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VARIATIONS OF THE ELEPHANT RANDOM WALK
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Abstract

In the classical simple random walk the steps are independent, that is, the walker has no
memory. In contrast, in the elephant random walk, which was introduced by Schütz and
Trimper [19] in 2004, the next step always depends on the whole path so far. Our main
aim is to prove analogous results when the elephant has only a restricted memory, for
example remembering only the most remote step(s), the most recent step(s), or both. We
also extend the models to cover more general step sizes.
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1. Introduction

In the classical simple random walk the steps are equal to plus or minus one and independent
P(X = 1) = 1 − P(X = −1): the walker has no memory. This random walk is, in particular,
Markovian. Motivated by applications, but interesting in its own right, is the case when the
walker has some memory. The extreme case is, of course, when the walker has a complete
memory, that is, when the ‘next step’ depends on the whole process so far. This so-called
elephant random walk (ERW) was introduced by Schütz and Trimper [19] in 2004, the name
inspired by the fact that elephants have a very long memory. The first more mathematically
rigorous work on elephant random walks are, to the best of our knowledge, the papers by
Bercu [2] and Coletti et al. [4], which contain a number of limit theorems. A main point is that
the process is subject to a kind of phase transition, which divides the problem into a diffusive
regime, a critical regime, and a superdiffusive regime, with somewhat different asymptotics.

Our main interest is the situation in which the elephant has only a limited memory, remem-
bering only some distant past, only a recent past, or a mixture of both. We were motivated by
simulations studying the case in which a given fraction of the distant/recent past is remembered
[6, 18, 20] but where no theoretical results are provided. This is a first step towards a better
understanding of situations with a memory increasing in time, and for finding the breaking
point for the phase transitions. This is interesting, for example, in connection with the concept
of memory lapse [9].
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806 A. GUT AND U. STADTMÜLLER

We begin by studying the cases when the walker only remembers the first (two) step(s) or
only the most recent steps. In particular, the latter case involves rather cumbersome computa-
tions and we therefore invite the reader(s) to try to push our results further. One such source is
Ben-Ari et al. [1], where one application of their more general model is the case when the ele-
phant remembers the L most recent steps. The paper by Engländer and Volkov [8] is devoted
to a variation in that the next step is not generated by flipping a coin, but rather by turning
it over or not. They have a somewhat different focus; in particular, they allow for different
p-values in each step. In addition, there is a large literature dealing with so-called correlated
random walks, though with different aims. Let us mention Chen and Renshaw [3], for example,
who investigated a walk in dimension d and the probability of returns. Menshikov and Volkov
[17] considered continuous-time processes generalizing the ERW and questions of transience
and recurrence, and Comets et al. [5] studied a kind of self-avoiding walk in R

d. See also the
literature cited therein for further references.

The cases with limited memory behave very differently mathematically; in particular, there
are no phase transitions in these cases.

A second point concerns the extension of (some of) Bercu’s results in [2] from the simple
random walk to more general sums.

We begin by defining the various models in Section 2. After some preliminaries in Section
3, some results for general ERWs are obtained in Section 4. Sections 5 and 6 are devoted to the
distant past and Sections 7 and 8 to the recent past, respectively. These ‘one-sided’ memories
are then followed up in Sections 9 and 10, where we consider mixed cases, that is, when the
memory contains some early steps as well as a recent one, after which we briefly discuss
some extensions. We close with a section containing some questions and remarks. For easier
reading we collect some of the more lengthy (elementary and tedious) computations in the
Appendix.

2. Background

The elephant random walk is defined as a simple random walk, where, however, the steps
are not i.i.d. but dependent, as follows. The first step X1 equals 1 with probability r ∈ [0, 1]
and is equal to −1 with probability 1 − r. After n steps, that is, at position Sn = ∑n

k=1 Xk, one
defines

Xn+1 =
⎧⎨
⎩

+XK with probability p ∈ [0, 1],

−XK with probability 1 − p,

where K has a uniform distribution on the integers 1, 2, . . . , n. With the σ -algebras Gn =
σ {X1, X2, . . . , Xn}, this means (formula (2.2) of [2]) that

E(Xn+1 | Gn) = (2p − 1) · Sn

n
, (2.1)

after which, setting an = �(n) · �(2p)/�(n + 2p − 1), it turns out that {Mn = anSn, n ≥ 1} is a
martingale; see [2, Section 2].

Our main aim is to extend these results to the case when the elephant has a restricted mem-
ory, for example remembering only the most remote step(s) and/or the most recent one(s).
A result in Section 4 allows us to conclude that our results also remain true (suitably modified)
when the steps of the ERWs follow a general distribution on the integers.

https://doi.org/10.1017/jpr.2021.3 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.3


Variations of the elephant random walk 807

First in line is the case when the elephant only remembers the distant past, the most extreme
one being when the memory is reduced to the first step only, that is,

Xn+1 =
⎧⎨
⎩

+X1 with probability p ∈ [0, 1],

−X1 with probability 1 − p.

Somewhat more sophisticated is the case when the memory covers the first two steps, for which

Xn+1 =
⎧⎨
⎩

+XK with probability p ∈ [0, 1],

−XK with probability 1 − p,

where P(K = 1) = P(K = 2) = 1/2.
Technically more complicated is the case when the elephant only remembers the recent past.

Here we focus on the very recent past, which is the last step, that is,

Xn+1 =
⎧⎨
⎩

+Xn with probability p ∈ [0, 1],

−Xn with probability 1 − p.

This case is also called a correlated random walk (CRW).
We begin, throughout, by assuming that X1 = 1, and specialize our findings in this setting

(for simplicity) to the case r = p. We denote our partial sums by Tn, n ≥ 1, when the first
variable(s) is/are fixed, and let Sn be reserved for the case when they are random.

In order to move from Tn to Sn we also need to discuss the behavior of the walk when the
initial value equals −1. However, in that case the evolution of the walk is the same except
for the fact that the trend of the walk is reversed, that is, the corresponding walk equals the
mirrored image in the time axis. This implies that the mean after n steps equals −E(Tn), but
the identical dynamics implies that the variance remains the same (var( − Y) = var(Y) for a
random variable Y). In fact the second moments of the walk remain the same. The same goes
for higher-order moments: odd moments equal the negative of those when X1 = 1, and even
moments remain the same. In Sections 6 and 10 we depart from the assumption that X1 and X2
are fixed, and then the additional case X1 + X2 = 0 has to be taken care of.

Finally, in order to avoid special effects we assume throughout that 0 < p < 1; note that
p = 1 corresponds to Xn = X1 for all n.

3. Some auxiliary material

For easier access to the arguments below we present some auxiliary results from probability
and analysis.

3.1. Disturbed limit distributions

The following (well-known) result (which is a special case of the Cramér–Slutsky theorem)
will be used in order to go from a special case to a more general one.

