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The wall-pressure spectrum of
high-Reynolds-number turbulent boundary-layer

flows over rough surfaces
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Experiments have been performed on a series of high-Reynolds-number flat-plate
turbulent boundary layers formed over rough and smooth walls. The boundary layers
were fully rough, yet the elements remained a very small fraction (<1.4 %) of
the boundary-layer thickness, ensuring conditions free of transitional effects. The
wall-pressure spectrum and its scaling were studied in detail. One of the major
findings is that the rough-wall turbulent pressure spectrum at vehicle relevant
conditions is comprised of three scaling regions. These include a newly discovered
high-frequency region where the pressure spectrum has a viscous scaling controlled by
the friction velocity, adjusted to exclude the pressure drag on the roughness elements.
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1. Introduction

The practical and environmental conditions of almost all large-scale fluid dynamic
applications ensure that the flow surfaces are rough. The roughness intensifies and
changes the scaling and character of the fluctuating pressure field experienced on those
surfaces. These boundary-layer pressure fluctuations are of engineering interest since
they are responsible for flow-induced noise and vibration. They are also of scientific
interest because they provide a measure of the turbulence structure of the boundary
layer weighted in favour of the near-wall dynamics. Despite their importance,
remarkably little is known about pressure fluctuations produced by rough-wall
boundary layers. The absence of data is particularly acute for practically-relevant
conditions that combine high Reynolds numbers and large boundary-layer thickness
to roughness size ratios, conditions at which universal scalings and behaviours are
most likely to be observed. The broader purpose of the research reported here is to
fill this knowledge gap through experimental measurements. In this paper, we focus
on the wall-pressure spectrum and its frequency scaling.

The fundamental fluid dynamics of rough-wall boundary layers (without reference to
wall pressure) has been reviewed by Jiménez (2004). Almost all practical rough walls
are ‘k-type’, typified by the classic sand-grain roughness experiments of Nikuradse
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(1950). The effect of such roughness on the mean velocity profile is to shift the
logarithmic region. Following Nikuradse, the shift can be characterized in terms of
a comparative distance ks referred to as the equivalent sand-grain roughness. It is
important to note that ks is dependent on the aerodynamic effects of a rough surface,
and thus part of the flow solution, rather than a parameter that can be inferred a
priori from a particular rough surface shape. The equivalent sand-grain roughness
is usually greater than the geometric height of the roughness kg, but dimensional
analysis suggests that for larger roughness sizes the two should be proportional. In
practice ks/kg is expected to become constant around a roughness Reynolds number
k+g = kgUτ/ν ≈ 80, where Uτ is the friction velocity and ν is the kinematic viscosity.
Above this threshold (where the roughness elements project into the log layer) the
surface is conventionally termed ‘fully rough’. This is the regime of broadest practical
application and the one where scaling laws will be most apparent. In this regime, the
skin friction is usually thought of as due to form drag on the roughness elements
(Simpson 1973). Below this threshold (where the roughness elements are serving to
disrupt the mechanics of the buffer layer), roughness effects become influenced by
geometry-dependent viscous drag mechanisms, and the term ‘transitional roughness’
is used.

The vertical scale of the roughness kg is also important in relation to the
boundary-layer thickness δ. Jiménez (2004) notes that, for boundary layer to roughness
size ratios δ/kg less than approximately 50, the roughness disrupts the bulk of the
log layer and such flows may be better understood as flows over obstacles, which
are again dependent on the roughness geometry details. While the value of 50 should
only be thought of as a rough guideline, it is clear that in most practical applications
δ/kg will be substantially greater than this value and thus presumably large enough
for the details of the roughness geometry to be unimportant. It is in this regime
that the most scientifically interesting and practically useful scaling behaviour should
be observed. It is expected that at high δ/kg the turbulent boundary layer should
display wall similarity (Raupach, Antonia & Rajagopalan 1991) so that the outer
portions of the boundary layer become independent of the details of the roughness.
Flack, Schultz & Shapiro (2005) and Schultz & Flack (2007) present measurements
of transitionally and fully rough turbulent boundary layers with large δ/kg that appear
closely consistent with this expectation.

The dual requirement of high k+g and high δ/kg implies a boundary-layer-thickness
Reynolds number δ+ = δUτ/ν of at least 4000. Few existing data sets meet these
criteria, and almost none are concerned with the behaviour of pressure fluctuations at
the wall. The absence of studies at high-Reynolds-number, high-scale-ratio conditions
is an understandable consequence of the fact that most research of this type is
conducted in laboratory-scale wind tunnels. The speed and size limitations of most
of these facilities practically guarantees that large roughness Reynolds numbers
cannot be achieved except with roughness elements that are large compared to the
boundary-layer thickness.

The roughness height is, of course, only one measure of the geometry of a rough
surface. The sparseness of the roughness elements λ, defined as the forward projected
area of the elements divided by the wall area they cover, is another (Dvorak 1969).
This parameter, which is discussed further by Simpson (1973) and George & Simpson
(2000) among others, can be thought of as a measure of number density of roughness
elements. When λ is small, the surface is characterized by a few widely separated
roughness elements and the drag is low. As the number of elements and λ increase
the drag increases, reaching a maximum at the point where adjacent elements begin
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sheltering each other. At higher values of λ the sheltering effect is increased and
the drag is reduced. Peak drag occurs at approximately λ = 1/7. Both kg and λ
are parameters that presume a surface composed of discrete elements or grains, and
even then may represent an incomplete characterization of a rough surface. Precise
characterization of the surface shape would seem to be an essential part of defining
the boundary conditions of a repeatable rough-wall boundary-layer experiment.

The fully rough boundary layer is thought of as being achieved when the drag on
the roughness elements has become essentially independent of viscosity and where
the elements project into the log layer. While the condition cited above (k+g & 80)
represents the traditional criterion for this behaviour, a significantly different view has
been proposed by Mehdi, Klewicki & White (2010, 2013). Their arguments are based
on insight from studies of smooth-wall boundary layers, most recently represented
by the work of Klewicki, Fife & Wei (2009), Marusic et al. (2013), Meneveau &
Marusic (2013) and Klewicki (2013), which indicate a four-layer structure to the
boundary layer controlled by the relative importance of viscous forces, mean flow
inertia and turbulent inertia (the latter represented by the Reynolds shear stress). One
consequence of this is that significant viscous influence is thought to extend a much
greater distance from the wall than previously envisaged, to a distance y+ ∼= 3

√
δ+.

The four-layer structure introduces an additional distance scale given by the geometric
mean of the viscous and boundary-layer scales

√
νδ/Uτ , a distance from the wall

identified by Bradshaw (1967) as proportional to the centroid location of the Poisson
equation integrand responsible for the wall-pressure fluctuations. For rough walls,
Mehdi et al. (2010, 2013) argue that there is a region, extending above the tops of
the roughness elements to the point ym where the Reynolds shear stresses reach a
maximum, where viscous forces will play a substantial role. This implies, at the very
least, that the inertially dominated rough-wall flows assumed to characterize the fully
rough condition may not appear until much higher roughness Reynolds numbers,
if at all. Mehdi et al. (2010) introduce the averaged scales

√
ksδ and

√
ksν/Uτ

as candidates for scaling the position of ym and thus the position where the flow
transitions to inertially dominated dynamics.

Pressure fluctuations at the wall of a turbulent boundary layer can be mathematically
expressed through Poisson’s equation as a weighted integral of source terms across
the boundary layer (e.g. Chase 1980; Blake 1986). The weighting factor is of the
form exp(−ky), where k is the wavenumber of the turbulence and y the distance from
the wall. The implication is that the wall-pressure autospectrum will be dominated by
contributions at high frequencies from turbulent structures close to the wall, and at low
frequencies from larger-scale outer boundary-layer motions. As a result one expects
low-frequency and high-frequency pressure fluctuations to obey different scaling laws.

This behaviour is fairly well established for smooth-wall boundary layers, for which
there are numerous studies (see reviews by Willmarth 1975, Bull 1996 and Goody
2004, for example). Smooth-wall measurements in the very low-frequency range
(ωδ/Uτ <2, see Panton et al. 1980; Farabee & Casarella 1991) show the autospectrum
increasing as the square of the frequency, or slower. In the mid-frequency range,
the pressure spectrum reaches a broad maximum and then begins to decrease, the
maximum usually occurring near ωδ/Uτ

∼= 2 (though this value may be quite Reynolds
number dependent, see Klewicki, Priyadarshana & Metzger 2008). Spectra in the low-
to mid-frequency range are generally believed to scale on ‘outer region variables’
though there are differences of opinion on whether the appropriate scaling velocity
is Ue (the edge velocity) or Uτ , and the appropriate distance is the boundary-layer
displacement thickness δ∗ or δ. Most authors (e.g. Bull 1996; Goody 2004) favour
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normalizing the pressure spectrum level on the wall shear stress τw (= ρU2
τ ). It

is generally accepted that spectra in the high-frequency range conform to the
Kolmogorov-type scaling, in which the pressure spectrum φ(ω) is expected to be
a unique function of frequency ω when normalized as φ(ω)U2

τ/τ
2
wν versus ων/U2

τ .
The existence of two scalings has traditionally been taken to imply a universal overlap
region where both apply. As argued theoretically by Bradshaw (1967) and Panton
& Linebarger (1974), the spectrum should vary as ω−1 in this region. This slope
does not appear to be achieved in practice, with most measurements (e.g. Blake
1970; McGrath & Simpson 1987) showing an exponent of −0.7 to −0.8. At the very
high Reynolds numbers of atmospheric boundary layers, Klewicki et al. (2008) have
shown an exponent of −1 for a flow over a transitionally rough surface.

