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Let H be a graph, and let CH (G) be the number of (subgraph isomorphic) copies of H

contained in a graph G. We investigate the fundamental problem of estimating CH (G).

Previous results cover only a few specific instances of this general problem, for example

the case when H has degree at most one (the monomer–dimer problem). In this paper we

present the first general subcase of the subgraph isomorphism counting problem, which

is almost always efficiently approximable. The results rely on a new graph decomposition

technique. Informally, the decomposition is a labelling of the vertices such that every edge

is between vertices with different labels, and for every vertex all neighbours with a higher

label have identical labels. The labelling implicitly generates a sequence of bipartite graphs,

which permits us to break the problem of counting embeddings of large subgraphs into

that of counting embeddings of small subgraphs. Using this method, we present a simple

randomized algorithm for the counting problem. For all decomposable graphs H and all

graphs G, the algorithm is an unbiased estimator. Furthermore, for all graphs H having a

decomposition where each of the bipartite graphs generated is small and almost all graphs

G, the algorithm is a fully polynomial randomized approximation scheme.

We show that the graph classes of H for which we obtain a fully polynomial randomized

approximation scheme for almost all G includes graphs of degree at most two, bounded-

degree forests, bounded-width grid graphs, subdivision of bounded-degree graphs, and

major subclasses of outerplanar graphs, series-parallel graphs and planar graphs of large

girth, whereas unbounded-width grid graphs are excluded. Moreover, our general technique

can easily be applied to proving many more similar results.
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1. Introduction

Given a template graph H and a base graph G, we call an injection ϕ between vertices

of H and vertices of G an embedding of H into G if ϕ maps every edge of H into

an edge of G. In other words, ϕ is an isomorphism between H and a subgraph (not

necessarily induced) of G. Deciding whether such an injection exists is known as the

subgraph isomorphism problem. Subgraph isomorphism is an important and general

form of pattern matching. It generalizes many interesting graph problems, including

Clique, Hamiltonian Path, Maximum Matching, and Shortest Path. This problem arises

in application areas ranging from text processing to physics and chemistry [8, 3, 35, 29].

The general subgraph isomorphism problem is NP-complete, but there are various special

cases which are known to be fixed-parameter tractable in the size of H [2].

In this work, we consider the related fundamental problem of counting the number

of copies of a template graph in another graph. By a copy of H in G we mean

any, not necessarily induced subgraph of G, isomorphic to H . In general the prob-

lem is #P-complete (introduced by Valiant [37]). The class #P is defined as {f : ∃
a non-deterministic polynomial-time Turing machine M such that on input x, the com-

putation tree of M has exactly f(x) accepting leaves}. Problems complete for this class

are presumably very difficult, especially since Toda’s result [36] implies that a call to a

#P-oracle suffices to solve any problem in the polynomial hierarchy in polynomial time.

Fixed-parameter tractability of this counting problem has been well studied with

negative results for exact counting [11] and positive results for some special cases of

approximate counting [4]. In this paper, we are interested in the more general problem

of counting copies of large subgraphs. Exact counting is possible for very few classes of

non-trivial large subgraphs. A key example is perfect matchings in a planar graph [27]. A

slightly different problem that is also solvable in polynomial time is counting the number

of spanning trees in a graph. A few more problems, such as counting perfect matchings

in a bipartite graph (or (0–1) permanent) [25], counting all matchings in a graph [24],

counting labelled subgraphs of a given degree sequence in a bipartite graph [5], counting

combinatorial quantities encoded by the Tutte polynomial in a dense graph [1], and

counting Hamilton cycles in dense graphs [9], can be done approximately. But problems

such as counting perfect matchings in general graphs are still open.

Since most of the other interesting counting problems are hopelessly hard to solve (in

many cases even approximately) [22], we investigate whether there exists a fully polynomial

randomized approximation scheme (henceforth, abbreviated as FPRAS) that works well for

almost all graphs. The statement can be made precise as follows. Let Gn be a graph chosen

uniformly at random from the set of all n-vertex graphs. We say that a predicate P holds

for almost all graphs if Pr[P(Gn) = true] → 1 as n → ∞ (probability over the choice of a

random graph). By FPRAS we mean a randomized algorithm that produces a result that

is correct to within a relative error of 1 ± ε with high probability (i.e., probability tending

to 1). The algorithm must run in time poly(n, ε−1), where n is the input size. We call a

problem almost always efficiently approximable if there is a randomized polynomial-time

algorithm producing a result within a relative error of 1 ± ε with high probability for

almost all instances.
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Previous attempts at solving these kinds of problems have not been very fruitful. For

example, even seemingly simple problems such as counting cycles in a random graph have

remained open for a long time (also stated as an open problem in the survey by Frieze

and McDiarmid [14]). In this paper we present new techniques that can handle not only

simple graphs such as cycles but also major subclasses of more complicated graph classes

such as outerplanar, series-parallel, planar, and so on.

The theory of random graphs was initiated by Erdős and Rényi [10]. The most

commonly used models of random graphs are G(n, p) and G(n, m). Both models specify

a distribution on n-vertex graphs with a fixed set of vertices. In G(n, p) each of the
(
n
2

)
edges is added to the graph independently with probability p and G(n, m) assigns equal

probability to all graphs with exactly m edges. Unless explicitly stated otherwise, the

default model addressed in this paper is G(n, p).

There has been a lot of interest in using random graph models for analysing typical

cases (beating the pessimism of worst-case analysis). Here, we mention some of these

results relevant to our counting problem (see the survey of Frieze and McDiarmid [14]

for more). One of the most well-studied problems is that of counting perfect matchings in

graphs. For this problem, Jerrum and Sinclair [23] presented a simulation of a Markov

chain that is almost always an FPRAS (extended to all bipartite graphs in [25]). Similar

results using other approaches were obtained later in [12, 31, 6, 17]. Another well-studied

problem is that of counting Hamiltonian cycles in random digraphs. For this problem,

Frieze and Suen [15] obtained an FPRAS, and later Rasmussen [31] presented a simpler

FPRAS. Subsequently, Frieze, Jerrum, Molloy, Robinson and Wormald [13] obtained

similar results in random regular graphs. Randomized approximation schemes are also

available for counting the number of cliques in a random graph [32]. However, there are

no general results for counting copies of an arbitrary given graph in a random graph.

1.1. Our results and techniques

In this paper, we remedy this situation by presenting the first general subcase of the

subgraph isomorphism counting problem that is almost always efficiently approximable.

For achieving this result we introduce a new graph decomposition that we call an ordered

bipartite decomposition. Informally, an ordered bipartite decomposition is a labelling of

vertices such that every edge is between vertices with different labels and for every vertex

all neighbours with a higher label have identical labels. The labelling implicitly generates

a sequence of bipartite graphs and the crucial part is to ensure that each of the bipartite

graphs is of small size. The size of the largest bipartite graph defines the width of the

decomposition. The decomposition allows us to obtain general results for the counting

problem which could not be achieved using the previous methods. It also leads to a

relatively simple and elegant analysis. We will show that many graph classes have such a

decomposition, while at the same time many simple small graphs (such as triangles) may

not possess a decomposition.

The actual algorithm itself is based on the following simple sampling idea (known as

importance sampling in statistics): let S = {x1, . . . , xz} be a large set whose cardinality

we want to estimate. Assume that we have a randomized algorithm (A) that picks

each element xi with non-zero known probability pi. Then, Algorithm Count (Figure 1)
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ALGORITHM COUNT(S = {x1 , . . . , xz },A)

t ← A(S) (let Algorithm A return xi with probability pi > 0 for all i ∈ {1, . . . , z} with z
i=1 pi 1)

If t = xi for i ∈ {1, . . . , z}, then Z = 1/pi
Else Z = 0
Output Z

Figure 1. Estimator for the cardinality of S .

produces an estimate for the cardinality of S . The following proposition shows that the

estimate is unbiased, i.e., E[Z] = |S|.

Proposition 1.1. Algorithm Count (Figure 1) is an unbiased estimator for the cardinality

of S .

Proof. It suffices to show that each element xi has an expected contribution of 1 towards

|S|. This holds because on picking xi (an event that happens with probability pi), we set

Z to the inverse probability of this event happening. Therefore,

E[Z] =
∑
i

pi · 1

pi
= |S|.

Similar schemes of counting have previously been used by Hammersley [19] and

Knuth [28] in other settings. This scheme was used by Rasmussen for approximating

the permanent of a (0–1) matrix [31], and later for approximately counting cliques in a

graph [32]. A variant of this scheme has also been used by the authors to provide a near

linear-time algorithm for counting perfect matchings in random graphs [16, 17]. However,

this is the first generalization of this simple idea to the general problem of counting graph

embeddings. Another nice feature of such schemes is that they also seem to work well in

practice [34].