Proposition 3.1. Let {Un, n ≥ 1} be a sequence of random variables and suppose that V is

independent of all of them. If Un
d→ U as n → ∞, then UnV

d→ UV as n → ∞.
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808 A. GUT AND U. STADTMÜLLER

Proof. Using characteristic functions and bounded convergence we have, as n → ∞,

ϕUnV (t) =E exp{itUnV}
=E(E( exp{itUnV} | V))

=EϕUn(tV) →EϕU(tV)

=E(E( exp{itUV} | V))

=E exp{itUV})
= ϕUV (t).

An application of the continuity theorem for characteristic functions finishes the proof. �

3.2. Conditioning in case of a restricted memory

Let {Sn, n ≥ 1} be an ERW, and let Mn ⊂ {1, 2, . . . , n} be the memory of the elephant from
the first n steps, that is, Mn contains the steps from the past (up to step n) on which the elephant
bases the next step. Further, set Fn = σ {Xk, k ∈Mn}, n ≥ 1, and let Gn = σ {X1, X2, . . . , Xn},
n ≥ 1, stand for the σ -algebra generated by the complete past up to step n. We already know
from (2.1) above that E(Xn+1 | Gn) = (2p − 1)Sn/n. Our aim is to establish analogs when the
elephant has a restricted memory, that is, expressions for E(Xn+1 |Fn). Then we have

E(Xn+1 |Fn) = p ·
∑

i∈Mn

1

|Mn|Xi + (1 − p) ·
∑

i∈Mn

1

|Mn| ( − Xi)

= (2p − 1) ·
∑

i∈Mn
Xi

|Mn| , (3.1)

that is, the conditional mean equals the average of the possible choices multiplied by the
expected value of the sign, in analogy with (2.1).

If, for example, Mn = {n} the elephant only considers the most recent step, and if Mn =
{1, n} only the first and the most recent steps; these are two cases that will be investigated
below. In these cases (3.1) states that

E(Xn+1 |Fn) = (2p − 1)Xn and E(Xn+1 |Fn) = (2p − 1)
X1 + Xn

2
,

respectively.
The next problem is when we condition on steps that are not contained in some Mn.

The elephant therefore cannot choose among them in a subsequent step. Technically, let
M⊂ {1, 2, . . . , n} be an arbitrary set of indices such that M∩Mn = ∅. Then

E(Xn+1 | σ {Mn ∪M}) =E(Xn+1 |Fn) = (2p − 1)

∑
i∈Mn

Xi

|Mn| . (3.2)

It follows, in particular, that

E(Xn+1 | Gn) = (2p − 1)

∑
i∈Mn

Xi

|Mn| ,

and that

E(SnXn+1 | Gn) = SnE(Xn+1 | Gn) = Sn(2p − 1)

∑
i∈Mn

Xi

|Mn| . (3.3)
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Exploiting the smoothing lemma (see e.g. [10, Lemma 10.1.1]), according to which E(SnXn+1 |
Gn) =E(E(SnXn+1 | Gn)), and the fact that X2

n+1 = 1, both of which will be useful several times
for the computation of second moments, yields

E(S2
n+1) =E(Sn + Xn+1)2

=E(S2
n) + 2 E(SnXn+1) +E(X2

n+1)

=E(S2
n) + 2(2p − 1)

|Mn| E

(
Sn

∑
i∈Mn

Xi

)
+ 1. (3.4)

3.3. Some notation

We use the standard δa(x) to denote the distribution function with a jump of height one at

a and Nμ,σ 2 for the normal distribution with mean μ and variance σ 2. The arrows
p→ and

d→
denote convergence in probability and convergence in distribution, respectively. Constants c
and C are always numerical constants that may change between appearances.

4. General elephant random walks

Let {̃Sn, n ≥ 1} be an ERW, and suppose that R is a random variable with distribution func-
tion FR that is independent of the walk. If S̃n/an

a.s.→ Z as n → ∞ for some normalizing positive
sequence an → ∞ as n → ∞, and some random variable Z, it follows from Proposition 3.1

that R̃Sn/an
a.s.→ RZ as n → ∞. An immediate consequence of this fact is that we can extend

Theorems 3.1, 3.4, and (the first half of) Theorem 3.7 of [2] to cover more general step sizes.
Namely, consider the ERW for which X̃1 ≡ 1, and let the random variables X̃n, n ≥ 2, be con-
structed as in Section 2 with this special X̃1 as starting point. Furthermore, let R be a random
variable, independent of {X̃n, n ≥ 1}, and consider Xn = R · X̃n, n ≥ 1, and hence Sn = R · S̃n.

The following theorem (which reduces to the cited Theorems 3.1, 3.3, and 3.7 of [2],
respectively, if R is a coin-tossing random variable) holds for Sn = RS̃n.

Theorem 4.1.

(a) For 0 < p < 3/4,
Sn

n
a.s.→ 0 as n → ∞.

(b) For p = 3/4,
Sn√

n log n
a.s.→ 0 as n → ∞.

(c) For 3/4 < p < 1,
Sn

n2p−1
a.s.→ RL as n → ∞,

where L is a non-degenerate random variable.

As for convergence in distribution, we have to distinguish more carefully between the three
cases.

Theorem 4.2. For 0 < p < 3/4, we obtain

Sn√
n

d→
∫
R\{0}

N0,1/(3−4p)( · /|t|) dFR(t) + P(R = 0) · δ[0,∞)( · ) as n → ∞.
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Moreover, if E(R2) < ∞, then

E

(
Sn√

n

)
→ 0 and E

((
Sn√

n

)2)
→ E(R2)

(3 − 4p)
as n → ∞.

Proof. As R and Sn are independent, we find that

P

( Sn√
n

≤ x
)

=E

(
P

(
R

S̃n√
n

≤ x
∣∣∣ R

))

=
∫
R

P

(
t

S̃n√
n

≤ x

)
dFR(t)

=
∫

(−∞,0)
P

(
S̃n√

n
≥ x/t

)
dFR(t) +

∫
(0,∞)

P

(
S̃n√

n
≤ x/t

)
dFR(t)

+ P(R = 0) · δ[0,∞)(x)

→
∫

(−∞,0)
(1 −N0,1/(3−4p)(x/t)) dFR(t) +

∫
(0,∞)

N0,1/(3−4p)(x/t) dFR(t)

+ P(R = 0) · δ[0,∞)(x),

by dominated convergence, which yields the desired result.
The second part is immediate, since R is independent of everything else. �

Remark 4.1. If R = ±1 with probabilities r and (1 − r), respectively, the limit distributions of
Sn/

√
n and S̃n/

√
n are the same, and we rediscover Theorem 3.3 of [2].

Remark 4.2. For the critical case, p = 3/4, one similarly obtains, using [2, Theorem 3.6], that

Sn√
n log n

d→
∫
R\{0}

N0,1( · /|t|) dFR(t) + P(R = 0) · δ[0,∞)( · ) as n → ∞.