The presence of roughness increases the overall wall shear stress and thus generally
intensifies the turbulence in the boundary layer and the turbulent pressure fluctuations
it produces. The roughness elements also introduce new local sources of pressure
fluctuations as they shed vortices and as they respond to the unsteady inflow
associated with the oncoming boundary layer (Yang & Wang 2013). There have
been a number of studies where wall-pressure fluctuations have been measured in
the presence of some roughness, but few where systematic studies of roughness
effects have been performed. Major studies are summarized in table 1, illustrating
the range of boundary-layer momentum-thickness Reynolds numbers, the surfaces,
the range of roughness Reynolds numbers k+g , the ratio of boundary-layer thickness
to roughness size δ/kg, and the range of boundary-layer thickness to viscous-scale
ratios δ+ = δUτ/ν studied. It is immediately apparent that there have been almost no
previous studies of pressure fluctuations for rough-wall boundary layers with large
enough k+g (&80) and δ/kg (&50) for the flow to be nominally free of transitional
effects. Not surprisingly, therefore, these studies do not present a conclusive picture
of the scaling or behaviour of pressure fluctuations under rough-wall boundary layers.

Blake (1970) performed a fairly comprehensive study of pressure fluctuations for
a set of three rough surfaces. He made wind-tunnel measurements using pairs of
microphones with 0.8 mm pinholes in an approximately 50 mm thick boundary layer.
Experiments were performed at two free-stream speeds with a smooth wall and for
three different rough walls producing momentum thickness Reynolds numbers of
Reθ = 21 000–30 000. The latter consisted of 3 mm diameter grit particles scattered
with an average spacing of 3.5, and 1.4 mm diameter particles scattered with average
spacings of 4.9 and 2.8 mm. These cases, referred to by Blake as D-L (dense-large),
S-S (sparse-small) and D-S (dense-small), respectively, all produced fully rough flows
(k+g = 170–410) with scale ratios (δ/kg) from 26 to 42. Blake attempted to establish
the scaling of the pressure autospectrum measured over these different surfaces. He
used the outer-region boundary-layer scaling φ(ω)Ue/τ

2
wδ
∗ versus ωδ∗/Ue to collapse

the lower-frequency portions (0.3 < ωδ∗/Ue < 2.5) of the spectra, which was found
to work particularly well in correlating the smooth-wall and small-roughness cases
(S-S and D-S). Blake proposed that pressure fluctuations at higher frequencies should
scale as φ(ω)Uτ/τ

2
wkg versus ωkg/Uτ , though the collapse of his own measurements

on this scaling was not perfect. Specifically, the largest roughness cases were least
well correlated with this scaling and there appeared to be an effect of roughness
spacing on spectral level.

Aupperle & Lambert (1970) also studied pressure fluctuations for boundary
layers over a smooth wall and over walls roughened with grade 36, 12 and 4
grit particles spread randomly with an average particle spacing of approximately 4.6
diameters. Measurements were carried out for boundary-layer thicknesses ranging
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from 28 to 38 mm depending on roughness, using ceramic transducers and pinhole
microphones with 0.7 mm and 0.5 mm sensing diameters respectively. As shown in
table 1, the grade 12 and 4 rough surfaces were fully rough, but had boundary-layer
thickness to roughness size ratios well below that needed for the flow to be free of
transitional effects. The 36 grit case, however, just meets Jimenez’s criteria. Aupperle
& Lambert paid particular attention to the exact placement of the roughness elements
around the transducers, but found that it had almost no effect on the measured
autospectrum, a finding confirmed in the study of Smith (2008). Their pressure spectra
show levels that increase with roughness size at low frequencies (<7 kHz). Unlike
Blake (1970) they show no outer boundary-layer scaling of their data. (Indeed, their
measurements do not display the low-frequency maximum in the pressure spectrum
seen in other data sets.) They do, however, find that the spectra for their three rough
surfaces collapse when normalized on the inner roughness scaling φ(ω)Uτ/τ

2
wksCf

versus ωks/Uτ . Curiously, the collapse is worst at the highest frequencies ωkg/Uτ >50,
where the inner scaling would be expected to be most appropriate. This is identical
to Blake’s (1970) inner scaling with the exceptions that the equivalent sand-grain
roughness ks is used in place of the geometric roughness size kg and of the division
of spectral level by the skin friction coefficient Cf . Blake (1971) argues that although
this normalization collapses the spectra, it is more empirically based.

Varano (2010) examined the pressure spectra produced by a 43 mm thick boundary
layer growing in air over a wall populated with 1 mm radius hemispheres in square
arrays of 4, 5.5, 8, and 11 mm (termed fetches 1 to 4) at 20 and 27 m s−1. Unlike
Aupperle & Lambert (1970), Varano found that the pressure spectrum at high
frequencies was quite strongly dependent on transducer placement relative to the
roughness elements, and therefore compared different roughness cases looking only
at pressure fluctuation measurements made at each roughness-cell centre, as far as
possible from adjacent elements. Varano (2010) attempted to scale the high-frequency
portion of the pressure spectrum first with Blake’s (1970) and Aupperle & Lambert’s
(1970) scaling, finding that the former provided a fair collapse whereas the latter did
not. He went on to argue that in the fully rough regime the friction velocity Uτ , should
be proportional to the edge velocity Ue in which case Blake’s scaling would become
φ(ω)/ρ2U3

e kg versus ωkg/Ue. This scaling was found to produce comparable collapse
to that of Blake (1970). Varano (2010) also concluded that element spacing was not
an important factor when concerned with scaling the high-frequency surface-pressure
spectrum.

There have been a few other scattered measurements of pressure fluctuations
under rough-wall boundary layers. Willmarth & Wooldridge (1962) noted that
pressure fluctuations measured with their smooth-wall configuration were increased by
25–50 % when the surface was left unfinished and when upstream fittings were left
protruding slightly from the flow surface. Killen & Almo (1971) measured pressure
fluctuations on a rotating roughened cylinder in a water tank, and clearly show an
increase of pressure fluctuations with roughness size. Mulhearn (1976) studied the
pressure fluctuations downstream of the start of a series of rectangular spanwise
slots cut into the test wall. The slots were fully rough but quite large compared
to the boundary-layer thickness (δ/kg

∼= 20). Mulhearn saw significant differences
in pressure spectra measured between the slots and in the slots. His data do not
show rapid variations with distance downstream, but those variations which are
visible appear to collapse with Blake’s inner scaling. Klewicki et al. (2008) measured
pressure fluctuations produced by the atmospheric boundary layer over the Utah
desert, which they estimate to have been transitionally rough.
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Evidence of the rough-wall pressure scaling from roughness noise measurements is
also mixed. Farabee & Geib (1991) used a linear array of large-diameter microphones,
placed downstream of roughness fetches, as a wavenumber filter. This enabled them
to extract estimates of the intensity of the wavenumber frequency pressure spectrum at
the acoustic wavenumber. They found the pressure fluctuations to scale in a manner
consistent with Blake’s (1970) outer scaling. Conversely, Hersh (1983) measured
roughness noise emanating from the exhaust of a roughened pipe as a function
of speed and roughness size and observed an approximate scaling that would be
consistent with Blake’s inner scaling with the geometric roughness size replaced by
the effective sand-grain roughness.

In summary, we find that there have been no previous systematic studies of
pressure fluctuations in rough-wall boundary layers with large enough roughness
Reynolds number k+g & 80 and boundary layer to roughness scale ratio δ/kg & 50 for
the flow to be free of transitional effects. In other words, there have been no studies
that have examined the rough-wall pressure fluctuations in the regime where universal
scalings and behaviours are most likely to be observed, and where those scalings are
of most practical and scientific value. The purpose of the present study is to therefore
extend the existing database of boundary-layer fluctuating pressure measurements into
this regime. In this paper we report on those measurements, focusing on the scaling
of the wall-pressure time spectrum. We find that, for single-scale roughness elements,
the boundary-layer pressure spectrum contains three distinct scaling regions, including
a previously un-identified viscous scaling at the highest frequencies.