Our randomized algorithm will try to embed H into G. If the algorithm succeeds

in finding an embedding of H in G, it outputs the inverse probability of finding this

embedding. The challenging task here is not only to ensure that each embedding of

H in G has a positive probability of being found but also to pick each embedding

with approximately equal probability to obtain a low variance. For this purpose, the

algorithm considers an increasing sequence of subgraphs H̄1 ⊂ H̄2 ⊂ · · · ⊂ H̄� = H of H .

The algorithm starts by randomly picking an embedding of H̄1 into G, then randomly an

embedding of H̄2 into G containing the embedding of H̄1 and so on. It is for defining the

increasing sequence of subgraphs that our decomposition is useful.

The algorithm is always an unbiased estimator for CH (G). The decomposition provides a

natural sufficient condition for the class of algorithms based on the principle of Algorithm

Count to be an unbiased estimator. Additionally, if the base graph is a random graph from

G(n, p) with constant p and if the template graph has an ordered bipartite decomposition

of bounded width, we show that the algorithm is an FPRAS. The interesting case of the

result is when p = 1/2. Since the G(n, 1/2) model assigns a uniform distribution over all

graphs of n given vertices, an FPRAS (when the base graph is from G(n, 1/2)) can be
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interpreted as an FPRAS for almost all base graphs. This result is quite powerful because

now to prove that the number of copies of a template graph can be well approximated for

most graphs G, one just needs to show that the template graph has an ordered bipartite

decomposition of bounded width.

The latter half of the paper is devoted to showing that a lot of interesting graph classes

naturally have an ordered bipartite decomposition of bounded width. Let Ck denote a cycle

of length k. If a graph H does not have a subgraph isomorphic to Ck , then we say H is Ck-
free.1 In this paper, we show that graphs of degree at most two, bounded-degree forests,

bounded-width grid (lattice) graphs,2 subdivision of bounded-degree graphs,3 bounded-

degree outerplanar graphs which are C3-free, bounded-degree series-parallel graphs which

are both C3- and C5-free,4 and planar graphs of girth at least 16 have an ordered bipartite

decomposition of bounded width. Using this we obtain the following result (proved in

Theorems 3.7 and 4.1).

Theorem 1.2 (main result5). Let H be a connected graph from one of the following graph

classes: graphs of degree at most two, bounded-degree trees, bounded-width grid graphs,

subdivision of bounded-degree graphs, bounded-degree C3-free outerplanar graphs, bounded-

degree [C3, C5]-free series-parallel graphs, or bounded-degree planar graphs of girth at least

16. Then there exists an FPRAS for estimating the number of copies of H in G ∈ G(n, p)

for constant p.

Even when restricted to graphs of degree at most two, this theorem recovers most

of the older results. It also provides simpler, unified proofs for (some of) the results

in [12, 31, 6, 15]. For example, to count matchings of cardinality k, one could use a

template consisting of k disjoint edges. Similarly, to count all cycles of length k the

template is a cycle of that length. By varying k and boosting the success probability, the

algorithm can easily be extended to count all matchings or all cycles. This provides the

first FPRAS for counting all cycles in a random graph (solving an open problem of Frieze

and McDiarmid [14]).

For template graphs coming from the other classes, our result supplies the first efficient

randomized approximation scheme for counting copies of them in almost all base graphs.

For example, it was not known earlier how to even obtain an FPRAS for counting the

number of copies of a given bounded-degree tree in a random graph. For the simpler

graph classes the decomposition follows quite straightforwardly, but for graph classes such

as subdivision, outerplanar, series-parallel, and planar, constructing the decomposition

requires several new combinatorial/algorithmic ideas. Even though our techniques can be

1 This is a weaker definition than the notion of minor-free graphs used commonly in the graph theory

literature [7].
2 The width of an n1 × n2 grid graph is min{n1, n2}. It should not be confused with the width of a ordered

bipartite decomposition.
3 Given a graph, a subdivision graph is obtained by inserting at least one new vertex in each edge of the graph.

See Section 4.2.
4 Denoted henceforth as [C3,C5]-free.
5 The proof of this theorem follows by combining Theorems 3.8 and 4.1.
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extended to other interesting graph classes, we conclude by showing that our techniques

cannot be used to count the copies of an unbounded-width grid graph in a random graph.

Organization. In Section 2 we review some useful definitions. In Section 3 we define

the ordered bipartite decomposition, and use that to obtain an FPRAS for counting

copies of a graph in a random graph. Section 4 shows that many graph classes have an

ordered bipartite decomposition of bounded width, whereas in Section 5 we show that an

unbounded-width grid graph does not have this property. We conclude in Section 6.

2. Definitions and notation

Definition 2.1 (fully polynomial randomized approximation scheme (FPRAS)). Let Q be

some function from the set of input strings Σ∗ to natural numbers. A fully polynomial

randomized approximation scheme for Q is a randomized algorithm that takes input

x ∈ Σ∗ and an accuracy parameter ε ∈ (0, 1) and outputs a number Z (a random variable

depending on the coin tosses of the algorithm) such that,

Pr[(1 − ε)Q(x) � Z � (1 + ε)Q(x)] � 3/4,

and runs in time polynomial in |x|, ε−1. The success probability can be boosted to 1 − δ

by running the algorithm O(log δ−1) times and taking the median [26].

Graph notation. Throughout this paper, we use G to denote a base random graph on

n vertices. The graph H is the template whose copies we want to count in G. We can

assume without loss of generality that the graph H also contains n vertices, otherwise we

just add isolated vertices to H . The number of isomorphic images remains unaffected. Let

	 = 	(H) denote the maximum degree of H .

For a graph F , we use VF to denote its vertex set and EF to denote its edge set.

Furthermore, we use vF = |VF | and eF = |EF | for the number of vertices and edges. For a

subset S of vertices of F , NF (S) = {v ∈ VF − S : ∃u ∈ S such that (u, v) ∈ EF} denotes the

neighbourhood of S in F . F[S] denotes the subgraph of F induced by S .

Automorphisms are edge-respecting permutations on the set of vertices, and the set

of automorphisms form a group under composition. For a graph H , we use aut(H) to

denote the size of its automorphism group. For a bounded-degree graph H , aut(H) can

be evaluated in polynomial time [30].

We use CH (G) to denote the number of copies of H in G. Let LH (G) = CH (G) · aut(H)

denote the number of embeddings (or labelled copies) of H in G. For a random graph G,

we will be interested in quantities E[CH (G)2] and E[CH (G)]2.

Most of the other graph-theoretic concepts that we use (such as planarity) are covered

in standard text books (see, e.g., [7]), and we describe them as needed.

Randomization. Our algorithm is randomized. The output of the algorithm is denoted by

Z , which is an unbiased estimator of CH (G), i.e., CH (G) = EA[Z] (expectation over the

coin tosses of the algorithm). As the output of our algorithm depends on both the input

graph, and the coin tosses of the algorithm, we use expressions such as EG[EA[Z]]. Here,

the inner expectation is over the coin tosses of the algorithm, and the outer expectation
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V i−1

j< i Uj

= Ui

= Vi

Figure 2.

is over the graphs of G(n, p). Note that EA[Z] is a random variable defined on the set of

graphs.

3. Approximation scheme for counting copies

We define a new graph decomposition technique which is used for embedding the template

graph into the base graph. As stated earlier, our algorithm for embedding works in stages

and our notion of decomposition captures this idea.

Definition 3.1 (ordered bipartite decomposition). An ordered bipartite decomposition of

a graph H = (VH, EH ) is a sequence V1, . . . , V� of subsets of VH such that:

① V1, . . . , V� form a partition of VH ,

② each of the Vi (for i ∈ [�] = {1, . . . , �}) is an independent set in H ,

③ ∀v ∃j such that v ∈ Vi implies NH (v) ⊆
(⋃

k<i Vk

)
∪ Vj .

Property ③ just states that if a neighbour of a vertex v ∈ Vi is in some Vj (j > i), then

all other neighbours of v which are not in V1 ∪ · · · ∪ Vi−1, are in Vj . Property ③ will be

used in the analysis for random graphs to guarantee that in every stage, the base graph

used for embedding is still random with the original edge probability.

Let V i =
⋃

j�i Vj . Define

Ui = NH (Vi) ∩ V i−1.

Ui is the set of neighbours of Vi in V1 ∪ · · · ∪ Vi−1. Define Hi to be the subgraph of H

induced by Ui ∪ Vi. Let EHi
denote the edge set of graph Hi.

Definition 3.2 (width of ordered bipartite decomposition). Let V1, . . . , V� be the ordered

bipartite decomposition of a graph H = (VH, EH ). Let Ui be the set of neighbours of Vi

in V1 ∪ · · · ∪ Vi−1. Define Hi to be the subgraph of H induced by Ui ∪ Vi. The width of an

ordered bipartite decomposition of H is the number of edges (size) in the largest Hi. For

an illustration, see Figure 2.

