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Measurements of subsonic air jets show that the peak noise usually occurs when
observations are made at small angles to the jet axis. In this paper, we develop
further understanding of the mathematical properties of this peak noise by analysing
the properties of the overall sound pressure level with an acoustic analogy using
isotropy as a paradigm for the turbulence. The analogy is based upon the hyperbolic
conservation form of the Euler equations derived by Goldstein (Intl J. Aeroacoust.,
vol. 1, 2002, p. 1). The mean flow and the turbulence properties are defined by a
Reynolds-averaged Navier–Stokes calculation, and we use Green’s function based
upon a parallel mean flow approximation. Our analysis in this paper shows that the
jet noise spectrum can, in fact, be thought of as being composed of two terms, one
that is significant at large observation angles and a second term that is especially
dominant at small observation angles to the jet axis. This second term can account
for the experimentally observed peak jet noise (Lush, J. Fluid Mech., vol. 46, 1971,
p. 477) and was first identified by Goldstein (J. Fluid Mech., vol. 70, 1975, p. 595).
We discuss the low-frequency asymptotic properties of this second term in order to
understand its directional behaviour; we show, for example, that the sound power
of this term is proportional to the square of the mean velocity gradient. We also
show that this small-angle shear term does not exist if the instantaneous Reynolds
stress source strength in the momentum equation itself is assumed to be isotropic for
any value of time (as was done previously by Morris & Farrasat, AIAA J., vol. 40,
2002, p. 356). However, it will be significant if the auto-covariance of the Reynolds
stress source, when integrated over the vector separation, is taken to be isotropic in
all of its tensor suffixes. Although the analysis shows that the sound pressure of this
small-angle shear term is sensitive to the statistical properties of the turbulence, this
work provides a foundation for a mathematical description of the two-source model
of jet noise.

Key words: aeroacoustics, jet noise

1. Introduction
The existence of different types of mechanisms that contribute to the noise observed

in the far field when a jet flow breaks down into turbulent motion has been argued
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Asymptotic properties of the overall sound pressure level of subsonic jets 511

for quite some time now. Experiments on subsonic jet flows, both the early studies
by Lush (1971) and Ahuja (1973) for example, and even the most recent analysis
by Morris (2008, 2009), have shown certain universal features of the overall sound
pressure level (OASPL) of a cold jet flow that seem intuitively reasonable. The peak
jet noise is seen to occur when the observation point is positioned close to the jet
axis, often near 30◦ (Morris 2008, 2009). At larger observation angles, perpendicular
to the jet axis for example, there is an observed drop off in the OASPL. However,
these studies also indicate that the peak OASPL for all high-subsonic Mach-number
jets is, more or less, independent of Reynolds number.

Most of the mathematical explanations of the jet noise spectrum began with an
acoustic analogy (Lighthill 1952). Although the original form of Lighthill’s theory
gave a reasonable understanding of the jet sound pressure at 90◦, the peak jet noise
became somewhat difficult to predict within the original acoustic analogy approach
for example, especially with the view of developing a unified mathematical model to
understand the behaviour of the acoustic spectrum. This difficulty with the original
acoustic analogy essentially came about because the base flow velocity about which
the fluctuation in pressure was defined was zero. Recently, however, the acoustic
analogy approach was generalized by Goldstein (2003) for a completely arbitrary
base flow. The standard procedure under the generalized acoustic analogy approach
involves re-arranging the Navier–Stokes equations so that a linear differential operator
acts on the dependent variables of choice. As Goldstein (2002) pointed out, these
dependent variables do not have to be linear themselves, but the differential operator
that acts upon them must be, so that a solution (for the pressure variable, say) can
be sought using Green’s theorem. Any nonlinear terms that involve fluctuations in
momentum, or the Reynolds stress, are moved to the right-hand side, and represent
the ‘generators’, or the source terms of the problem, such that these are the quantities
about which we have some prior knowledge. Indeed, one of the many advantages
of working with the generalized acoustic analogy approach from the outset is that
one can recover the classical results. Allowing the base flow to be zero, for example,
allows one to recover a Lighthill-type solution and, moreover, by defining the mean
flow to be a parallel shear layer in the streamwise direction allows one to recover the
next advancement of Lighthill’s formalism of the problem, namely Lilley’s equation
(Lilley 1974).

Lilley’s development of the acoustic analogy was not only in the definition of the
mean flow for the wave propagation problem. What Lilley (1958) also envisaged was
the jet noise spectrum being composed of two terms, a ‘self-noise’ term that would
dominate at large observation angles to the jet axis and would remain relatively
directionless, and a ‘shear noise’ term that depended on the mean-flow-gradient
profile (for a jet flow defined by a parallel shear layer) and would be most directional
at small observation angles. In fact, it was the analysis of the Lilley’s equation that
provided a breakthrough in explaining the existence of this shear term. Goldstein
(1975) analysed the low-frequency behaviour of the acoustic spectrum using Lilley’s
equation. He showed that it would remain proportional to the square of the mean
velocity gradient, with a directionality factor that peaked at small angles to the jet
axis.

However, since Lilley’s analysis, many questions still remained open, for example,
how one would devise a jet noise model that naturally recovered this shear noise
term at small observation angles together with a ‘self-noise’-type behaviour at larger
observation angles. Part of the difficulty in doing this, however, was that there
was never much agreement in the theoretical community about how to define the
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512 M. Z. Afsar

shear noise and self-noise terms. So, for example, the definitions used over the years
may appear to be quite different from Lilley’s original postulate (see, for example,
Ribner 1969). In fact, this point was highlighted by Balsa (1977), who explained that
artificially decomposing the problem at the very outset into self-noise and shear noise
components not only makes the whole analysis become rather complicated, but is not
mathematically consistent, because what was originally thought of as contributing
mostly to the self-noise term (the fluctuating Reynolds stress source term on the right-
hand side of the momentum equation) can have components that are directional.

Indeed, the algebraic complications of using Lilley’s equation as the starting point
of the analysis were shown in the work of Colonius, Lele & Moin (1997), where,
after linearization, the (mathematical) source involved five terms, each having two
parts. Although analysis of this source using a direct numerical simulation (DNS) of
a two-dimensional compressible mixing layer showed that the Lilley-based acoustic
analogy was in good agreement with the acoustic data from the DNS, this complicated
mathematical form meant that the source was composed of a very large number of
nearly cancelling terms, which made its numerical evaluation difficult (Crighton 1993;
Colonius et al. 1997; Freund 2001). However, this work did serve to show the benefit
of using an approximate form of the Lilley’s source term proposed in Goldstein (1976)
and later, through an alternative derivation, in Goldstein (1984).

A more extensive diagnostic test of the acoustic analogy was performed by Freund
(2001, 2003), who conducted a DNS study of a Mach 0.9, Reynolds number 3600
turbulent jet. The simulation was validated against an experiment by Stromberg,
McLaughlin & Troutt (1980) at the same flow conditions (we hereafter refer to this
experiment as the Stromberg jet). In Freund (2001), the mean flow and radiated
sound were shown to be in good agreement with the data from experiment. There
was, however, some concern whether the results from the DNS simulation of this low-
Reynolds jet could give understanding of the acoustic properties of higher-Reynolds-
number flows. In terms of the mean flow, Freund (2001), and originally Stromberg
et al. (1980), reported that the flow field had properties common to higher-Reynolds-
number turbulent jets (Freund 2001, figure 2), although the potential core length
was slightly longer. On the other hand, Freund (2001) explained that low-Reynolds-
number jets have acoustic properties that are ‘more directive’ (see, for example,
Mollo-Christensen, Koplin & Martucelli 1964; Lush 1971; Power et al. 2004). That
is, the OASPL at 90◦ to the jet axis is lower than it would be for a higher-Reynolds-
number jet, at a similar Mach number (which is partly due to the fact that the
initial shear layers are laminar in low-Reynolds-number jets). This highly directive
behaviour is shown clearly in Stromberg et al. (1980, figure 11) and in Freund (2001,
figure 10).

An important property that we can infer from the experiments on subsonic jets
is that the peak OASPL, which usually occurs at 30◦ to the jet axis, is relatively
independent of Reynolds number. This is shown in Freund (2001, figure 10) and
in Bodony & Lele (2008, figure 9a). The low-Reynolds-number jet does, therefore,
represent a meaningful case for us to understand the peak OASPL, in the context
of a two-source description, that is, in the sense that the acoustic spectrum is
given (mathematically) by the sum of two terms, one representing the peak noise
at small observation angles, with the other term being dominant at larger angles, and
this behaviour has been observed even in low-Reynolds-number jet flows. Although
Freund (2001) was able to successfully predict the OASPL at 30◦ for the Stromberg
jet, our aim is to provide a mathematical explanation for this peak noise within a
two-source description.
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The Freund database (2003) was also used to check various approximations that
are often made in the acoustic analogy. More recent computational work on jet noise,
however, has focused on the use of large eddy simulation (LES). Moore, Slot &
Boersma (2007) conducted an LES of a subsonic jet at a very low Reynolds number
of 2500 and compared their results to the work of Freund (2001). LES-based jet noise
analysis and prediction have been performed successfully by a number of researchers,
especially in predicting the peak jet noise, for example, Anderssen (2003), Bodony &
Lele (2005), Wu et al. (2005), Shur, Strelets & Spalart (2007), Mosedale & Drikakis
(2007) and Bodony & Lele (2008) to name a few. The technical issues involved in
the LES-based prediction schemes can be found in Colonius & Lele (2004), Bodony
(2004) and Wang, Freund & Lele (2006).

A mathematical explanation of the OASPL using the acoustic analogy is not the
only starting point for the jet noise problem. Tam et al. (2008) developed an alternative
theory for the jet noise spectrum based on a semi-empirical model described in Tam &
Auriault (1999) for the high frequencies and an instability wave model. The idea of
using an instability wavepacket to describe the breakdown of the coherent structures
in terms of the growth-stabilization-decay cycle has been around for decades now
(see the review by Tam 1995). For example, Bishop, Ffowcs-Williams & Smith (1971),
Tam (1971), Crow (1972), Ffowcs-Williams & Kempton (1978), Liu & Merkine (1976),
Alper & Liu (1978), Liu & Mankbadi (1984), Huerre & Crighton (1983) and Tam &
Burton (1984). In the most recent work under this premise, Wu & Huerre (2009)
showed that an instability wavepacket modulated simultaneously in space and time
radiates low-frequency sound waves in a manner similar to that found by Goldstein
(1975).

In this paper, we re-analyse the jet noise problem and show that the OASPL of
a cold jet flow can be understood to a reasonable level by two mathematical terms
using isotropy as a paradigm for the kinematics of the turbulence. One of these terms
is significant at large observation angles, while the second term is the ‘shear term’
because it is proportional to the local mean velocity gradient. We show that this shear
term is most dominant at small observation angles to the jet axis and has similar
properties to those found by Goldstein (1975). These two terms can then be thought
of as the ‘self-noise’ and ‘shear noise’ terms in the spirit of Lilley (1958), but what is
important here is that we do not introduce this decomposition at any point in the
analysis, and show by remaining consistent with the assumptions that these terms
naturally appear in the power spectral density formula.