2. Apparatus and instrumentation
2.1. Wind tunnel configuration

This study was conducted in the Virginia Tech Stability Wind Tunnel. This facility
is capable of generating flow speeds up to 80 m s−1 and has removable test sections
7.3 m long with square cross-sections of 1.83 m on edge. The anechoic test section
(Devenport et al. 2013) employed for this study, has side walls made of a stretched
Kevlar fabric that contain the flow while remaining acoustically transparent. Sound
passing out of these is absorbed in one of two anechoic chambers flanking the test
section. The floor and ceiling of the test section are also treated to minimize acoustic
reflections. Turbulence levels in the closely uniform free stream of the empty test
section are 0.024 % at 30 m s−1 and 0.031 % at 57 m s−1.

To grow thick high-Reynolds-number turbulent boundary-layer flows within the
anechoic test section, one of the Kevlar side walls was replaced with a hard surface
consisting of six modular 1.22 m × 1.78 m framed Lexan panels (figure 1). The
mounting arrangement allowed the position of each panel to be independently adjusted
so as to form a continuous, smooth 1.78 m wide and 7.32 m long test surface with
a near-zero pressure gradient.

The boundary-layer flow surface was located a nominal distance of 0.1 m inside
the test section side wall to make room for the adjustment hardware. A 2.4 m ×
2.4 m curved fairing with a smooth ABS plastic surface was used to create a gradual
transition between the wind tunnel contraction and the leading edge of the surface
(Morton 2012). Boundary-layer trips were mounted on the fairing at positions 1.2 m
(primary trip) and 2.1 m (forward trip) upstream of the test surface leading edge. Both
trips consisted of strips of 19 mm high aluminium angle mounted with the flange
oriented downstream. This arrangement produced boundary-layer thicknesses in the
test section downstream of over 0.2 m.
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2.1 m 7.32 m

0.1 m1.19 m

1.
83

 m

Kevlar side wall

Boundary layer flow surface
Primary trip

Contraction fairing
Forward trip

Principal measurement area
6.5 m < x < 7.0 m

x
y

FIGURE 1. Test section configuration and coordinate system.

1 mm
radius

(a) (b) (c)

3 mm
radius

3 mm
radius

5.5 mm
16.5 mm

16.5 mm

5.5 mm

FIGURE 2. Rough surfaces (a) square array of 1 mm radius hemispheres, (b) square array
of 3 mm radius hemispheres, (c) quasi-random distribution of 3 mm radius hemispheres.

2.2. Rough surfaces
Close-up photographs of the three rough surfaces tested are shown in figure 2.
These consist of: a square array of 1 mm radius hemispheres with 5.5 mm spacing
and with the rows of elements aligned with the flow direction; a scaled version of
the first surface, with 3 mm hemispheres separated by 16.5 mm; a pseudo-random
distribution of 3 mm surfaces with the same average element density as the second
surface. (Data files containing a complete listing of the locations of all the elements
in the pseudo-random surface can be obtained from the authors.) All three surfaces
had the same sparseness ratio λ of 0.052, matching Varano’s (2010) fetch 2. The
surfaces were moulded from epoxy resin backed by paper and Kevlar, or paper and
fibreglass, substrates. The 1.8 m wide and 1.2 m long moulded sections were then
glued to 3 mm thick aluminium plates of the same size, designed to be bolted to the
Lexan panels of the boundary-layer flow surface. The aluminium plates were shimmed
to eliminate gaps or steps between adjacent sections of the rough surfaces. For the
ordered surfaces, care was taken to ensure that the rows of roughness elements
were aligned and contiguous between successive sections. The random surface was
designed with a distribution of elements that was periodic over the 1.2 m length of
each section so that there would be no interruption in the element pattern between
adjacent sections. Note that the rough surfaces were only applied to the flat section of
the test wall, so that each roughness fetch began 1.19 m downstream of the primary
trip (figure 1). Figure 3 shows an overall view of the one of the roughness fetches
(the 3 mm ordered array) installed. Both 3 mm hemispherical surfaces included close
to 50 000 elements.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

74
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.743


Wall-pressure spectrum of turbulent flows over rough surfaces 269

FIGURE 3. The 3 mm ordered array of hemispheres as installed and viewed from
downstream. The width of the fetch is 1.8 m. The white components in the foreground
are the surface-pressure microphone holders.

2.3. Velocity instrumentation
Velocity fluctuation measurements were made in the smooth- and rough-wall boundary
flows using single- and four-sensor hot-wire anemometer probes. The four-sensor
probes used (Auspex Corportation model AVOP-4-100) consist of two orthogonal
arrays of X-wires within a 0.75 mm3 measurement volume. This probe provides
instantaneous measurement of the three components of flow velocity, with the
redundant sensor reducing sensitivity to some gradient errors. Wittmer, Devenport
& Zsoldos (1998) showed this type of probe to be capable of accurate Reynolds
stress measurements to within 3 mm of a wall under conditions similar to those of
the present study. Angle calibrations of the four-sensor probes were performed using
the look-up table method of Wittmer et al. (1998). Single hot-wire probes used to
provide near-wall measurements (Auspex Corporation model AHWU-100) consisted
of a 1 mm-long sensor held perpendicular to the flow and parallel to the wall on a
conventional arrangement of two parallel prongs.

Both single- and four-sensor probes were supported in the tunnel on a three-axis
traverse gear with 0.025 mm resolution. Probes were supported from downstream on a
1 m long sting support so as to minimize any interference from the traverse. Sensors
were operated in constant-temperature mode using constant-temperature anemometer
bridges (Dantec Dynamics StreamLine) optimized to give a flat frequency response
below 18 kHz. Anemometer signals were recorded using a 64-channel 16-bit Agilent
E1432 digitizer. Probes were regularly calibrated for velocity in the wind tunnel free
stream and corrected for temperature drift using the method of Bearman (1971).

2.4. Pressure instrumentation
Mean wall-pressures were measured using 24 1/4 mm diameter pressure taps located
on the floor and ceiling of the test section bounding the boundary-layer test wall. Taps
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were located in rows between 0.25 and 0.36 m away from the test wall. Mean pressure
data were collected using an Esterline NetScanner Model 98RK pressure scanner.

Surface-pressure fluctuations were measured using an array of five Bruel and Kjaer
type 4138-A-015 1/8 in. microphones fitted with 1/2 mm pinhole caps. Devenport
et al. (2011) studied the effects of pinhole size on wall-pressure fluctuations measured
under a wall-jet boundary layer and found that a 1/2 mm pinhole was sufficient to
spatially resolve pressure fluctuations within 1 to 2 dB for boundary-layer edge
velocities down to well below 20 m s−1, the lowest speed used in the present study.
A sixth B&K 4138 microphone, with a factory-provided salt and pepper cap, was
used to sense the low-frequency acoustic background of the wind tunnel so it could
be identified and eliminated from the signals of the other sensors.

Microphones were mounted with their caps flush (to within ±0.02 mm) with
either the smooth wall or the substrate of each rough surface. Given Varano’s (2010)
observations, microphones were placed as far as possible from adjacent roughness
elements. For the ordered surfaces most microphone locations were therefore at the
centre of a cell of four elements. The random surface design was initially selected
from a number of statistically identical designs so as to avoid direct conflict between
the planned microphone locations and the roughness elements. Microphones were
mounted in plastic sleeves that allowed easy removal and replacement in the test wall.
This allowed repeated measurements of the same flow with different microphone
configurations. Microphone power, signal conditioning and data acquisition were
handled using B&K Type 3050-A-060 LAN XI models which provided 24-bit
simultaneous sampling at 51.2 kHz. The amplitude gain of the microphones was
calibrated daily using a B&K type 4228 Pistonphone operating at 250 Hz.

Amplitude and phase response of the B&K type 4138 microphones fitted with
pinholes was determined using an unaltered model 4138 microphone as a reference.
Calibrations were performed in an anechoic chamber using the Agilent E1432 digitizer
to generate white noise through a University Sound ID60C8 speaker. The pinhole
cap produced a resonant peak in the microphone response at around 15 kHz which
produced amplitude and phase variations that could be accurately fitted to the transfer
function of a simple second-order system. Subsequent tests in the wind tunnel showed
the shape of the resonant peak to depend on flow speed. Specifically, it was found
that the damping of the response decreases with increase in Reynolds number, as
the relative magnitude of the viscous effects is reduced. Microphone calibrations
were therefore optimized during post-processing to account for these effects. Only
adjustments to the damping were significant and then only at flow speeds above
20 m s−1, the largest reductions being approximately 40 % at 60 m s−1.

3. Results and discussion
3.1. Mean pressure and velocity measurements

Measurements were made at free-stream velocities of 30 and 60 m s−1. Figure 4
shows the mean pressure coefficient as a function of streamwise distance x for
each of the different surface conditions. For all wall conditions there are slight
residual favourable streamwise pressure gradients acting on the flow. The average
gradient is smallest for the smooth wall, 1 mm ordered roughness and 3 mm random
roughness conditions at approximately −0.005 m−1, and strongest for the 3 mm
ordered roughness cases, at approximately double this value. The implied accelerations
are mild (with 7 × 10−10 < −(ν/U2

e )(dUe/dx) < 3 × 10−9) but not negligible as will
be discussed below.
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FIGURE 4. Mean pressure coefficient variation along the test wall. Smooth wall: , Ue =
30 m s−1; , 60 m s−1. 1 mm ordered roughness: E, 30 m s−1; 1, 60 m s−1. 3 mm
ordered roughness: , 30 m s−1; , 60 m s−1. 3 mm random roughness: e, 30 m s−1;
a, 60 m s−1.
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FIGURE 5. Mean velocity profiles, normalized on outer scales (a) and inner scales (b).
See figure 4 for symbol definitions.

