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Abstract

In this paper we sharpen Hildebrand’s earlier result on a conjecture of Erdős on limit points of the sequence

{d(n)/d(n + 1)}.
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1. Introduction

The famous Erdős–Mirsky conjecture [1] asserts that d(n) = d(n + 1) infinitely often,

where d(n) is the divisor function. In 1983, Spiro [9] showed that d(n) = d(n + 5040)

for infinitely many n ∈ N. In 1984, Heath-Brown [5], using Spiro’s argument, proved

the conjecture of Erdős and Mirsky. Moreover, he showed that for large x,

D(x) = #{n ≤ x : d(n) = d(n + 1)} ≥
x

(log x)7
.

Hildebrand [6] improved the lower bound to x/(log log x)3. Using a heuristic argument,

Bateman and Spiro claimed that D(x) ∼ cx(log log x)−1/2 for some constant c > 0. As

an application of their work in [3], Goldston et al. [4] have shown, among several other

interesting results, that d(n) = d(n + 1) = 24 for infinitely many integers n.

The Erdős–Mirsky conjecture is equivalent to the statement that d(n)/d(n + 1) = 1

for infinitely many n. More generally, one can ask which numbers occur as limit points

of the sequence {d(n)/d(n + 1)}∞n=1. Let E denote the set of limit points of the sequence

{d(n)/d(n + 1)}, and let L denote the set of limit points of {log(d(n)/d(n + 1))}.

The Erdős–Mirsky conjecture implies that 1 ∈ E. Erdős conjectured that E = [0,∞],

or equivalently, L = [−∞,∞]. Erdős et al. [2] proved that for any α ∈R+, at least

one of the seven numbers 2iα, i ∈ {0,±1,±2,±3}, belongs to E. This result was

improved by Kan and Shan [7, 8] who showed that for any real α > 0, either α or

2α belongs to E. On the other hand, it can be shown under the assumption of the
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prime k-tuple conjecture that for any r ∈ Q+ there exist infinitely many n ∈ N such that

d(n)/d(n + 1) = r.

Hildebrand proved that for x > 0

|L ∩ [0, x]| >
x

36
, |L ∩ [−x, 0]| >

x

36
, (1.1)

where | · | denotes the Lebesgue measure. The main result of this paper is the following

improvement.

THEOREM 1.1. For any number x > 0,

|L ∩ [0, x]| >
x

3
and |L ∩ [−x, 0]| >

x

3
. (1.2)

Moreover, there exists a number A > 0 such that, for any x > A,

|L ∩ [0, x]| >
x − A

2
and |L ∩ [−x, 0]| >

x − A

2
. (1.3)

2. Preliminary lemmas

A triple of linear forms is called admissible if for every prime p, there is at least one

m mod p such that L1(m)L2(m)L3(m) . 0 mod p. Numbers that are products of exactly

two distinct primes are called E2 numbers. Unconditionally, the following result holds.

LEMMA 2.1 [4]. Let Li(x) ≔ aix + bi, i = 1, 2, 3, be an admissible triple of linear

forms, and let r1, r2, r3 be coprime integers with (ri, ai) = 1 for each i and such that

(ri, aibj − ajbi) = 1 for i , j. Then there exist i, j with 1 6 i < j 6 3 such that there are

infinitely many integers n for which Lk(n) equals rk times an E2 number that is coprime

to all primes less than or equal to C, for k = i, j.

In the lemma, C can be any constant. Hildebrand deduced (1.1) from the fact that

among any seven integers a1, . . . , a7, there exists i < j such that d(n)/d(n + 1) = ai/aj

for infinitely many n. We can replace x/36 by x/3, in view of the following result.

LEMMA 2.2. Let a1, a2, a3 be positive integers. For some i < j, there are infinitely many

integers n such that d(n)/d(n + 1) = ai/aj.

PROOF. Define a triple of linear forms

L1(x) = 9x + 1, L2(x) = 8x + 1, L3(x) = 6x + 1,

and note the relations

8L1(x) + 1 = 9L2(x), 2L1(x) + 1 = 3L3(x), 3L2(x) + 1 = 4L3(x).

For given a1, a2, a3 let

r1 ≔ 5a1−1, r2 ≔ 3 · 7a2−1, r3 ≔ 11a3−1.