We show that the shear term will actually exist if the auto-covariance of the
fluctuating Reynolds stress source term, when integrated over the vector separation, is
taken to be isotropic in all of its tensor suffixes. However, this shear term will not occur
if the instantaneous Reynolds stress source strength is itself taken to be isotropic,
as was done previously by Morris & Farrasat (2002), and implicitly assumed in the
work of Goldstein & Leib (2005). But we show that the sound pressure of these terms
will depend crucially on the statistical properties of the turbulence (length scale and
time scale parameters in a particular functional form of the longitudinal correlation
function). The acoustic analogy we use to analyse the problem is based upon the
hyperbolic conservation form of the linearized Euler equations that Goldstein (2002)
derived, and we solve the wave propagation problem for a mean flow based upon
a parallel shear-layer model. The source statistics and mean flow are given by a
Reynolds-averaged Navier–Stokes (RANS) calculation of the Stromberg jet (Wu
et al. 2005; J. J. McGuirk, private communication) and we focus on calculating the
OASPL only, which we compare with experiment.
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514 M. Z. Afsar

2. Acoustic analogy
The basic acoustic analogy equations are based upon the following four fundamental

theoretical statements (Lighthill 1952; Goldstein 2002, 2003, 2005; Goldstein & Leib
2008; Afsar 2008).

(a) The region of turbulence is localized within the jet and the fluid at infinity is
at rest. The turbulence field itself will be described through a ‘source term’, which is
simply a stationary random function of the space–time coordinates ( y, τ ).

(b) Acoustic motions are weak mechanical disturbances that propagate from the
flow by transferring momentum to the fluid in their immediate vicinity (Feynman,
Leighton & Sands 1964). Hence, we can divide the fluid-mechanical variables in the
Navier–Stokes equations into their mean and fluctuating components.

(c) The acoustic pressure (pacoustic) is then defined by the simple equation:

pacoustic = lim
|x|→∞

p(x, t), (2.1)

where (x, t) is the observation point.
(d) The fluid-mechanical variables do not need to be linear so long as (2.1) is

satisfied. For example, in Goldstein (2003) and Goldstein & Leib (2008), a nonlinear
pressure variable is used, but (2.1) is still, of course, satisfied. Moreover, since the
Navier–Stokes can be rewritten as a formally linear set of equations for a residual
component (defined relative to the base flow), a general solution for pacoustic can be
posed using the adjoint Green’s function (Goldstein 2002).

2.1. Basic equations

In this paper, we use an earlier form of the linearized Navier–Stokes equations
shown in Goldstein (2002), where the pressure variable is already linear. We begin
by deriving the formula for the power spectral density of the pressure fluctuation
at the field point (x, t), due to turbulence at ( y, τ ). We take the customary step of
neglecting the noise due to viscous dissipation and heat conduction, which are known
to make an insignificant contribution to the acoustic field when the turbulence is on
a terrestrial scale (Crighton 1969). Further evidence to support this came from the
direct numerical simulation (DNS) study of Colonius & Freund (2000) and Freund
(2003), both of whom showed that the contribution of the viscous stress tensor to the
acoustic field was negligible, even down to a Reynolds number of 2000.

The Euler equations that result can be rewritten in terms of this arbitrary base flow
and residual component, both of which can be unsteady (Goldstein 2002). But since
we are going to perform noise calculations using a steady RANS solution, it makes
sense to choose the base flow to be the time-averaged mean field and write them in the
field variables ( y, τ ) because the turbulence is confined to the jet flow only. With that
in mind, we introduce the usual notation for the averaging operations: the overbar
to represent the time average (with the single prime being its perturbation) and the
tilde for the Favre average (with the double prime being its perturbation). Hence

u( y) ≡ lim
T →∞

1

2T

∫ T

−T

u( y, τ ) dτ (2.2)

and

ρ̄ũ ≡ ρu. (2.3)

Here, T is the time period of averaging, and u′ = 0. The linearized Euler equations
that now follow are defined about the mean flow field: density ρ̄( y), pressure p̄( y) and
velocity ṽj ( y). However, as Goldstein (2002) showed, this system of equations can be
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rewritten as a hyperbolic conservation form by introducing a nonlinear momentum
variable, ui( y, τ ) = ρv′′

i ( y, τ ), that has zero time average. Throughout this paper, we
apply the standard tensor convention of summation across repeated suffixes. Here, γ

is the ratio of the specific heat capacities of air. The equations for mass, momentum
and energy are then given by

∂ρ ′

∂τ
+

∂

∂yj

(ρ ′ṽj + uj ) = 0, (2.4)

∂ui

∂τ
+

∂

∂yj

(ṽjui) +
∂p′

∂yi

+ uj

∂ṽi

∂yj

−
(

ρ ′

ρ̄

)
∂τ̃ij

∂yj

=
∂T ′

ij

∂yj

, i = 1, . . . , 3, (2.5)

1

(γ − 1)

∂p′

∂τ
+

1

(γ − 1)

∂

∂yj

(p′ṽj ) + p′ ∂ṽj

∂yj

+
∂

∂yj

(uj h̃) − ui

ρ

∂τ̃ij

∂yj

= Q′. (2.6)

In this system of equations, the Favre-averaged stagnation enthalpy and its
perturbation take the special definitions h̃0 = h̃+(1/2)ṽ2 and h′′

0 = h′′+ṽiv
′′
i + (1/2)v′′2.

The second-rank tensor τ̃ij on the left-hand side in linearized equations (2.5)
and (2.6) is defined by the equation τ̃ij = δij p̄ + ρ̄ṽ′′

i v
′′
j . Using the time-averaged

momentum equation, however, we can rewrite it as ṽj (∂ṽi/∂yj ) = −(1/ρ)(∂τ̃ij/∂yj ),
which shows that if the mean flow is approximated by a parallel shear layer, with
ṽj ( y) = δj1U (y2, y3), the vector ∂τ̃ij/∂yi will be identically zero. Hence, ∂τ̃ij/∂yi is
a term associated with non-parallel mean-flow effects, and therefore it will remain
at most an O(ε) term for a jet flow spreading with a spread rate ε (Goldstein &
Leib 2005). The term on the right-hand side of the energy equation depends not
only on momentum transfer through the Reynolds-stress fluctuations, but also on
stagnation enthalpy fluctuations. Recent numerical evidence by Bodony & Lele (2008)
and Bodony (2009) suggests that density fluctuations could be sizeable even for cold
jet flows, particularly for jet Mach numbers greater than 0.9. However, since our
aim here is to highlight the shear term and that could explain the peak jet noise,
and which originates from momentum transfer, we neglect the stagnation enthalpy
contribution (even though it contains a term linear in the velocity fluctuation) and
density fluctuations. Hence, we allow ρ( y, τ ) ≈ ρ( y). The terms on the right-hand side
of the linearized equations then reduce to

T ′
ij ( y, τ ) = −ρ̄( y)

[
v′′

i v
′′
j ( y, τ ) − ṽ′′

i v
′′
j ( y)
]
, (2.7)

Q′( y, τ ) = −ṽj ( y)
∂T ′

ij

∂yi

( y, τ ) +
1

2
δij

[
DT ′

ij

Dτ
( y, τ ) +

∂ṽk

∂yk

( y)T ′
ij ( y, τ )

]
. (2.8)

Here, D/Dτ is the usual convective derivative given by D/Dτ = ∂/∂τ + ṽj ( y)(∂/∂yj ).
It is important to realize now that the only source term present in the analysis is

T ′
ij ( y, τ ), since the term Q′( y, τ ) is a function of T ′

ij ( y, τ ) as well. Notice that the
source term now is purely quadratic in its fluctuation, and should therefore avoid
issues associated with sensitivity of its numerical determination (Colonius et al. 1997).
Equation (2.7) represents the noise due to fluctuating momentum (which we call
momentum transfer), and (2.8) involves its interaction with the mean flow, which
causes changes of energy to occur (the energy exchange term).
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516 M. Z. Afsar

2.2. Solution for the pressure fluctuation

The solution of the formally linear equations for the pressure variable (p′) can be
found at a field point outside the jet flow (x, t) using Green’s theorem. This method
has been used many times in the past, for example, the work by Dowling, Ffowcs
Williams & Goldstein (1978), Tam & Auriault (1998) and most recently, Goldstein &
Leib (2008). The adjoint Green’s function must then satisfy a set of adjoint linearized
equations that are homogeneous (right-hand side is zero) in the jet region. Any
unknown constants in the Green’s function solution are easily found, because the
Green’s function in the jet must reduce to the solution of the wave equation in the
far field (the outer region), where the mean flow is all zero.

We use Green’s theorem (Morse & Feshbach 1953, pp. 878–886) to express the
pressure in terms of an integral over the tensor product of the adjoint vector Green’s
function and the sources on the right-hand side of (2.7) and (2.8). We assume that
the surface terms can be neglected, so that by taking Fourier transforms we get

p̂(x, ω) = −
∫

V∞( y)

[
Ĝi( y, −ω | x)

∂T̂ ij

∂yj

( y, ω) + Ĝ4( y, −ω | x)Q̂( y, ω)

]
d3 y. (2.9)

Here, T̂ ij ( y, ω) is the Fourier transform of T ′
ij ( y, τ ) and Ĝ0,1,2,3,4( y, ω | x), the Fourier

transform of the adjoint Green’s function, satisfies the adjoint equations:

iωĜ0 + ṽj

∂Ĝ0

∂yj

− Ĝi ṽk

∂ṽi

∂yk

= 0, (2.10)

iωĜi + ṽj

∂Ĝi

∂yj

+
∂Ĝ0

∂yi

− Ĝk

∂ṽk

∂yi

+ h̃
∂Ĝ4

∂yi

− Ĝ4ṽk

∂ṽi

∂yk

= 0, i = 1, . . . , 3, (2.11)

iω

(γ − 1)
Ĝ4 +

ṽj

(γ − 1)

∂Ĝ4

∂yj

− Ĝ4

∂ṽj

∂yj

+
∂Ĝj

∂yj

= δ( y − x). (2.12)

Here, Ĝ0 is the adjoint density-like variable and Ĝ1–Ĝ3 are the adjoint momentum-
like variables. Also, Ĝ4, the pressure-like quantity, is the variable in the adjoint
energy equation (where we have used ṽj (∂ṽi/∂yj ) = −(1/ρ)∂τ̃ij/∂yj ). At this stage in
the analysis, the adjoint Green’s functions themselves remain otherwise unrestricted
and satisfy any strict definition of causality.

2.3. Equivalent statement

Our focus in this paper is really the analysis of the source term. As we mentioned
before, the only source term in the set-up of the problem now is T̂ij ( y, ω). Since it
is continuous throughout the field space, we can integrate (2.9) by parts. It seems
sensible to do this. Computing spatial derivatives of a function that we can, at best,
model, would be numerically challenging, especially given that one would be relying
upon a computational fluid dynamics (CFD) solution that is only ever known on a
discrete set of points. The Green’s function, on the other hand, can be determined,
and differentiated, with accuracy. Substituting (2.8) into (2.9) and integrating each
term by parts so that we isolate Tij gives an equivalent statement of Green’s theorem,
the Fourier transform of which is given by

p̂(x, ω) =

∫
V∞( y)

Î ij ( y, −ω | x)T̂ ij ( y, ω) d3 y. (2.13)
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The components of the second-rank wave propagation tensor, Î ij , are defined by

Î ij ( y, ω | x) =
∂Ĝj

∂yi

( y, ω | x) −
[

∂ṽj

∂yi

( y)Ĝ4( y, ω | x) + ṽj ( y)
∂Ĝ4

∂yi

( y, ω | x)

]

+
δij

2

[
iω

(
1 +

ṽk

iω

∂

∂yk

)
Ĝ4( y, ω | x)

]
. (2.14)

This form of the pressure fluctuation ((2.13) and (2.14)) is similar to (4.6) in
Goldstein & Leib (2005). Even though the stationary random function T ′

ij is not a
square-integrable function, and does not, therefore, possess a Fourier transform, this
does not pose a problem here because the Fourier transform of its auto-covariance
does exist. One further technical point to note here is that although we have taken the
usual step and neglected the surface-term contribution that arises from the integration
by parts process, what we are taking for granted is that T ′

ij ( y, τ ) must decay faster
than | y|−2 as | y| → ∞. Since if the surface that bounds the volume V∞( y) is denoted
by S∞( y), and if S∞ is defined by s( y) = 0, then at any point in y, we can define
an outward pointing unit normal to S∞ by n( y) = ∇s( y)/|∇s( y)|. Now integrating the
momentum transfer term in (2.9), for example, would result in a surface term of the
form ∫

τ

∫
S∞( y)

nj

[
T ′

ij ( y, τ )Gi( y, τ | x, t)
]

dS dτ, (2.15)

which tends to zero if T ′
ij ( y, τ ) remains o(1/| y|2) as | y| → ∞. For an incompressible

field, Crow (1970) showed that this condition is easily satisfied. In all other cases,
however, we have to rely on the phase cancellations within T ′

ij to ensure convergence
(Goldstein 1976). But, nonetheless, we can identify the transfer of momentum and
energy exchange terms within the wave propagation tensor Î ij commensurate with
our definition in § 2.1, i.e.