Mean velocity and turbulence profiles were measured for all cases at x = 6.98 m,
close to the centrespan of the wall (z= 0). Exact spanwise locations were adjusted by
a few millimetres so as to place the probes as far as possible from nearby roughness
elements and avoid local element effects. With the smooth wall, mean velocity profiles
measured at z = ±0.153 and ±0.457 m were found to be almost identical to those
measured at the centreline, establishing the mean two-dimensionality of the flow.
A similar check on the two-dimensionality was made by examining mean velocity
profiles at x= 4.7 m, see Forest (2012) and Meyers (2014) for details.

Mean velocity profiles measured for the four surface conditions at two speeds, at
x = 6.98 m, are compared in figure 5. Boundary-layer parameters determined from
the mean velocity profiles are listed in table 2. The smooth wall produces a 231 mm
thick boundary layer with an extensive semi-logarithmic region and momentum
thickness Reynolds numbers of 35 700 and 68 700 at 30 and 60 m s−1. The addition
of roughness, of course, increases the velocity defect near the wall and shifts the
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FIGURE 6. Reynolds shear stress profiles for the rough-wall boundary layers normalized
on the friction velocity. See figure 4 for symbol definitions.

profile downward on the semi-logarithmic scale of figure 5(b). Interestingly, the
defect is only slightly greater with the 3 mm than the 1 mm roughness, and the
mean velocity profiles appear almost identical for the random and ordered 3 mm
surfaces. Adding roughness to the flow surface caused a slight reduction in the
boundary-layer thickness measured at x = 6.98 m (see table 2), probably reflecting
a shift in the virtual origin of the boundary layer. Boundary-layer thicknesses only
show slight changes with flow speed. The outer portion of the boundary-layer profiles
show a somewhat weaker wake region than other measurements at high Reynolds
numbers. This is a well-known effect of a favourable streamwise pressure gradient
that appears even when that gradient is mild (Oweis et al. 2010), as in the present
flows.

Skin friction coefficients for the flows were determined using the same profile-fitting
method as employed by Blake (1970) and Aupperle & Lambert (1970) and detailed by
Schlichting (1979). This involves a two-parameter optimization of the friction velocity
Uτ and the equivalent sand-grain roughness ks achieved by fitting the mean velocity
profile to the form

U
Uτ

= 1
κ

ln
(

yUτ

ν

)
− 1
κ

ln
(

ksUτ

ν

)
+C (3.1)

with C= 8.5. The friction velocity estimates (listed in table 2) are verified in figure 6,
which shows the independently measured Reynolds shear stress profiles normalized on
these estimates. As would be expected, the peak values of −uv/U2

τ are all one, to
within the scatter of the measurement.

Examining the results in table 2 we see that friction velocity ratios Uτ/Ue are
approximately 50 % larger for the rough surfaces and almost identical for the random
and ordered 3 mm hemispheres. The friction velocities imply roughness Reynolds
numbers (k+g ) that, according to conventional criteria, suggest fully rough flows in
all cases; k+g varies from 91 for the 1 mm surface at 30 m s−1 to 507 for the 3 mm
ordered surface at 60 m s−1. Consistent with this, the effective sand-grain roughness
is a nearly constant multiple of the geometric roughness height. Boundary-layer
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FIGURE 7. Reynolds normal stress profiles. See figure 4 for symbol definitions. Note
false origins for w′2 and u′2. Dashed line on the u′2 profiles has a slope, in terms of
the natural logarithm of y+ of −1.26. Dashed line over the w′2 profiles has 30 % of this
slope, matching the semi-logarithmic region seen by Fernholz & Finley (1996).

thickness to roughness size ratios vary from the mid-70s for the 3 mm surfaces to
over 200 for the 1 mm roughness cases. All the present rough-wall flows, therefore,
reach conditions at which we might expect universal scaling behaviour to become
apparent.

As already noted, a complicating factor in the concept of fully rough conditions is
Mehdi et al.’s (2010, 2013) argument that viscous effects should play a significant role
in the boundary layer from the wall out to the Reynolds shear stress maximum. As
seen in figure 6, the Reynolds stress maxima all appear well above the roughness tops,
at a roughly constant absolute position of y∼= 11 mm, corresponding to y/δ∼= 5 % and
y+ ∼= 1000 and 2000 at the two flow speeds. Note that this distance is comparable to
the roughness spacings (of 5.5 and 16.5 mm), so the local flows around the elements
may also have influenced the lower portions of the profiles, which were deliberately
measured over the gaps between roughness elements.

Turbulence normal stress profiles, plotted in semi-logarithmic form, are shown for
the rough-wall boundary layer cases in figure 7. The profiles show the expected
dominance of u′ velocity fluctuations over most of the boundary layer and the
suppressed level of v′ fluctuations due to the non-penetration condition at the wall.
Meyers (2014) shows that peak turbulence levels in the boundary layer are quite
similar to those of Blake (1970) although those profiles, measured at significantly
lower Reynolds numbers, have higher turbulence levels in the outer region. While
there is some uncertainty in the u′2 data, these profiles have a variation in the outer
part of the boundary layer not inconsistent with the semi-logarithmic region seen in
other high-Reynolds-number boundary-layer measurements, with a natural-logarithm
slope of −1.26. This is the value established by recent smooth-wall studies of Marusic
et al. (2013) and Meneveau & Marusic (2013). The w′2 profiles display a somewhat
clearer semi-logarithmic region with a slope quite closely consistent with the highest
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FIGURE 8. Microphone measurement locations. Location of the reference microphone used
for acoustic background detection is indicated by the circle.

Reynolds number measurements of Fernholz & Finley (1996), for a boundary layer
at Reθ = 4736 and a number of other smooth-wall datasets reviewed by Jiménez &
Hoyas (2008).

Spatial resolution of the four-sensor hot-wire probe is an important consideration
in interpreting the turbulent stress results. Based on the standard established by a
number of previous studies (e.g. Hutchins et al. 2009) for the resolution of the
nearest wall structure of smooth-wall boundary layers the present measurements are
unquestionably under-resolved. The sensor lengths and separations in the four-sensor
probes correspond to approximately 70 and 140 wall units at 30 and 60 m s−1, much
larger than the value of 20 normally quoted as necessary for near-wall turbulence
(Ligrani & Bradshaw 1987). However, our goal here was merely to reveal the outer
form of the stress profiles including the anticipated plateau in the Reynolds shear
stress. Varano (2010) performed an exhaustive study of skin-friction measurement
methods for rough-wall turbulent boundary layers and found the measurement of
the Reynolds shear stress in the plateau to be particularly accurate. The present
measurements were performed starting at 3 mm from the wall, a y+ of close to
280 and 510 at 30 and 60 m s−1 respectively. The four-sensor probe measurements
of Wittmer et al. (1998) in a fully developed pipe flow with quite similar absolute
conditions to the present 30 m s−1 experiments showed under-measurements of the
Reynolds shear stress of 8 %, 4 % and 1 % at y+ = 300, 450 and 600 respectively,
these last two values being smaller than the likely measurement uncertainty. If we
assume this error scales with the size of the sensor, in wall units, then we would
expect these errors to apply at roughly twice the y+ values for the 60 m s−1 cases.
These errors seem likely to emphasize the roll off in the Reynolds shear stress at
the lower end of the y+ range in figure 6, but unlikely to influence the peak value
and its location. We can assess the influence of probe resolution on the normal
stresses using the results of Hutchins et al. (2009) made for a single-sensor probe.
They found that sensor lengths of 79 and 153 produced under-measurement of the
streamwise turbulence normal stress in the outer portions of a turbulent boundary
layer at y+ = 280 of approximately 6 % and 1.5 %, respectively, and at y+ = 540 of
approximately 3 % and 1.2 %, respectively. These errors should be borne in mind
when interpreting the left-most portions of the profiles in figures 6 and 7.
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3.2. Wall-pressure spectra
Microphone measurements were made at a series of positions defining streamwise
and spanwise lines around x = 7 m, as illustrated in figure 8. Measurements were
made at multiple positions to verify the homogeneity of the wall pressure field,
to define streamwise and spanwise separations for the measurement of space–time
correlations and, through averaging, to reduce the uncertainty in wall-pressure time
spectra. Two-point correlation results, discussed in more detail by Forest (2012) and
Meyers (2014), show the correlation between boundary-layer pressure fluctuations
falling to zero for spanwise separations of more than a few displacement thicknesses.
Turbulent pressure fluctuations measured at the reference microphone location (marked
asE in figure 8) were therefore independent of those measured at other microphone
positions. Surface-pressure cross-spectra with the reference microphone could therefore
be used to provide a measurement of the acoustic contribution to spectral levels.
Significant acoustic contamination was only observed below 100 Hz, with broadband
contamination not exceeding 3 dB for frequencies above 12 Hz. At frequencies where
the acoustic contribution was a small fraction of the measured levels it was subtracted
from those levels. Data at frequencies where the coherence between the measurement
and reference microphone exceeded 0.08 were discarded.