The supercritical case, 3/4 < p < 1, has a different evolution and no analogous result exists.

5. Remembering only the distant past 1: Mn = {1}
This is the easiest case. We begin by assuming that the elephant only remembers the first

step, i.e. that Fn = σ {X1}, and that X1 = 1 (recall that partial sums are denoted by the letter T).
The following steps are then either +1 or −1 independently of each other. This means that we
are faced with a simple random walk with drift 2p − 1, except for the fact that the first step is
always equal to one. It follows immediately that

E(Tn+1) = 1 + n(2p − 1) and var(Tn+1) = 4p(1 − p)n.

Hence we obtain the following result.

Proposition 5.1. The strong law of large numbers, the central limit theorem, and the law of the
iterated logarithm all hold for {Tn, n ≥ 1} with the corresponding normalizations.

If, on the other hand, the first step equals −1, the analogous random walk has drift −(2p −
1), and E(Tn+1) = −1 − n(2p − 1). The variance remains the same (recall the discussion
towards the end of Section 2), and the classical laws hold again.
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Assuming that X1 is a coin-tossing random variable, we are confronted with two random
walks, one for each of the two portions of the probability space. In fact, if we imagine the
situation that r = P(X1 = +1) is close to zero or one, it is rather apparent how the very first
step determines along which branch the process will evolve. If p = 1/2, the two ‘branches’
determined by the first step collapse (asymptotically) into one, and we are ultimately faced
with a simple symmetric random walk. Combining the two branches, the following theorem
emerges.

Theorem 5.1. Let Sn = ∑n
k=1 Xk. Then

(a)
Sn

n
d→

⎧⎨
⎩

2p − 1 with probability p,

−(2p − 1) with probability 1 − p,
as n → ∞,

(b) E

(Sn

n

)
→ (2p − 1)2 and var

(Sn

n

)
→ 4p(1 − p)(2p − 1)2 as n → ∞.

Proof. (a) If X1 = ±1, we know from the above that E(Tn) = ±(1 + (n − 1)(2p − 1)) and

that var(Tn) = 4p(1 − p)(n − 1). This tells us that Tn/n
p→ ±(2p − 1) as n → ∞. The conclu-

sion follows.
(b) Immediate (bounded convergence). �

Remark 5.1.

(i) Part (b) tells us that the asymptotic variance is of order n2. This is due to the fact that
the two branches force the elephant to walk in opposite directions.

(ii) An interpretation of the limit in (a) is that the random walk at hand, on average, behaves,
asymptotically, like a coin-tossing random variable with values at the points ±(2p − 1).

(iii) An alternative way of phrasing the conclusion of the theorem is that

FSn/n(x) → p · δ−(2p−1)(x) + (1 − p) · δ2p−1(x) as n → ∞.

However, if we use a random normalization we obtain the following result.

Theorem 5.2. Let Sn = ∑n
k=1 Xk. Then

(a)
Sn − n(2p − 1)X1√

4np(1 − p)
d→N0,1 as n → ∞,

(b)
Sn − n(2p − 1)X1

n
a.s.→ 0 as n → ∞,

(c) lim sup
n→∞

(
lim inf
n→∞

) Sn − n(2p − 1)X1√
8np(1 − p) log log n

= 1 ( − 1) a.s.

Proof. (a) We use the fact that if Mn = X1 then Sn = X1Tn, in order to get

Sn − n(2p − 1)X1√
4n p (1 − p)

= X1
Tn − n(2p − 1)√

4np(1 − p)
,

together with Theorem 4.2 and its Remark 4.1.
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Alternatively, one may condition on the value of X1. This procedure will be exploited in the
proof of Theorem 6.2 in the next section.

(b,c) Define �1 = {ω ∈ � : X1(ω) = 1} and �2 = �c
1. After renormalization, the original

probability measure will be a probability measure on �1. Based on this measure on �1, we
obtain an SLLN and an LIL for Sn − n(2p − 1)X1, and similarly on �2. Combining them yields
the desired result. �
Remark 5.2. If X1 is a general random variable with distribution F having no mass at zero,
then

Sn − n(2p − 1) X1√
4np(1 − p)

d→
∫ ∞

−∞
N0,1( · /|t|) dF(t) as n → ∞.

A special case is, once again, p = 1/2.

Corollary 5.1. If p = 1/2, then

Sn

n
a.s.→ 0,

Sn√
n

d→N0,1 as n → ∞ and lim sup
n→∞

(
lim inf
n→∞

) Sn√
2n log log n

a.s.= 1 ( − 1).

6. Remembering the distant past 2: Mn = {1, 2}
Suppose that the elephant only remembers the first two steps, i.e. F1 = σ {X1} and Fn =

σ {X1, X2} for n ≥ 2. This case is slightly more involved, since we are faced with three branches.
Extending the arguments from the previous section, it follows that the walk evolves as an
ordinary simple random walk beginning at the third step.

Suppose first that X1 = X2 = 1. Then, for n ≥ 2,

E(Xn+1) =E(E(Xn+1 |Fn))

=E(E(Xn+1 | X1, X2))

=E

(
(2p − 1) · 1 + 1

2

)
= 2p − 1,

and hence

E(Tn+1) = 2 + (n − 1)(2p − 1) = n(2p − 1) + 3 − 2p.

Since randomness is involved only from the third step and onwards,

var(Tn+1) = 4p(1 − p)(n − 1), n ≥ 3.

By continuing as before, we obtain, after proper centering, limit theorems for these initial X-
values, and similarly for the other branches. One can also ascertain that the variance is not
linear if we assume random beginnings, except for the case p = 1/2, when, as in the previous
section, the branches collapse into one and we are faced with a simple symmetric random walk,
that is, the three main limit theorems (SLLN, CLT, LIL) hold (as in Corollary 5.1).

The following analog of Theorem 5.1 holds in the general case (as one might expect).
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Theorem 6.1. Let Sn = ∑n
k=1 Xk. Then

(a)
Sn

n
d→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2p − 1 with probability p2,

0 with probability 1 − p,

−(2p − 1) with probability p(1 − p),

as n → ∞,

(b) E

(
Sn

n

)
→ p(2p − 1)2 and var

(
Sn

n

)
→ p(1 − p)(2p − 1)2(4p2 + 1).

Proof. (a) If X1 = X2 = ±1, we know from the above that E(Tn) = ±(n(2p − 1) + 3 − 2p),
and that var(Tn) = 4p(1 − p)(n − 2). Moreover, E(Tn) = 0 whenever X1 and X2 have different
signs. The variance remains the same (with p = 1/2). This, together with the fact that

P(X1 = X2 = 1) = p2,

P(X1 = X2 = −1) = (1 − p)p,

P(X1 �= X2) = p(1 − p) + (1 − p)2 = 1 − p,

helps us to finish the proof of the first part. Part (b) follows. �
Remark 6.1.