The Ui will play an important role in our analysis. Note that given a Uj , its

corresponding Vj has the property that Vj ⊇ NH (Uj) − V j−1. Hereafter, when the context
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is clear, we just use decomposition to denote an ordered bipartite decomposition. In general,

the decomposition of a graph need not be unique. The following lemma describes some

important consequences of the decomposition.

Lemma 3.3. Let V1, . . . , V� be a decomposition of a graph H = (VH, EH ). Then the follow-

ing assertions are true.

(1) Each of the Ui is an independent set in H (Hi is a bipartite graph).

(2) The edge set EH is partitioned into EH1
, . . . , EH�

.

Proof. For part (1), assume otherwise. Let (u, v) be an edge in H with both u, v ∈ Ui.

Let u appear in some Vj (j < i) and v appear in some Vk (k < i). Property ② implies that

j �= k. Assume without loss of generality that j < k. Property ③ implies there exists no

vertex w ∈ NH (u) such that w ∈ Vi. Therefore u /∈ Ui, a contradiction. In addition, since

each of the Ui and Vi is an independent set, each of the graph Hi is bipartite.

For part (2), first note that due to properties ① and ③, the Ui are pairwise disjoint (but

they do not necessarily form a partition). Therefore the EHi
are also pairwise disjoint.

Now since for every edge (u, v) there exist a j, k such that u ∈ Uj and v ∈ Vk and without

loss of generality j < k, then u ∈ Uk and (u, v) ∈ EHk
. Thus, EH1

, . . . , EH�
form a partition

of EH .

Every graph has a trivial decomposition satisfying properties ① and ②, but the situation

changes if we add property ③ (C3 is the simplest graph which has no decomposition).

Every bipartite graph, however, has a simple decomposition, but not necessarily of

bounded width. Note that the bipartiteness of H is a sufficient condition for it to have an

ordered bipartite decomposition, but not a necessary one.

We will primarily be interested in cases where the decomposition is of bounded width.

This can only happen if 	 is a constant. In general, if 	 grows as a function of n, no

decomposition could possibly have a bounded width (	/2 is always a trivial lower bound

for the width of a decomposition). The size of the parameter � is not important in our

analysis.

Algorithm for counting embeddings. The input to Algorithm Embeddings (Figure 3) is the

template graph H together with its decomposition and the base graph G. The algorithm

tries to construct an injection ϕ between the vertices of H (VH ) and G (VG).

Vi represents the set of vertices of H which get embedded into G during the ith stage,

and the already constructed mapping of Ui is used to achieve this. For a subset of vertices

S ⊆ VH , ϕ(S) denotes the image of S under ϕ. If X > 0 (X is defined in Algorithm

Embeddings), then the function ϕ represents an embedding of H in G (a consequence of

properties ① and ②), and the output X represents the inverse probability of this event

happening. Since every embedding has a positive probability of being found, X is an

unbiased estimator for the number of embeddings of H in G (Proposition 1.1), and Z is

an unbiased estimator for the number of copies of H in G.
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ALGORITHM EMBEDDINGS(G,H )

Initialize X ← 1; Mark(0) ← ∅; ∀v ∈ VH , ϕ(v) ← ∅; U1 ← ∅
Let V1 , . . . , V denote an ordered bipartite decomposition of H
For i ← 1 to do

Let Gf ← G[VG − Mark(i− 1)] (Gf is the subgraph of G used for embedding Hi )
Compute Xi , the number of embeddings of Hi in Gf , with the mapping of vertices in Ui to the

vertices in VG fixed as defined by ϕ

If Xi > 0
Pick an embedding ψ uniformly at random from the above set of embeddings (ψ is an

injection from Vi to VG )
Update ϕ using ψ as follows: ∀v ∈ Vi , ϕ(v) ← ψ(v)

Else
Set Z to 0 and terminate

X ← X ·Xi

Mark(i) ← Mark(i− 1) ∪ v∈V i
ϕ(v)

Z ← X/ aut(H)
Output Z

Figure 3. Algorithms for counting copies of graph H in G. In iteration i, ϕ is an injection

from
⋃

1�j�i Vj ⊆ VH into VG defining a partial embedding of H into G.

The actual procedure for computing the Xi is not very relevant to our results, but note

that the Xi can be computed in polynomial time if H has a decomposition of bounded

width. In this case Algorithm Embeddings runs in polynomial time.

Since Algorithm Embeddings is an unbiased estimator, use of Chebyshev’s inequality

implies that repeating the algorithm O(ε−2
EA[Z2]/EA[Z]2) times and taking the mean

of the outputs results in a randomized approximation scheme for estimating CH (G). The

ratio EA[Z2]/EA[Z]2 is commonly referred to as the critical ratio.

3.1. FPRAS for counting in random graphs

We now concentrate on showing that for random graphs the algorithm is an FPRAS.

From here on, we abbreviate CH (G) as C . A few of the technical details in our proof

are somewhat similar to previous applications of this sampling idea, such as that for

counting perfect matchings [31, 17]. The simpler techniques in these previous results,

however, are limited to handling one edge per stage (therefore, they work only when H is

a matching). Algorithm Embeddings embeds a small-sized subgraph at every stage. The

key to obtaining an FPRAS is to guarantee that the factor contributed to the critical ratio

at every stage is very small (which is now involved because it is no longer a simple ratio

of binomial moments as in [31, 17]). We then do a stage-by-stage analysis of the critical

ratio to show that Algorithm Embeddings is an FPRAS.

The analysis will be done for a worst-case graph H under the assumption that the width

of the decomposition of H is bounded by a universal constant w. Here, instead of invest-

igating the critical ratio, we investigate the much simpler ratio EG[EA[Z2]]/EG[EA[Z]]2,

which we call the critical ratio of averages. We use the second moment method to show

that these two ratios (critical ratio and critical ratio of averages) are closely related. To

establish this fact, we take a detour through the G(n, m) model. The ratio E[C2]/E[C]2

plays an important role here, and to bound it we use a recent result of Riordan [33].
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The result (stated below) studies the related question of when a random graph G is likely

to have a spanning subgraph isomorphic to H . Let 	 = 	(H) denote the maximum

degree of H . The idea behind the following theorem is to use Markov’s inequality to

bound Pr[C = 0] in terms of E[C] and Var[C]. The main thrust lies in proving that

E[C2]/E[C]2 = 1 + o(1).6

In the following, N is used to denote
(
n
2

)
. Let {H (n)} be a sequence of graphs, where

H (n) has n vertices. For notational convenience, we will frequently write H for H (n). We

say that H has a property P (n) when we implicitly assume that there is a sequence of

graphs {H (n)}, and for every n, the graph H (n) has property P (n). We do it similarly for G.

An event holds with high probability (w.h.p.) if it holds with probability tending to 1 as

n → ∞.

Theorem 3.4 (Riordan [33], restated). Let H be a graph on n vertices. Let eH = αN =

α(n)N, and let p = p(n) ∈ (0, 1) with pN an integer. Suppose that the following conditions

hold: αN � n − 1, and pN, (1 − p)
√
n, npγ/	4 → ∞, where

γ = γ(H) = max
3�s�n

{max{eF : F ⊆ H, vF = s}/(s − 2)}.

Then, w.h.p. a random graph G ∈ G(n, pN) has a spanning subgraph isomorphic to H . In

general, C = CH (G) satisfies

E[C2]

E[C]2
= 1 + o(1).

The quantity γ is closely related to twice the maximum average degree of a subgraph

of H .

Remark. Riordan [33] establishes Theorem 3.4 using the second moment method, a

technique that relies on a bound on the ratio between second moment and first moment

square (which in this case is E[C2]/E[C]2). In [33], a bound on this ratio is obtained in

the proof of Theorem 2.1 (this ratio is referred to as f in [33]).

The templates graph that we will be interested in are bounded-degree connected graphs.

For a bounded-degree graph H , both 	 and γ are constants. Also, since the graph is

connected, αN � n − 1. Further, for us p is a constant (as we work with dense random

graphs G). Therefore, the conditions of Theorem 3.4 are all satisfied.

Corollary 3.5. Let H be a bounded-degree connected graph on n vertices. Then, w.h.p. a

random graph G ∈ G(n,Ω(n2)) satisfies E[C2]/E[C]2 = 1 + o(1).

6 Since C is fairly tightly concentrated around its mean, a rudimentary approximation for C is just E[C] =

n!peH /aut(H) (as vH = n). However, this naive approach does not produce, for any ε > 0, an (1 ± ε)-

approximation for C (see, e.g., [12, 15, 31, 32, 6]).
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Corollary 3.5 with Chebyshev’s inequality gives Pr[C � βE(C)], for any constant β < 1,

and tends to 0 as n tends to ∞. Using this and standard results on asymptotic equivalence

between G(n, m) and G(n, p) models of random graphs (e.g., see Proposition 1.12 of

[21]) yields the following corollary. A similar analysis has been used in previous work

[12, 15, 31, 32, 6].