Wall-pressure fluctuations for all the rough-surface conditions were measured at
flow speeds of 20, 30, 40, 50 and 60 m s−1. The smooth-wall measurements were
made at 22.4, 33.6, 44.8, 56.0 and 67.2 m s−1, the inadvertent difference being due
to a mis-connected pressure transducer. Figure 9 shows absolute surface-pressure
spectra measured at these conditions. Spectra are single sided and scaled to a 1 Hz
bandwidth and are shown using multiple curves representing different locations along
the spanwise row at x= 6.98 m.

The results for the smooth wall (figure 9a) display traits typical of wall-pressure
spectra observed in other zero-pressure-gradient turbulent boundary-layer flows. A
low signal to noise ratio limited the data at very low frequencies, though there is
clear evidence of a low frequency rise for each of the spectra before reaching a
shallow maximum. In the mid-frequency range after the spectral peak, a well-defined
linear ‘overlap’ region is exhibited before the wall-pressure spectra begin their sharp
roll-off at high frequencies due to dissipation. Data acquisition system limitations
restricted the Nyquist frequency to 25.6 kHz, causing clipping of the spectral roll-off
for flow speeds above 20 m s−1. Consistent with many previous studies (e.g. Blake
1970; McGrath & Simpson 1987; Goody 2004) the so-called overlap region has a
slope of approximately −0.8 and grows in frequency span as the flow speed increases.
It is commonly assumed that the low slope is a transitional effect, resulting from
the relatively low Reynolds number of many laboratory-scale flows. However, the
high Reynolds number of the present experiments suggests that either the theoretical
argument for the −1 slope is flawed, or the convergence to this value at high
Reynolds number is extremely gradual. In the dissipation range, the spectra roll off
with a slope that appears to increases rapidly with frequency. At 20 and 30 m s−1

enough of this region is visible to see that the slope reaches, and then exceeds, the
commonly stated value of −5. While this type of behaviour has been seen before,
both in experimental (e.g. Tsuji et al. 2007) and computational (Choi & Moin
1990) studies, the increasingly rapid roll off here appears due to averaging effects
over the microphone pinhole, as will be discussed below. As the flow speed and
Reynolds number are increased, a shallow inflection appears between the ‘overlap’
and dissipation ranges, somewhat reminiscent of the bottleneck observed in the energy
spectrum of homogeneous turbulence.
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FIGURE 9. Pressure spectra measured at different spanwise positions at x = 6.98 m.
(a) Smooth wall: , Ue = 22.4 m s−1; , 33.6 m s−1; , 44.8 m s−1; , 56 m s−1;

, 67.2 m s−1. (b) 1 mm ordered surface:C, Ue= 20 m s−1;E, 30 m s−1; ♦, 40 m s−1;
@, 50 m s−1;1, 60 m s−1. (c) 3 mm ordered surface: , Ue = 20 m s−1; , 30 m s−1;

, 40 m s−1; , 50 m s−1; , 60 m s−1. (d) 3 mm random surface:c, Ue = 20 m s−1;
e, m s−1; f, 40 m s−1; P, 50 m s−1; a, 60 m s−1. Vertical lines through the spectra
at high frequency indicate, in each case, the frequency above which attenuation due to
averaging over the pinhole would have been significant.

The pressure spectra on the rough walls have a superficially similar form to
those measured on the smooth wall: a shallow maximum at low frequencies (that
appears obscured by uncertainty for the 3 mm random surface), a mid-frequency
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region of roughly constant slope, and a rapid roll off at high frequencies with a
slope that passes through and beyond −5. However, a detailed comparison reveals
some important differences. The spectral maximum appears at a higher absolute
frequency for the same free-stream speed and, comparing the results for the 1 mm
and 3 mm ordered surfaces, its frequency clearly increases with the roughness size.
The mid-frequency region is less convincingly straight than with the smooth wall and
has a noticeably higher slope, of approximately −0.9 for the 1 mm hemispherical
roughness, and −4/3 for both 3 mm surfaces.

We would expect any effects of the slight favourable pressure gradient of the
present flows on the spectrum to be most noticeable at lower frequencies where the
wall-pressure spectrum contains its strongest contributions from the outer portion of
the turbulent boundary layer. Schloemer (1967) made measurements of the effects
of favourable pressure gradient on the wall-pressure fluctuations of a smooth-wall
boundary layer for an acceleration parameter K = 3.3 × 10−7 more than two orders
of magnitude greater than those of the present flows. Schloemer’s data were further
analysed by Cipolla & Keith (2000) who found that, when scaled on outer variables,
the wall-pressure fluctuations in the favourable-pressure-gradient boundary layer were
suppressed at frequencies ωδ/Ue . 3, corresponding to dimensional frequencies in
the present flows of approximately 40 Hz at 20 m s−1 increasing to approximately
130 Hz at 60 m s−1. This encompasses the region in the immediate vicinity of the
low-pressure maximum. This could explain, at least for the smooth-wall case, why
the roll off from the maximum is rounded and involves a continuous increase in
slope magnitude with frequency. Pressure spectra measured by some authors (e.g.
Klewicki et al. 2008) show a more pronounced maximum that is also present in
Panton & Linebarger’s (1974) smooth-wall spectral model. However, this feature does
not appear to be universal to smooth-wall boundary layers as can be seen in the data
sets reviewed by Goody (2004) and, indeed, Goody’s model does not include this
feature.

A close examination of the results for the 3 mm ordered and random rough surfaces
(figure 9c,d) show them to be nearly identical in all significant details. An overlaid
comparison of streamwise-averaged spectra show differences of 2 dB or less in the
spectral level at 20 m s−1, with pressure fluctuations for the random distribution of
roughness elements generally being weakest. This difference disappears as the flow
speed is increased.

The spanwise uniformity of the pressure fluctuation field, as revealed by the spread
of the curves shown at each flow speed in figure 9, appears quite good for the
smooth-wall flow. With the roughness, there is more variation at higher frequencies,
presumably because of slight differences in the effects of local roughness elements.
Pressure spectra measured at different streamwise positions in the array show a
comparable level of similarity, suggesting near homogeneous flow in planes parallel
to the wall. Therefore, wall-pressure spectra presented in later sections are averaged
across the microphone locations.

It is well known that the finite size of a microphone pinhole can have a significant
impact on the measurement of the highest-frequency pressure fluctuations. Perhaps
the most definitive studies are those due to Schewe (1983) and Gravante et al.
(1998). Schewe examined pressure fluctuations under a turbulent boundary layer
using five microphones with pinholes with diameters d between 1 and 18 mm
(d+ = dUτ/ν = 19–333). He concluded that a diameter of no more that d+ = 20 was
needed to completely resolve the pressure fluctuations, though his data showed that
results from larger pinholes could be corrected using the method of Corcos (1963,
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Smooth-wall case Rough-wall cases
Ue (m s−1) d+ fmax (kHz) d+ fmax (kHz)

20 21 9.4 27 11
30 31 14 41 16
40 40 18 55 22
50 49 22 68 27
60 58 26 82 33

TABLE 3. Diameter of the 0.5 mm microphone pinhole expressed in wall units, and
frequency limits on wall-pressure fluctuation measurements estimated using the results of
Schewe (1983) and Gravante et al. (1998).

1967), to some extent. Gravante et al. (1998) performed a similar study but with a
set of smaller microphones of d+ = 4–27. They conclude that having d+ 6 18 avoids
spectral attenuation for frequencies up to f+ = f ν/U2

τ = 1.
Schewe (1983) and Gravante et al. (1998) achieved the low values of d+ they

needed in part by studying slow-speed flows (16 m s−1 or less) where the viscous
scale is large. At the higher speeds demanded by the requirements of high Reynolds
number, achieving such d+ values implies pinhole diameters that (at least with
the present microphones) would be incompatible with maintaining a sufficient
frequency response. The present microphone system therefore under-resolves the
highest-frequency pressure fluctuations. However, we can use the results of Gravante
et al. (1998) and Schewe (1983) to estimate the frequencies at which that attenuation
would have become significant. Table 3 lists d+ for the 0.5 mm pinholes used in the
present experiments as functions of flow speed and surface. Gravante et al.’s (1998)
results include a case, with d+≈ 26, where the pressure spectrum was under-resolved.
In this case the measured spectral levels were within 2 dB of the true levels up
to a frequency f+ ≈ 2.2. We can use this result to estimate the maximum useful
frequency measured by the current microphones by assuming that this frequency
varies inversely with d+. If anything, Schewe’s (1983) results, which include a
sequence of spectra measured with increasingly under-resolved transducers, suggest
that this is a pessimistic estimate. High-frequency limits on the present measurements
estimated using this method are included in table 3 and shown graphically with the
vertical lines in figure 9. These limiting frequencies lie only within the measured
frequency range (up to 25 kHz) at flow speeds of 30 m s−1 or less (40 m s−1 for
the smooth wall). At these speeds the limits come in the middle of the dissipation
range and largely clip the portion of the spectrum that rolls off with a slope greater
than −5, at least for the smooth wall condition. Data above the limiting frequencies
are not included in subsequent figures.