Î ij ( y, ω | x) =
∂Ĝj

∂yi

( y, ω | x)︸ ︷︷ ︸
Momentum transfer: term I

−
[
∂ṽj

∂yi

( y)Ĝ4( y, ω | x) + ṽj ( y)
∂Ĝ4

∂yi

( y, ω | x)

]
︸ ︷︷ ︸

Energy exchange: terms IIa and IIb

+
δij

2

[
iω

(
1 +

ṽk

iω

∂

∂yk

)
Ĝ4( y, ω | x)

]
︸ ︷︷ ︸

Energy exchange: terms IIIa

. (2.16)

2.4. Power spectral density formula

The power spectral density of the far-field pressure is

P̂ (x, ω) =

∫
V∞( y)

∫
η

Î
sym
ijkl ( y, η, ω | x)R̂ij ,kl ( y, η, ω) d3η d3 y, (2.17)

where η is the vector separation between the correlation positions y and y + η;
in a Cartesian system of coordinates, for example, η = (η1, η2, η3). The integrand
involves the inner tensor product of two fourth-rank tensors. The wave propagation
tensor Î

sym
ijkl is defined by the symmetric components of the outer tensor product,

Î
sym
ij ( y, ω | x)Î sym

kl ( y + η, −ω | x), where the symmetric second-rank tensor is defined in

the usual way, Î
sym
ij = [Î ij + Î j i]/2. Here, R̂ij ,kl ( y, η, ω) is the Fourier transform of the
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auto-covariance of the stationary random function T ′
ij ( y, τ ), i.e.

R̂ij ,kl ( y, η, ω) =

∫ +∞

τ0=−∞
T ′

ij ( y, τ )T ′
kl( y + η, τ + τ0) e−iωτ0 dτ0. (2.18)

The overbar operation is performed on the non-deterministic part of the integrand
in (2.18). The auto-covariance, T ′

ij ( y, τ )T ′
kl( y + η, τ + τ0), depends only upon the time

delay τ0 between the two space–time points we are correlating in ( y, τ ) since T ′
ij is a

stationary random function. Notice also that Rij ,kl ( y, η, τ0) has a convergent Fourier
transform since T ′

ij = 0. We can see this immediately if we substitute the definition

T ′
ij = − ρ̄(v′′

i v
′′
j −ṽ′′

i v
′′
j ) into the Fourier integral written above,

R̂ij ,kl ( y, η, ω) = ρ̄2( y)

∫ +∞

τ0=−∞
v′′

i v
′′
j ( y, τ )v′′

kv
′′
l ( y + η, τ + τ0) e−iωτ0 dτ0

− ρ̄2( y)

∫ +∞

τ0=−∞
[v′′

i v
′′
j ( y, τ )][v′′

kv
′′
l ( y + η, τ + τ0)] e−iωτ0 dτ0. (2.19)

The second term on the right-hand side of (2.19) ensures that the integrand remains
bounded so that Rij ,kl ( y, η, τ0) → 0 as τ0 → ±∞ (Batchelor 1953, p. 21).

2.4.1. Integration in η

If we now suppose the variation of each component of the tensor Î
sym
kl is small

over the lengths η2 and η3, in comparison to the length that remains correlated,
we can introduce an approximation that is equivalent to neglecting the transverse
variations in retarded time, and that the Green’s function is based upon a parallel
shear layer. Hence, following the theoretical argument in Tam & Auriault (1999),
we can write Î

sym
kl as Î

sym
kl ( y + η, ω | x) ≈ Î

sym
kl ( y, ω | x) eik∞η

1
cos θ ; where the observation

point is positioned at an angle θ to the jet axis and k∞ = ω/c∞ is the wavenumber
in the far field. If we substitute this approximation into (2.17), the power spectral
density simplifies to

P̂ (x, ω) =

∫
V∞( y)

Î
sym

ijkl ( y, ω | x)R̂total
ij ,kl ( y, ω) d3 y. (2.20)

The wave propagation tensor Î
sym

ijkl is now defined as

Î
sym
ijkl ( y, ω | x) = Î

sym
ij ( y, ω | x)Î sym

kl ( y, −ω | x) (2.21)

and the integral of R̂ij ,kl ( y, η, ω) over the vector separation, η, is

R̂total
ij ,kl ( y, ω) =

∫
η

R̂ij ,kl ( y, η, ω) eik∞η
1

cos θ d3η. (2.22)

The rest of this paper is devoted to analysing (2.20) for a mean flow based upon a
parallel shear layer. We adopt a cylindrically based coordinate system for a jet flow
that is circular cylindrical. The fluid properties are then described with respect to
the directions (1, r, ψ) so that y = (y1, r, ψ) and x = (x1, R, Ψ ). For a parallel shear
flow, the mean flow is directed axially in y1, and is a function of r; and the observer
is in the far field at an angle θ to the jet axis. To evaluate the components of
the wave propagation tensor, Î

sym

ijkl (using (2.16) and (2.21)), we require a Green’s
function solution for a parallel flow. That problem is relatively straightforward; for
example, the method used by Afsar (2009) is quite convenient for a CFD-based mean
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flow, and is used in this paper (see Appendix A). For the Reynolds stress auto-
covariance tensor, on the other hand, we model its kinematic properties and define
any component we need using a RANS solution of the Stromberg jet, which we obtain
from Wu et al. (2005) and J. J. McGuirk (private communication). We use isotropy as
a paradigm for the kinematics of the turbulence, which, in this paper, we interpret in
two ways. First, in the instantaneous sense, we model the stationary random function
T ′

ij ( y, τ ). Second, we consider the statistical field, where we have already averaged

over time, and model, therefore, the statistical function Rtotal
ij ,kl ( y, τ0). In both cases,

we calculate the OASPL and compare it with the experiment of Stromberg et al.
(1980).

3. Isotropy in T ′
ij ( y, τ )

3.1. Definition and power spectrum formula

If we suppose the stationary random function T ′
ij ( y, τ ) is isotropic at any point in y,

and at any time τ , then

T ′
ij ( y, τ ) = δijQ1( y, τ ). (3.1)

Since T ′
ij is a Cartesian tensor, isotropy implies that T ′

ij ( y, τ ) is completely specified
by the scalar field Q1( y, τ ), such that Q1 = T ′

11 = T ′
22 = T ′

33 and all off-diagonal
components of T ′

ij are identically zero; i.e. T ′
12 = T ′

13 = T ′
23 = 0. A model like this

was used by Morris & Farrasat (2002) and implicitly in the work of Goldstein &
Leib (2005). The Fourier transform of the Reynolds stress auto-covariance tensor,
R̂ij ,kl ( y, η, ω), can be found by substituting (3.1) into (2.18):

R̂ij ,kl ( y, η, ω) = δij δkl

∫ +∞

τ0=−∞
R11,11( y, η, τ0)e

−iωτ0 dτ0 = δij δklR̂11,11( y, η, ω). (3.2)

Substituting (3.2) into the power spectral density formula, (2.20) gives

P̂ (x, ω) =

∫
V∞( y)

Î
sym

jjkk ( y, ω | x)R̂total
11,11( y, ω) d3 y. (3.3)

The term Î
sym

jjkk ( y, ω | x) is a diagonal quadratic form because it has diagonal
symmetry in its tensor suffixes. Notice that if we retained the momentum transfer
term only in (2.16), the power spectrum under instantaneous isotropy would be
proportional to | ∂̂Gj/∂yj |2 for any type of mean flow. A formula similar to this result
appeared in Morris & Farrasat (2002) and Afsar (2008, p. 130). But we have shown
that it simply results when one keeps the momentum transfer part of the propagation
tensor Î

sym
ij ( y, ω | x) under instantaneous isotropy. In fact, the quadratic form Î

sym

jjkk

can be expressed analytically for a parallel shear flow. In Appendix A.4, we show
that the wave equation for a parallel shear flow implies that Î

sym

jjkk ∝ | ∂̂Gj/∂yj |2, where
the constant of proportionality depends on the Mach-number profile and observation
angle, through the Doppler factor.

3.2. The function R11,11( y, η, τ0) and OASPL calculation

In the rest of this analysis, we suppose R11,11( y, η, τ0) is proportional to the turbulent
kinetic energy and can be represented by a simple Gaussian-like function. The
function is scaled on the local values of the turbulent kinetic energy k, the rate of
energy dissipation ε and the mean velocity in the axial direction U ( y) and was defined

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

39
76

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010003976


520 M. Z. Afsar

120

115

110

105

100

95

90

85

80
10 20 30 40 50

Instantaneous isotropy
Momentum transfer

Energy exchange

Experiment (Stromberg et al.)

Angle to the jet axis (deg.)
60 70 80 90

Figure 1. Instantaneous isotropy. OASPL (dB) versus observation angle (deg.), where the
sound pressure level is SPL = 10 log(4πUjet P̂ (x, ω)/p2

ref Djet ); Djet is the nozzle exit diameter,
Ujet is the nozzle exit velocity, and pref is the reference pressure. Observation point is located
at | x | = 30Djet . The coefficients in (3.3) are (cl, cτ , A) = (0.5, 1.0, 1.05).

by Tam & Auriault (1999). Hence

R11,11( y, η, τ0) = A2ρ̄2( y)k2( y) exp

(
− | η

1
|

Uτs( y)
− ln 2

l2
s ( y)

[
(η

1
− U ( y)τ0)

2 + η2
2

+ η2
3

])
.

(3.4)

The quantities ls and τs describe the characteristic scales of R11,11( y, η, τ0); ls is a
length scale and τs represents the time scale at any point y. They are defined in the
usual way, by the local k − ε; i.e. ls( y) = cl(k

3
2 /ε)( y) and τs( y) = cτ (k/ε)( y). The

constants (cl, cτ , A) are chosen by trial and error so that the calculated OASPL at
30◦ and 90◦ are close enough to the experimental data. To use this function in the
power spectral density formula, however, we have to first take the Fourier transform,
and then integrate in η. Those steps are quite straightforward, and can be found in
Tam & Auriault (1999). If we use their results, we get

R̂total
11,11( y, ω) =

∫
η

R̂11,11( y, η, ω) eik∞η
1

cos θ d3η = 2
( π

ln 2

)3/2

× A2ρ̄2k2l3
s τs( y) exp

(
− ω2l2

s

4U 2 ln 2
( y)

)
1

1 + ω2τ 2
s ( y)
(

1 − U

c∞
( y) cos θ

)2
. (3.5)

R̂total
11,11( y, ω) is defined using a k − ε RANS calculation of the Stromberg jet. The

Green’s function is based on the RANS mean flow at 6Djet (jet diameters) downstream
of the nozzle exit, which is the axial location where the turbulent kinetic energy from
the RANS solution is maximum. Even though the wave propagation is based upon a
single mean flow, this type of calculation is a useful way to understand the asymptotic
properties of the peak jet noise, and one of the calculations we can now, of course, do
is to analyse the noise due to momentum transfer and energy exchange separately and
in combination. Convergence studies are given in Appendix A.5. In figure 1, we show
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the calculated OASPL. Momentum transfer forms the biggest part of the spectrum at
large observation angles. However, the cancellation between momentum transfer and
energy exchange terms means the calculated OASPL is significantly underpredicted
at small observation angles.