(i) In analogy with Remark 5.1 we have the interpretation that the elephant, asymptotically,
on average, performs a random walk on the points ±(2p − 1) and 0.

(ii) Mimicking Remark 5.1, we may rewrite the conclusion of the theorem as

FSn/n(x) → p(1 − p) · δ−(2p−1)(x) + (1 − p) · δ0(x) + p2 · δ2p−1(x) as n → ∞.

Once again random normalization produces further limit results.

Theorem 6.2. Let Sn = ∑n
k=1 Xk. Then

(a)
Sn − n(2p − 1) (X1 + X2)/2√

n
d→ p ·N0,4p(1−p) + (1 − p) ·N0,1 as n → ∞,

(b)
Sn − n(2p − 1) (X1 + X2)/2

n
a.s.→ 0 as n → ∞,

(c) lim sup
n→∞

(
lim inf
n→∞

)Sn − n(2p − 1) (X1 + X2)/2√
2n log log n

= σ1,2 ( − σ1,2) a.s.,

where

σ 2
1,2 =

⎧⎨
⎩

4p(1 − p) for ω ∈ {ω ∈ � : X1(ω) · X2(ω) = 1},
1 otherwise.
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Proof. (a) Conditioning on the value of (X1 + X2)/2, we obtain

P

(
Sn − n(2p − 1)(X1 + X2)/2√

n
≤ x

)

= P

(
Sn − n(2p − 1)(X1 + X2)/2√

n
≤ x | X1 = X2 = 1

)
· p2

+ P

(
Sn − n(2p − 1)(X1 + X2)/2√

n
≤ x | X1 = X2 = −1

)
· p(1 − p)

+ P

(
Sn − n(2p − 1)(X1 + X2)/2√

n
≤ x | X1 + X2 = 0

)
· (1 − p)

= P

(
Tn − n(2p − 1)√

n
≤ x

)
· p2 + P

(−Tn + n(2p − 1)√
n

≤ x

)
· p(1 − p)

+ P

(
Tn√

n
≤ x | X1 + X2 = 0

)
· (1 − p)

→ (p2 + p(1 − p)) ·N0,4p(1−p)(x) + (1 − p) ·N0,1(x)

= p ·N0,4p(1−p)(x) + (1 − p) ·N0,1(x) as n → ∞.

Parts (b) and (c) follow along the lines of the proof of Theorem 5.1. �

We close this section by mentioning that analogous results can be obtained if the elephant
only remembers the first m random variables for some m ∈ N. The following natural extension
of the above results emerges by generalizing the above proofs.

Theorem 6.3. For qk = P(Sm = m − 2k), rk = ((m − k)p + k(1 − p))/m, and pk = (m − 2k)
(2p − 1)/m, where 0 ≤ k ≤ m and m ∈ N,

Sn

n
d→

m∑
k=0

qkδpk as n → ∞,

and
Sn − n(2p − 1)Sm/m√

n
d→

m∑
k=0

qk N0,4rk(1−rk) as n → ∞.

7. Remembering only the recent past 1: Mn = {n}
This situation is more complex, because, even though one remembers only recent steps,

the path depends on the whole history so far (some remarks will be given in Section 11.3).
We begin by assuming that the elephant only remembers the very last step. From Section 2 we
recall that this model is also called a correlated random walk (CRW). The setting is reminiscent
of [8], where one turns over a coin instead of tossing it. The main focus there, however, is on
different p-values at each step and, for example, how this may affect phase transitions and
behavior at critical values.

We begin, as always, by assuming that X1 = 1. Then E(X1) = 1, and

E(Xn+1 |Fn) =E(Xn+1 | Xn) = (2p − 1) · Xn and E(Xn+1) = (2p − 1) E(Xn)
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for all n ≥ 2. By iterating this, it follows, for n ≥ 0, that

E(Xn+1) = (2p − 1)n
E(X1) = (2p − 1)n, (7.1)

and that

E(Tn+1) = 1 − (2p − 1)n+1

2(1 − p)
.

For the second moment we have, by (3.4) and (3.2),

E(T2
n+1 | Gn) = T2

n + 2Tn(2p − 1)Xn + 1 and E(T2
n+1) =E(T2

n ) + 2(2p − 1)E(TnXn) + 1.

For the middle term we obtain by (3.2),

E(TnXn) =E(X2
n) +E(Tn−1 E(Xn | Gn−1)) = 1 + (2p − 1) E(Tn−1Xn−1),

which, after iteration, yields

E(TnXn) = 1 +
n−1∑
k=1

(2p − 1)k = 1 − (2p − 1)n

2(1 − p)
.

Now we can calculate the second moment:

E(T2
n+1) =E(T2

n ) + 2(2p − 1) · 1 − (2p − 1)n

2(1 − p)
+ 1 =E(T2

n ) + p

1 − p
− (2p − 1)n+1

1 − p
.

By telescoping, we obtain

E(T2
n+1) = np

1 − p
+ O(1) as n → ∞,

which implies the following formula for the asymptotic variance:

var(Tn+1) = np

1 − p
+ O(1) as n → ∞. (7.2)

Noticing that Sn = X1Tn and that X1 = ±1, a glance at (7.1) and (7.2) shows that Tn/n
p→ 0 and

that Sn/n
p→ 0 as n → ∞, suggesting the following result.

Theorem 7.1. For X1 = ±1,

Tn√
n

d→N0,p/(1−p) and
Sn√

n
d→N0,p/(1−p) as n → ∞.

Proof. The sequence {Xn, n ≥ 1} is a stationary recurrent Markov chain with finite state
space which, hence, is uniformly ergodic. The asymptotic normality of Tn therefore follows
from a CLT for Markov chains; see e.g. Corollary 5 of [14] (see also [13, Theorem 19.1]). The
limit result for Sn then follows as in Theorem 4.2. �

The Markov property also provides a strong law.

Theorem 7.2. We have
Sn

n
a.s.→ 0 as n → ∞.

Proof. The stationary distribution of the ergodic Markov chain {Xn, n ≥ 1} is (1/2, 1/2),
which has expectation zero. An application of Theorem 6.1 of [7] yields the conclusion. �
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8. Remembering only the recent past 2: Mn = {n − 1, n}
In this section we assume that the elephant remembers the two most recent steps. We have,

as always, X1 = 1, E(X2 |F1) = (2p − 1)X1,

E(X3 |F2) = (2p − 1)
X1 + X2

2
= (2p − 1)

1 + X2

2
,

and, for n ≥ 3,

E(Xn+1 |Fn) =E(Xn+1 | Xn−1, Xn) = (2p − 1)
Xn−1 + Xn

2
.

Computing the moments, one obtains the following result. For the proof we refer to the
Appendix, Section A.2.

Lemma 8.1. As n → ∞,

E(Xn) → 0,

E(Sn) → (2p − 1)(2p + 1)

4(1 − p)
,

var

(
Sn√

n

)
→ 1 + (2p − 1)(5 − 2p)

2(1 − p)(3 − 2p)
= σ 2

2 .

