘p.v.’ indicates the principal value, and Ns,p is the associated non-local deriva-
tive defined in [9] by

Ns,pu(x) := 2
∫

Ω

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|n+sp

dy, x ∈ R
n \ Ω. (1.2)

The constant Kn,p is the normalization constant computed in [4]. In fact, although
the fractional seminorm satisfies [u]s,p → ∞ as s → 1−, Bourgain et al . [4] proved
that for any smooth bounded domain Ω ⊂ R

n and u ∈ W 1,p(Ω) with p ∈ (1,∞)
there exists a constant Kn,p such that

lim
s→1−

Kn,p(1 − s)
∫∫

Ω×Ω

|u(x) − u(y)|p
|x − y|n+sp

dxdy =
∫

Ω

|∇u|p dx. (1.3)

The constant can be explicitly computed and is given by

Kn,p =
pΓ ( 1

2 (n + p))
2π(n−1)/2Γ ( 1

2 (p + 1))
.

As the authors of [9] pointed out, one of the main advantages in using this form
of non-local derivative arises in the following non-local divergence theorem: for any
bounded smooth enough functions u and v it holds that∫

Ω

(−∆)s
pu(x) dx = −

∫
Ωc

Ns,pu(x) dx. (1.4)

Moreover, the integration by parts formula

Hs,p(u, v) =
∫

Ω

v(x)(−∆)s
pu(x) dx +

∫
Ωc

v(x)Ns,pu(x) dx (1.5)

is true, where

Hs,p(u, v) :=
∫∫

R2n\(Ωc)2

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|n+sp

dxdy.

Multiplying (1.1) by a bounded smooth enough function v, integrating in Ω and
using (1.5), we obtain the following weak formulation for (1.1):

Kn,p(1 − s)Hs,p(u, v) +
∫

Ω

|u|p−2uv dx =
λ

ε

∫
Ωε

|u|p−2uv dx. (1.6)

We now introduce some notation that we will use in the paper. Given a measurable
function u : R

n → R we set

‖u‖s,p := (‖u‖p
Lp(Ω) + [u]ps,p)

1/p, where [u]s,p := (Hs,p(u, u))1/p.
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The natural space associated with this norm is

Ws,p(Ω) := {u : R
n → R measurable : ‖u‖s,p < ∞}.

For a fixed value ε > 0, we say that the value λ ∈ R is an eigenvalue of problem
(1.1) if there is u ∈ Ws,p(Ω) such that (1.6) holds for any v ∈ Ws,p(Ω). Note that
if λ ∈ R is an eigenvalue of problem (1.1) and u is an associated eigenfunction, then
λ > 0 and u �≡ 0 in Ωε. Thus the first eigenvalue of (1.1) is given by

λ1,ε(s, p) = inf
u∈Ws,p(Ω),
‖u‖p

Lp(Ωε) �=0

Kn,p(1 − s)[u]ps,p + ‖u‖p
Lp(Ω)

‖u‖p
Lp(Ωε)/ε

. (1.7)

Recall that it is well known that the first eigenvalue of the Steklov problem

−∆pu + |u|p−2u = 0 in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u on ∂Ω,

⎫⎬
⎭ (1.8)

is given by

λ1(p) = inf
u∈W 1,p(Ω),

u �=0

‖∇u‖p
Lp(Ω) + ‖u‖p

Lp(Ω)

‖u‖p
Lp(∂Ω)

. (1.9)

Here the p-Laplacian is defined as ∆pu = div(|∇u|p−2∇u) for p ∈ (1,∞).
Taking ε = 1 − s, we are interested in studying the behaviour of λ1,1−s(s, p) as

s → 1−. Intuitively, a connection between the limit of such an eigenvalue and λ1(p),
the first eigenvalue of the Steklov p-Laplacian in Ω, is expected to be found. Indeed,
note that from (1.3) one has that, for a fixed u,

lim
s→1−

Kn,p(1 − s)[u]ps,pΩ + ‖u‖p
Lp(Ω) = ‖∇u‖p

Lp(Ω) + ‖u‖p
Lp(Ω);

moreover, since Ωε := {x ∈ Ω : d(x, Ω) � ε} is a strip around the boundary ∂Ω of
size |Ωε| ∼ ε × |∂Ω|, one expects that

lim
s→1−

1
1 − s

∫
Ω1−s

|u|p dx =
∫

∂Ω

|u|p dσ.

Note that the precise choice of ε = 1 − s is made in order for this limit to hold.
Our main results can be summarized as follows.

Theorem 1.1. There exists a sequence of eigenvalues of (1.1) λk,ε(s, p) such that
λk,ε(s, p) → +∞ as k → +∞. Every eigenfunction of (1.1) is in L∞(Ω).

The first eigenvalue λ1,ε(s, p) of (1.1) is isolated and simple and has eigenfunc-
tions that do not change sign.

Moreover, choosing ε = 1 − s, we have the convergence of the first eigenvalue to
the first Steklov eigenvalue as s → 1−, that is,

lim
s→1−

λ1,1−s(s, p) = λ1(p).
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Remark 1.2. It seems natural to consider

Kn,p(1 − s)(−∆)s
pu + |u|p−2u = 0 in Ω,

Ns,pu = λ|u|p−2u in Ωc.