4. Isotropy in Rtotal
ij ,kl ( y, τ0)

T ′
ij ( y, τ ) is a stationary random function, which means its integrated auto-

covariance, Rtotal
ij ,kl , is statistically stationary, and depends upon ( y, τ0). So, the next

step we take is to model the tensor Rtotal
ij ,kl ( y, τ0).

4.1. Definition and power spectrum formula

For a given time delay τ0, if we suppose the Cartesian tensor Rtotal
ij ,kl is isotropic

at any point in space y, it can only depend upon unity tensors in all possible
combinations of their suffixes (i, j, k, l). Hence, Rtotal

ij ,kl = δij δklF1 + δikδjlF2 + δilδjkF3,
where F1,...,3 are scalar functions each with argument ( y, τ0). However, the symmetries
in the components of tensor Rtotal

ij ,kl ( y, τ0) mean that Rtotal
ij ,kl = Rtotal

ji,kl and Rtotal
ij ,kl = Rtotal

ij ,lk . So
F2 = F3, and Rtotal

ij ,kl = δij δklF1 + (δikδjl + δilδjk )F2. Now we take the pragmatic step of
allowing F1 = F2 = F (say) so that the final expression does not depend too much on
the individual components of the tensor, and we call this particular form of Rtotal

ij ,kl

statistical isotropy:

Rtotal
ij ,kl ( y, τ0) = (δij δkl + δikδjl + δilδjk )F ( y, τ0). (4.1)

In this case, F ( y, τ0) = 1
3
Rtotal

11,11( y, τ0). Alternatively, we could have defined the
scalar function using other components from the tensor, because (4.1) implies
Rtotal

11,11 = Rtotal
22,22 = Rtotal

33,33 = 3Rtotal
11,22 = 3Rtotal

22,33 = 3Rtotal
11,33, etc. The Fourier transform of

Rtotal
ij ,kl ( y, τ0) under statistical isotropy is

R̂total
ij ,kl ( y, ω) = (δij δkl + δikδjl + δilδjk )

1

3

∫ +∞

τ0=−∞
Rtotal

11,11( y, τ0) e−iωτ0 dτ0. (4.2)

Substituting (4.2) into the power spectral density formula (2.20) gives

P̂ (x, ω) =
1

3

∫
V∞( y)

[
Î

sym

jjkk + 2Î
sym

jkjk

]
( y, ω | x)R̂total

11,11( y, ω) d3 y. (4.3)

The quadratic forms (Î sym

jjkk and Î
sym

jkjk ) can easily be found using the wave propagation
formulas ((2.16) and (2.21)). Notice that the first term in the integrand of (4.3), Î

sym

jjkk ,
is the same diagonal quadratic form that appears under instantaneous isotropy (see
(3.3)); under statistical isotropy, however, we have admitted the quadratic form Î

sym

jkjk

into the integrand of the power spectrum. Both of these quadratic forms are real and
positive-definite; for example, we show in Appendix A.4, that Î

sym

jjkk can be expressed
analytically to show it is actually proportional to | ∂̂Gj/∂yj |2. On the other hand,
the second quadratic form in (4.3) has Hermitian symmetry in the tensor suffixes,
since Î

sym

jkjk = Î
sym
kjkj = Î

sym

jkkj and Î
sym

jkjk ( y, ω | x) = Î
sym

jk ( y, ω | x)Î sym

jk ( y, −ω | x) = | Î sym

jk |2. The
Hermitian quadratic form will make the biggest contribution to the value of
the integral in (4.3) since it involves both the diagonal and off-diagonal terms in
the second-rank wave propagation tensor Î

sym

jk .

4.2. Calculation of the OASPL

The function R11,11 is given by (3.4), and the wave propagation terms (the quadratic
forms) are based upon a mean flow at 6Djet downstream of the nozzle exit. In
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Figure 2. Statistical isotropy. OASPL (dB) versus observation angle (deg.), where the sound
pressure level is SPL = 10 log (4πUjet P̂ (x, ω)/p2

ref Djet ); Djet is the nozzle exit diameter, Ujet

is the nozzle exit velocity, and pref is the reference pressure. Observation point is located at
| x | = 30Djet . The coefficients in (4.3) are (cl, cτ , A) = (0.5, 1.0, 0.735).

Appendix A.5, we show the numerical calculation of the quadratic forms is converged
and robust. In figure 3, we assess the contribution momentum transfer and energy
exchanges play to the OASPL. If we consider the behaviour between 30◦ and 90◦, the
calculation manages to capture the correct OASPL at 30◦, although at larger angles
the predictions deviate from experiment by about 2 dB. But what is important to
realize here is that, on a purely diagnostic basis, (4.3) is able to follow the correct trend
of the OASPL curve at least between 30◦ and 90◦. Remember, there are difficulties
in measuring the OASPL at small angles, less than 30◦ (Morris 2009). Figure 3
also shows that momentum transfer forms the biggest part of the spectrum at small
observation angles, less than the critical angle that defines the ‘zone of silence’ of the
pressure-like Green’s function Ĝ4. The noise due to energy exchanges is important
too, for example, the cancellation between the momentum transfer terms and the
energy exchange terms in (2.16) means that the total value of the integral (4.3) is
lower than if momentum transfer is taken alone. Indeed, the cancellation introduced
by the energy exchange contribution, within certain components of Î

sym

jk that reduce
the magnitude of the positive-definite quadratic forms, is greatest at larger angles,
near 90◦.

5. Low-frequency properties
By supposing Rtotal

ij ,kl ( y, τ0), the integrated Reynolds stress auto-covariance tensor, is
isotropic in all of its tensor suffixes in the particular manner of (4.1), the calculated
OASPL is in reasonable agreement with experiment between 30◦ and 90◦. At 30◦,
the calculation is accurate, and as we approach 90◦, there is a deviation of about
2 dB. For angles less than 30◦, the observed OASPL decreases (see Morris 2009, for
an explanation) but the calculation continues to show an increase in overall sound
pressure (figure 2). The reason why this occurs can be understood mathematically.

Under statistical isotropy, we introduced two quadratic forms into the integrand of
the power spectral density formula, Î

sym
jjkk ( y, ω | x), and the Hermitian quadratic form
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Figure 3. Dominant terms under statistical isotropy. Same as figure 2.

Î
sym
jkjk ( y, ω | x) (given by 4.3). Our numerical calculations have shown that statistical

isotropy can describe the behaviour of the OASPL curve between 30◦ and 90◦ to an
accuracy of about 2 dB, as we summarize in figure 3. The diagonal quadratic form Î

sym
jjkk ,

by definition, involves the diagonal elements of the second-rank wave propagation
tensor Î

sym

jk only, and as we prove in Appendix A.4, it remains proportional to
|∂̂Gj/∂yj |2 for any value in ( y, ω | x). The Hermitian quadratic form, Î

sym

jkjk , on
the other hand, includes all of the terms from Î

sym

jk (diagonal and off-diagonal).
Numerical calculations show that the peak overall sound pressure, at small angles
to jet axis, is due to the presence of the off-diagonal term, ∂̂G1/∂r , in Î

sym

jkjk , whereas
at larger observation angles, the trace term ∂̂Gj/∂yj in the diagonal quadratic form
Î

sym
jjkk starts to dominate the total value of the power spectral density integral (see

figure 3).
The directional properties of these dominant terms (∂̂G1/∂r and ∂̂Gj/∂yj ) in the

quadratic forms can be easily understood using their explicit form given by (A 10) in
Appendix A, in the low-frequency limit. We show in Appendix B that the convective
derivative of the pressure-like Green’s function, D̂1G4/Dτ , will remain O(ω2) as ω → 0
(in our notation, D̂1/Dτ = iω(1 + M(r) cos θ) and M(r) = U (r)/c∞, where U (r) is the
mean velocity in the axial direction). This result can also be inferred from the work
of Goldstein (1975) and Balsa (1977), who considered the low-frequency acoustic
radiation problem, but for point sources in motion. Hence, if we make use of this
result, and use the expression for the components of the tensor in Appendix A (A 10),
we find the following.

(a) Deviatoric momentum transfer: off-diagonal term in momentum transfer tensor

∂̂G1

∂r
( y, ω | x) ∝ 1

(1 − M(r) cos θ)2

cos θ

k∞

[
∂

∂r
− 2 cos θ

(1 − M(r) cos θ)

dM

dr
(r)

]
D̂1G4

Dτ
( y, ω | x)

∼ ω cos2 θ

(1 − M(r) cos θ)3

dU

dr
(r) (� D̂1G4/Dτ = O(ω2) lim ω → 0).

� ∂̂G1/∂r = O(ω) (lim ω → 0). (5.1)
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(b) Direct momentum transfer: diagonal terms in momentum transfer tensor

∂̂Gj

∂yj

( y, ω | x) ∝ D̂1G4

Dτ
( y, ω | x).

� ∂̂Gj/∂yj = O(ω2) (lim ω → 0). (5.2)

The term ∂̂G1/∂r is asymptotically bigger than ∂̂Gj/∂yj in the limit of very low

frequency. As ω → 0, ∂̂Gj/∂yj = O(ω2), whereas ∂̂G1/∂r = O(ω). This happens because
in (5.1), the radial derivative of D̂1G4/Dτ , the term ∂/∂r(D̂1G4/Dτ ), will always be
asymptotically smaller than D̂1G4/Dτ itself as ω → 0 (see Appendix B). Therefore,
in the first line of (5.1), the second term in the square brackets, proportional to
D̂1G4/Dτ , is always the asymptotically dominant term at very low frequencies.

5.1. Isotropy as a paradigm–interpretation

The results in this paper suggest that, firstly, isotropy in Rtotal
ij ,kl ( y, τ0) does not imply

that the stationary random function T ′
ij is itself isotropic. Allowing T ′

ij ( y, τ ) to
be isotropic is isotropy in the instantaneous sense, and this can only admit the
diagonal quadratic form Î

sym

jjkk into the integrand of the power spectrum formula
(3.3). And as we proved in Appendix A.4, the diagonal quadratic form remains
proportional to |∂̂Gj/∂yj |2 for any value in ( y, ω | x); i.e. Î

sym

jjkk ∝ | ∂̂Gj/∂yj |2. So, by
allowing T ′

ij to be isotropic in the instantaneous sense, it actually implies the sound

power will always remain O(ω4) as ω → 0. On the other hand, if one supposes the
integrated auto-covariance of T ′

ij , the rank four tensor Rtotal
ij ,kl ( y, τ0) is isotropic in

all of its tensor suffixes, we admit two terms in the power spectrum formula: Î
sym

jjkk ,
and the Hermitian form Î

sym

jkjk . As ω → 0, the acoustic spectrum is now proportional
to the mean-flow-dependent quantity ω2(dU/dr)2, where dU (r)/dr is the gradient
of the mean velocity in the axial direction. This is because when the frequency is
very low, any term in the noise spectrum that is multiplied by ω2(dU/dr)2 (5.1) will
dominate over one that is multiplied by ω4 (5.2). As Goldstein (1975) remarked in his
article, ‘the velocity gradient acts like a sounding board to increase the efficiency of
the quadrupole radiation (to that of a dipole).’