The expectation of Xn tends to zero geometrically fast.

Remark 8.1. For p = 1/2 the process reduces, as usual, to a simple symmetric random walk.

For the following limit theorems we lean on the Markov property (and invite the reader to
try the moment method).

Theorem 8.1. We have

Sn

n
a.s.→ 0 and

Sn

σ2
√

n
d→N0,1 as n → ∞.

Proof. The sequence {Xn, n ≥ 1} now forms a Markov chain of order two. Theorem 6.1 of
[7] yields the strong law, and the results in [11, Section 3] or [12], combined with Corollary 5
of [14], yield the asymptotic normality with the moments as calculated above. �
Remark 8.2. If we suppose that the elephant remembers a fixed but finite number, say k,
of the most recent steps, the sequence of steps forms a Markov chain of order k, and we
obtain by (basically) the same arguments as above that Sn/

√
n will be asymptotically normal

(a Markov chain of order k can be considered as a k-dimensional Markov chain; now use [12],
for example).

9. Remembering the distant as well as the recent past 1: Mn = {1, n}
Imagine a(n old) person who remembers their early childhood and events from the last few

days but nothing in between. The most elementary model would be that of the heading.
Following the approach of earlier variants, we begin by assuming that X1 = 1. Then, for

n ≥ 2,
E(X2) =E(E(X2 | X1)) =E((2p − 1)X1) = 2p − 1,
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and

E(Xn+1) =E(E(Xn+1 |Fn))

=E(E(Xn+1 | X1, Xn))

= (2p − 1)E
(X1 + Xn

2

)
= (2p − 1)E

(1 + Xn

2

)
= 2p − 1

2
· (1 +E(Xn)).

Exploiting Proposition A.1(i) we obtain, for n ≥ 1,

E(Xn) = 2p − 1

3 − 2p
+

(
2p − 1

2

)n−1

· 4(1 − p)

3 − 2p
,

and hence that

E(Tn) = 1 + (2p − 1) + (n − 2)
2p − 1

3 − 2p
+ 4(1 − p)

3 − 2p

n∑
k=1

(
2p − 1

2

)k−1

= n · 2p − 1

3 − 2p
+ 8(1 − p)

(3 − 2p)2 + o(1) as n → ∞. (9.1)

Next we note that E(T2
1 ) = 1 and, by (3.4), that, for n ≥ 1,

E(T2
n+1) =E(T2

n ) + (2p − 1)E(Tn) + (2p − 1)E(TnXn) + 1.

In order to establish a difference equation for the second moment we first have to compute the
mixed moment. For the computational details we refer to Appendix A.3 and obtain (formula
(A.3)),

E(T2
n ) = (2p − 1)2

(3 − 2p)2
· n2 +

(
1 + (2p − 1)

(3 − 2p)3
(4p2 − 40p + 35)

)
· n + o(n).

Joining the expressions for the first two moments, finally, tells us that the variance is linear
in n:

var(Tn) = n2 · (2p − 1)2

(3 − 2p)2 + n ·
(

1 + (2p − 1)

(3 − 2p)3 (4p2 − 40p + 35)

)

−
(

n · 2p − 1

3 − 2p
+ 8(1 − p)

(3 − 2p)2

)2

+ o(n)

= n · σ 2
T + o(n) as n → ∞,

where

σ 2
T = 1 + (2p − 1)

(3 − 2p)3
(4p2 − 24p + 19). (9.2)
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Given the expressions for mean and variance, a weak law is immediate:

Tn

n

p→ 2p − 1

3 − 2p
as n → ∞.

In analogy with our earlier results, this suggests that Tn is asymptotically normal. That this
is indeed the case follows from the fact that {Xn, n ≥ 1} is, once again, a uniformly ergodic
Markov chain, since the only random piece from the past is the previous step. We may thus
apply Corollary 5 of [14] (see also [13, Theorem 19.1]) to conclude that Tn −E(Tn) is asymp-
totically normal with mean zero and variance σ 2

T n, with σ 2
T as defined in (9.2), which, in view

of (9.1), establishes that

Tn − 2p−1
3−2p n

σT
√

n
d→N0, 1 as n → ∞. (9.3)

An appeal to the discussion at the end of Section 2 concerning the relation between the two
branches (the means have opposite signs and the variances are the same) now allows us to
conclude that

E(Sn) = pE(Tn) + (1 − p)E( − Tn) = (2p − 1)E(Tn),

E(S2
n) =E(T2

n ),

var(Sn) =E(T2
n ) − (2p − 1)2(E(Tn))2,

which tells us that, as n → ∞,

E

(
Sn

n

)
→ (2p − 1)2

3 − 2p
and var

(
Sn

n

)
→ σ 2

S = 4p(1 − p)
(2p − 1)2

(3 − 2p)2 .

Furthermore, in analogy to Theorem 5.1, we arrive at the following asymptotic distributional
behavior of Sn.

Theorem 9.1. We have

Sn

n
d→ S =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2p − 1

3 − 2p
with probability p,

−2p − 1

3 − 2p
with probability 1 − p,

as n → ∞.

Moreover, E(Sn/n)r →E(Sr) for all r > 0, since |Sn/n| ≤ 1 for all n.

Remark 9.1. Comparing this with Theorem 5.1, we see that the jump points are closer together
here. This can be explained by the fact that the current random variables are less dependent
than those in Section 5.

Finally, by combining (9.3) with the analog for the case X1 = −1, asymptotic normality
follows with a random centering.

Theorem 9.2. We have
Sn − (2p−1)X1

3−2p n

σT
√

n
d→N0,1 as n → ∞.
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Proof. We first note that it follows from the discussion following (9.3) that the CLT there
remains true when X1 = −1, with + replacing the – in the numerator. We may thus argue as in
the proof of Theorem 5.1, via the fact that

Sn − (2p−1)X1
3−2p n

σT
√

n
= X1 · Tn − (2p−1)

3−2p n

σT
√

n
.

Alternatively, condition on the value of X1 and proceed as in the proof of Theorem 6.2. �

10. Remembering the recent as well as the distant past 2: Mn = {1, 2, n}
Following the approach of earlier variants, we begin by assuming that X1 = X2 = 1. Then

E(X1) =E(X2) = 1, E(X3) = (2p − 1) and, for n ≥ 3,

E(Xn+1) =E(E(Xn+1 |Fn)) =E(E(Xn+1 | X1, X2, Xn)) = 2p − 1

3
· (2 +E(Xn)).