}
(1.10)

Associated with the first eigenvalue in this problem is the following minimization
problem:

λ̃1(s, p) = inf
u∈Ws,p(Ω),
‖u‖p

Lp(Ωc) �=0

Kn,p(1 − s)[u]ps,pΩ + ‖u‖p
Lp(Ω)

‖u‖p
Lp(Ωc)

. (1.11)

However, this gives
λ̃1(s, p) = 0,

as can be easily obtained just by considering as a minimizing sequence uk(x) =
φ(x + ke1) with φ a C∞ compactly supported profile.

Remark 1.3. When a trace embedding theorem holds (that is, when ps > 1) we
can consider the best fractional Sobolev trace constant, which is given by

Λ1(s, p)

= inf
u∈W s,p(Ω),

u|∂Ω �≡0

Kn,p(1 − s)
∫∫

Ω×Ω
(|u(x) − u(y)|p/|x − y|n+sp) dxdy + ‖u‖p

Lp(Ω)∫
∂Ω

|u|p dσ
.

(1.12)

Thanks to the compactness of the embedding W s,p(Ω) ↪→ Lp(∂Ω), this infimum is
attained and the minimizers are solutions to

Kn,p(1 − s)
∫∫

Ω×Ω

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|n+sp

dxdy

+
∫

Ω

|u|p−2uv dx

= Λ1(s, p)
∫

∂Ω

|u|p−2uv dx

for every v ∈ W s,p(Ω). Note that with this formulation it is not clear how to identify
the ‘boundary condition’ satisfied by a minimizer u; the equation inside the domain
reads as

Kn,p(1 − s)
∫

Ω

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|n+sp

dy + |u|p−2u(x) = 0

for x ∈ Ω. This is why we choose to analyse (1.7) (which has (1.1) as an associated
PDE problem) instead of (1.12).

With the same ideas used in the study of the limit as s → 1− in theorem 1.1 (see
§ 4), one can show that

lim
s→1−

Λ1(s, p) = λ1(p).

We leave the details to the reader.
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The paper is organized as follows: in § 2 we gather some preliminary results and,
in particular, we show a minimum principle for our problem; in § 3 we deal with
the eigenvalue problem (1.1) and prove the first part of theorem 1.1; finally, in § 4
we analyse the limit as s → 1−.

2. Preliminaries

We denote the usual fractional Sobolev spaces by W s,p(Ω) for p ∈ [1,∞) and
s ∈ (0, 1) endowed with the norm

‖u‖p
W s,p(Ω) := ‖u‖p

Lp(Ω) +
∫∫

Ω2

|u(x) − u(y)|p
|x − y|n+sp

dxdy.

In the following, |u|W s,p(Ω) denotes the usual Gagliardo seminorm defined as

|u|W s,p(Ω) :=
( ∫∫

Ω2

|u(x) − u(y)|p
|x − y|n+sp

dxdy

)1/p

for 1 � p < ∞. It is easy to check that Ws,p(Ω) is a subset of W s,p(Ω) for all
s ∈ (0, 1).

It will be quite useful here to establish the fractional compact embeddings. For
the proof see [7].

Theorem 2.1. Let Ω ⊂ R
n be a bounded open set with Lipschitz boundary and let

s ∈ (0, 1) and p ∈ (1,∞). Then we have the following compact embeddings:

W s,p(Ω) ↪→ Lq(Ω) for all q ∈ [1, p�
s) if sp � n,

W s,p(Ω) ↪→ C0,λ
b (Ω) for all λ < s − n/p if sp > n.

Here p�
s is the fractional critical Sobolev exponent, that is,

p�
s :=

⎧⎨
⎩

np

n − sp
if sp < n,

∞ if sp � n.

2.1. A minimum principle

Here, we follow the ideas in [5].
Given s, ε ∈ (0, 1) and p ∈ (1,∞), we say that u ∈ Ws,p(Ω) is a weak supersolu-

tion of
Kn,p(1 − s)(−∆)s

pu + |u|p−2u = 0 in Ω,

Ns,pu = 0 in Ωc,

}
(2.1)

if and only if

Kn,p(1 − s)Hs,p(u, v) +
∫

Ω

|u|p−2uv dx � 0 (2.2)

for every v ∈ Ws,p(Ω), v � 0.
First we need a subtle adaptation of [8, lemma 1.3].
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Lemma 2.2. Let s, ε ∈ (0, 1) and p ∈ (1,∞). Suppose that u is a weak supersolution
of (2.1), and u � 0 in R

n. If BR(x0) ⊂ R
n \ ∂Ω, then, for any Br = Br(x0) ⊂

BR/2(x0) and 0 < δ < 1,∫∫
Br×A

1
|x − y|n+sp

∣∣∣∣log
(

u(x) + δ

u(y) + δ

)∣∣∣∣
p

dxdy � Crn−sp(1 + rsp),

where

A =

{
Br if BR ⊂ Ω,

Ω if BR ⊂ R
n \ Ω̄,

and C is a constant independent of δ.

Proof. Let 0 < r < R/2, 0 < δ and φ ∈ C∞
0 (B3r/2) be such that

0 � φ � 1, φ ≡ 1 in Br and |Dφ| < Cr−1 in B3r/2 ⊂ BR.