We check that the hypotheses of Lemma 2.1 are satisfied. First of all, the triple is

admissible because we may take m ≡ 0 mod p for all primes p. We have (ri, rj) = 1 for
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i , j, and (r1, 9) = (r1, 9 · 1 − 8 · 1) = (r1, 9 · 1 − 6 · 1) = 1, (r2, 8) = (r2, 8 · 1 − 9 · 1) =

(r1, 8 · 1 − 6 · 1) = 1 and (r3, 6) = (r3, 6 · 1 − 9 · 1) = (r3, 6 · 1 − 8 · 1) = 1.

We put C = 11 in the lemma. Then for some i < j, there exist infinitely many

integers m for which Lk(m) equals rk times an E2 number, all of whose prime factors

are greater than 11, for k = i, j. If the forms are L1(x) and L2(x), then for infinitely many

m, we have E2 numbers A1 and A2, such that (2 · 3 · 5 · 7 · 11, A1A2) = 1 and

d(8L1(m))

d(8L1(m) + 1)
=

d(8L1(m))

d(9L2(m))
=

d(23r1A1)

d(32r2A2)
=

d(23)d(5a1−1)d(A1)

d(33)d(7a2−1)d(A2)
=

a1

a2

.

Similarly, if L1(x) and L3(x) are the relevant forms, then we have E2 numbers A1, A3

such that

d(2L1(m))

d(2L1(m) + 1)
=

d(2L1(m))

d(3L3(m))
=

d(2r1A1)

d(3r3A3)
=

d(2)d(5a1−1)d(A1)

d(3)d(11a3−1)d(A3)
=

a1

a3

.

Finally, if the forms are L2(x) and L3(x), then

d(3L2(m))

d(3L2(m) + 1)
=

d(3L2(m))

d(4L3(m))
=

d(3r2A2)

d(22r3A3)
=

d(32)d(7a2−1)d(A2)

d(22)d(11a3−1)d(A3)
=

a2

a3

. �

Let q1 = b1/b2, q2 = b3/b4 be positive rational numbers. If we take a1 = b1b3,

a2 = b2b3, a3 = b2b4, then from Lemma 2.2, d(n)/d(n + 1) ∈ {q1, q2, q1q2} for every

q1, q2 ∈ Q
+. Since rational numbers are dense in R and every irrational number can be

approximated by rationals, for every r1, r2 ∈ R
+, either r1 ∈ E or r2 ∈ E or r1r2 ∈ E.

3. Proof of the main theorem

We are now ready to improve Hildebrand’s result. In this section, we shall prove

Theorem 1.1.

PROOF OF THEOREM 1.1. Let

L′ =

{

log
r

s
: r, s ∈ N;

d(n + 1)

d(n)
=

r

s
for infinitely many n ∈ N

}

. (3.1)

It is obvious that L
′
⊂ L. Lemma 2.2 shows that for any positive integers a1, a2, a3,

there exist indices i < j such that log aj/ai ∈ L. From this it follows that, given any

positive real numbers u1, u2, u3,

uj − ui ∈ L
′
⊂ L for some i < j. (3.2)

Applying (3.2) with ui = iu for i = 1, 2, 3, for u > 0,

u ∈ L ∪
L

2
. (3.3)

Now, using subadditivity and positive homogeneity properties of Lebesgue mea-

sure, for x > 0,
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x =

∣

∣

∣

∣

∣

[0, x] ∩

{

L ∪
L

2

}

∣

∣

∣

∣

∣

≤ |L ∩ [0, x]| +

∣

∣

∣

∣

∣

L

2
∩ [0, x]

∣

∣

∣

∣

∣

≤
3

2
|L ∩ [0, 2x]|

and therefore

|L ∩ [0, x]| ≥
x

3
(x > 0).

A similar argument with ui = (4 − i)u yields

|L ∩ [−x, 0]| ≥
x

3
(x > 0).

Hence (1.2) holds.

If L = Rwe are done. Otherwise, there exists A > 0 such that A < L. By Lemma 2.2,

for every x ∈ R+, either A or x or A + x ∈ L. Then

x = |L ∩ {[0, A] ∪ [A, A + x]}| ≤ |L ∩ [0, A]| + |L ∩ [A, A + x]| ≤ 2|L ∩ [0, A + x]|

and therefore |L ∩ [0, x]| ≥ (x − A)/2 for x ≥ A. �
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