Exploiting Proposition A.1(i) yields

E(Xn) = 2p − 1

2 − p
+

(2p − 1

3

)n−1(
1 − 2p − 1

2 − p

)
= 2p − 1

2 − p
+ 3(1 − p)

2 − p

(2p − 1

3

)n−2
,

and hence

E(Tn) = 1 + 1 + (2p − 1) + (n − 3) · 2p − 1

2 − p
+ 3(1 − p)

2 − p

n∑
k=4

(2p − 1

3

)k−2

= n · 2p − 1

2 − p
+ 3(1 − p)(7 − 2p)

2(2 − p)2 + o(1) as n → ∞. (10.1)

As for second moments, E(T2
1 ) = 1, E(T2

2 ) = 4, E(T2
3 ) =E(1 + 1 + X3)2 = 4 + 4E(X3) + 1 =

4 + 4(2p − 1) + 1 = 8p + 1, and, generally,

E(T2
n+1) =E(T2

n ) + 2 E(TnXn+1) + 1. (10.2)

Concerning the mixed moments and other details we refer to Appendix A.4, from which we
obtain

E(T2
n ) = n2 · (2p − 1)2

(2 − p)2 + n ·
(

1 + (2p − 1)

(2 − p)3 · (5p2 − 32p + 26)
)

+ o(n).

The variance, finally, turns out as

var(Tn) = n · σ 2
T + o(n), where σ 2

T = 1 + (2p − 1)

(2 − p)3 · (5 − 5p − p2). (10.3)

Following the path of the previous section, we now immediately obtain a weak law:

Tn

n

p→ 2p − 1

2 − p
as n → ∞.

It remains to consider the general case with arbitrary X1 and X2. There is a slight change
here from the previous section. Namely, we first have the case when X1 = X2 = −1, for which
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the arguments from the previous section carry over without change, that is, the mean equals
E( − Tn) and the second moment equals E(T2

n ). However, now we also have a mixed case
which behaves somewhat differently.

Namely, consider the case when the first two summands are not equal: X1 + X2 = 0, X1X2 =
−1. Then

E(X3) =E(E(X3 | X1, X2)) =E

(
(2p − 1)

X1 + X2

2

)
= (2p − 1)E(0) = 0,

and, for n ≥ 3,

E(Xn+1) =E(E(Xn+1 |Fn))

=E(E(Xn+1 | X1, X2, Xn))

= 2p − 1

3
· (0 +E(Xn))

= 2p − 1

3
E(Xn)

= · · · = C E(X3) = 0,

from which we conclude that, for n ≥ 2,

E(Tn) = 0.

For the calculation of the second moment we refer again to Appendix A.4 and find that

E(T2
n ) = n · 1 + p

2 − p
+ o(n) = var(T2

n ) as n → ∞.

The weak law now runs slightly differently, in that

Tn

n

p→ 0 as n → ∞.

We note in passing that the mean is linear in n and that the second moment is of order n2 when
the first two summands are equal, whereas the mean is zero and the second moment is linear
in n when they are not. However, the variance is linear in n in all cases.

As for central limit theorems, the main arguments are the same as in Section 9, in that

Tn ± 2p−1
2−p n

σT
√

n
d→N0,1 as n → ∞

for the cases X1 = X2 = −1 and X1 = X2 = 1, respectively, and

Tn√
n · 1+p

2−p

d→N0,1 as n → ∞

when the first two summands are unequal.
Switching to moments of Sn, using T+

n , T−
n , and T0

n for the three cases, we obtain

E(Sn) = p2
E(T+

n ) + (1 − p) ·E(T0
n ) + p(1 − p)E(T−

n ) = p(2p − 1)E(T+
n ),

E(S2
n) = p2

E((T+
n )2) + (1 − p) ·E((T0

n )2) + p(1 − p)E((T−
n )2).
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Collecting the various pieces tell us that, as n → ∞,

E

(
Sn

n

)
→ p(2p − 1)2

2 − p
and var

(
Sn

n

)
→ p(1 − p)(2p − 1)2(4p2 + 1)

(2 − p)2
.

Finally, by modifying our earlier results of this kind, one ends up as follows.

Theorem 10.1. We have

Sn

n
d→ S =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2p − 1

2 − p
with probability p2,

0 with probability 1 − p,

−2p − 1

2 − p
with probability p(1 − p),

as n → ∞.

Moreover, E(Sn/n)r →E(Sr) for all r > 0, since |Sn/n| ≤ 1 for all n.

We finally wish to combine the three different beginnings of the process in order to arrive
at a limit theorem for the S-process. This works (in theory) the same way as in Section 9.
However, there is a problem with the variance. Namely, in Theorem 9.2 both cases had the
same variance, whereas the variance when X1 and X2 are equal is not the same as when they
are different. Nevertheless, here is the result.

Theorem 10.2. We have

Sn − (2p−1)(X1+X2)/2
2−p n

√
n

d→ p ·N0,σ 2
T

+ (1 − p) ·N0,(1+p)/(2−p) as n → ∞,

with σ 2
T as given in (10.3).

Proof. The conclusion follows by conditioning on the value of (X1 + X2)/2, and proceeding
as in the proof of Theorem 6.2. �

11. Miscellania

We close by mentioning some further specific models and by describing some problems and
challenges for further research.

11.1. More on restricted memories

(i) The next logical step would be to check the case Mn = {1, n − 1, n}. By modifying the
computations in Appendix A.2, setting a = (2p − 1)/3 and d = 3a2, we find that

μn+1 =E(Xn+1)

=E(E(Xn+1 | X1, Xn−1, Xn))

= 2p − 1

3
E(X1 + Xn−1 + Xn)

= a((2p − 1) + μn−1 + μn)

= a(μn−1 + μn) + d,
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after which Proposition A.1(iv) and a glance at the computations in Appendix A.2 tell
us that

E(Xn) = (2p − 1)2

5 − 4p
+ O(qn) as n → ∞,

where q = max{|λ1|, |λ2|} < 1, with λi, i = 1, 2, defined in Appendix A.2. It follows that

E(Sn) ∼ n
(2p − 1)2

5 − 4p
as n → ∞.

If Mn = {1, 2, n − 1, n}, then, with a = (2p − 1)/4 and d = 2p(2p − 1)2/4,

E(Sn) ∼ n
p (2p − 1)2

3 − 2p
as n → ∞.

In fact, theoretically it is possible to obtain results of the above kind for any fixed number
of early and/or late memory steps.

(ii) The case when the number of memory steps depends on n, e.g. log n or
√

n, is more
subtle.

(iii) Another model is when the elephant remembers everything except the first step; more
generally, the elephant remembers all but the first k steps for some k ∈N. Set pk =
P(Xk+1 = 1), Vn = Xk+1 + · · · + Xn, and Hn = σ {Xk+1, . . . , Xn}, and let n ≥ k + 1.
Then

E(Xn+1 |Hn) = (2p − 1)
Vn

n − k
and E(Vn+1 |Hn) = γ̃nVn,

where γn = (n − 1 − k + 2pk)/(n − k). With

ãn =
n−1∏

ν=k+1

γ̃ −1
ν

one can, as in [2], show that ãnVn is a martingale. From the same paper it follows that,
provided 0 < pk < 3/4,

Vn√
n − k

d→N0,1/(4−3pk) as n → ∞,

which implies that
Sn√

n
d→N0,1/(4−3pk) as n → ∞.