Taking v = (u + δ)1−pφp as a test function in (2.2), we have that

0 � Kn,p(1 − s)Hs,p(u, (u + δ)1−pφp) +
∫

B3r/2∩Ω

up−1

(u + δ)p−1 φp dx. (2.3)

On the other hand, in the proof of lemma 1.3 in [8], it was shown that

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|n+sp

(v(x) − v(y))

� − 1
C

1
|x − y|n+sp

∣∣∣∣log
(

u(x) + δ

u(y) + δ

)∣∣∣∣
p

φ(y)p + C
|φ(x) − φ(y)|p
|x − y|n+sp

(2.4)

for a constant C ≡ C(p). Moreover, in the BR ⊂ Ω case, it was shown that

Hs,p(u, (u + δ)1−pφp) � Crn−sp −
∫∫

Br×Br

1
|x − y|n+sp

∣∣∣∣log
(

u(x) + δ

u(y) + δ

)∣∣∣∣
p

dxdy,

where C is independent of δ. Then, by (2.3) and using that 0 � up−1(u+δ)1−pφp � 1
in B3r/2 ∩ Ω = B3r/2, the lemma holds.

We proceed now to consider the case in which BR ⊂ R
n \ Ω̄. Since B3r/2 ∩Ω = ∅,

by (2.3) and (2.4),∫∫
Br×Ω

1
|x − y|n+sp

∣∣∣∣log
(

u(x) + δ

u(y) + δ

)∣∣∣∣
p

dxdy � C

∫∫
B3r/2×Ω

|φ(x)|p
|x − y|n+sp

dxdy

� C
rn

dist(BR, Ω)sp

for C = C(n, s, p)

Proceeding as in the proof of theorem A.1 in [5] and using the previous lemma,
we get the following minimum principle.

Theorem 2.3 (minimum principle). Let s, ε ∈ (0, 1) and p ∈ (1,∞). If u is a weak
supersolution of (2.1) such that u � 0 in R

n and u �≡ 0 in all connected components
of R

n \ ∂Ω, then u > 0 almost everywhere (a.e.) in Ω.
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Proof. We argue by contradiction and we assume that Z = {x : u(x) = 0} has
positive measure. Since u �≡ 0 in all connected components of R

n \ Ω, there are a
ball BR(x0) ⊂ R

n \ ∂Ω and r ∈ (0, 2R) such that |Br(x0) ∩ Z| > 0 and u �≡ 0 in
Br(x0).

For any δ > 0 and x ∈ R
n, we define

Fδ(x) := log
(

1 +
u(x)

δ

)
.

Observe that if y ∈ Br(x0) ∩ Z, then

|Fδ(x)|p = |Fδ(x) − Fδ(y)|p � (2r)n+sp

|x − y|n+sp

∣∣∣∣log
(

u(x) + δ

u(y) + δ

)∣∣∣∣
p

∀x ∈ R
n.

Then

|Fδ(x)|p � (2r)n+sp

|Z ∩ Br(x0)|

∫
Br(x0)

1
|x − y|n+sp

∣∣∣∣log
(

u(x) + δ

u(y) + δ

)∣∣∣∣
p

dy ∀x ∈ R
n.

Therefore,∫
A

|Fδ(x)|p dx � (2r)n+sp

|Z ∩ Br(x0)|

∫∫
Br(x0)×A

1
|x − y|n+sp

∣∣∣∣log
(

u(x) + δ

u(y) + δ

)∣∣∣∣
p

dxdy,

where

A =

{
Br if BR ⊂ Ω,

Ω if BR ⊂ R
n \ Ω̄.

By lemma 2.2, there is a constant C independent of δ such that∫
A

|Fδ(x)|p dx � C
r2n(1 + rsp)
|Z ∩ Br(x0)|

.

Taking δ → 0 in the above inequality, we obtain

u ≡ 0 in A,

which is a contradiction since u �≡ 0 in all connected components of R
n \∂Ω. Thus,

u > 0 in R
n.

3. The eigenvalue problem

In this section we prove that λ1,ε(s, p) is the first non-zero eigenvalue of (1.1), that
there is a sequence of eigenvalues, and that the eigenfunctions are bounded. Addi-
tionally, we show that λ1,ε(s, p) is simple and isolated using variational methods
for non-local operators of elliptic type. For more details about the construction of
the eigenvalues in non-local settings, see, for instance, [16, appendix A] and [15].

Theorem 3.1. The first non-zero eigenvalue of (1.1) is λ1,ε(s, p).

Proof. Take a minimizing sequence {uk}k∈N ⊂ Ws,p(Ω) of λ1,ε(s, p) and normalize
it according to ‖uk‖Lp(Ωε) = ε. Then there is a constant C such that

‖uk‖s,p � C.
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Thus, by theorem 2.1, up to a subsequence,

uk ⇀ u weakly in Ws,p(Ω),
uk → u strongly in Lp(Ω).

}
(3.1)

In particular, uk → u strongly in Lp(Ωε) and therefore ‖u‖Lp(Ωε) = ε.
Since (3.1) holds,

Kn,p(1 − s)[u]ps,p + ‖u‖p
Lp(Ω) � lim inf

k→∞
Kn,p(1 − s)[uk]ps,p + ‖uk‖2

Lp(Ω)

= lim
k→∞

Kn,p(1 − s)[uk]ps,p + ‖uk‖p
Lp(Ω)

= λ1,ε(s, p).