The directivity of this shear term ∂̂G1/∂r is highest at small angles to the jet
axis because its sound pressure scales as cos4 θ/ (1 − M(r) cos θ)6. This behaviour is
different from Goldstein (1975) because he considered multipole sources in motion
at a convection Mach number of Mc, but this particular type of directivity that we
have shown can be recovered from the results in Goldstein (1975) by setting Mc = 0.
However, because of this pre-factor, cos4 θ , in the directivity, the OASPL will continue
to increase as θ → 0, when Î

sym

jkjk is defined by a Green’s function based upon a single
mean flow, which is contrary to what the experiments show. But as we pointed out
earlier, it is important to realize here that, on a purely theoretical basis, (4.3) is able
to follow the correct trend of the OASPL curve between 30◦ and 90◦. Moreover, as
we explained, isotropy in Rtotal

ij ,kl ( y, τ0) (4.1) naturally recovers this behaviour. In the
spirit of Lilley (1958), at small angles to the jet axis, the overall sound pressure closely
matches the Hermitian quadratic form Î

sym

jkjk (or the ‘shear-noise’-type term), whereas
at larger observation angles the diagonal quadratic form Î

sym

jjkk (or the ‘self-noise’-type
term) starts to dominate the total value of the power spectral density integral.

5.2. Sensitivity of the calculated OASPL to R11,11

Our analysis in this paper has shown that explicit self-noise (Î sym

jjkk ) and shear noise
(Î sym

jkjk ) terms can be recovered in the power spectrum if Rtotal
ij ,kl ( y, τ0) is taken to be
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Figure 4. Sensitivity of the OASPL (dB) to R11,11. Same as figure 2. The amplitude constant
is the same as figure 2, A = 0.735. (a) cτ = 0.4 (b) cl = 0.4.

isotropic in all of its tensor suffixes. However, the power spectral density formula in
(4.3) required one to tune the empirical constants (cl, cτ , A) in the formula for R11,11

(defined by (3.4)). Although this tuning process poses no particular difficulty, it is
important to assess how sensitive the calculated peak sound is to the variation of
(cl, cτ , A). The way we show this is to vary (cl, cτ ) for the same value of the amplitude
constant A that we used in figure 2. In figure 4, we compute the sound pressure under
statistical isotropy (4.3) by first varying cl and keeping cτ = 0.4 fixed (figure 4a) and
then varying cτ and keeping cl = 0.4 fixed (figure 4b). In both figures, the Green’s
functions and wave propagation terms are calculated using the mean flow at 6Djet

downstream of the nozzle exit. Even though the ∂̂G1/∂r term makes the Hermitian
quadratic form Î

sym

jkjk dominant at small observation angles, the actual shape of the
OASPL curve depends on R11,11 as well.

5.3. Departure from statistical isotropy and non-parallel mean flow effects

Under statistical isotropy, we required one component of the Reynolds stress auto-
covariance tensor (4.1). In reality, of course, Rij ,kl ( y, η, τ0) possesses 36 independent
components and all of these terms contribute to the acoustic spectrum. It would
be difficult, however, to obtain the space–time history of each component in order
to do such a complete calculation. Hence, a more realistic kinematic model of
the turbulence is the next logical step. In some recent work, an axisymmetric
model of the Reynolds stress auto-covariance was developed by Afsar (2010) by
introducing two approximations. First, that the tensor depends upon the transverse
vector separation only through its magnitude, and second that this approximate
Reynolds stress auto-covariance tensor is itself axisymmetric. Afsar (2010) referred to
these two approximations, when taken together, as the statistical axisymmetry model.
Equation (5.6) in Afsar (2010) shows that under statistical axisymmetry, the acoustic
spectrum in cold jet flows is given by the sum of two groups of terms. For a parallel
mean flow Green’s function in the low-frequency limit, one of these groups possesses
a wave propagation term that is similar in behaviour to the Hermitian quadratic
form Î

sym

jkjk ; i.e. the term increases in magnitude with six inverse Doppler factors as the
observation angle is reduced, and is zero at 90◦.

Non-parallel flow effects are expected to play an important role in low-frequency
sound, particularly at small observation angles to the jet axis (see Karabasov et al.
2010, figure 13a). The numerical computations of the adjoint equations (2.10)–(2.12)
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in Karabasov et al. (2010) show that non-parallelism in the mean flow model can
lead to a reduction in the low-frequency sound below that predicted by the parallel
flow model given by (5.1). However, the present low-frequency asymptotic analysis
for a parallel flow (described in detail in Appendix B) will provide a coherent starting
point to develop a similar asymptotic theory in non-parallel flows.

6. Conclusions
We have re-analysed the jet noise problem to explicitly show the existence of

‘self-noise’ and ‘shear-noise’-type terms that were first envisaged by Lilley (1958). We
set up the problem as an acoustic analogy using the hyperbolic conservation form
of the Euler equations derived by Goldstein (2002). We showed that by supposing
that the integrated auto-covariance tensor (Rtotal

ij ,kl ) of the Reynolds-stress-source term
(T ′

ij ) is isotropic in all of its tensor suffixes, it introduces two terms into the power
spectral density formula that can be naturally identified as the self-noise and shear
noise in the spirit of Lilley. This is because one of these terms is biggest at large
observation angles (self-noise-type term, (5.2)), while the other is dominant at small
angles (shear-noise-type term, (5.1)) and is proportional to ω2(dU/dr)2 (where dU/dr

is the local mean flow gradient). In terms of its directional properties, this shear
term is proportional to cos4 θ/ (1 − M(r) cos θ)6 (where M(r) = U (r)/c∞ is the local
Mach-number profile and θ is the observation angle with respect to the jet axis)
and was first shown to exist by Goldstein (1975), and indeed it was more recently
confirmed by Goldstein & Leib (2008) who found identical properties, as we have
shown in this paper. Our analysis also proves that this shear term will not occur if the
instantaneous strength of T ′

ij is taken to be isotropic itself. Moreover, we have shown
that the sound pressure of this shear term is crucially dependent on the functional
properties defining the correlation function of the turbulence, because the correlation
function multiplies both terms in the integrand of the power spectral density
formula.
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NASA Glenn Research Center as part of the David Crighton Fellowship awarded to
him by the Department of Applied Mathematics and Theoretical Physics, Cambridge.
The author would like to thank Dr S. J. Leib of the Ohio Aerospace Institute for
helpful comments and suggestions.

Appendix A. Green’s function
A.1. Solution for pressure-like Green’s function

In this Appendix, we briefly go through the evaluation of each component of the
second-rank wave propagation tensor Î ij ( y, ω | x) for a Green’s function defined by a
parallel mean flow. The mean flow conditions for a parallel shear layer are given as
usual by ṽj ( y) = δj1U (y2, y3), p̄( y) = p∞, h̃( y) = h̃(y2, y3) and ρ̄( y) = ρ̄(y2, y3) (Lilley
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1974). In this case, the adjoint equations (2.10)–(2.12) reduce to

iωĜj + U
∂Ĝj

∂y1

− Ĝ1

∂U

∂yj

+ h̃
∂Ĝ4

∂yj

= 0 j = 1, . . . , 3, (A 1)

iω

(γ − 1)
Ĝ4 +

U

(γ − 1)

∂Ĝ4

∂y1

+
∂Ĝj

∂yj

= δ( y − x). (A 2)

The adjoint mass equation takes the simple form, D̂1Ĝ0/Dτ = 0, where
D̂1/Dτ is the convective derivative in the axial direction and is defined by
D̂1/Dτ ≡ [iω + U (y2, y3)∂/∂y1]. This equation implies that Ĝ0 is convected in the
y1 direction and since Ĝ0 is zero at infinity, it must be zero everywhere, so that
∂Ĝ0/∂yi = 0. Afsar (2009) showed that if we introduce a new Green’s function variable,
G5( y, τ | x, t), defined by G5 = 1

(γ −1)
D1G4

Dτ
, then we can rewrite (A 2) in a conservation

form, i.e.

1

c̃2

D̂2
1Ĝj

Dτ 2
+

∂Ĝ5

∂yj

= 0, j = 1, . . . , 3, (A 3)

Ĝ5 +
∂Ĝj

∂yj

= δ( y − x). (A 4)

Since we want to obtain the solution to Ĝ5( y, ω | x) for a jet flow that is circular
cylindrical, we express the field variables in terms of a cylindrical polar coordinate
system, where y = (y1, r, ψ) and x = (x1, R, Ψ ). The observation point is at the location
x, outside the jet flow, at an angle θ to the jet axis y1.

In the present analysis, we are restricting ourselves to a cold jet flow, where the
fluctuations in stagnation enthalpy and density are small compared to the velocity
field. Although we did allow ρ( y, τ ) ≈ ρ̄( y), the variation of ρ̄( y) will still be small
in comparison to ṽi( y). For example, we would expect the derivative of ρ̄( y) in the
transverse direction y⊥ = (y2, y3), i.e. the term dρ̄( y)/d y⊥ , to be small in comparison
to the derivative of U ( y) with respect to y⊥ when suitably non-dimensionalized; i.e.

we expect (1/Ujet ) dU ( y)/d y⊥ � (1/ρ∞) dρ̄( y)/d y⊥ . Therefore, we can safely allow
ρ̄( y) ≈ ρ∞, and c̃2( y) ≈ c2

∞, in the conservation form of the adjoint momentum
equation A3. Now if we take Fourier transforms in y1 and ψ , we can reduce the

conservation equations into two ordinary differential equations for G̃5(r, k, m, ω | x)

and G̃r (r, k, m, ω | x) that take the form

dG̃5

dr
= k2

∞

(
1 + M(r)

k

k∞

)2

G̃r , (A 5)

dG̃r

dr
=

⎡⎢⎢⎢⎣ (k/k∞)2(
1 + M(r)

k

k∞

)2
+

(m/r)2

k2
∞

(
1 + M(r)

k

k∞

)2
− 1

⎤⎥⎥⎥⎦ G̃5 − G̃r

r
, (A 6)

where k is the axial wavenumber, m is the azimuthal mode, k∞ = ω/c∞ and
M(r) = U ( y)/c∞.

The key feature of this system of ordinary differential equations is the elimination
of the mean flow derivatives – the coefficients in (A 5) and (A 6) are functions of the

mean flow only (Afsar 2009). The solution for G̃5 and G̃r can be found by numerically
integrating (A 5) and (A 6) using the standard variable-step fourth-order Runge–Kutta
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scheme, where, following Tam & Auriault (1998), the initial conditions follow easily

by realizing that G̃4 is bounded algebraically (as rm, where m is the azimuthal mode
number) near the axis r = 0. The solution to Ĝ5( y, ω | x) then follows by taking the
inverse Fourier transforms in k and m. The inverse Fourier transform in azimuthal
mode m is performed by expressing the solution as a Fourier series in m. Since the
solution to Ĝ5( y, ω | x) must be weakly causal in order for it to remain bounded
in the field space ( y, ω | x), and since we want the solution when the field point x is in
the far field (and | x | → ∞), we can evaluate the inverse Fourier transform in k using
the method of stationary phase. Because we are allowing | x | → ∞, we neglect any
residue contribution that arises when we deform the contour of integration from the
real k-axis to the path of steepest descent. Moreover, for the same reason, we neglect
the residue contribution from any poles in the integrand (in the complex k-plane)
that are crossed as the contour is deformed and any branch cut contributions that
may also arise. Then, the leading-order solution to Ĝ5( y, ω | x) at the stationary phase
point k = −k∞ cos θ , is given by

Ĝ5( y, ω | x) = −k2
∞(1 − M(r) cos θ)

4π | x | e−ik∞{y
1

cos θ− | x | }

×
+∞∑
m=0

(−i)mεmAm(ω, θ)G̃5(r) cos m(ψ − Ψ ), (A 7)

where ε = 1 if m = 0, and ε = 2 if m � 1, for integral m � 1. But at large values of r

outside the jet flow in the outer region, the mean flow is zero, and Ĝ5( y, ω | x) must
satisfy the usual (homogeneous field) wave equation there. The solution of Ĝ5( y, ω | x)
in the outer region is then simply the analytical solution due to a point sink,
i.e.