The quantity pk depends on the construction used for the k steps X2, . . . , Xk+1.

Other cases one might think of is when the memory covers everything except

• the last j steps,

• the first k steps and the last j steps,

• the first α log n steps and/or the last β log n steps for some α, β > 0,

• the first, say, α
√

n steps and/or the last β
√

n steps for some α, β > 0,

• the first α log n steps and/or the last β log n steps for some α, β > 0,

• and so on, aiming at more general (final) results.
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11.2. Phase transition

The results of Bercu [2] show that for the full memory one has a phase transition at p = 3/4.
There is no such thing in our results. An interesting question would be to find the breaking
point. There exist some papers on this topic using simulations (see e.g. [20], [6], and [18], and
further papers cited therein), but we are not aware of any theoretical results concerning this
matter.

11.3. Remembering the first versus the last step

There is a fundamental difference in behavior in these extreme cases; it is not just a matter
of recalling some earlier step. Namely, it is a matter of comparing

Xn+1 =
⎧⎨
⎩

+X1 with probability p,

−X1 with probability 1 − p,

with

Xn+1 =
⎧⎨
⎩

+Xn with probability p,

−Xn with probability 1 − p.

In order to see the difference more clearly, let us imagine that p is close to one.
In the first case every new step most likely equals the first one, that is, a typical path will

then consist of an overwhelming number of steps equal to the first one, interfoliated by an
occasional −X1. In the second case every new step most likely equals the most recent one,
that is, a typical path will consist of an overwhelming number of steps equal to the first one,
followed by an overwhelming number of steps equal to −X1, and so on, that is, alternating
long stretches of the same kind.

Moreover, since, in the first case, every new step is a function of just the first one, the
independence structure does not come as a surprise, whereas in the second case the next step
depends on the previous one, which in turn depends on its previous one, and so on, which
implies that the next step in fact depends on the whole past.

11.4. Final remarks

(i) We have seen that the more the elephant remembers, the more cumbersome are
the computations. However, once again, in theory it would be possible to compute
higher-order moments and thus, for example, use the moment method to prove limit
theorems.

(ii) By using the device in the first paragraph of Section 4, one can extend all limit theorems
for ERWs to the case with general steps.

(iii) There is nothing particularly one-dimensional about our arguments. With a sensible
definition in higher dimensions it would be possible to investigate analogous problems.

Appendix A

In this appendix we collect some details on difference equations and the more technical
calculations.
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A.1. Difference equations

In the proofs we use several difference equations. For convenience and easy reference we
will summarize some well-known facts about linear difference equations that are used on and
off (consult [15], for example).

Proposition A.1.

(i) Consider the first-order equation

xn+1 = a xn + bn for n ≥ 1, with x1 = x∗
1 as initial value.

Then

xn = an−1x∗
1 +

n−2∑
ν=0

aνbn−1−ν .

If, in addition, |a| < 1 and bn = bnγ with γ > −1, then

xn = bn−1

1 − a
− γ abn−1

n(1 − a)2
(1 + o(1)) as n → ∞.

(ii) If, in particular, |a| < 1 and xn+1 = axn + b, then

xn = b

1 − a
+ an−1

(
x∗

1 − b

1 − a

)
= b

1 − a
(1 + o(1)) as n → ∞.

(iii) Next is the homogeneous second-order equation

xn+1 = a xn + b xn−1 for n ≥ 2, with x∗
1, x∗

2 given.

Then, with λ1/2 = (a ± √
a2 + 4b)/2, provided a2 + 4b �= 0,

xh
n = c1λ

n
1 + c2λ

n
2, with c1, c2 chosen such that xh

i = x∗
i for i = 1, 2.

(iv) As for the inhomogeneous second-order equation

xn+1 = a xn + b xn−1 + dn for n ≥ 2, with x∗
1, x∗

2 given,

we have xn = xh
n + yn, where yn is some solution of the inhomogeneous equation, where

the constants c1, c2 in xh
n are chosen properly. If dn ≡ d and a + b �= 1, we may choose

yn = d/(1 − a − b).

A.2. Proof of Lemma 8.1

Set a = p − 1/2 ∈ ( − 1/2, 1/2). Then

E(X1) = 2a and E(X2) =E(X2 | X1) = 2aE(X1) = 4a2.

For n ≥ 2 we have

μn+1 =E(Xn+1) =E(E(Xn+1 |Fn)) =E((2p − 1) (Xn−1 + Xn)/2) = a (μn−1 + μn).

With λ1/2 = (a ± √
a2 + 4a)/2 (note that |λ1/2| < 1), this difference equation, with the two

starting values 2a and 4a2, has, for n ≥ 1, the solution

μn =E(Xn) = a(3a + √
a2 + 4a)√

a2 + 4a
λn−1

1 − a(3a − √
a2 + 4a)√

a2 + 4a
λn−1

2 .
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For p < 1/2 we have
√

a2 + 4a = i
√|a2 + 4a|, but the solution is still real. Next,

E(Sn) =
n∑

k=1

μk = a(3a + √
a2 + 4a)√

a2 + 4a

1 − λn
1

1 − (a + √
a2 + 4a)/2

− a(3a − √
a2 + 4a)√

a2 + 4a

1 − λn
2

1 − (a − √
a2 + 4a)/2

→ 2a(3a + √
a2 + 4a)√

a2 + 4a(2 − a − √
a2 + 4a)

− 2a(3a − √
a2 + 4a)√

a2 + 4a(2 − a + √
a2 + 4a)

= 2a(a + 1)

1 − 2a
= p2 − 1/4

1 − p
as n → ∞.

The second moment is more tedious. We begin with

E(S2
n+1 |Fn) = S2

n + (2p − 1)Sn (Xn−1 + Xn) + 1

and obtain
vn+1 =E(S2

n+1) = vn + (2p − 1)E(SnXn + SnXn−1) + 1. (A.1)

As for the mixed moments,

E(SnXn |Fn−1) = aSn−1Xn−1 + a(Sn−2Xn−2 + Xn−1Xn−2) + 1.

By the usual trick we find that

E(XnXn−1) = a + a2 + · · · + an−1
E(X2X1) → a

1 − a
= 2p − 1

3 − 2p
,

and with ζn =E(SnXn) that

ζn = a(μn−1 + μn−2) + 1 + 4a2

1 − a
+ O(an),

from which it follows that

ζn → p2 − 2p + 7/4

(1 − p)(3 − 2p)
as n → ∞,

the stationary solution.
Next,

E(SnXn−1) =E(Sn−1Xn−1) +E(XnXn−1) = ζn−1 + a

1 − a
+ O(an).