Then, by (1.7), we have that

Kn,p(1 − s)[u]ps,p + ‖u‖p
Lp(Ω) = λ1,ε(s, p).

The fact that a minimizer verifies (1.6) is standard but we include a short proof
here for the sake of completeness. Let u be a non-trivial minimizer of (1.7). Then,
using Lagrange’s multipliers, we get the existence of a value λ ∈ R such that

Kn,p(1 − s)Hs,p(u, v) +
∫

Ω

|up|p−2uv dx =
λ

ε

∫
Ωε

|u|p−2uv dx (3.2)

for all v ∈ Ws,p(Ω) with ‖v‖Lp(Ωε) = ε. Therefore, (3.2) also holds for all v ∈
Ws,p(Ω). Finally, taking v = u we get that λ = λ1,ε(s, p).

Using a topological tool (the genus), we can construct an unbounded sequence
of eigenvalues.

Theorem 3.2. There is a sequence of eigenvalues λk,ε(s, p) such that λk,ε(s, p) →
∞ as k → ∞.

Proof. We follow ideas from [13], and hence we omit the details. Let us consider

Mα = {u ∈ Ws,p(Ω) : ‖u‖s,p = pα}

and
ϕ(u) =

1
p

∫
Ωε

|u(x)|p dx.

We are looking for critical points of ϕ restricted to the manifold Mα using a minimax
technique. We consider the class

Σ = {A ⊂ Ws,p(Ω) \ {0} : A is closed, A = −A}.

Over this class we define the genus, γ : Σ → N ∪ {∞}, as

γ(A) = min{k ∈ N : there exists φ ∈ C(A, Rk − {0}), φ(x) = −φ(−x)}.

Now, we let Ck = {C ⊂ Mα : C is compact, symmetric and γ(C) � k} and let

βk = sup
C∈Ck

min
u∈C

ϕ(u). (3.3)
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Then βk > 0 and there exists uk ∈ Mα such that ϕ(uk) = βk and uk is a weak
eigenfunction with λk = α/βk.

Our next aim is to prove that the eigenfunctions are bounded. We follow ideas
from [12].

Lemma 3.3. Let s, ε ∈ (0, 1), let p ∈ (1,∞) and let λ be an eigenvalue of (1.1). If
u is an eigenfunction associated with λ, then u ∈ L∞(Ω).

Proof. If ps > n, then the assertion holds by theorem 2.1. Then let us suppose that
sp � n. We will show that if ‖u+‖Lp(Ω) � δ, then u+ is bounded, where δ > 0 must
be determined.

For k ∈ N0 we define the function uk by

uk := (u(x) − 1 + 2−k)+.

Observe that u0 = u+ and for any k ∈ N0 we have that uk ∈ Ws,p(Ω),

uk+1 � uk a.e. R
n,

u < (2k+1 − 1)uk in {uk+1 > 0},

{uk+1 > 0} ⊂ {uk > 2−(k+1)}.

⎫⎪⎬
⎪⎭ (3.4)

Now, since

|v+(x) − v+(y)|p � |v(x) − v(y)|p−2(v(x) − v(y))(v+(x) − v+(y)) ∀x, y ∈ R
n,

for any function v : R
n → R, by taking v = u − 1 + 2−k we have that

Kn,p(1 − s)[uk+1]ps,p + ‖uk+1‖p
Lp(Ω)

� Kn,p(1 − s)Hs,p(u, uk+1) +
∫

Ω

|u|p−2uuk+1 dx

=
λ

ε

∫
Ωε

|u|p−2uuk+1 dx

for all k ∈ N0. Then, by (3.4), we have that

Kn,p(1 − s)[uk+1]ps,p + ‖uk+1‖p
Lp(Ω) � λ

ε

∫
Ωε

up−1uk+1 dx

� λ

ε
(2k+1 − 1)p−1‖uk‖p

Lp(Ω) (3.5)

for all k ∈ N0.
On the other hand, in the sp < n case, using Hölder’s inequality, fractional

Sobolev embeddings and Chebyshev’s inequality, for any k ∈ N0 we have that

‖uk+1‖p
Lp(Ω) � ‖uk+1‖p

Lp∗
s (Ω)

|{uk+1 > 0}|sp/n

� C‖uk+1‖p
s,p|{uk+1 > 0}|sp/n

� C‖uk+1‖p
s,p|{uk > 2−(k+1)}|sp/n

� C‖uk+1‖p
s,p(2

(k+1)p‖uk‖p
Lp(Ω))

sp/n. (3.6)

https://doi.org/10.1017/S0308210517000361 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000361


508 L. M. Del Pezzo, J. D. Rossi and A. M. Salort

Similarly, in the sp = n case, taking r > p and proceeding as in the previous case
in which sp < n (with r in place of p∗

s), we have that (3.6) holds with 1 − p/r > 0
in place of sp/n.

Then, by (3.5) and (3.6), there exist a constant C > 1 and α > 0 both indepen-
dent of k such that

‖uk+1‖p
Lp(Ω) � Ck(‖uk‖p

Lp(Ω))
1+α.