Ĝ5( y, ω | x) = −k2
∞(1 − M(r) cos θ)

4π | x | e−ik∞{y
1

cos θ− | x | } ·
+∞∑
m=0

(−i)mεm

[
Jm(k∞R∞ sin θ)

+ Bm(ω, θ)H (1)
m (k∞R∞ sin θ)

]
cos m(ψ − Ψ ). (A 8)

The terms Am(ω, θ) and Bm(ω, θ) are constants in r , and are found by patching
solution (A 7) to solution (A 8); i.e. by equating their value, and derivative, in the
r-direction, at a far location. For example, if we patch the solutions together at
the point R∞, by taking R∞ = 20Djet , where Djet is the nozzle exit diameter, is quite
sufficient. Mathematically, however, at the point R∞, the numerical solution G̃5(r) is
equal to the analytical solution given by (A 8). The robustness of the calculation can
be found in Afsar (2009).

A.2. Wave propagation tensor

As we have defined the Green’s function Ĝ5( y, ω | x), we can determine each
component of the wave propagation tensor Î ij ( y, ω | x) (2.16) in a similar way. Indeed,
one advantage using the Ĝ5 variable is that each component of Î ij can be written in
terms of Ĝ5( y, ω | x). We use a ‘wide hat’ symbol to imply that each component of the
tensor is evaluated mode-by-mode, and, if a radial derivative is there, we differentiate
mode-by-mode; then we add the modes together, remembering the constant εm that
multiplies the Green’s function solution, where ε = 1 if m = 0; and ε = 2 if m � 1 (for
all integral values of m). Now we can express (2.16) directly in terms of Ĝ5( y, ω | x).
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Hence,

Î ij ( y, ω | x) =
∂̂Gj

∂yi

( y, ω | x)︸ ︷︷ ︸
Momentum transfer: term I

+
iδj1

k∞

(γ − 1)

[1 − M(r) cos θ]

∂M

∂yi

(r)Ĝ5( y, ω | x)︸ ︷︷ ︸
Energy exchange: term IIa

− δj1c∞M(r)
∂̂G4

∂yi

( y, ω | x)︸ ︷︷ ︸
Energy exchange: term IIb

+ (γ − 1)
δij

2
Ĝ5( y, ω | x)︸ ︷︷ ︸

Energy exchange: term IIIa

. (A 9)

Notice the consistency in notation here; the ‘wide hat’ only appears on the terms that
involve differentiating the Green’s function. Energy exchange terms IIa and IIIa are
proportional to Green’s function, and not its derivative, so the ‘hat’ appears over G5

only. The tensor is written out in the list of equations below, where each component
of the tensor carries the dimensions of Ĝ5; and, for clarity, we have written the
angular derivatives as ∂/∂ψ , but they are to be understood by ∂/∂ψ ≡ im:

Î 11( y, ω | x) =

[
(γ − 1)

2
Ĝ5 +

(γ − 1)M(r) cos θ

(1 − M(r) cos θ)
Ĝ5 − cos2 θ

(1 − M(r) cos θ)2
Ĝ5

]
( y, ω | x),

(A 10a)

Î r1( y, ω | x) =
i

k∞

(γ − 1) dM(r)/dr

(1 − M(r) cos θ)
Ĝ5( y, ω | x)

+
i

k∞

(γ − 1)M(r)

(1 − M(r) cos θ)

[
∂̂G5

∂r
+

Ĝ5 dM(r)/dr cos θ

(1 − M(r) cos θ)

]
( y, ω | x)

− i

(1 − M(r) cos θ)2

cos θ

k∞

[
∂̂G5

∂r
+

2Ĝ5 dM(r)/dr cos θ

(1 − M(r) cos θ)

]
( y, ω | x),

(A 10b)

Î ψ1( y, ω | x) =
i

k∞

[
(γ − 1)M(r)

(1 − M(r) cos θ)
− i cos θ

(1 − M(r) cos θ)2

]
1

r

∂̂G5

∂ψ
( y, ω | x), (A 10c)

Î 1r ( y, ω | x) = −i
cos θ

k∞

1

(1 − M(r) cos θ)2

∂̂G5

∂r
( y, ω | x), (A 10d)

Î rr ( y, ω | x) =
(γ − 1)

2
Ĝ5( y, ω | x) +

1

k2
∞(1 − M(r) cos θ)2

×
[

∂̂2G5

∂r2
+

2 dM(r)/dr cos θ

(1 − M(r) cos θ)

∂̂G5

∂r

]
( y, ω | x), (A 10e)

Î ψr ( y, ω | x) =
1

k2
∞(1 − M(r) cos θ)2

[
1

r

∂̂2G5

∂r∂ψ
− 1

r2

∂̂G5

∂ψ

]
( y, ω | x), (A 10f)

Î 1ψ ( y, ω | x) = −i
cos θ

k∞

1

(1 − M(r) cos θ)2

1

r

∂̂G5

∂ψ
( y, ω | x), (A 10g)

Î rψ ( y, ω | x) =
1

k2
∞(1 − M(r) cos θ)2

[
1

r

∂̂2G5

∂r∂ψ
− 1

r2

∂̂G5

∂ψ
+

2 dM(r)/dr cos θ

(1 − M(r) cos θ)

1

r

∂̂G5

∂ψ

]
,

(A 10h)
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Î ψψ ( y, ω | x) =
(γ − 1)

2
Ĝ5( y, ω | x)

+
1

k2
∞(1 − M(r) cos θ)2

[
1

r

∂̂G5

∂r
+

1

r2

∂̂2G5

∂ψ2

]
( y, ω | x). (A 10i)

A.3. Numerical evaluation

The numerical evaluation of (A 10) is fairly straightforward. The radial derivatives
are computed by central differencing and, therefore, remain second-order accurate.
For example, consider a function f defined at the radial location r(i), which
may itself represent the Green’s function, Ĝ5[r(i)], or the Mach-number profile,
M[r(i)]. Using the central difference formula, the derivative is defined by
df (i)/dr = [f (i + 1) − f (i − 1)] /2r(i). However, in order to define the derivative
at the boundary points of the grid (at i = 1 and i = N), we construct a small parabola
about the nearest set of points; for example, the derivative at i = 1 is found by
constructing a parabola about the points at i = (1, 2, 3); and in a similar way the
derivative at i = N is found by constructing a parabola about i = (N − 2, N − 1, N ).

It is important to note, however, that we only need to differentiate terms like
dM(r)/dr and ∂Ĝ5/∂r . There is a second-order derivative of Ĝ5 (i.e. ∂2Ĝ5/∂r2) in the
term Î rr ( y, ω | x), but, as it happens, we can rewrite the whole Î rr term exactly by
deriving an equation for the Laplacian of Ĝ5. If we eliminate the Green’s function
variable Gj in A3–A4, we obtain an explicit wave equation that we can re-arrange to

isolate the Laplacian ∂2Ĝ5/∂y
2
j . The formula that follows can be written as

∇̃2G̃5(r, k, m, ω | x) = −
[
k2

∞

(
1 + M(r)

k

k∞

)2

G̃5 + 2

(
1 + M(r)

k

k∞

)

× ∂

∂r

⎧⎪⎪⎨⎪⎪⎩
1(

1 + M(r)
k

k∞

)
⎫⎪⎪⎬⎪⎪⎭

∂G̃5

∂r

⎤⎥⎥⎦, (A 11)

where the Fourier transform of the Laplacian operator (∇̃2) is defined by

∇̃2 =
1

r

∂

∂r

{
r

∂

∂r

}
− k2

∞k2 − m2

r2
.

Before we can actually use this to simplify Î rr ( y, ω | x), however, we have to take the
inverse Fourier transform in k (using the method of stationary phase) and the inverse
Fourier transform in angular order m (expanding as a Fourier series). When we apply
the inverse transforms, we can use the ‘wide hat’ notation again to write an equation
for the wide-hat-of-∇2G5, evaluated at the axial wavenumber k = −k∞ cos θ . Now we
return to Î rr ( y, ω | x). In (A 10) we defined it as

Î rr ( y, ω | x) =
(γ − 1)

2
Ĝ5( y, ω | x)

+
1

k2
∞(1 − M(r) cos θ)2

[
∂̂2G5

∂r2
+

2dM(r)/dr cos θ

(1 − M(r) cos θ)

∂̂G5

∂r

]
︸ ︷︷ ︸

rewrite using the Laplacian of Ĝ5

( y, ω | x). (A 12)
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We can now rewrite the term that appears under the brace using the expression for
the Laplacian of G5 in (A 11) to show that

Î rr ( y, ω | x) =
(γ − 1)

2
Ĝ5( y, ω | x) − 1

k2
∞(1 − M(r) cos θ)2

×
[
k2

∞(1 − M(r) cos θ)2Ĝ5 +
1

r

∂̂G5

∂r
− k2

∞ cos2 θ Ĝ5 +
1

r2

∂̂2G5

∂ψ2

]
. (A 13)

Hence, the radial differentiation only involves ∂G5/∂r-like terms.

A.4. Expression for the trace of the wave propagation tensor

The trace of the second-rank wave propagation tensor Î jj ( y, ω | x) can be simplified

to reveal a rather interesting result. Since Î jj = Î 11 + Î rr + Î ψψ , we can use (A 10),
and the already simplified version of Î rr given by (A 13), to define the trace term
exactly:

Î jj ( y, ω | x) =
[
Î 11 + Î rr + Î ψψ

]
( y, ω | x)

=

[
(γ − 1)

2
Ĝ5 +

(γ − 1)M(r) cos θ

(1 − M(r) cos θ)
Ĝ5 − cos2 θ

(1 − M(r) cos θ)2
Ĝ5

]
+

(γ − 1)

2
Ĝ5 + − 1

k2
∞(1 − M(r) cos θ)2

×
[
k2

∞(1 − M(r) cos θ)2Ĝ5 +
1

r

∂̂G5

∂r
− k2

∞ cos2 θ Ĝ5 +
1

r2

∂̂2G5

∂ψ2

]

+
(γ − 1)

2
Ĝ5 +

1

k2
∞(1 − M(r) cos θ)2

[
1

r

∂̂G5

∂r
+

1

r2

∂̂2G5

∂ψ2

]
. (A 14)

After simplifying, we can easily show Î jj ( y, ω | x) ∝ Ĝ5( y, ω | x), since

Î jj ( y, ω | x) =

[ (
3

2
+

M(r) cos θ

(1 − M(r) cos θ)

)
(γ − 1) − 1

]
Ĝ5( y, ω | x). (A 15)

The adjoint energy equation, given by (A 3), shows that Ĝ5 is proportional to
∂̂Gj/∂yj . Now, since the trace of the symmetric second-rank propagation is identical
to Î jj (i.e. Î

sym
jj = Î jj ), (A 15) implies: Î

sym
jj ( y, ω | x) ∝ ∂̂Gj/∂yj ( y, ω | x). This is an

important result because we show in Appendix B that at very low frequencies, the
convective derivative of the pressure-like Green’s function (Ĝ5 in our solution) will
remain O(ω2). Hence, the trace of the second-rank wave propagation tensor will also
remain O(ω2) at very low frequencies – or Î

sym
jj = O(ω2) in the limit as ω → 0.