Corollary 3.6. Let H be a bounded-degree connected graph on n vertices. Let ω = ω(n) be

any function tending to ∞ as n → ∞, and let p be a constant. Then, w.h.p. a random graph

G ∈ G(n, p) satisfies C � E[C]/ω.

Using the above result we investigate the performance of Algorithm Embeddings when

G is a random graph. The proof idea is to break the critical ratio analysis of the large

subgraph into a more manageable critical ratio analysis of small subgraphs.

Proposition 3.7. Let H be an n-vertex connected graph with a decomposition of width w

(a constant). Let Z be the output of Algorithm Embeddings, and let p be a constant. Then,

w.h.p. for a random graph G ∈ G(n, p), the critical ratio EA[Z2]/EA[Z]2 is polynomially

bounded in n.

Proof. We first relate the critical ratio to the critical ratio of averages. As the estimator

is unbiased, EA[Z] = C . Therefore, from Corollary 3.6, w.h.p.

C = EA[Z] =
EA[X]

aut(H)
� EG[EA[X]]

ω · aut(H)
.

Squaring both sides, we have that w.h.p.

EA[Z]2 =
EA[X]2

aut(H)2
� EG[EA[X]]2

ω2 aut(H)2
.

Note that EA[X]/ aut(H) refers to the expected output for fixed graph G, and the

inequalities hold for almost all such graphs G, while EG[EA[X]]/ aut(H) is the expected

output for a random graph G ∈ G(n, p).

The numerator of the critical ratio of averages satisfies

EG[EA[Z2]] =
EG[EA[X2]]

aut(H)2
.

Using Markov’s inequality,

Pr
[
EA[Z2] � ωEG[EA[Z2]]

]
� 1

ω

n→∞−→ 0.

Using the above inequalities yields that w.h.p.

EA[Z2]

EA[Z]2
=

EA[X2]

EA[X]2
� ω3 EG[EA[Z2]]

EG[EA[Z]]2
= ω3 EG[EA[X2]]

EG[EA[X]]2
.

Now, we just concentrate on bounding the critical ratio of averages, that is,

EG[EA[X2]]

EG[EA[X]]2
.
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Let V1, . . . , V� denote a decomposition of H of width w. In the bipartite graph Hi between

the vertices of Ui and Vi with edge set EHi
, let ei = |EHi

|, vi = |Vi|, and ui = |Ui|. Let

ni = n −
∑

j<i vj . We will rely on the fact that all the Hi are of bounded size (their

maximum defining the width of the decomposition).

Let n′
i = ni + ui. Let Gi be a random graph from G(n′

i, p) with ui distinguished vertices.

Let LHi|Ui
(Gi) denote the number of embeddings of Hi in Gi where the mapping of the

vertices in Ui to the distinguished vertices in Gi is fixed (given). The results do not depend

on the mapping used for Ui. We abbreviate LHi|Ui
(Gi) by Li.

First we investigate the numerator of the critical ratio of averages. Here we use the fact

that

EG[EA[X2]] = EG[EA[X2
1 ]] · · · · · EG[EA[X2

� ]].

The previous equality arises because at the ith stage the graph used for embedding Hi

is from G(n′
i, p), irrespective of the choices made over the first (i − 1) stages. This is

guaranteed by property ③ of the decomposition, and in turn it allows us to perform a

stage-by-stage analysis of the critical ratio.

Furthermore, EG[EA[X2
i ]] = E[L2

i ] (as the graph is random, it does not matter which

vertices Ui gets mapped to). Next we investigate the denominator of the critical ratio of

averages. Here we use the fact that

EG[EA[X]]2 = (n!peH )2 = E[L1]2 · · · · · E[L�]
2.

Therefore, the ratio

EG[EA[X2]]

EG[EA[X]]2
=

EG[EA[X2
1 ]] · · · · · EG[EA[X2

� ]]

EG[EA[X1]]2 · · · · · EG[EA[X�]]2

=
E[L2

1] · · · · · E[L2
�]

E[L1]2 · · · · · E[L�]2
=

�∏
i=1

E[L2
i ]

E[Li]2
.

To bound this expression we investigate the parameter Var[Li].

Now consider a complete bipartite graph Kui,ni with one side being the ui distinguished

vertices of Gi and the other side being the remaining (non-distinguished) vertices of Gi.

Let FHi|Ui
(Kui,ni) be the set of embeddings of Hi in Kui,ni , where the mapping of the vertices

in Ui to the distinguished vertices in Kui,ni is fixed as in Gi (note that one side of Kui,ni

contains these distinguished vertices). For each embedding f from FHi|Ui
(Kui,ni ) define the

indicator random variable If(Hi) = 1[f(Hi) ⊆ Gi]. For each F ⊆ Hi, let eF be the number

of edges in F , and let rF be the number of vertices in F which belong to Vi. Now there are

Θ(n2vi−rF
i ) pairs (f, g) of embeddings of Hi in FHi|Ui

(Kui,ni ) with f(Hi) ∩ g(Hi) isomorphic

(�) to F . In the following, we use A � B for A = Θ(B):

Var[Li] =
∑
f,g

Cov[If(Hi), Ig(Hi)]

=
∑
f,g

Ef(Hi)
∩Eg(Hi)

�= ∅

E[If(Hi)Ig(Hi)] − E[If(Hi)]E[Ig(Hi)]
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=
∑

F⊆Hi,eF>0

∑
f,g

f(Hi)∩g(Hi)�F

E[If(Hi)Ig(Hi)] − E[If(Hi)]E[Ig(Hi)]

=
∑

F⊆Hi,eF>0

∑
f,g

f(Hi)∩g(Hi)�F

p2ei−eF − p2ei

�
∑

F⊆Hi,eF>0

n2vi−rF
i (p2ei−eF − p2ei )

=
∑

F⊆Hi,eF>0

n2vi
i p2ei

nrFi peF
(1 − peF )

�
∑

F⊆Hi,eF>0

E[Li]
2

nrFi peF
(1 − peF )

� max
F⊆Hi,eF>0

E[Li]
2

nrFi peF
(1 − peF ).

The second equality (above) used the fact that random variables If(Hi) and Ig(Hi) are

independent if Ef(Hi) ∩ Eg(Hi) = ∅. The implicit constants in the above equivalences depend

on the size of Hi (a constant), but are independent of ni. The quantity

max
F⊆Hi,eF>0

(1 − peF )

nrFi peF
= O(1/ni) (rF = 1, provides the maximum).

Therefore, Var[Li]/E[Li]
2 = O(1/ni), implying E[L2

i ]/E[Li]
2 = 1 + O(1/ni). If ei = 0, then

Var[Li] = 0, and E[L2
i ] = E[Li]

2. Putting everything together, we obtain

EG[EA[X2]]

EG[EA[X]]2
=

�∏
i=1

E[L2
i ]

E[Li]2
�

�∏
i=1

(
1 +

c

ni

)
=

�∏
i=1

ni + c

ni
,

for a constant c depending only on w and p. Since n = n1 > n2 > · · · > n�,
∏�

i=1 (ni + c)/ni
can be polynomially bounded (to O(nc)) by a telescoping argument. Putting everything to-

gether, we get that w.h.p. for a random graph G ∈ G(n, p) the critical ratio EA[Z2]/EA[Z]2

is polynomially bounded in n. This completes the proof.

Summarizing, we have the following result. If H has a decomposition of bounded width

w, then for almost all graphs G, running Algorithm Embeddings poly(n)ε−2 times and

taking the mean of the outputs it generates results in an (1 ± ε)-approximation for C .

Here, poly(n) is a polynomial in n depending on w and p. Since each run of Algorithm

Embeddings also takes polynomial time (as H has a bounded-width decomposition), this

is an FPRAS.

Theorem 3.8. Let H be an n-vertex connected graph with a decomposition of width w

(a constant). Then, there exists an FPRAS for estimating the number of copies of H in

G ∈ G(n, p) for constant p.
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Figure 4. Decomposition of a cycle, tree, and grid. Vertices with label i

constitute Vi. Neighbours of Vi with lower labels constitute Ui.

4. Graphs with ordered bipartite decomposition

We divide this section into subsections based on the increasing complexity of the graph

classes. We will prove the following result in the remainder of this section.

Theorem 4.1.7 Let H be a graph from one of the following graph classes: graphs of degree at

most two, forests, bounded-width grid graphs, subdivision graphs, C3-free outerplanar graphs,

[C3, C5]-free series-parallel graphs, or planar graphs of girth at least 16. Then, there exists

an ordered bipartite decomposition of H . Furthermore, if H has bounded degree, then the

decomposition has bounded width.