3.3. Scaling of the pressure spectrum
The applicability of various scaling suggestions made by previous researchers are
examined in this section. We consider not only their applicability to the different
rough-surface flows of the present experiments, but also the extent to which they
correlate the present results to those of the previous studies listed in table 1, where
the boundary layer to roughness size ratios were not as large, but which represent a
range of sparseness ratios and roughness geometries.
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FIGURE 10. Pressure spectra measured scaled using outer variables. Mixed outer scaling,
present data (a) and with results from prior studies (b). Classical outer scaling, present
data (c) and with results from prior studies (d). Symbols for present data given in
figure 4. , Varano (2010) fetch 1, 27 m s−1; , 20 m s−1; 2, fetch 2, 27 m s−1; 4,
20 m s−1; , fetch 3, 27 m s−1; , 20 m s−1; b, fetch 4, 27 m s−1; d, 20 m s−1;

, Blake (1970) D-L, 38 m s−1; , 50 m s−1; S–S, 38 m s−1; , 50 m s−1; D–S,
38 m s−1; , 50 m s−1.

We begin with the low-frequency portion of the spectrum which is expected to
scale on outer variables. Many different scalings were tried for this region, the best
of which are shown in figure 10. Figure 10(a) shows the ‘mixed’ scaling used by
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Blake (1970), φ(ω)Ue/τ
2
wδ
∗ versus ωδ∗/Ue, applied to the present measurements. This

scaling correlates all the spectra measured on the smooth and rough walls, and at
different speeds, to within approximately ±1.5 dB for frequencies up to ωδ∗/Ue ≈ 4,
well beyond the spectral peak. Adding the data from previous studies (excluding the
data of Aupperle & Lambert 1970, which show no low-frequency maximum) results
in a somewhat less convincing plot (figure 10b). Spectra still correlate best near the
peak, but are spread over a band some 6–7 dB wide from ωδ∗/Ue≈ 2 to 4. However,
approximately half of the scatter in this band is due to Varano’s (2010) data, most
of which lie above the present measurements, and those of Blake (1970), and do not
collapse well within themselves when normalized in this way. Varano himself noted
this lack of collapse at low frequency and attributed it to the merger of the outer
portion of his boundary layer with the boundary layer growing on the opposite wall
of the channel in which his experiments were performed.

Shown in figure 10(c,d) is the ‘classical’ low-frequency scaling used for smooth-
wall boundary-layer pressure spectra by Farabee & Casarella (1991) and Goody
(2004), φ(ω)Uτ/τ

2
wδ versus ωδ/Uτ . This produces almost identical results to those

of the mixed scaling, closely correlating the low-frequency portions of the present
smooth- and rough-wall pressure spectra approximately in the range 20.ωδUτ . 800
(figure 10c). We see in figure 10(d) that this scaling also does quite well in correlating
the present low-frequency results to those of Blake (1970) but, as with the mixed
scaling, leaves Varano’s data above these data sets. Even though the mixed and
classical outer scalings perform comparably, we believe that the classical scaling
should be preferred since it is more fundamental and physically justifiable, depending
on a distance scale (δ) directly experienced by the flow rather than one implied by
its mean profile. We therefore conclude that, of the normalizations considered, the
classical scaling is most likely to describe the low-frequency behaviour of rough-wall
turbulent boundary-layer pressure spectra.

Other low-frequency scalings attempted included normalizing the spectra using only
boundary-layer edge scales, i.e. φ(ω)Ue/(ρU2

e )
2δ versus ωδ/Ue. This was found to

better align the low-frequency portions of Varano’s (2010) spectra with the other
rough-wall data but displaces all the rough-wall results approximately 8 dB above
those for smooth walls in this range, a result incompatible with the expectation
that the true low-frequency scaling should unite the low-frequency behaviour of
both smooth- and rough-wall boundary layers. A similar result (collapse of the
low-frequency portions of the smooth and rough-wall spectra onto different curves)
was seen with the normalization φ(ω)Ue/(ρUeUτ )

2δ versus ωδ/Ue inspired by
DeGraaff & Eaton’s (2000) scaling for streamwise velocity fluctuations in smooth-wall
boundary layers at high Reynolds numbers. Normalizations were also constructed
using the hybrid scale

√
δν/Uτ discussed by Klewicki et al. (2009) and associated

with the pressure-centre of (smooth-wall) boundary layers. Despite its uncertain
applicability to rough-wall flows, using this in place of δ in the classical scaling
produced a collapse of the present rough-wall spectra with those of Blake (1970) and
Varano (2010) slightly better than that achieved with the mixed scaling (figure 10a).
However, correlation between rough- and smooth-wall flows was not quite as good
as with the mixed or classical scalings.

We now turn our attention to examining the so-called ‘inner scaling’ for the rough-
wall data. Blake (1970) first argued that the pressure fluctuations generated from the
inner portion of the boundary layer should scale as φ(ω)Uτ/(τ

2
wkg) versus ωkg/Uτ

at high frequency. Note that the frequency scale ωkg/Uτ is essentially the roughness
Strouhal number. Aupperle & Lambert (1970) considered a similar scaling using the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

74
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.743


282 T. Meyers, J. B. Forest and W. J. Devenport

10(a) (b)

(c) (d)

0

–10

–20

–30

–40

–50

–60

30

20

10

0

–10

–20

–30

30

20

10

0

–10

–20

–30

10–1 100 101 102

10

0

–10

–20

–30

–40

–50

–60
10–1 100 101 102

10–1 100 101 102 10–1 100 101 102

FIGURE 11. Pressure spectra scaled using previously proposed inner-variable scalings.
Blake scaling, present data (a) and with results from prior studies (b). Aupperle and
Lambert scaling, present data (c) and with results from prior studies (d). Aupperle and
Lambert; , grade 36;‹, grade 12; , grade 4. Other symbols given in figure 10.

effective sand-grain roughness height ks instead of kg, and with the spectral level
additionally normalized on Cf , i.e. φ(ω)Uτ/τ

2
wksCf versus ωks/Uτ .

Figure 11(a) depicts Blake’s scaling using data from the present study. This clearly
does not collapse the highest-frequency portions of the pressure spectra as there is
a vast variation here across test speeds and configurations. Figure 11(b) shows the
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FIGURE 12. Pressure spectra scaled using roughness scalings. Varano scaling, present data
(a) and with results from prior studies (b). Scaling based on Mehdi et al.’s (2013) hybrid
roughness/boundary layer thickness scale

√
ksδ, present data (c) and with results from prior

studies (d). Symbols given in figure 11.

same data with the added studies of Aupperle & Lambert (1970), Blake (1970) and
Varano (2010). Similar lack of performance is seen with Aupperle & Lambert’s scaling
applied to data from the present study in figure 11(c), and to all the data sets in
figure 11(d).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

74
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.743


284 T. Meyers, J. B. Forest and W. J. Devenport

Although Blake’s scaling fails at the highest frequencies, it does show some clear
signs of collapsing the spectra in the mid-frequencies 3<ωkg/Uτ < 20 where it aligns
the spectra so that they group into a single narrower band whose overall slope is
around −4/3. Looking at just the present data, figure 11(a), which combine the largest
roughness Reynolds numbers and largest boundary-layer thickness to roughness size
ratios, the collapse is particularly good, and to within approximately ±1 dB. The
correlation using Blake’s scaling is less clear when all the data sets are included as
shown in figure 11(b), but is better than that produced by Aupperle & Lambert’s
scaling, see figure 11(d).

Recently Varano (2010) proposed another so-called inner variable scaling. Starting
with Blake’s scaling, Varano argued that for fully rough flows the friction velocity
should be proportional to the edge velocity. If replaced, one obtains the scaling
φ(ω)/(ρ2U3

e kg) versus ωkg/Ue. Varano’s scaling is applied to the pressure spectra for
the present study in figure 12(a). This scaling also fails at high frequencies but is
perhaps the most successful in collapsing the mid-frequency region 0.06<ωkg/Ue< 1.
Varano’s scaling also produces the best mid-frequency correlation between the present
data and the spectra of Blake and Varano, but is unable to scale Aupperle & Lambert’s
results, figure 12(b).

