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When waiting times cannot be observed directly, Little’s law can be applied to estimate
the average waiting time by the average number in system divided by the average arrival
rate, but that simple indirect estimator tends to be biased significantly when the arrival
rates are time-varying and the service times are relatively long. Here it is shown that
the bias in that indirect estimator can be estimated and reduced by applying the time-
varying Little’s law (TVLL). If there is appropriate time-varying staffing, then the waiting
time distribution may not be time-varying even though the arrival rate is time varying.
Given a fixed waiting time distribution with unknown mean, there is a unique mean
consistent with the TVLL for each time t. Thus, under that condition, the TVLL provides
an estimator for the unknown mean wait, given estimates of the average number in system
over a subinterval and the arrival rate function. Useful variants of the TVLL estimator are
obtained by fitting a linear or quadratic function to arrival data. When the arrival rate
function is approximately linear (quadratic), the mean waiting time satisfies a quadratic
(cubic) equation. The new estimator based on the TVLL is a positive real root of that
equation. The new methods are shown to be effective in estimating the bias in the indirect
estimator and reducing it, using simulations of multi-server queues and data from a call
center.

1. INTRODUCTION

Little’s law (LL, L = λW ) is a useful tool for analyzing operations, for example, if the
average number of patients in a hospital is 400 and the arrival rate is 100 per day, then the
average length of stay should be about W = L/λ = 400/100 = 4 days. Many applications
of LL are quick, like this example, but others are more elaborate and require more care, for
example, see [16–19].

Little [15] and Stidham [24] first showed that LL can be put on a sound theoretical foun-
dation. There is now a well developed theory supporting LL and related conservation laws,
as reviewed recently by Little [16] and Wolfe [29], and earlier by El-Taha and Stidham [6],
Whitt [26], Wolfe [28] and others. This supporting theory concerns expected values of steady
state distributions in stochastic models and limits of sample path averages. In contrast, as
emphasized by Little in his recent review [16], most applications involve measurements over
finite time intervals.
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Applications with measurements over finite time intervals motivated us in [12] to con-
sider ways to perform statistical analysis with LL. We focused on the scenario in which
we start with an observation of L(s), the number of items (which we call customers) in a
system at time s, for 0 ≤ s ≤ t, for some finite time interval [0, t]. From that sample path,
we can directly observe the number R(0) of arrivals before time 0 remaining in the system
at time 0, and the number A(s) of new arrivals (jumps up) in the interval [0, s], 0 ≤ s ≤ t,
but based only on the available information, we typically cannot determine the waiting time
Wk, the time arrival k spends in the system, for each k, because the customers need not
depart in the same order that they arrived.

Within that framework, LL suggests considering the three finite averages

λ̄(t) ≡ A(t)
t

, L̄(t) ≡ 1
t

∫ t

0

L(s) ds, W (t) ≡ 1
A(t)

R(0)+A(t)∑
k=R(0)+1

Wk, (1.1)

where the waiting times are ordered according to the arrival times, including those before
time 0. Given that the finite averages L̄(t) and λ̄(t) in (1.1) have been observed, but the
waiting times cannot be directly observed, it is natural to use the indirect estimator

WL,λ(t) ≡ L̄(t)
λ̄(t)

. (1.2)

as a substitute for W (t). It is well known that L̄(t) = λ̄(t)W (t), so that WL,λ(t) = W (t),
if the system starts and ends empty (see Theorem 1 of [12]), but not otherwise. Theorem 2
of [12] gives the exact relation more generally:

WL,λ(t) − W (t) =
T

(r)
W (0) − T

(r)
W (t)

A(t)
, (1.3)

where T
(r)
W (t) is the total residual waiting time of all customers in the system at time t,

which typically is not known if the waiting times are not directly observed.
In [12] we considered estimation in two cases: when the system is stationary and when it

is not. When the system can be assumed to be stationary, E[T (r)
W (0)] = E[T (r)

W (t)] in (1.3),
so that it is reasonable to use the indirect estimator in (1.2). Moreover, the very general
conditions required for LL to hold should be satisfied, so that L = λW for underlying
parameters L, λ, and W . In that setting, we regarded the finite averages in (1.1) and
(1.2) as estimates of these parameters and showed how to estimate confidence intervals for
WL,λ(t) using a single observation of L(s), 0 ≤ s ≤ t, by applying the method of batch
means. We showed, first, that statistical analysis with LL can show how well finite averages
determine the underlying parameters L, λ, and W and, second, that the indirect estimation
using (1.2) can be effective, illustrating with data from the call center data repository of
Mandelbaum [20]; also see [13].

In the second case, the system was assumed to be non-stationary, as commonly occurs
when the arrival rate is time-varying. That typically occurs in service systems, with the
arrival rate increasing at the beginning of each day and decreasing at the end of each day, as
illustrated by the call center example in [12]. Given that there is some underlying stochastic
model for which the mean E[W (t)] is well defined, W (t) can be regarded as an estimate of
E[W (t)]. In this non-stationary setting, we considered ways to refine the estimator WL,λ(t)
in (1.2) in order to reduce its bias, that is, to reduce |E[ΔW (t)]|, where ΔW (t) ≡ WL,λ(t) −
W (t). Assuming that the waiting time (total time in system) distribution is approximately
a fixed exponential distribution over the measurement interval, as is often approximately
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appropriate in large-scale service systems, in Eq. (28) of [12] we proposed the following
refined estimator based on (1.3):

WL,λ,r(t) ≡ WL,λ(t) − (R(0) − L(t))WL,λ(t)
A(t)

= WL,λ(t)
(

1 − R(0) − L(t)
A(t)

)
. (1.4)

The exponential distribution assumption was used to justify approximating the residual
waiting time distribution for each customer in the system at time t by the ordinary waiting
time distribution, which in turn is estimated by WL,λ(t). In [12] we showed that the proposed
bias-reduction scheme in (1.4) is effective by making comparisons with call center data. Since
we also had waiting time data, we could evaluate the actual bias by comparing the estimates
to direct estimates of E[W (t)].