A.5. Numerical analysis

In this section, we conduct two robustness checks. First, we assess the accuracy of the
differentiability of Ĝ5 by computing the OASPL when the wave propagation term is
Î

sym

jjkk ( y, ω | x) = Î
sym
jj ( y, ω | x)Î sym

kk ( y, −ω | x) (as in the case of instantaneous isotropy,
(3.3)). We can then compare the direct numerical evaluation of Î

sym

jjkk using (A 10)
(which defines each component of Î ij ) and (2.20), to the exact ‘analytical’ formula
for Î

sym

jjkk using Î
sym
jj ( y, ω | x) given by (A 15). Remember, the robustness of solving the

Green’s function problem for a parallel shear layer in terms of Ĝ5( y, ω | x) has already
been proved by Afsar (2009). In figure 5(a), we show that OASPL predictions by the
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Figure 5. Numerical checks on OASPL (dB) calculations. OASPL (dB) versus observation
angle (deg.). (a) Differentiability of the Green’s function; the coefficients (cl, cτ , A) are the same
as in figure 1. (b) Convergence of statistical isotropy (4.3), momentum transfer component
only; the coefficients (cl, cτ , A) are the same as in figure 2.

analytical formula (A 10) and numerical evaluation of Î
sym

jjkk are very nearly identical
(where the mean flow resolution is 88 points in the radial direction).

The second test we do here is to assess the convergence of the OASPL calculation
for statistical isotropy (4.3). We need only consider the momentum transfer part of
(4.3) since it causes the increase in OASPL at small observation angles. We assess
the convergence of the calculation using the mesh enrichment algorithm described
in Afsar (2009). That is, we compute the quadratic forms in the integrand of (4.3),
Î

sym

jkjk and Î
sym

jjkk , at a high resolution of 3000 nodes in the radial direction, and then
interpolate back to the original grid (quadratically) to compute the integrand and
evaluate the integral. This is then compared to a calculation of the quadratic forms
on the standard grid resolution (88 points radially). The calculation is well converged
and is shown in figure 5(b).

Appendix B. low-frequency asymptotics
B.1. Wave equation

In this Appendix, we determine the leading-order behaviour of Ĝ5( y, ω | x) when the
frequency is very low. It turns out to be much simpler to do this when the field point
y is described through Cartesian coordinates. We begin by manipulating (A 3) and
(A 4) to get an explicit wave equation for Ĝ5( y, ω | x), viz

D̂3
1Ĝ5

Dτ 3
− ∂

∂yj

{
c̃2 D̂1

Dτ

∂Ĝ5

∂yj

}
+ 3c̃2 ∂U

∂yj

∂2Ĝ5

∂yj∂y1

=
D̂3

1

Dτ 3
δ( y − x). (B 1)

The convective derivative is defined by D̂1/Dτ ≡ iω + U ( y⊥)∂/∂y1; and by definition
the mean field is given by c̃2 = c̃2( y⊥) and U = U ( y⊥) with y⊥ being the transverse
spatial coordinate y⊥ = (y2, y3). Now we perform a simple re-arrangement on the
second term in (B 1) to isolate the Laplacian expression ∂2Ĝ5/∂y

2
j . If we use the

commutative relation

∂

∂yj

D̂1Ĝ5

Dτ
=

D̂1

Dτ

∂Ĝ5

∂yj

+
∂U

∂yj

∂Ĝ5

∂y1

,
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we can easily show that

D̂3
1Ĝ5

Dτ 3
− c̃2 D̂1

Dτ

∂2Ĝ5

∂y2
j

− ∂c̃2

∂yj

D̂1

Dτ

∂Ĝ5

∂yj

+ 2c̃2 ∂U

∂yj

∂2Ĝ5

∂yj∂y1

=
D̂3

1

Dτ 3
δ( y − x), (B 2)

where suffix j = (1, 2, 3).
Now we take Fourier transforms in y1 (where ∂/∂y1 → ik after integrating by

parts). This gives a wave equation for G̃5( y⊥, k, ω | x), which after some algebraic
manipulation can be written in the following very simple way:

∇2
⊥
G̃5( y⊥, k̂, k∞ | x) +

[
k2

∞q2( y⊥, k̂) + �L( y⊥, k̂)
]
G̃5( y⊥, k̂, k∞ | x)

= k2
∞χ2δ( y⊥ − x⊥) e−ik∞ k̂x1, (B 3)

where k∞ = ω/c∞, k̂ = k/k∞, ar ( y⊥) = c̃( y⊥)/c∞ and D( y⊥, k̂) = 1 + M( y⊥)k̂. The term

q2( y⊥, k̂) is defined by q2( y⊥, k̂) = χ2 − k̂2, where χ = D/ar . If we define the transverse
component of the gradient operator as ∇⊥ ≡ e2∂/∂y2 + e3∂/∂y3, we can define the
transverse part of the Laplacian by the scalar operator, ∇2

⊥
, or ∇2

⊥
≡ ∂2/∂y2

2 + ∂2/∂y2
3.

Moreover, the operator �L( y⊥, k̂) is given by �L( y⊥, k̂) = 2χ∇⊥ [1/χ] · ∇⊥ {. . .}. Equation
(B 3) is identical to (2.8) in Goldstein (1982), if we replace G5 by the adjoint Lilley
Green’s function, Ga , where G5 = −D3

1Ga/Dτ 3 (this correspondence is derived in
Afsar 2008, Appendix C). We shall leave ar ( y⊥) 
= 1, because it does not add much
complication here. Also remember that for all ( y⊥, k̂), the mean flow term D( y⊥, k̂)

is non-zero in subsonic flows where critical layers do not exist, so that D−1 is
non-singular.

Equation (B 3) possesses two length scales: the nozzle exit diameter, Djet , which
characterizes the transverse variation of the mean flow and the acoustic wavelength
through k−1

∞ characterizing the wave propagation (since k−1
∞ = λacoustic/2π). In low-

frequency asymptotic problems, the perturbation parameter is defined by the
Helmholtz number ε = (k∞Djet ). As ε → 0, the scales defined through the product
(k∞Djet ) become asymptotically disparate. That is, when ε → 0, λacoustic becomes very
large relative to the transverse variation of the mean flow.

This problem is a singular perturbation problem because at large values of y⊥ ,
where G̃5 satisfies the (adjoint) radiation condition, the solution is transcendental
and bounded (zero) at infinity. This behaviour must be made to agree with G̃5 at
smaller values of y⊥ , i.e. when y⊥ is held fixed and non-dimensionalized so that it
remains O(1). Hence, for a given value of (k̂ | x), a single asymptotic expansion for

G̃5, such as G̃5( y⊥, ε) = g
(0)
5 ( y⊥) + εg

(1)
5 ( y⊥) + ε2g

(2)
5 ( y⊥) + o(ε2), would not hold for all

values of y⊥ . But this type of non-uniformity in G̃5 would still exist when ω = O(1).
In that case, as Afsar (2009) showed, a numerical solution for G̃5 can easily be found
using the patching method. The low-frequency limit, however, allows a uniformly
valid analytical solution to be constructed using the method of matched asymptotic
expansions, and for which we are only interested in the leading-order behaviour. We
proceed by first defining an inner region and an outer region.

B.2. Inner and outer regions

We follow the example problem in Crighton et al. (1992), and begin by normalizing
the spatial coordinate y⊥ = (y2, y3) to assess the size of each term in (B 3) consistently.
It seems natural to use k2

∞. If we now introduce a dimensionless spatial coordinate,
ŷ⊥ , defined by ŷ⊥ = k∞ y⊥ , and where the gradient operator becomes, ∇̂⊥ = (1/k∞) ∇⊥ .
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Then, (B 3) transforms to

∇̂2
⊥
G̃5( ŷ⊥/k∞, k̂, k∞ | x̂/k∞) +

[
q2( ŷ⊥/k∞, k̂) + �̂L( ŷ⊥/k∞, k̂)

]
× G̃5( ŷ⊥/k∞, k̂, k∞ | x̂/k∞) =

χ2

k∞
δ( ŷ⊥ − x̂⊥) e−ik̂x̂1 . (B 4)

This is now in a form ready for asymptotic expansion. Since the dimensionless
outer spatial coordinate is ŷ⊥ = (ŷ2, ŷ3), the Green’s function G̃5 in the outer region
is given by (B 5a)

G̃5( y⊥, k̂, k∞ | x) = G̃5( ŷ⊥/k∞, k̂, k∞ | x̂/k∞) = G̃o
5( ŷ⊥, ε, k̂ | x̂), (B 5a)

G̃5( y⊥, k̂, k∞ | x) = G̃5(Ŷ ⊥Djet , k̂, k∞ | x̂/k∞) = G̃i
5(Ŷ ⊥, ε, k̂ | x̂), (B 5b)

where the superscript ‘o’ on G̃5 refers to the outer region. Similarly, in the inner region,
the spatial coordinate is Ŷ ⊥ = (Ŷ2, Ŷ3), and is defined by Ŷ ⊥ = ŷ⊥/ε. If we denote the
inner region with the superscript ‘i ’, the Green’s function G̃5 can be expressed as

(B 5b). Now, for a given (k̂ | x̂), the inner expansion G̃i
5(Ŷ ⊥, ε, k̂ | x̂) is valid in a region

where ŷ⊥ = O(ε), i.e. at Ŷ ⊥ = O(1). On the other hand, the outer G̃o
5( ŷ⊥, ε, k̂ | x̂) is

valid for large values of ŷ⊥ extending from ε, where ŷ⊥ = O(ε), right out to infinity.
Hence, at some intermediate region in ŷ⊥ both expansions must overlap. We can
avoid trial and error in the choice of gauge function for the asymptotic expansion in
the inner region if we actually start with the outer region to begin with. The inner
expansion will break down at large distances from the jet where Ŷ ⊥ 
= O(1), and where

the Green’s function G̃5 possesses transcendental behaviour to satisfy the boundary
condition at infinity. Hence, if any logarithmic terms appear in the outer expansion,
we must include them in the inner expansion at the appropriate order of ε.