Therefore, if ‖u+‖p
Lp(Ω) = ‖u0‖p

Lp(Ω) � C−1/α2
= δp, then

lim
k→+∞

‖uk‖Lp(Ω) = 0.

On the other hand, as uk → (u− 1)+ a.e in R
n, we obtain that (u− 1)+ ≡ 0 in R

n.
Therefore, u+ is bounded.

Finally, taking −u in place of u we have that u− is bounded if ‖u−‖Lp(Ω) < δ.
Therefore, u is bounded.

Now, using theorem 2.3, we show that a non-negative eigenfunction is positive.

Lemma 3.4. Let s, ε ∈ (0, 1), let p ∈ (1,∞) and let λ be an eigenvalue of (1.1). If
u is a non-negative eigenfunction associated with λ, then u > 0 in R

n.

Proof. By theorem 2.3, we only need to show that u �≡ 0 in all connected compo-
nents of R

n \ ∂Ω. Suppose, by contradiction, that there is a connected component
Z of R

n \ ∂Ω such that u ≡ 0 in Z. Taking φ ∈ C∞
0 (Z) as a test function in (1.6),

we get
Hs,p(u, φ) = 0.

Therefore, ∫
Ω

(u(x))p−1
∫

Z

φ(y)
|x − y|n+sp

dy dx = 0 ∀φ ∈ C∞
0 (Z).

Then u = 0 in Ω. Thus, since u s a non-negative eigenfunction associated with λ,
we obtain that

[u]s,p = Hs,p(u, u) =
1

Kn,p(1 − s)

(
λ

ε

∫
Ωε

|u|p dx −
∫

Ω

|u|p dx

)
= 0.

Hence, u ≡ 0 in R
n, which is a contradiction since u �≡ 0 in R

n.

Note that if u is an eigenfunction associated with λ1,ε(s, p), then

u+(x) = max{u(x), 0} �≡ 0 or u−(x) = max{−u(x), 0} �≡ 0

in Ωε. If u+(x) �≡ 0 in Ωε, then

Kn,p(1 − s)[u+]ps,p + ‖u+‖p
Lp(Ω) � Kn,p(1 − s)Hs,p(u, u+) +

∫
Ω

|u|p−2uu+ dx

=
λ1,ε(s, p)

ε

∫
Ωε

|u|p−2uu+ dx

=
λ1,ε(s, p)

ε
‖u+‖p

Lp(Ωε),
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that is, u+ is a minimizer of (1.7). Therefore, u+ is a non-negative eigenfunction
associated with λ1,ε(s, p). Then, by lemma 3.4, u+ > 0 in Ω.

In the same manner we can see that if u−(x) �≡ 0 in Ωε, then u− > 0 in Ω. Thus
the next theorem is proved.

Theorem 3.5. Any eigenfunction associated with λ1,ε(s, p) has constant sign.

A key ingredient in the following sections is the simplicity of the first eigenvalue
λ1,ε(s, p). In order to prove this result we need the following Picone-type identity
(see [2, lemma 6.2]).

Lemma 3.6. Let p ∈ (1,∞). For u, v : R
n → R such that u � 0 and v > 0, we have

L(u, v) � 0 in R
n × R

n,

where

L(u, v)(x, y) = |u(x)−u(y)|p −|v(x)− v(y)|p−2(v(x)− v(y))
(

up(x)
vp−1(x)

− up(y)
vp−1(y)

)
.

The equality holds if and only if u = kv a.e. in R
n for some constant k.

Theorem 3.7. Let Ω ⊂ R
n be a bounded open connected set with Lipschitz bound-

ary. Assume that u is a positive eigenfunction corresponding to λ1,ε(s, p). Then if
λ > 0 is such that there exists a non-negative eigenfunction v of (1.1) with eigen-
value λ, then λ = λ1,ε(s, p) and there exists c ∈ R such that v = cu a.e. in R

n.

Proof. Since λ1,ε(s, p) is the first eigenvalue, we have that λ1,ε(s, p) � λ. On the
other hand, by lemma 3.4, v > 0 in R

n.
For k ∈ N take vk := v+1/k. We begin by proving that wk := up/vp−1

k ∈ Ws,p(Ω).
First observe that wk ∈ Lp(Ω), due to u ∈ L∞(Ω) (see lemma 3.3). Now, for all
(x, y) ∈ R

n × R
n we have

|wk(x) − wk(y)| =
∣∣∣∣up(x) − up(y)

vp−1
k (x)

− up(y)(vp−1
k (x) − vp−1

k (y))
vp−1

k (x)vp−1
k (y)

∣∣∣∣
� kp−1|up(x) − up(y)| + ‖u‖p

∞
|vp−1

k (x) − vp−1
k (y)|

vp−1
k (x)vp−1

k (y)

� pkp−1(up−1(x) + up−1(y))|u(x) − u(y)|

+ (p − 1)‖u‖p
∞

vp−2
k (x) + vp−2

k (y)
vp−1

k (x)vp−1
k (y)

|vk(x) − vk(y)|

� 2pkp−1‖u‖p
∞|u(x) − u(y)|

+ (p − 1)‖u‖p
∞

(
1

vk(x)vp−1
k (y)

+
1

vp−1
k (x)vk(y)

)
|v(x) − v(y)|

� C(k, ‖u‖∞, p)(|u(x) − u(y)| + |v(x) − v(y)|).