A number of normalizations derived from the distance scales for rough-wall
boundary layers proposed by Mehdi et al. (2010) were considered. Figure 12(c,d)
shows the scaling φ(ω)Uτ/τ

2
w

√
ksδ versus ω

√
ksδ/Uτ , based on the hybrid roughness/

boundary-layer thickness scale
√

ksδ. Looking only at the present data (figure 12c),
this scaling appears to work particularly well at the low-frequency end of the −4/3
region and provides a measure of collapse around the spectral maximum, perhaps
not surprising as it is the geometric average of the classical outer region and Blake
scalings. This formulation does not do well in correlating the present results with
other data sets, however, as shown in figure 12(d).

With the benefit of hindsight, it is perhaps not surprising that Blake’s, Aupperle &
Lambert’s and Varano’s scalings do not work at the highest frequencies since none
of them contains any direct reference to viscosity. Even in a high-Reynolds-number
rough-wall flow one would expect viscosity to ultimately control the smallest turbulent
scales and thus the highest-frequency pressure fluctuations. Indeed, the discussion of
Mehdi et al. (2010, 2013), referenced above, suggest that viscous effects may remain
a substantial player in the dynamics of the near-wall region to a position well above
the roughness tops, to the vicinity of the maximum in the Reynolds shear stress
profile.

With the likely importance of viscosity to the high-frequency pressure fluctuations
in mind, Forest (2012) postulated that a meshing of time scales was needed in
order to scale the high-frequency pressure spectra. The scaling ν/u2

τ is based in the
viscous time scale for the wall bounded flow, whereas Blake’s scaling kg/uτ reflects
the time scale for the roughness elements. Forest argued that even for fully rough
flows, both time scales may still influence the near-wall turbulent structures. This
led him to take the geometric average of both time scales, yielding a scaling of the
form φ(ω)Uτ/τ

2
w

√
νkg/Uτ versus ω

√
νkg/Uτ/Uτ , along with a similar scaling using

the effective sand-grain roughness ks. Mehdi et al. (2010) independently introduced
the length scale

√
νks/Uτ as potentially important in describing the flow between

the roughness tops and the Reynolds stress maximum. Figure 13(a) shows Forest’s
scaling applied to the data of the present study. It provides a marked improvement
at the highest frequencies compared to the above formulations that do not include
viscosity. However, it is unable to completely correlate the results for the 1 and
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FIGURE 13. Pressure spectra normalized using Forest’s (2012) scaling. Present data (a)
and with results from prior studies (b). Symbols given in figure 11.

3 mm roughness cases, if only because the mid- and high-frequency portions of
those spectra have different shapes. Adding the data from other studies produces the
plot shown in figure 13(b). Overall Forest’s (2012) formulation seems to provide the
best compromise in scaling the right-hand portions of these spectra, given that the
differing spectral shapes here preclude any exact single scaling. Note that using ks in
this scaling in place of kg appeared to make no significance difference to the results.

3.4. A new scaling for the highest-frequency pressure fluctuations
In this section we address the possibility of scaling the highest-frequency portion
of the pressure spectrum, namely the region of rapid rolloff where the slope of the
spectrum is seen to reach −5. This region, clearly visible in the present measurements
plotted in figure 9(b–d), bears more than a passing resemblance to the viscous
dissipation region seen in the smooth-wall pressure spectra of figure 9(a). It is
therefore tempting to suggest that both rough- and smooth-wall spectra follow a
Kolmogorov-type scaling in this region. We therefore revisit the smooth-wall viscous
scaling φ(ω)U2

τ/(τ
2
wν) versus ων/U2

τ , which is applied to the present rough- and
smooth-wall data in figure 14(a). Normalized in this way, the high-frequency portions
of the smooth-wall spectra collapse onto the same curve. The same is not seen for
the rough-wall spectra, though, each of which roll off at widely separated normalized
frequencies and levels. The rough-wall spectra are not totally unorganized, however,
as the normalized roll off frequency is seen to increase consistently as the Reynolds
number is reduced for each rough surface.

While the smooth-wall viscous scaling in its unmodified form does not come even
close to collapsing the highest-frequency portion of the rough-wall pressure spectra,
the viscous-like behaviour of this part of the spectrum leads us to propose a scaling
of the form φ(ω)U2

ν/(τ
2
ν ν) versus ωυ/U2

ν , where Uν is a modified friction velocity
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FIGURE 14. Pressure spectra scaled using viscous scales with (a) the conventionally
defined friction velocity (present data), (b) the shear friction velocity (present data), and
(c) the shear friction velocity (all datasets). Symbols given in figure 11.

and τν = U2
νρ is the corresponding wall shear stress. We will refer to Uν as the

‘shear friction velocity’. For a smooth wall we take Uν as equal to the conventionally
defined friction velocity. For a rough wall we choose the value of Uν so that the
high-frequency portion of the normalized spectrum matches that for the smooth wall,
as nearly as possible. It is important to note that there is no a priori reason to believe
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FIGURE 15. Shear friction velocities. Values inferred from pressure spectra: 1 mm
hemispheres; , 3 mm hemispheres (ordered); , 3 mm hemispheres (random); , Varano
(2010), fetch 1; , fetch 2; , fetch 3; , fetch 4; ‹, Blake (1970) S–S; , D–S; ,
D–L; , Aupperle & Lambert (1970). Open symbols for the present experiments show
estimates obtained using (3.3).

that such a match can be made since the positioning of the scaled spectrum has two
degrees of freedom, and the choice of Uν provides only one adjustment.

Nevertheless, it was found that values of Uν could be chosen to accurately collapse
the high-frequency portions of all the current rough-wall pressure spectra as illustrated
in figure 14(b). Using the same procedure it was found that values of Uν could be
chosen for Varano’s (2010), Blake’s (1971) and Aupperle & Lambert’s (1970) rough-
wall pressure spectra that would likewise correlate the roll off regions. Figure 14(c)
shows the resulting normalized spectra, all of which collapse to a narrow band just
a few dB wide in this region for non-dimensional frequencies ων/U2

ν greater than
approximately 0.5 displaying, together, a clear −5 slope at the highest frequencies.

Values of Uν used to collapse the rough-wall pressure spectra are listed in table 4
and plotted in figure 15. The ratio of the shear friction velocity Uν to the conventional
friction velocity Uτ exhibits consistent trends when plotted against roughness Reynolds
number k+g =Uτkg/ν, as shown in this figure. We see that for all the rough surfaces
Uν/Uτ is less than one. For the present data, representing three rough surfaces with
a sparseness λ= 0.052, this ratio decreases monotonically with increasing roughness
Reynolds numbers starting at 0.75 for the 20 m s−1 flow over 1 mm hemispheres
(k+g = 62) and dropping to 0.58 for 60 m s−1 flows over the two 3 mm hemisphere
surfaces (k+g ∼= 500). Together the variations for the three rough surfaces define a
single curve. Also included in figure 15 and table 4 are values inferred from the
measured spectra of other studies. These values are more scattered but, at the same
time, represent a range of sparseness values. Values of Uν/Uτ for Varano’s (2010)
experiments (λ= 0.013, 0.025, 0.052 and 0.098) are rather scattered, but overall show
a decrease as the roughness becomes more dense and the sparseness ratio is reduced.
Although Blake (1970) did not give precise sparseness ratios for his surfaces, exactly
the same trend is visible in the data obtained from his spectra, with the S-S (sparse-
small) rough surface being associated with significantly larger values of Uν/Uτ than
either of the dense roughness surfaces, D-S and D-L. Values of Uν/Uτ for Aupperle &
Lambert’s (1970) spectra stand apart from those of other experiments, being somewhat
low and showing a gradually increasing trend with k+g .
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Study Surface Ue Uν/Uτ Study Surface Ue Uν/Uτ
(m s−1) (m s−1)

Blake (1970)
Sand grains

S-S 38 0.70 1 mm ordered 20 0.75
S-S 50 0.68 1 mm ordered 30 0.72
D-S 38 0.60 1 mm ordered 40 0.70
D-S 50 0.58 1 mm ordered 50 0.68
D-L 38 0.54 1 mm ordered 60 0.66
D-L 50 0.52 3 mm ordered 20 0.67

3 mm ordered 30 0.64
Aupperle
& Lambert
(1970) Sand
grains

Grade 36 50 0.40
Present work,
hemispheres

3 mm ordered 40 0.62
Grade 12 50 0.48 3 mm ordered 50 0.60
Grade 4 50 0.50 3 mm ordered 60 0.58

3 mm random 20 0.66

Varano (2010)
Hemispheres

Fetch 1 27 0.80 3 mm random 30 0.64
Fetch 1 20 0.85 3 mm random 40 0.62
Fetch 2 27 0.83 3 mm random 50 0.60
Fetch 2 20 0.93 3 mm random 60 0.58
Fetch 3 27 0.80
Fetch 3 20 0.92
Fetch 4 27 0.93
Fetch 4 20 0.95

TABLE 4. Values of Uν/Uτ determined by spectral fitting.