Finally, recalling (A.1), we arrive at

vn+1 = vn + (2p − 1)

(
2p2 − 4p + 7/2

(1 − p)(3 − 2p)
+ 2p − 1

3 − 2p

)
+ 1 + o(1) as n → ∞,

and thus, via telescoping, we obtain

vn ∼ n

(
1 + (2p − 1)(5 − 2p)

2(1 − p)(3 − 2p)

)
as n → ∞.
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A.3. Calculation of second moments in Section 9

We first note that E(T2
1 ) = 1, and, by (3.4), that, for n ≥ 1,

E(T2
n+1) =E(T2

n ) + (2p − 1)E(Tn) + (2p − 1)E(TnXn) + 1. (A.2)

At this point we have to pause and compute the mixed moments. We first note thatE(T1X1) = 1,
and that

E(X2X1) =E(X1 E(X2 | X1)) =E(X1(2p − 1)X1) = 2p − 1,

so that
E(T2X2 |Fn) =E(X1X2 + 1) = 2p − 1 + 1 = 2p.

For n ≥ 2 we exploit (3.3), (9.1), and the fact that X2
n = 1, to obtain

E(Tn+1Xn+1) = 2p − 1

2
·E(TnXn) + 2p − 1

2
E(Tn) + 1

= 2p − 1

2
·E(TnXn) + 2p − 1

2

(
n · 2p − 1

3 − 2p
+ 8(1 − p)

(3 − 2p)2 + o(1)
)

+ 1

= 2p − 1

2
·E(TnXn) + (2p − 1)2

2(3 − 2p)
· n + 4(2p − 1)(1 − p)

(3 − 2p)2
+ 1 + o(1).

Another application of Proposition A.1(i) then tells us that

E(TnXn) =
{(

(2p − 1)2

2(3 − 2p)
· (n − 1) + 4(2p − 1)(1 − p)

(3 − 2p)2 + 1

)/(
1 − 2p − 1

2

)

− 2p − 1

2
· (2p − 1)2

2(3 − 2p)
· (n − 1)

/
n

(
1 − 2p − 1

2

)2}
· (1 + o(1))

= (2p − 1)2

(3 − 2p)2
· n + 8(1 + p − 2p2)

(3 − 2p)3
+ o(1).

Hence, using (A.2), we obtain

E(T2
n+1) =E(Tn)2 + (2p − 1)

(
n · 2p − 1

3 − 2p
+ 8(1 − p)

(3 − 2p)2

)

+ (2p − 1)

(
(2p − 1)2

(3 − 2p)2
· n + 8(1 + p − 2p2)

(3 − 2p)3

)
+ 1 + o(1)

=E(Tn)2 + 2(2p − 1)2

(3 − 2p)2 · n + 32(2p − 1)(1 − p)

(3 − 2p)3 + 1 + o(1),

after which, via telescoping, we obtain

E(T2
n ) = (2p − 1)2

(3 − 2p)2 · n2 − (2p − 1)2

(3 − 2p)2 · n + (n − 1) ·
(

1 + 32(2p − 1)(1 − p)

(3 − 2p)3

)
+ o(n)

= (2p − 1)2

(3 − 2p)2 · n2 +
(

1 + (2p − 1)

(3 − 2p)3 (4p2 − 40p + 35)

)
· n + o(n). (A.3)
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A.4. Calculation of second moments in Section 10

The point of departure in this case is (10.2), that is,

E(T2
n+1) =E(T2

n ) + 2 E(TnXn+1) + 1. (A.4)

For the mixed moments we use (3.3):

E(TnXn+1 | Gn) = 2

3
(2p − 1)Tn + 2p − 1

3
TnXn = 2

3
(2p − 1)Tn + 2p − 1

3
Tn−1Xn + 2p − 1

3
.

We thus find, using (10.1), that for n ≥ 3

E(TnXn+1)

= 2p − 1

3
E(Tn−1Xn) + 2p − 1

3
+ 2(2p − 1)

3

(
n · 2p − 1

2 − p
+ 3(1 − p)(7 − 2p)

2(2 − p)2 + o(1)

)

= 2p − 1

3
E(Tn−1Xn) + 2(2p − 1)2

3(2 − p)2
· n + (2p − 1)(1 − p)(7 − 2p)

(2 − p)2
+ 2p − 1

3
+ o(1).

Invoking Proposition A.1(i) then tells us that

E(TnXn+1)

=
{(

2(2p − 1)2

3(2 − p)2 · n + (2p − 1)(1 − p)(7 − 2p)

(2 − p)2 + 2p − 1

3

)/(
1 − 2p − 1

3

)

− 2p − 1

3
· 2(2p − 1)2

3(2 − p)2 · n
/(

(n + 1)

(
1 − 2p − 1

3

)2)}
· (1 + o(1))

= (2p − 1)2

(2 − p)2
· n + 3(2p − 1)

(2 − p)3
· (p2 − 9p + 8) + o(1),

which, inserted into (A.4), yields

E(T2
n+1) =E(T2

n ) + 2(2p − 1)2

(2 − p)2 · n + 3(2p − 1)(p2 − 9p + 8)

(2 − p)3 + 1 + o(1),

and, after summation,

E(T2
n )

= n2 · (2p − 1)2

(2 − p)2 − n · (2p − 1)2

(2 − p)2 + (n − 1) ·
(

1 + 3(2p − 1)(p2 − 9p + 8)

(2 − p)3

)
+ o(n)

= n2 · (2p − 1)2

(2 − p)2
+ n ·

(
1 + (2p − 1)

(2 − p)3
· (5p2 − 32p + 26)

)
+ o(n).

Finally we turn our attention to the second moment for the case when X1 · X2 = −1, where,
again, the mixed moment is first in focus. NowE(T1X1) = 1,E(T2X2) =E(X1X2 + X2

2) = −1 +
1 = 0, and E(T3X3) =E(T2X3 + X3)2 = 0 + 1 = 1.

For n ≥ 3 we follow the usual pattern. Due to the fact that the mean is zero, an application
of (3.3) now yields

E(TnXn+1) = 2p − 1

3
E(TnXn) = 2p − 1

3
E(Tn−1Xn) + 2p − 1

3
,
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which, together with Proposition A.1(i), tells us that

E(TnXn+1) = (2p − 1)/3

1 − (2p − 1)/3
+ o(1) = 2p − 1

2(2 − p)
+ o(1) as n → ∞. (A.5)

Moving into second moments, E(T2
1 ) = 1, E(T2

2 ) = 0, and E(T2
3 ) =E(X2

3) = 1.
For n ≥ 3 we insert our findings in (A.5) into (A.4):

E(T2
n+1) =E(T2

n ) + 2E(TnXn+1) + 1

=E(Tn)2 + 2p − 1

2 − p
+ 1 + o(1)

=E(T2
n ) + 1 + p

2 − p
+ o(1) as n → ∞,

so that, via telescoping,

E(T2
n ) = n · 1 + p

2 − p
+ o(n) = var(T2

n ) as n → ∞.
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