We concentrate on connected graphs H .8 Let 	 be the maximum degree of any vertex

in H . To construct the decomposition, the following definitions are useful:

Ui =
⋃
j�i

Uj , V i =
⋃
j�i

Vj and Di = V i − Ui.

All our decomposition algorithms proceed in steps, with step i creating the (Ui, Vi) pair.

4.1. Some easy graph classes

We start off by considering easy graph classes such as graphs of degree at most two (paths

and cycles), trees, and grid graphs. Figure 4 illustrates some examples.

• Paths. Let H represent a path (s1, . . . , sk+1) of length k = k(n). Then the decomposition

is Vi = {si} for 1 � i � k + 1.

• Cycles. First consider the cycles of length four or greater. Let s1, . . . , sk be the vertices

of a cycle H of length k = k(n) enumerated in cyclic order. In the decomposition, V1 =

{s1}, V2 = {s2, sk}, and Vi = {si} for 3 � i � k − 1. Cycles of length three (triangles)

do not have a decomposition, but counting copies of triangles is easy (we describe

7 The proof of this theorem follows by combining Propositions 4.2, 4.4, 4.7, 4.9, and 4.12.
8 If H is disconnected, then a decomposition is obtained by combining the decomposition of all the connected

components (in any order).
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an algorithm to do so in Appendix A). This also completes the claim for graphs of

degree at most two in Theorem 4.1.

• Trees. For a tree H , we have V1 = {s1}, where s1 is any vertex in H . For i � 2, let Ui

be any vertex from Di−1, and then Vi is the set of neighbours of this vertex which are

not in V i−1. Intuitively, Vi is the set of children of the vertex in Ui, if one thinks of H

as a tree rooted at s1. The width of this decomposition is at most 	.

• Grid graphs. Let w0 be the width of the grid graph H (for an n1 × n2 grid graph the

width is min{n1, n2}). Set V1 = {s1}, where s1 is any corner vertex in H . Later on, Vi

is the set of all vertices which are at a lattice (Manhattan) distance i from s1. Since

for each i there are at most w0 vertices at distance i from s1, the sizes of the Vi are

bounded if w0 is bounded. Consequently, the width of this decomposition is bounded

if w0 is bounded. This construction also extends to higher-dimensional grid graphs.

Proposition 4.2. Let H be a graph from one of the following graph classes: graphs of degree

at most two, bounded-degree forests, or bounded-width grid graphs. Then, there exists an

ordered bipartite decomposition of H with bounded width.

4.2. Decomposition of subdivision graphs

A k-subdivision graph of a graph is obtained by inserting k = k(n) new vertices in every

edge, that is, by replacing each original edge by a path of length k + 1. We relax this

definition and say that a k-subdivision graph is the graph obtained by inserting at least

one and at most k vertices in every edge. Let H be a k-subdivision graph of a graph F .

We now show that H has a decomposition of width at most 	.

The main idea behind the decomposition is that as soon as a vertex v of F appears

in some Vj , all vertices in NH (v) not in V j are selected in Vj+1, i.e., v ∈ Uj+1. The

decomposition of H can be formally defined as

Vi =

⎧⎪⎪⎨⎪⎪⎩
{s1}, where s1 is any vertex in VF if i = 1,

NH (ai) − V i−1 if i � 2 and {ai} = VF ∩ Di−1 �= ∅,
NH (bi) − V i−1, where bi is any vertex in Di−1 otherwise.

We now argue the correctness of the decomposition, for which the following lemma is

useful.

Lemma 4.3. There exists at most one vertex in VF ∩ Di for all i in the decomposition.

Proof. Proof by induction on i. It is true by construction for i = 1. Assume by the

inductive hypothesis that VF ∩ Di−1 has at most one vertex. If there exists a vertex in

VF ∩ Di−1, then let ai be this vertex. In this case, NH (ai) does not contain any vertex from

VF (this follows as subdivision of F creates H). Otherwise, bi /∈ VF , therefore, there is

at most one vertex of VF in Vi (again this follows because subdivision of F creates H).

Therefore, in both cases, |VF ∩ Di| � 1.

Notice that the decomposition described above selects all vertices in H , and the vertices

selected in any Vi are not selected in V i−1, therefore, the Vi form a partition of VH

https://doi.org/10.1017/S0963548314000339 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000339


Approximately Counting Embeddings into Random Graphs 1043

(property ①). For property ② notice that if Vi is constructed using ai (or s1), then (by

the subdivision graph construction) it is always the case that NH (ai) is an independent

set, and if it is constructed using bi, then it has at most two neighbours that do not have

an edge between them (again due to the subdivision graph construction). Property ③ is

satisfied, as for the vertex ai or bi (or s1) we select all its neighbours that are not in V i−1

together.

The width of this decomposition is at most 	 as the maximum degree of H is 	.

Proposition 4.4. Let H be a subdivision of a bounded-degree graph. Then, there exists an

ordered bipartite decomposition of H with bounded width.

4.3. Decomposition of outerplanar graphs

In this section, we prove the decomposition property on outer planar graphs. A graph

is outerplanar if it has a planar embedding such that all vertices are on the same face.

Let H be a C3-free outerplanar graph. The idea behind the decomposition is that vertices

in Ui partition the outer face into smaller intervals, each of which can then be handled

separately.

Before we formally describe the decomposition, we need some terminology. Let s1, . . . , sk
be the vertices around the outer face with k = k(n) (ordering defined by the outerplanar

embedding). For symmetry, we add two dummy vertices s0, sk+1 without neighbours and

define U1 = {s0, sk+1}, and V1 = {s1} (the dummy vertices play no role and can be removed

before running Algorithm Embeddings).

The algorithm proceeds in steps with step i creating the (Ui, Vi) pair. For i > 1,

two vertices sj0 , sj1 with j0 < j1, define an interval at step i if sj0 , sj1 ∈ Ui−1, but for

j0 < l < j1, sl /∈ Ui−1. If the interval is defined it is the sequence of vertices between sj0 , sj1
(including the endpoints).9 Let ai be a median vertex of the vertices in I ∩ V i−1 (median

based on the outerplanar vertex ordering), where I is a step i interval. Define Ui to

be the smallest subset of V i−1 containing {ai} and also NH (NH (Ui) − V i−1) ∩ V i−1. In

other words, Ui is the smallest set of vertices in V i−1 including {ai} such that the set of

neighbours of Ui excluding the vertices from V i−1 (call this set Mi) have the property that

the vertices in Mi have no neighbours outside Ui in V i−1. Note that setting Ui as V i−1

satisfies the above condition, but it may not be the smallest.

Define Vi = NH (Ui) − V i−1 = Mi. We now argue that this is indeed a decomposition.

Consider the interval I at the ith step, with sj0 , sj1 as the defining endpoints, and ai as the

median of I ∩ V i−1.

Lemma 4.5. Let I be the interval at the ith step. Then Ui ⊆ I .

Proof. Ui can only contain vertices that have a path to ai but not containing any vertex

from Ui−1 in the path. Since the graph is outerplanar, any path from ai to any vertex

w /∈ I passes through either of the endpoints (sj0 , sj1 ), both of which are in Ui−1. In other

9 If no interval exists, then all vertices are already part of the decomposition and we are done. Also, there

could be more than one interval at each i, in which case we can pick any one.
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Figure 5. Decomposition of an outer planar graph. Vertices with label i

constitute Vi. Neighbours of Vi with lower labels constitute Ui.

words, since the vertices not in I do not have a path to ai which does not pass through a

vertex in Ui−1, we have Ui ⊆ I .

Lemma 4.6. Let I be the interval at the ith step. Then |Ui| � |I ∩ V i−1| � 2	.

Proof. The first inequality follows as Ui ⊆ V i−1 (by construction) and Ui ⊆ I (Lemma 4.5).

For the second one we use induction over i. The hypothesis, is true by construction for

i = 1. Assume the hypothesis holds for i − 1. Let J be the interval used by the algorithm

at the (i − 1)th step. By the inductive hypothesis, |J ∩ V i−2| � 2	. The interval J is split

into several new intervals (at least two as ai−1 ∈ Ui−1) by the vertices of Ui−1, which define

the step i intervals. The newly created intervals are of two types: (a) both endpoints are

from Ui−1, (b) one endpoint is from Ui−1 and the other is from Ui−2. In the intervals of

the first type there are at most 2	 vertices from Vi−1 (at most 	 vertices from each of the

two endpoints) and no vertex from V i−2. In the intervals of the second type, there are at

most 	 vertices from Vi−1 adjacent to the endpoint in Ui−1 and at most 	 vertices from

V i−2 (from the inductive hypothesis and the fact that ai−1 is the median of J ∩ V i−2).

Therefore, each of the newly created step i intervals (which includes I) have at most 2	
vertices from V i−1.

Properties ① and ③ are guaranteed by construction. Let us concentrate on property ②.