3.5. Physical interpretation of the shear friction velocity
A possible explanation of the above results is that viscous scales contributing to the
pressure fluctuations at the wall, at locations not immediately adjacent to roughness
elements, scale like those of a smooth-wall boundary layer ων/U2

τ but with a friction
velocity calculated without the contribution from the pressure drag on the roughness
elements. This is consistent with the ratio Uν/Uτ being less than one for all rough
surfaces, with it decreasing with roughness Reynolds number as the pressure drag on
roughness elements increases, and with it increasing with the sparseness λ and thus
the proportion of the wall that is smooth.

Starting with this interpretation it is possible to write down a relationship between
Uν , Uτ , the sparseness ratio and the drag coefficient of the roughness elements. The
overall wall shear stress τw can be broken down into the average drag force on each
roughness element D, and the averaged substrate wall shear stress τν for which the
element drag is excluded:

τw = τν + nD, (3.2)

where n is the number of roughness elements per unit planform surface area. It can
be noted that while the drag force D includes both pressure and viscous forces, the
viscous contributions are expected to be relatively minor, while the averaged substrate
wall shear stress τν is entirely composed of the viscous forces acting along the wall.
Following Schlichting (1979), we assume that a particular roughness element can be
usefully thought of as having a fixed drag coefficient CD = D/q̄A, where A is the
frontal projected area of the roughness element and q̄ is the dynamic pressure averaged
over the height of the element. Recognizing that the sparseness ratio λ= nA and the
shear friction velocity Uν =√τν/ρ we obtain

U2
τ =U2

ν + λCDq̄/ρ. (3.3)
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Note that in the case of the smooth wall equation (3.3) reduces to U2
τ = U2

ν , since
there are no roughness effects to account for.

To test the credibility of our physical interpretation, we have used (3.3) to estimate
Uν/Uτ for the hemispherical roughness cases of the present measurements. For this
purpose we roughly approximate the value of q̄ by using a one-seventh power-law
profile U/Ue = (y/δ)1/7 to give

q̄= 1
2
ρU2

e
1
kg

∫ kg

0

(y
δ

)2/7
dy= 7

18
ρU2

e

(
kg

δ

)2/7

. (3.4)

This, of course, ignores the profile dependence on viscous and roughness scales.
Since the boundary-layer thickness, edge velocity, friction velocity and roughness size
are known, it is then only necessary to select the value of CD to make a prediction.
Generally speaking one would expect the drag coefficient to be a function of the
roughness element shape, Reynolds number, and spacing, and thus a variable in (3.3).
However, we are able to obtain reasonable estimates of the shear to friction velocity
ratios for the present hemispherical roughness cases by choosing a constant drag
coefficient of 0.26, see figure 15. This value is quite close to the drag measurement
of Bennington (2004), implying CD=0.3, for an isolated 1.4 mm radius hemispherical
roughness element at the bottom of a 39 mm thick boundary layer. This result appears
to support to the physical picture proposed.

If we accept the above physical interpretation of Uν , figure 15 shows that a
remarkably large fraction of the wall drag is produced by viscous shear. Viscous
effects appear responsible for approximately half of the drag (Uν/Uτ

∼= √2) at a
roughness Reynolds number k+g of approximately 100. At k+g = 500 this fraction is
approximately one-third and barely decreasing with Reynolds number. This finding
appears consistent with Mehdi et al.’s (2010, 2013) assertion of the continuing
importance of viscous effects in controlling the structure and scaling of the rough-wall
boundary layer at high Reynolds numbers.

3.6. The triple scaling hypothesis
The new high-frequency viscous scaling of figure 14(b,c) appears to apply to all
the published data sets for rough-wall boundary layers considered here. At the
same time, the classical outer scaling appears to be the best choice to correlate
the low-frequency part of the spectrum (figure 10c,d). Blake’s (1970) scaling in its
original form (figure 11a,b) or in the modified form of Varano (figure 12a,b) shows
a somewhat less convincing collapse in the mid-frequency region, but the picture is
clarified considerably if the data are restricted to the present results that combine
the largest roughness Reynolds numbers and largest boundary-layer thickness to
roughness size ratios.

The fact that there appear to be three scaling regions for a high-Reynolds
-number fully rough turbulent boundary layer is not, in retrospect, so surprising.
The low-frequency pressure fluctuations seem bound to be determined by the overall
scales of the boundary layer. Similarly, the highest-frequency pressure fluctuations
must be constrained ultimately by viscosity. What happens between these two limits
will be determined by the roughness. If the roughness Reynolds number is large
enough and the rough surface can be defined by a single length scale, then it seems
inevitable that there will be an intermediate region where pressure fluctuations are
primarily produced by turbulence shed from the roughness elements and will scale,
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as Blake predicted, on the roughness element size and the effective flow velocity
that the roughness elements experience. The fact that the pressure fluctuations in
this region produce a spectrum with an almost linear −4/3 slope is, at this point,
unexplained. It may be that this characteristic can be connected to the more general
behaviour of a bluff body in a sheared turbulent stream.

The physical argument for three scaling regions requires that there be a large
scale separation between the boundary-layer thickness, the roughness, and the viscous
scales. Symbolically, δ � kg � Uν/ν. What will happen then when the roughness
has more than one scale? Consider, as a thought experiment, a surface composed of
hemispherical roughness elements with dimples. It would seem that, as long as there
is sufficient scale separation between the hemispheres and the dimples, and as long
as the effective Reynolds number of the dimples remains large, then such a surface
would have four scaling regions, with the two central regions being defined by the
two sets of roughness scales. This may not be good news. One expects that many
practical rough surfaces, particularly stochastic surface shapes, will be defined by a
large range of poorly separated scales that even at very high Reynolds numbers may
well overlap at the lower end with the scales of viscous dissipation. The results and
arguments presented here suggest that such a boundary layer would have a fluctuating
pressure field that at low frequencies scales on outer boundary-layer variables, but that
at higher frequencies is unique to the rough surface producing it. Thus, such boundary
layers may have no universal surface-pressure scaling, regardless of Reynolds number.

4. Conclusions
Experiments have been performed on series of high-Reynolds-number flat-plate

turbulent boundary layers formed over rough and smooth walls. The rough walls
consisted of sparse arrays of hemispherical bumps and included differences in size
and distribution. The boundary layers were fully rough, yet the elements remained a
small fraction (<1.4 %) of the boundary-layer thickness, implying conditions free of
transitional effects. Detailed measurements were made of the wall-pressure fluctuations
using an array of pinhole microphones. Analysis was performed, incorporating results
from comparable boundary-layer studies, to reveal the form and scaling of the
wall-pressure spectrum in the presence of roughness. The following conclusions are
drawn.

(a) At low frequencies the wall-pressure spectrum of both rough- and smooth-wall
boundary layers scales in the same way on the outer boundary-layer variables.
Specifically we find that the spectrum of both types of boundary layers appears
most similar in this region if plotted as φ(ω)Uτ/(τ

2
wδ) versus ωδ/Ue, at least for

20 .ωδ/Uτ . 800.
(b) At the highest frequencies the wall-pressure spectrum of both rough- and smooth-

wall boundary layers has a universal viscous form φ(ω)U2
ν/(τ

2
ν ν) versus ων/U2

ν .
This form is scaled by a single flow variable, termed the shear friction velocity
Uν where τν = ρU2

ν , and exists for ων/U2
ν & 0.6.

(c) In smooth-wall boundary layers Uν is identical to the conventional friction
velocity Uτ . In rough-wall boundary layers it is always less than Uτ and
its ratio with it is a systematic function of the roughness Reynolds number
and sparseness. Physically Uν appears to be the friction velocity without the
contribution from the pressure drag on the roughness elements, and estimates of
its value based on this hypothesis realistically reproduce its observed variations.
The dependence of Uν/Uτ on roughness Reynolds number shows that the fraction
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of the wall drag associated with viscous shear decreases only slowly with k+g
and is still approximately one-third at k+g = 500. This appears consistent with
Mehdi et al.’s (2010, 2013) assertion of the continuing importance of viscous
effects in rough-wall boundary layers at high Reynolds numbers.

(d) At mid-frequencies the rough-wall boundary-layer pressure spectra are seen
to have a third region in which Blake’s (1970) scaling φ(ω)Uτ/(τ

2
wkg) versus

ωkg/uUτ or the near relative proposed by Varano (2010) most closely correlates
different rough-wall pressure spectra. The extent of this region grows with
Reynolds number, but was seen to encompass at least 3 . (ωkg/Uτ ) . 20 for
the experimental cases considered here. Pressure spectra plotted on a log–log
scale in this frequency range show the development of a −4/3 slope at higher
roughness Reynolds number.

(e) The existence of three scaling regions in the rough-wall boundary-layer pressure
spectrum appears inevitable if there is sufficient scale separation between the
boundary-layer thickness, the roughness size, and the viscous scale. In cases
where the roughness has two or more distinct and widely separated scales
one might expect further scaling regions. Sufficiently complex rough surfaces
may therefore result in complex pressure spectral forms that have no universal
character in the mid- or high-frequency ranges even in the limit of high Reynolds
number.

(f ) The wall-pressure spectrum and boundary-layer parameters appear almost
independent of roughness distribution, at least for the conditions covered in
this study.
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