As u, v ∈ Ws,p(Ω), we deduce that wk ∈ W (Ω) for all k ∈ N.
Recall that u, v ∈ Ws,p(Ω) are two eigenfunctions of problem (1.1) with eigen-

values λ1(s, p) and λ, respectively. Then, by using the previous lemma, we deduce
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that

0 � Kn,p(1 − s)
∫∫

R2n\(Ωc)2

L(u, vk)(x, y)
|x − y|n+sp

dxdy

� Kn,p(1 − s)
∫∫

R2n\(Ωc)2

|u(x) − u(y)|p
|x − y|n+sp

dxdy

− Kn,p(1 − s)
∫∫

R2n\(Ωc)2

|v(x) − v(y)|p−2(v(x) − v(y))
|x − y|n+sp

×
(

up(x)
vp−1

k (x)
− up(y)

vp−1
k (y)

)
dxdy

� Kn,p(1 − s)
∫∫

R2n\(Ωc)2

|u(x) − u(y)|p
|x − y|n+sp

dxdy − λ

ε

∫
Ωε

vp−1 up

vp−1
k

dx

+
∫

Ω

vp−1 up

vp−1
k

dx

� λ1,ε(s, p)
ε

∫
Ωε

up dx −
∫

Ω

|u|p dx − λ

ε

∫
Ωε

vp−1 up

vp−1
k

dx +
∫

Ω

vp−1 up

vp−1
k

dx.

Taking k → ∞ and using Fatou’s lemma and the dominated convergence theorem,
we infer that ∫∫

R2n\(Ωc)2

L(u, v)(x, y)
|x − y|n+sp

dxdy = 0

(recall that λ1,ε(s, p) � λ). Therefore, by the previous lemma, L(u, v)(x, y) = 0 a.e.
in R

2n \ (Ωc)2 and u = cv for some constant c > 0.

We will need the following lemma.

Lemma 3.8. Let ε > 0. If u is an eigenfunction associated with λ > λ1,ε(s, p), there
exist C > 0 and α > 0 independent of λ, u and ε such that(

Cε

λ

)α

� |Ω±|.

Here Ω+ = {x ∈ Ω : u(x) > 0} and Ω− = {x ∈ Ω : u(x) < 0}.

Proof. Let u+(x) = max{0, u(x)}. Since u is an eigenfunction associated with λ >
λ1,ε(s, p), we have that u changes sign, and then u+ �≡ 0. In addition,

min{Kn,p(1 − s), 1}‖u+‖p
s,p � Kn,p(1 − s)[u+]ps,p + ‖u+‖p

Lp(Ω)

� Kn,p(1 − s)Hs,p(u, u+) +
∫

Ω

|u|p−2uu+ dx

=
λ

ε

∫
Ωε

|u|p−2uu+ dx

=
λ

ε
‖u+‖p

Lp(Ωε). (3.7)
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On the other hand, by the Sobolev embedding theorem, there exists a constant
C independent of λ, u and ε such that

‖u+‖Lq(Ω) � C‖u+‖s,p,

where 1 < q < p�
s. Then, by (3.7) and Hölder’s inequality, there exists a constant

C independent of λ, u and ε such that

‖u+‖p
Lq(Ω) � C

λ

ε
‖u+‖p

Lq(Ω)|Ω
+|(q−p)/q ∀p < q < p�

s.

Fix any p < q < p�
s and take α = q/(q − p). Then(

ε

Cλ

)α

� |Ω+|.

In order to prove the second inequality, it will suffice to proceed as above, using
the function u−(x) = max{0,−u(x)} instead of u+.

Theorem 3.9. For each fixed value ε > 0, λ1,ε(s, p) is isolated.

Proof. From its definition, we have that λ1,ε(s, p) is left-isolated.
To prove that λ1,ε(s, p) is right-isolated, we argue by contradiction. We assume

that there exists a sequence of eigenvalues {λk}k∈N such that λk > λ1,ε(s, p) and
λk ↘ λ1,ε(s, p) as k → +∞. Let uk be an eigenfunction associated with λk; we can
assume that

1
ε

∫
Ωε

|uk(x)|p dx = 1.

Then {uk}k∈N is bounded in Ws,p(Ω), and therefore we can extract a subsequence
(that we still denote by {uk}k∈N) such that

uk ⇀ u weakly in Ws,p(Ω),
uk → u strongly in Lp(Ω).

Then
1
ε

∫
Ωε

|u(x)|p dx = 1

and

Kn,p(1 − s)[u]ps,p + ‖u‖p
Lp(Ω) � Kn,p(1 − s) lim inf

k→+∞
[uk]ps,p + ‖u‖p

Lp(Ω)

= lim
k→+∞

λk

= λ1,ε(s, p).

Hence, u is an eigenfunction associated with λ1,ε(s, p). By theorem 3.5, we can
assume that u > 0.