For a contradiction assume that there exist two vertices v1 and v2 in some Vi with the

edge (v1, v2) in H . Since no triangles exist in H , both v1 and v2 should be connected to

two different vertices (say, u1 and u2) in Ui. However, since the graph is outerplanar,

there exists no path from u1 to u2 going through any vertices of Ui ∪ Vi other than v1

and v2. This would mean that we could remove at least one of u1 or u2 from Ui without

disturbing the condition that it needs to satisfy. This would lead to a contradiction to Ui

being the smallest set in V i−1 satisfying the condition.

Lemma 4.6 implies that the width of this decomposition is at most 2	 · 	 = 2	2 (as

|Ui| � 2	). See Figure 5 for an illustration.
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Proposition 4.7. Let H be a bounded-degree C3-free outerplanar graph. Then, there exists

an ordered bipartite decomposition of H with bounded width.

4.4. Decomposition of series-parallel graphs

In this section we prove the decomposition property on series-parallel graphs. A series-

parallel graph (also called a two-terminal series-parallel graph) is a graph with two

distinguished vertices s and t that is obtained as follows. A single edge (s, t) is a series-

parallel graph (base case). Let Ha and Hb be two series-parallel graphs with terminals sa, ta
and sb, tb respectively. The graph formed by identifying ta with sb is a series-parallel graph

with terminals sa, tb (series operation is denoted by ⊕). The graph formed by identifying sa
with sb and ta with tb is a series-parallel graph with terminals sa = sb and ta = tb (parallel

operation is denoted by ||).
The algorithm again proceeds in steps with step i creating the (Ui, Vi) pair. In the

following, the process of adding a vertex to some Vi is referred to by the term selecting.

We say a vertex is finished once it is added to some Ui, i.e., all its neighbours are selected.

The construction is technical, but the basic idea is to first finish the terminals, so that

the parallel components separate (for the decomposition purposes). Then, the algorithm

finishes some vertex joining two serial components. In both these steps the algorithm

might be forced to finish some other vertices too.

To define the decomposition we need more terminology. Let H = (VH, EH ) be a [C3, C5]-

free series-parallel graph with (distinguished) terminals s and t. Let VH = V1,H , V2,H , . . .

denote a decomposition of H . Let V i
H =

⋃
j�i Vj,H . For a set of vertices S in H , define

DH (i, S) = {u ∈ V i−1
H : there exists v ∈ S such that (u, v) ∈ EH}.

DH (i, S) represents the set of neighbours of S in H selected in the first (i − 1) steps of the

algorithm. The algorithm starts by finishing s and t as follows:

V1,H = {s} and V2,H = NH (s) − V 1
H,

V3,H =

{
{t} ∪ NH (DH (3, {t})) − V 2

H if t /∈ V 2
H,

∅ otherwise,

V4,H = NH (t) ∪ NH (DH (4, NH (t))) − V 3
H.

In words, the first four steps of the algorithm achieves: (i) select s, (ii) finish s, (iii) select

t unless already selected, (iv) finish t. Define

VH = V1,H , V2,H , V3,H , V4,H ,VH |s,t,

where VH |s,t is defined recursively as follows.

1 Base case. If all the vertices in H are selected, VH |s,t = ∅.

2 Parallel case. If H = Ha||Hb, find recursively VHa|s,t and VHb|s,t. Define

VH |s,t = VHa|s,t,VHb|s,t.

3 Serial case. If H = Ha ⊕ Hb, with x as the vertex joining Ha and Hb. Let s ∈ VHa

and t ∈ VHb
.
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Figure 6. Decomposition of a series-parallel graph. Vertices with label i

constitute Vi. Neighbours of Vi with lower labels constitute Ui.

(a) If x is finished, define VH |s,t = VHa|s,x,VHb|x,t.

(b) If x ∈ V 4
H (x has already been selected) and x not finished, then finish x. This

produces the set

V5,H = NH (x) ∪ NH (DH (5, NH (x))) − V 4
H.

Define

VH |s,t = V5,H ,VHa|s,x,VHb|t,x.

(c) Otherwise, first select x which produces the set

V5,H = {x} ∪ NH (DH (5, {x})) − V 4
H.

Then, finish x. This produces the set

V6,H = NH (x) ∪ NH (DH (6, NH (x))) − V 5
H.

Define

VH |s,t = V5,H , V6,H ,VHa|s,x,VHb|t,x.

The following lemma provides bounds on the sizes of Ui. The proof looks at two

possible situations, conditioning on the presence or absence of paths of length 2 or 3

between s and t. Since both C3 and C5 are forbidden, it follows that there can either be a

path of length 2 or 3 between any two vertices, but not both. This fact will be crucial for

implying property ②. See Figure 6 for an example.

Lemma 4.8. Let H be a [C3, C5]-free series-parallel graph with terminals s and t. Then, the

above algorithm finishes O(	2) vertices in every step (size of all the Ui is O(	2)).

Proof. The proof is via induction on the size of series-parallel graph. The inductive

hypothesis is that if s, t and possibly some vertices in NH (s) ∪ NH (NH (s)) are the only
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vertices finished, then the above algorithm finds a decomposition of H by finishing O(	2)

vertices in every step.

The algorithm always finishes s first and then t, and once s and t are finished the parallel

components can be handled independently to construct the decomposition. In the process

of finishing t, the algorithm could possibly finish some vertices in NH (s) ∪ NH (NH (s)).

Hence, in each of the parallel components H ′, terminals s, t and possibly some vertices in

NH ′ (s) ∪ NH ′(NH ′ (s)) are finished. Therefore, inductively a decomposition can be obtained.

So the challenging case is when H has just one parallel component. Let H = H1 ⊕ H2

with z as the vertex joining H1 and H2. There are three different cases. In each of them

the interesting event occurs after s, t, and z are finished, which splits H into H1 and H2.

Afterwards, decomposition on H1 and H2 could be constructed independently.

In the following, we describe the cases under the assumption that there exists no edge

between s and t. If there exists such an edge, then the description would remain the same

except that the step where t is selected would no longer exist (t is now selected when s is

finished). Also, if there is an edge between s and t, then there exists no path of length 2

between s and t, as otherwise there would be a triangle.

Case 1: no path of length 2 or 3 between s and t. Note that at the step when s is finished

no other vertex in H is finished. Later, when t is selected the only vertices in NH (s) that

finish at that step are those which are neighbours of t. This set is ∅, as otherwise there

would be a path of length 2 between s, t. Similarly, at the step when t is finished the only

vertices in NH (s) that finish are those which share a common neighbour with t. This set

is also ∅, as otherwise there would be a path of length 3 between s, t. Now at the step

when z is selected some vertices in NH (s) and NH (t) could possibly be finished, and at the

step when z is finished some vertices in NH (s) ∪ NH (t) ∪ NH (NH (s)) ∪ NH (NH (t)) could

possibly be finished (this supplies the O(	2) bound). However, as soon as z is finished,

the graphs H1 and H2 can be handled independently. Now H1 is a smaller series-parallel

graph with terminals s, z, where s, z and possibly some vertices in NH1
(s) ∪ NH1

(NH1
(s)) are

finished. Therefore, inductively a decomposition of H1 can be completed. Similarly, H2 can

be viewed as a series-parallel graph with terminals t, z. In H2, terminals t, z and possibly

some vertices in NH2
(t) ∪ NH2

(NH2
(t)) are finished. Therefore, inductively a decomposition

of H2 can also be completed.

Case 2: paths of length 2 between s and t. So there is no path of length 3 between s and

t. If t has been selected before s is finished, then t is finished together with s (at which

step z is also selected). Note that s and t can be finished in the same step because there

is no path of length 3. At the step when z is finished some vertices in NH (s) ∪ NH (t)

could possibly be finished. Afterwards, we can invoke induction on both H1 and H2. If

s is finished before selecting t, then z is finished while selecting t. At the step when z is

finished some vertices in NH (s) could possibly be finished. Later , at the step when t is

finished some vertices in NH (z) could possibly be finished. But again after t is finished,

we can invoke induction on both H1 and H2. See Figure 7.

Case 3: paths of length 3 between s and t. So there is no path of length 2 between s and

t. There are two subcases based on the distance from s to z.
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Figure 7. Case 2: the dashed edges may not be present in the graph.

Figure 8. Subcase 3.1.

Subcase 3.1. First assume that the distance between s and z is one. At the step when s

is finished z is selected. At the step when t is selected no vertex in H is finished (absence

of a path of length 2). At the step when t is finished, z is finished and also some other

vertices in NH (s) could possibly be finished. Hereafter, induction can be invoked over H1

and H2. See Figure 8.