B.3. The outer expansion, G̃o
5( ŷ⊥, ε, k̂ | x̂)

This corresponds to the Green’s function which is valid at large distances from the
jet; i.e. as the outer variable, | ŷ⊥ | → ∞, and in which case the mean flow is constant
and any gradients of the mean flow are zero. The field (B 4) reduces to the ordinary
Helmholtz equation. Since the outer region represents the solution to the Green’s
function right out to infinity, we can simplify the mean flow terms in (B 4), because
they are no longer a function of ŷ⊥; i.e. D(k̂) = 1 and ar ( y⊥) = 1, so that q2(k̂) = 1− k̂2,
since M∞ = 0. Hence, the field equation we must solve in the outer region is simply

∇2
⊥
G̃o

5( ŷ⊥, ε, k̂ | x̂) + q2(k̂)G̃o
5( ŷ⊥, ε, k̂ | x̂) =

1

k∞
δ( ŷ⊥ − x̂⊥) e−ik̂x̂1 . (B 6)

At this point, we would start the usual technique in perturbation analysis of

replacing G̃o
5 by a Poincaré series in integral powers of the parameter ε in the

particular manner that G̃o
5 = G

(0)
5 + εG

(1)
5 + ε2G

(2)
5 + o(ε2), and then to solve for each

order by holding ŷ⊥ fixed. However, this is not necessary here because (B 6) is
independent of ε since the differential operator on the left-hand side does not have
any ε terms, in which case we are actually solving the dimensional field equation,
given by (B 3), when | y⊥ | → ∞. We can then re-arrange (B 3) slightly to show

[
∇2

⊥
+ k2

∞q2(k̂)
]{

−4π
eik∞ k̂x

1

k2
∞

G̃5

}
= −4πδ( y⊥ − x⊥). (B 7)
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This differential operator is now self-adjoint, reciprocity holds and
G̃5( y | x) = G̃5(x | y). The solution to (B 7) is given in Morse & Feshbach (1953,
p. 891). That is {

−4π
eik∞ k̂x

1

k2
∞

G̃5

}
= iπH

(1)
0 (k∞q | y⊥ − x⊥ |). (B 8)

In terms of the outer variable ŷ⊥ , however, the solution for G̃o
5( ŷ⊥, ε, k̂ | x) is

G̃o
5( ŷ⊥, ε, k̂ | x) = − ik2

∞
4

e−ik∞ k̂x
1 H

(1)
0 (q | ŷ⊥ − k∞x⊥ |), (B 9)

where q2(k̂) = 1 − k̂2. Equation (B 9) represents the particular solution to (B 7) – but
in order to match the scattered wave to the inner, we must include the solution
to the homogeneous equation (when the right-hand side of (B 7) is zero) as well.
Since the homogeneous solution must be of the same algebraic order in k∞ as the
particular solution in (B 9), we write it as k2

∞β(k̂ | x)H (1)
0 (q | ŷ⊥ |). The Green’s function

G̃o
5( ŷ⊥, ε, k̂ | x) is then

G̃o
5( ŷ⊥, ε, k̂ | x) = k2

∞β(k̂ | x)H (1)
0 (q | ŷ⊥ |) − ik2

∞
4

e−ik∞ k̂x
1 H

(1)
0 (q | ŷ⊥ − k∞x⊥ |). (B 10)

Solution (B 10) is consistent with the Green’s function solution given by Dowling
et al. (1978, equation (4.5)) for the pressure-like Green’s function in cylindrical
coordinates since the addition theorem for cylinder functions (Morse & Feshbach
1953, equation (7.2.51)) can be used to show that

H
(1)
0 (k∞q | y⊥ − x⊥ |) =

m=+∞∑
m=−∞

Jm(k∞qr)H (1)
m (k∞qR) eim(ψ−Ψ ), (B 11)

where, in cylindrical coordinates, y⊥ = (r, ψ) and x⊥ = (R, Ψ ). This, therefore, has
the same basic structure as the solution in (4.5) in Dowling et al. (1978). The term,
H

(1)
0 (q | ŷ⊥ |) in (B 10) has incoming wave behaviour at infinity in the outer variable.

Dowling et al. (1978) showed that this implies that, when real, q(k̂) must carry the sign
of ω, but when it is complex, its imaginary part must be positive so that G̃o

5( ŷ⊥, ε, k̂ | x)
remains O(1) as | ŷ⊥ | → ∞. Both of these conditions are satisfied by a Riemann sheet
in the complex k-plane, where Im (q) = 0, such that there is a branch cut along the
real axis, from 1 to +∞, and from −1 to −∞.

Now | y⊥ − x⊥ | = x⊥ − x⊥ · y⊥/x⊥ + O(x−1
⊥

) as x⊥ → ∞, where x⊥ = | x⊥ | , since the
field point x⊥ is at infinity. Hence, we can write (B 10) as

G̃o
5( ŷ⊥, ε, k̂ | x) = k2

∞β(k̂ | x)H (1)
0 (q | ŷ⊥ |) − ik2

∞
4

e−ik∞ k̂x
1 H

(1)
0

[
qk∞x⊥ − q

x⊥ · ŷ⊥

x⊥

]
. (B 12)

Under the matching procedure, we first rewrite the outer variable in terms of
the inner variable, ŷ⊥ = εŶ ⊥ . The first term in (B 12) has a logarithmic singularity
as ε → 0. On the other hand, the argument of the Hankel function in the second
term in (B 12) becomes (qk∞x⊥ − εqA), where A = x⊥ · Ŷ ⊥/x⊥ and A = O(1). The
term (qk∞x⊥ − εqA) is of large magnitude even though the frequency is low. This
is because k∞x⊥ ∝ x⊥/λacoustic, and x⊥ → ∞, whereas λacoustic is large, but only
relative to the transverse variation of the mean flow, defined by the transverse length
scale Djet . So, for this reason, we express the solution in (B 12) in terms of x̂ = k∞x,
where | x̂ | → ∞. Now we can replace the Hankel function in the second term by its
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large argument form (Lebedev 1972, p. 135), and leave the εqA term as a small
correction. Hence,

G̃o
5(εŶ ⊥, ε, k̂ | x̂) = ∓i

2ε2

πD2
jet

β(k̂ | x̂) ln
2

qε | Ŷ ⊥ |

− iε2

4D2
jet

eiqx̂⊥ −ik̂x̂
1

−iπ/4

[
2

πq

]1/2

f (Ŷ ⊥, ε, k̂ | x̂), (B 13)

where f (Ŷ ⊥, ε, k̂ | x̂) = (x̂⊥ − εA)−(1/2) e−iεqA. We can now take the limit as ε → 0 and
expand this term by first expanding (x̂⊥ − εA)−(1/2) and e−iεqA individually, and then
multiplying the expansions together. Hence

f (Ŷ ⊥, ε, k̂ | x̂) =
1√
x̂⊥

− iqA

(
ε√
x̂⊥

)
+ O

(
ε/x̂3/2

⊥

)
. (B 14)

Now if we substitute this back into (B 13), and use the notation from Nayfeh (1972,

chap. 4) to signify that this is now the inner limit of the outer expansion [G̃o
5](i), we

have

[G̃o
5](i)(εŶ ⊥, ε, k̂ | x̂) = ε2β(k̂ | x̂)

[
ln

2

q | Ŷ ⊥ |
− ln ε

]
+ ε2C(k̂ | x̂) [1 − iεqA], (B 15)

where β(k̂ | x̂) = 2iβ(k̂ | x̂)/πD2
jet , and the term C(k̂ | x̂) is also independent of Ŷ ⊥ and

is given by

C(k̂ | x̂) = − i

4D2
jet

eiqx̂⊥ −ik̂x̂
1

−iπ/4

[
2

πqx̂⊥

]1/2

. (B 16)

B.4. The inner expansion, G̃i
5(Ŷ ⊥, ε, k̂ | x̂)

The inner expansion corresponds to a series expansion under the limit process of
ε → 0 with Ŷ ⊥ held fixed at Ŷ ⊥ = O(1). This allows one to magnify a region of the
jet around the neighbourhood of ŷ⊥ = O(ε). When the outer expansion is projected
down to the overlap region (inner limit of the outer expansion), it is identical to when
the inner expansion is projected up to the overlap region (outer limit of the inner
expansion).

Under the stretched coordinate Ŷ ⊥ = ŷ⊥/ε, the gradient operator is defined by

ε∇̂y = ∇̂Y , where ∇̂Y ≡ e2∂/∂Ŷ2 + e3∂/∂Ŷ3 (inner) and ∇̂y ≡ e2∂/∂ŷ2 + e3∂/∂ŷ3 (outer).

The mean flow terms in (B 4), q2 and the operator �L, both depend on ( ŷ⊥/k∞, k̂).

In terms of the inner variable, however, this dependence becomes q2(Ŷ ⊥Djet , k̂) and

�L(Ŷ ⊥Djet , k̂). Hence, the field equation for the Green’s function in the inner region is

∇̂2
Y
G̃i

5(Ŷ ⊥, ε, k̂ | x̂) +
[
ε2q2(Ŷ ⊥Djet , k̂) + �̂L(Ŷ ⊥Djet , k̂)

]
G̃i

5(Ŷ ⊥, ε, k̂ | x̂) = 0. (B 17)

Here, ∇̂2
Y

is the transverse component of the Laplacian, where ∇̂2
Y

≡ ∂2/∂Ŷ 2
2 + ∂2/∂Ŷ 2

3,

and in terms of the inner variable, the operator �̂L(Ŷ ⊥Djet , k̂) is

�̂L(Ŷ ⊥Djet , k̂) = 2χ∇̂Y

(
1

χ

)
· ∇̂Y {. . .} , (B 18)
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where χ = χ(Ŷ ⊥Djet , k̂). Since χ−1(Ŷ ⊥Djet , k̂) is non-singular, we can re-arrange the
inner field (B 17) in the following form:

∇̂Y ·
[

1

χ2
∇̂Y G̃i

5(Ŷ ⊥, ε, k̂ | x̂)

]
= −ε2

[
q

χ

]2

G̃i
5(Ŷ ⊥, ε, k̂ | x̂). (B 19)

From the inner limit of the outer expansion (B 15), we know the inner expansion must
start out as ε2(ln ε)g(2)

5 + · · ·. Hence, we can legitimately pose a Poincaré expansion

for G̃i
5(Ŷ ⊥, ε, k̂ | x̂) to match onto the outer expansion as follows:

G̃i
5(Ŷ⊥, ε, k̂ | x̂) = ε2(ln ε)g(1)

5 (Ŷ⊥, ε, k̂ | x̂) + ε2g
(2)
5 (Ŷ⊥, ε, k̂ | x̂) + ε3g

(3)
5 (Ŷ⊥, ε, k̂ | x̂) + o(ε3).

(B 20)

Because the right-hand side of (B 19) has the pre-factor ε2, the term in square

brackets on the left-hand side will be ε2 greater than G̃i
5(Ŷ ⊥, ε, k̂ | x̂). In other words,

∇̂Y G̃i
5(Ŷ ⊥, ε, k̂ | x̂) will always be asymptotically smaller than G̃i

5(Ŷ ⊥, ε, k̂ | x̂) at very
low frequencies. Now if the inner expansion starts out as (B 20), the right-hand side
of the inner equation for each order (ε2 ln ε, ε2, ε3) will be zero. So, for a given (k̂ | x̂),

if we hold the inner variable (Ŷ ⊥) fixed, each order must satisfy a differential equation
of the form

∇̂Y ·
[

1

χ2
∇̂Y g

(n)
5 (Ŷ ⊥, ε, k̂ | x̂)

]
= 0, (B 21)

where n = (1, 2, 3).

B.5. Leading-order behaviour

The leading-order behaviour is simple since we require g
(2)
5 (Ŷ ⊥, ε, k̂ | x̂) only, which

in order to satisfy (B 21) must be a constant in Ŷ ⊥ (a similar result was found by
Goldstein 1975, equation (16)). Taking the outer limit of the inner expansion and
matching this to (B 15) naturally shows β(k̂ | x̂) = 0 and g

(2)
5 (Ŷ ⊥, ε, k̂ | x̂) = C(k̂ | x̂).

Hence, the uniformly valid solution in the original dimensional field variable
y⊥ = (y2, y3) is Ĝ5( y⊥, ω | x) = ω2C(ω, x) + o(ε), where

C(ω, x) =
D2

jet

c2
∞

∫ +∞

k=−∞
C(k/k∞, ω | x) eiky

1 dk. (B 22)

Since | x | → ∞, we can evaluate the k-integral in (B 22) quite easily using the method
of stationary phase.
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