On the other hand, by the Egorov’s theorem, for any δ > 0 there exists a subset
Aδ of Ω such that |Aδ| < δ and uk → u > 0 uniformly in Ω \ Aδ. This contradicts
the fact that, by lemma 3.8,(

Cε

λk

)α

� |{x ∈ Ω : uk(x) < 0}|.

This proves the theorem.
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4. The limit of λ1,1−s(s, p) as s → 1−

Throughout this section, we assume that Ω is a smooth bounded domain and take
ε = 1 − s.

Here we analyse the behaviour of λ1,1−s(s, p) as s → 1−. For simplicity, we omit
the subscript 1 − s and we just write λ1(s, p).

First we show that
lim sup
s→1−

λ1(s, p) � λ1(p).

For this purpose, we state some convergence results. We start with the following
lemma.

Lemma 4.1. Let Ω be a domain in R
n with Lipschitz boundary and let p ∈ (1,∞).

If u ∈ W 1,p(Ω), then

lim
ε→0+

1
ε

∫
Ωε

|u|p dx =
∫

∂Ω

|u|p dS.

In order to deal with the integrals on Ωε we will state the following lemma,
which is an immediate consequence of the coarea formula. See [11, section 3.4.4] for
details.

Lemma 4.2. Given g : R
n → R an integrable function, and f : R

n → R a Lipschitz
function such that ess inf |Df | > 0, it follows that∫

{0<f<t}
g dx =

∫ t

0

( ∫
{f=r}

g

|Df | dS

)
dr. (4.1)

Now we are ready to proceed with the proof of lemma 4.1.

Proof of lemma 4.1. We consider the (n−1)-dimensional hyper-surface in R
n given

by ωr = {x ∈ R
n : d(x, Ωc) = r}, where d(x, Ω) = infy∈Ω |x − y|. Observe that

Ωε = {x ∈ R
n : x ∈ ωr for r ∈ [0, ε]} and ω0 = ∂Ω. By applying lemma 4.2 with

g = |u|p and f(x) = d(x, Ωc), we get∫
Ωε

|u|p dx =
∫ ε

0

( ∫
ωr

|u|p dS

)
dr

since |Df | = 1. The mean-value theorem for integrals asserts that there exists
r0 ∈ [0, ε] such that ∫ ε

0

( ∫
ωr

|u|p dS

)
dr = ε

∫
ωr0

|u|p dS.

Since r0 tends to 0 as ε → 0+, we get that ωr0 tends to ∂Ω as ε → 0+; the result
follows by using that the trace operator for a fixed function in W 1,p(Ω) depends
continuously on the hyper-surface (see [3]), and hence∫

ωr0

|u|p dS →
∫

∂Ω

|u|p dS

as r0 → 0+.

https://doi.org/10.1017/S0308210517000361 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000361


Fractional eigenvalue problems 513

If Ω is a smooth bounded domain in R
n, then, by [14, theorem 7.25], for any

open ball BR ⊃⊃ Ω there is a bounded linear extension operator E from W 1,p(Ω)
into W 1,p

0 (BR) such that Eu = u in Ω. Our next goal is to prove that

Kn,p(1 − s)[Eu]s,p → ‖∇u‖p
Lp(Ω) (4.2)

as s → 1−. To this end, we need the following result. For the proof we refer the
reader to [4, corollary 2].

Theorem 4.3. Let Ω be a smooth bounded domain and let p ∈ (1,∞). Assume that
u ∈ Lp(Ω). Then

lim
s→1−

Kn,p(1 − s)|u|pW s,p(Ω) = |u|pW 1,p(Ω)

with

|u|pW 1,p(Ω) =

{
‖∇u‖p

Lp(Ω) if u ∈ W 1,p(Ω),
∞ otherwise.

We now show (4.2), which will be key in the proof of the next results.

Lemma 4.4. If u ∈ W 1,p(Ω), then

lim
s→1−

Kn,p(1 − s)[Eu]ps,p = ‖∇u‖p
Lp(Ω).

Proof. Observe that

[Eu]ps,p = |u|pW s,p(Ω) + 2
∫∫

Ω×(Ωc∩BR)

|Eu(x) − Eu(y)|p
|x − y|n+sp

dy dx

+ 2
∫∫

Ω×Bc
R

|Eu(x) − Eu(y)|p
|x − y|n+sp

dy dx.

Then, by theorem 4.3, we need to show that

(1 − s)
∫∫

Ω×(Ωc∩BR)

|Eu(x) − Eu(y)|p
|x − y|n+sp

dy dx → 0,

(1 − s)
∫∫

Ω×Bc
R

|Eu(x) − Eu(y)|p
|x − y|n+sp

dy dx → 0

as s → 1−.
By theorem 4.3, we have that

Kn,p(1 − s)|Eu|pW s,p(BR) → ‖∇Eu‖p
Lp(BR),

Kn,p(1 − s)|Eu|pW s,p(Ω) → ‖∇Eu‖p
Lp(Ω),

Kn,p(1 − s)|Eu|pW s,p(Ω∩Bc
R) → ‖∇Eu‖p

Lp(Ωc∩BR)
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as s → 1−. Therefore,

(1 − s)
∫∫

Ω×(Ωc∩BR)

|Eu(x) − Eu(y)|p
|x − y|n+sp

dy dx

= 1
2 (1 − s)(|Eu|pW s,p(BR) − |Eu|pW s,p(Ω) − |Eu|pW s,p(Ω∩Bc

R))

→ 0 as s → 1−.