Subcase 3.2. Now, if the distance between s and z is two, then the distance between t

and z is one. At the step when s is finished no other vertex in H is finished. At the step

when t is selected no vertex in H is finished. At the step when t is finished, z gets selected

and some vertices in NH (s) would be finished. Finally, at the step when z is finished some

vertices in NH (s) ∪ NH (NH (s)) ∪ NH (t) could possibly be finished. Hereafter, induction can

be invoked over H1 and H2. See Figure 9.

Therefore, a decomposition of H can be obtained with no more than O(	2) finishing

at each step. A more precise upper bound of 2	2 can be obtained with a more careful

analysis.

Properties ① and ③ are guaranteed by construction. Property ② follows from the fact

that during any step of the above algorithm the set of vertices selected (appearing in the

same Vi) is at most distance two (i.e., two neighbourhoods away) from some fixed vertex

(see the proof of Lemma 4.8). Since H has no C3 or C5, the vertices selected together

cannot have any edge between them (i.e., the Vi are independent sets).

Figure 9. Subcase 3.2.
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The width of this decomposition is O(	2) · 	 = O(	3) as O(	2) vertices are finished

in each step by the above algorithm (Lemma 4.8).

Proposition 4.9. Let H be a bounded-degree [C3, C5]-free series-parallel graph. Then there

exists an ordered bipartite decomposition of H with bounded width.

4.5. Decomposition of planar graphs

In this section we prove the decomposition property on planar graphs. Define a thread as

an induced path in H whose vertices are all of degree 2 in H . A k-thread is a thread with

k vertices. Let H be a planar graph of girth at least 16. We first prove a structural result

on planar graphs.

Lemma 4.10. Let H be a planar graph of minimum degree 2 and girth at least 16. Then

H always contains a 3-thread.

Proof. Assume without loss of generality that the graph H is connected; otherwise it is

sufficient to prove the statement for each of the components. Let Ĥ be the graph obtained

from H by contracting all degree 2 vertices. Then, Ĥ is a planar graph of minimum

degree 3.

We first show that Ĥ contains a face of degree 5 or less. For contradiction, suppose

that all the faces have degree at least 6. Let n be the number of vertices, let m be the

number of edges, and let k be the number of faces of Ĥ . Moreover, let H be the set of

faces and V the set of vertices of Ĥ . Since the degree of each face is at least 6 (where

the degree of a face f is the number of edges going around f), 2m =
∑

f∈F deg(f) � 6k.

Moreover, 2m =
∑

v∈V deg(v) � 3n, since the minimum degree in Ĥ is at least 3. By Euler’s

formula10 and the previous inequalities, we have m + 2 = n + k � (2m)/3 + m/3 = m, a

contradiction.

Let f̂ be a face of H that corresponds to a face of the degree 5 or less in Ĥ . Since the

degree of f̂ is at least 16 (the girth is 16), it is easy to see that f̂ contains a 3-thread in H .

In order to define a decomposition, we define a 3-thread partition X1, . . . , Xc of a planar

graph H as a partition of VH such that each Xi satisfies

Xi =

⎧⎪⎪⎨⎪⎪⎩
{ai} if ai is a degree 0 or 1 vertex in the graph induced by VH −

⋃
j<i Xj

on H,

{ai, bi, ci} if ai, bi, ci form a 3-thread in the graph induced by VH −
⋃

j<i Xj on H.

By Lemma 4.10 every planar graph with girth at least 16 has a 3-thread partition. As

before, we say that a vertex is selected if we add it to some Vk . Using the 3-thread partition

(which can be constructed using Lemma 4.10), a decomposition of a planar graph of girth

at least 16 can be constructed by repeating this following simple procedure.

10 It states that in a planar graph with n vertices, m edges, and k faces, n − m + k = 2.
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(i) Find the largest index l such that Xl contains a vertex zl which has not yet been

selected but is adjacent to an already selected vertex.

(ii) Define Ui = NH (zl) ∩ Di−1 and Vi = NH (Ui) − V i−1 (where Di−1 = V i−1 − Ui−1 as

defined earlier).

(iii) Increment i.

Lemma 4.11. Let H be a planar graph of girth at least 16. Then each of the (Ui, Vi) pair

created by the above algorithm satisfies |Ui| � 2 and |Vi| � 2	.

Proof. Let X1, . . . , Xc be a 3-thread partition of H . Let H̄i be the graph induced by

VH −
⋃

j<i Xj on H . The first observation is that a vertex in any Xj (1 � j � c − 1) has at

most one edge connecting it to the vertices in Xj+1 ∪ · · · ∪ Xc. Consider some step i of the

decomposition (step i is when the (Ui, Vi) pair is created). Let l be the largest index with

an unselected vertex zl . From the previous observation it follows that vertices in N(zl)

that are in X1 ∪ · · · ∪ Xl−1 are not selected in steps 1 to i − 1. Assume otherwise. Let u

be a vertex belonging to N(zl) ∩ Xl′(l
′ < l) that is selected in the first i − 1 steps. Then,

u needs to have a neighbour in Xl ∪ · · · ∪ Xc − {zl}, a contradiction since it would imply

that u (which is in Xl′) has two neighbours in Xl ∪ · · · ∪ Xc. Therefore, until step i none

of the neighbours of zl in X1 ∪ · · · ∪ Xl−1 have been selected. By definition of threads, zl
could have at most two neighbours in H̄i. The cases where it has two neighbours are as

follows: (a) zl has one neighbour from Xl+1 ∪ · · · ∪ Xc and another from Xl , or (b) zl has

both its neighbours from Xl . This implies that |NH (zl) ∩ Di−1| = |Ui| � 2, and |Vi| � 2	.

Properties ① and ③ of the decomposition are again guaranteed by construction. Property

② is satisfied because |Ui| � 2 and the vertices in Ui are neighbours of zl , so the vertices

in Vi cannot have edges between them, otherwise it will result in a cycle of length 5. Since

this holds for every Vi, the Vi are independent sets.

The width of this decomposition is at most 2	 (as |Ui| � 2 from Lemma 4.11).

Proposition 4.12. Let H be a bounded-degree planar graph of girth at least 16. Then, there

exists an ordered bipartite decomposition of H with bounded width.

5. Negative result for ordered bipartite decomposition

As mentioned earlier, only graphs of bounded degree have a chance of having a

decomposition of bounded width. So a natural question to ask is whether all bounded-

degree graphs with a decomposition have one of bounded width. In this section, we answer

this question negatively by showing that every unbounded-width grid graph (remember

that the width of an n1 × n2 grid graph is min{n1, n2}) fails to satisfy this condition. For

simplicity, we will only consider
√
n ×

√
n grid graphs, but our proof techniques extend to

other cases as well.

Let H = (VH, EH ) be a
√
n ×

√
n grid graph with VH = {(i, j) : 0 � i, j � √

n − 1} and

EH = {((i, j), (i′, j ′)) : i = i′ and |j − j ′| = 1 or |i − i′| = 1 and j = j ′}. We now show that
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any decomposition of H has a width of at least Ω(
√
n). Let V1, . . . , V� be any decomposition

of H . Consider any 2 × 2 square of H defined by vertices a, c, b, d (in clockwise order).

Assume without loss of generality that the vertex c has the smallest label (given by the

decomposition) among vertices a, b, c, and d, and let the label on c be l. The two neighbours

a, b of the vertex c always have the same label l′ > l. The fourth vertex d has any label l′′

with l′′ � l and l′′ �= l′. We define a new graph H ′ = (VH, EH ′ ) on the same set of vertices

by putting the edge (a, b) into EH ′ . Note that all vertices in a connected component in H ′

have the same label, and thus need to be chosen together in the decomposition (i.e., all

vertices in a connected component in H ′ appear in the same Vk in the decomposition).

Let HD be a class of graphs on vertex set VH with exactly one diagonal in every 2 × 2

square (and no other edges). That is, any graph HD = (VH, ED) from HD has, for every (i, j)

with 0 � i, j � √
n − 2, exactly one of the edges ((i, j), (i + 1, j + 1)), ((i, j + 1), (i + 1, j)) in

ED and no other edges are in ED . Note that H ′ ∈ HD . The following theorem shows that

any graph HD ∈ HD has the property that there is a connected component touching the

top and bottom or left and right (and therefore H ′ ∈ HD also has this property). Note that

(as mentioned before) every connected component in H ′ ∈ HD would have to be chosen

together in the decomposition, implying that the width of the decomposition is Ω(
√
n).

Theorem 5.1. Consider any graph HD ∈ HD . There exists a connected component of HD

that contains at least one vertex from every row or at least one vertex from every column in

the grid graph.

Proof. Assume HD does not have a connected component that contains a vertex of every

row. Let HU = (VU, EU) be the subgraph of HD generated by all the vertices connected

to the top row, i.e., HU is a collection of those connected components in HD that have at

least one vertex from the top row. By assumption, HU does not contain any vertices from

the bottom row.

For every 2 × 2 subgrid with vertices a, c, b, d and edge (a, b) ∈ EH ′ , we call (a, b) a

boundary edge if exactly one of c, d is in VU and neither of a or b are in VU . Let

HB = (V − VU, EB) be the subgraph of HD where EB is the set of boundary edges. We

assign the colour red to all the vertices in VU and black to all the vertices in V − VU . In

the following two claims we make some observations about the structure of HB . For a

vertex v, let C(v) indicate whether the vertex is coloured red (r) or black (b).

Claim 5.2. There are no degree 3 vertices in HB , i.e., all vertices in HB have degree 0, 1, 2

or 4.

Proof. Assume the contrary. Let u be a degree 3 black vertex. Let (u, v1), (u, v2), (u, v3) be

the only edges incident on u in HB .

By choice, C(u) = b, C(v1) = b, C(v2) = b, C(v3) = b. For the other vertices, there are

only two possibilities:

(i) C(v4) = b, C(w1) = b, C(w2) = r, C(w3) = b, C(w4) = r, and

(ii) C(v4) = b, C(w1) = r, C(w2) = b, C(w3) = r, C(w4) = b.
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Figure 10. The negative result. The dashed diagonal lines are the edges in HU , and the solid diagonal

lines are the edges in HB . There exists a component in HB that spans from the left to right boundary.

Figure 11. The solid lines are the edges in HB , whereas the dotted lines are at the edges in the grid. If

C(u) = b, C(v1) = b, C(v2) = b, C(v3) = b, then the two possibilities for colour assignments to other vertices

are (i) C(v4) = b, C(w1) = b, C(w2) = r, C(w3) = b, C(w4) = r and (ii) C(v4) = b, C(w1) = r, C(w2) = b, C(w3) =

r, C(w4) = b.

Since all the edges in HD are all either between two red vertices or two black vertices and

every 2 × 2 subgrid has exactly one edge, v4 is black and there exists an edge between

(u, v4) in HB . Therefore, every vertex in HB has degree either 0, 1, 2, or 4. See Figure 11.

As in the previous claim, by considering all possibilities for the neighbours of u being

in VU or not, one can conclude immediately that all vertices of degree 1 are on the left or

right border and there are odd numbers of degree 1 vertices on each border.

Claim 5.3. All the degree 1 vertices of HB are on either the left or right border of the grid

graph H . Moreover, there is an odd number of degree 1 vertices of HB on the left and right

borders.

Every connected component in HB has an even number of degree 1 vertices. From

Claim 5.3, we know that degree 1 vertices only occur at the left and right boundaries

of HB , and there are odd numbers of them on the two boundaries. Putting these two

statements together implies that there exists a component in HB (therefore in HD) that

connects the left and the right border. This finishes the proof of Theorem 5.1. See Figure 10

for an illustration.
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Corollary 5.4 (negative result). Every decomposition of a
√
n ×

√
n grid graph H has a

width of Ω(
√
n).

6. Conclusions and open problems

The natural question arising from this work is what other classes of graphs have an ordered

bipartite decomposition and, more importantly, which of them have one of bounded-width

decomposition. Other than the graph classes mentioned above, the bounded-degree [C3, C5]-

free Halin graphs [18], where degree 2 vertices are allowed, and the hexagonal grid graphs

are some other interesting graph classes which have bounded-width decompositions. Most

of the graph classes we have considered appear to have small treewidth. So a natural

question would be to relate these two decomposition schemes. However, we show in

Appendix B that the treewidth and the width of an ordered bipartite decomposition are

incomparable.

Another interesting problem would be to investigate the general complexity of the

ordered bipartite decomposition and possibly characterize its relation to other existing

graph decomposition schemas. Bounded-width decomposition is a natural sufficient

condition for the class of algorithms based on the principle of Algorithm Count to

give an FPRAS almost always. But the necessary condition for the general approach to

work is still unclear. Finally, a challenging open problem is to obtain any such general

result for counting in arbitrary dense graphs.
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Appendix A: Extension to the disjoint triangle case

For simplicity we will discuss only the case where H is a union of n/3 vertex-disjoint

triangles (other cases where H is a union of fewer vertex-disjoint triangles can be handled

similarly). Even though H does not have a decomposition, there is a simple FPRAS for

counting copies of H in random graphs. Let s1, . . . , sn be the vertices in H , with every

triplet s3i+1, s3i+2, s3i+3 forming a triangle in H (for i = 0, .., n/3 − 1).

Let Z = X/ aut(H) be the output of Algorithm Embeddings for inputs H and G ∈
G(n, p = constant), but where each Vi = {si} and � = n (even though V1, . . . , V� is not an

ordered bipartite decomposition). As in Proposition 3.7, we will again investigate the ratio

EG[EA[X2]]

EG[EA[X]]2
,

which equals the critical ratio of averages.

https://doi.org/10.1017/S0963548314000339 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000339
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The numerator,

EG[EA[X2]] = EG[EA[X2
1X

2
2 · · · · · X2

n ]] = EG[EA[X2
1X

2
2X

2
3 ]] · · · · · EG[EA[X2

n−2X
2
n−1X

2
n ]].

The last equality follows because after embedding each triangle, the subgraph of G into

which nothing has yet been embedded is random, with the original edge probability p.

Consider a representative term from this product,

EG[EA[X2
3i+1X

2
3i+2X

2
3i+3]] = EG[EA[X2

3i+1]]EG[EA[X2
3i+2X

2
3i+3]]

= (n − 3i)2
EG[EA[X2

3i+2X
2
3i+3]].

Here, as earlier, we relied on the fact that the graph into which we embed the vertex s3i+2

is random. Let m = X3i+2 and m′ = X3i+3. Therefore, m denotes the number of ways of

embedding the vertex s3i+2 and m′ denotes the number of ways of embedding the vertex

s3i+3. Since the number of edges incident on the vertices in G is binomially distributed,

EG[EA[X2
3i+1X

2
3i+2X

2
3i+3]]

equals

(n − 3i)2
n−3i−1∑
m=0

m2

(m−1∑
m′=0

m′2
(
m − 1

m′

)
pm

′
(1 − p)m−1−m′

)
×

(
n − 3i − 1

m

)
pm(1 − p)n−3i−1−m.

Let Li denote the number of embeddings of a triangle in a random graph from

G(n − 3i, p). Then, the denominator

EG[EA[X]]2 = E[L0]2 · · · · · E[Ln/3−1]2.

Note that E[Li] =
(
n−3i

3

)
3!p3. Using the above equalities, the critical ratio of averages can

be bounded to

EG[EA[X2]]

EG[EA[X]]2
=

n/3−1∏
i=0

EG[EA[X2
3i+1X

2
3i+2X

2
3i+3]]

E[Li]2
�

n/3−1∏
i=0

(
1 +

c

n − 3i − 4

)
,

for a constant c. Again, we obtain a polynomial bound on the critical ratio of averages,

which translates to an FPRAS for counting copies of H in G ∈ G(n, p = constant).

Appendix B: Ordered bipartite decomposition versus treewidth

In this section we show that the treewidth and the width of an ordered bipartite

decomposition are incomparable. In one direction, consider a star graph. The treewidth

is 1, but no ordered bipartite decomposition of width less than n/2 exists. For the other

direction, we consider the 1-subdivision graph of a constant-degree expander, as explained

below.

Let H be a constant-degree expander graph. Consider the 1-subdivision graph S(H) of

H . From Proposition 4.4, S(H) has an ordered bipartite decomposition of bounded width.

So the only fact that remains to be verified is that the vertex expansion ratio of S(H) is

a constant.
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Lemma B.1. A 1-subdivision graph of a constant-degree expander is an expander.

Proof. Let A be a set of vertices in H . Let α (= constant) denote the vertex expansion

ratio of H and 	 denote the maximum degree in H . Let S(H) denote the 1-subdivision

graph of H . Let B be a subset of vertices from NS (H)(A). We consider the vertex expansion

ratios for two different scenarios of B.

• Case B = ∅. In this case, |NS (H)(A)| � |NH (U)| � α|A|.
• Case B �= ∅. First assume that B = NS (H)(A). Under this assumption, NS (H)(A ∪ B) =

NH (A). Say that |NH (A)| = λ. Now, even if B ⊂ NS (H)(A), |NS (H)(A ∪ B)| is at least λ.

Therefore,

|NS (H)(A ∪ B)| = λ � α|A| � α

	 + 1
(|A| + |B|).

The final case to consider involves a set of vertices C in S(H), which are not in H . In this

case, |NS (H)(C)| � |C|/	.

From the above case analysis it is clear that the vertex expansion ratio of S(H) is a

constant, and the proof follows.

S(H) has constant expansion which implies a treewidth Θ(n) [20], whereas S(H) has an

ordered bipartite decomposition of bounded width. Therefore, treewidth and the width of

an ordered bipartite decomposition are incomparable.
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