On the other hand,

(1 − s)
∫∫

Ω×Bc
R

|Eu(x) − Eu(y)|p
|x − y|n+sp

dy dx � Cn
1 − s

sp

1
d(Ω, Bc

R)sp
→ 0

as s → 1−.

From lemmas 4.1 and 4.4, we get the following corollary.

Corollary 4.5. Let Ω be a smooth bounded domain and let p ∈ (1,∞). For a
fixed u ∈ W 1,p(Ω) \ W 1,p

0 (Ω), it holds that

lim
s→1−

Kn,p(1 − s)[Eu]ps,p + ‖Eu‖p
Lp(Ω)

‖Eu‖p
Lp(Ω1−s)/(1 − s)

=
‖∇u‖p

Lp(Ω) + ‖u‖p
Lp(Ω)

‖u‖p
Lp(∂Ω)

.

From this result the following corollary is straightforward.

Corollary 4.6. Let Ω be a smooth bounded domain and let p ∈ (1,∞). Then

lim sup
s→1−

λ1(s, p) � λ1(p).

With this result in mind, to prove the last part of theorem 1.1 we need to show
that

λ1(p) � lim inf
s→1−

λ1(s, p). (4.3)

Before proving this, we need to state some auxiliary results.
The next theorem was established in [4, corollary 7].

Theorem 4.7. Let Ω be a smooth bounded domain, let p ∈ (1,∞) and let us ∈
W s,p(Ω). Assume that

‖us‖Lp(Ω) � C and (1 − s)|us|W s,p(Ω) < C ∀s > 0.

Then, up to a subsequence, {us} converges in Lp(Ω) (and, in fact, in W s0,p(Ω) for
all s0 ∈ (0, 1)) to some u ∈ W 1,p(Ω).

The proof of the following proposition can be found in [6, proposition 3.10].

Proposition 4.8. Let Ω be a smooth bounded domain and let p ∈ (1,∞). Given
{sk} ⊂ (0, 1) an increasing sequence converging to 1 and {uk}k∈N ⊂ Lp(Ω) con-
verging to u in Lp(Ω), we have that

‖∇u‖p
Lp(Ω) � lim

k→∞
Kn,p(1 − sk)|usk

|pW sk,p(Ω)
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Lemma 4.9. Let Ω be a smooth bounded domain, let p ∈ (1,∞) and let {us}s∈(0,1)
be such that us → u strongly in W t,p(Ω) for some t ∈ (1/p, 1). Then

1
1 − s

∫
Ω1−s

|us|p dx →
∫

∂Ω

|u|p dS

as s → 1−.

Proof. We start by observing that, since ∂Ω ∈ C2 and t > 1/p, the trace constant
in the embedding W t,p(Ω) ↪→ Lp(∂Ωε) for all ε ∈ (0, ε0) is bounded uniformly
(independently of ε). Then there is a constant C independent of s such that

‖us − u‖Lp(∂Ωε) � C‖us − u‖W t,p(Ω).

Therefore,

1
1 − s

∫
Ω1−s

|us(x)|p dx =
1

1 − s

∫ 1−s

0

( ∫
∂Ωr

|us|p dS

)
dr →

∫
∂Ω

|u|p dS

as s → 1−.

Now we are ready to prove (4.3).

Corollary 4.10. Let Ω be a smooth bounded domain and let p ∈ (1,∞). Then

λ1(p) � lim inf
s→1−

λ1(s, p).

Proof. Let {sk}k∈N be a sequence in (0, 1) such that sk → 1− as k → ∞ and

lim
k→∞

λ1(sk, p) = lim inf
s→1−

λ1(s, p).

For k ∈ N, let uk be the eigenfunctions of problem (1.1) with s = sk and λ =
λ1(sk, p) normalized such that

1
1 − sk

∫
Ω1−sk

|uk|p dx = 1.

Moreover, by corollary 4.6, there is a positive constant C such that

‖uk‖Lp(Ω) � C and (1 − sk)|uk|W s,p(Ω) < C ∀k ∈ N.

Then, by theorem 4.7, up to a subsequence, {uk} converges in Lp(Ω) (and, in fact,
in W s0,p(Ω) for all s0 ∈ (0, 1)) to some u ∈ W 1,p(Ω). Thus, by proposition 4.8 and
lemma 4.9, we get

‖∇u‖p
Lp(Ω) � lim

k→∞
Kn,p(1 − sk)|usk

|pW sk,p(Ω)

and

lim
k→∞

1
1 − sk

∫
Ω1−sk

|uk(x)|p dx =
∫

∂Ω

|u|p dS.
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Then ‖u‖p
Lp(∂Ω) = 1 and

‖∇u‖p
Lp(Ω) + ‖u‖p

Lp(Ω) � lim
k→∞

Kn,p(1 − sk)|usk
|pW sk,p(Ω) + ‖uk‖p

Lp(Ω)

� lim
k→∞

λ1(sk, p) = lim inf
s→1−

λ1(s, p).

Therefore,
λ1(p) � lim inf

s→1−
λ1(s, p).
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