The purpose of the present paper is to investigate a different way to reduce the esti-
mation bias in the non-stationary case. We apply the time-varying Little’s law (TVLL), as
developed by Bertsimas and Mourtzinou [1], extended and elaborated upon by Fralix and
Riano [8], and reviewed here in Section 2, instead of using the classical LL. We show that
indeed the TVLL can be used to reduce estimation bias. We also show that both the new
estimators based on the TVLL and the previous refined estimator in (1.4) have advantages.
Moreover, we establish a connection between the two. Hence, the present paper together
with [12] provides improved understanding.

When the staffing can decrease, we need to specify how the system operates when
the staffing level is scheduled to decrease but all servers are busy. We assume that service
assignments can be switched, so that a server becomes available to release at the next service
completion by any server. Thus, we assume that the server scheduled to depart when the
servers are all busy remains in the system until the next service completion by any server.
At that time, the server scheduled to depart leaves and the server completing service starts
serving the customer that was being served by the departing server. In our simulations
with decreasing staffing, for simplicity, we keep track of the remaining service times of all
customers and assume instead that the customer with the least remaining service time
completes service immediately to allow the staffing level to decrease. In the actual system,
that server would remain in the system and only leave after that minimum remaining service
time is complete. We separately account for this effect by keeping track of the number of
customers leaving early and the total time that there would be an additional customer in
the system. In that way we show that this effect is negligible in our examples.

There appears to be only limited related literature about statistical analysis with LL.
There have been studies about exploiting LL with a known arrival rate to estimate L or
W more efficiently using an estimate of the other; see [9] and references therein. More
generally, there have been many papers on the statistical analysis of queueing models,
including inference with limited data, as illustrated by Larson [14]. Evidently this is the
first paper to exploit TVLL for estimation.

Here is how the rest of this paper is organized: In Section 2 we review the TVLL,
including the close connection between the TVLL and infinite-server queueing models. In
Section 3 we show how the TVLL can be applied by assuming that the waiting time distri-
bution is fixed and specified except for its mean. Theorem 3.1 there shows that the TVLL
uniquely characterizes the fixed mean E[W ]. In Section 4 we develop a refined estimator
based on a linear approximation for the arrival rate function. Formulas (4.6) and (4.9) there
also provide an estimate of the amount of bias in the indirect estimator WL,λ(t), showing
when bias reduction is important. In Section 5 we apply a perturbation argument to develop
an alternative estimator to the estimator in Section 4 to use when the estimated derivative
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of the arrival rate function is small. In Section 6 we establish Theorem 6.1 showing the con-
nection between the TVLL approach and the estimator WL,λ,r(t) in (1.4) when R(0) and
L(t) cannot be observed and so are estimated using the TVLL. In Section 6 we also extend
the estimator WL,λ,r(t) in (1.4) to non-exponential waiting time distributions. In Section 7
we develop a new refined estimator based on approximating the arrival rate function by a
quadratic function. In Section 8 we conduct simulation experiments of multi-server queueing
models to compare the estimators. In Section 9 we compare the bias in the alternative esti-
mators using the call center data from [12,13]. Finally, in Section 10 we draw conclusions.
Additional material appears in an online appendix.

2. THE TIME-VARYING LITTLE’S LAW (TVLL)

The TVLL is a time-varying generalization of LL developed by Bertsimas and Mourtzinou
[1], extended and elaborated upon by Fralix and Riano [8]. For the basic TVLL as in [1],
we assume that arrivals occur one at a time to a system that was empty in the distant past
and that the arrival process has a well-defined arrival-rate function λ(t). (We can specify
starting empty at any time t0 by letting λ(t) = 0 for t < t0.) For an interval I of the real line,
let A(I) be the number of arrivals in I. The arrival rate over the interval [0, t] is specified
by requiring that

E[A([t1, tt])] ≡ Λ(t1, t2) =
∫ t2

t1

λ(s) ds, −∞ < t1 < t2 < +∞ (2.1)

for some function λ integrable over [t1, t2] for −∞ < t1 < t2 < +∞, which is the arrival rate
function.

As in Section 2 of [8], let W (t) be the waiting time of the last customer to arrive at or
before time t, with W (t) ≡ 0 if no customers have arrived by time t. We assume that the
conditional cumulative distribution function (cdf) Gt(x) ≡ P (W (t) ≤ x|At), x ≥ 0, of the
waiting time (time in system) for a new arrival at time t, given that an arrival occurs at time
t (the event At) is well defined for all t and a measurable function on [0,∞). (The precise
meaning of the cdf Gt is somewhat complicated; see [1,8]. In the most general form, the cdf
Gt(x) corresponds to a Palm measure Pt from a collection of Palm measures {Pt : t ≥ 0};
see Section 2 of [8], but that framework supports the interpretation above. The precise
meaning is not too important for this paper, because in Section 3 below we will make the
stronger assumption that the cdf Gt(x) is independent of t.)

For any time t, let T−k(t) be the time of the kth arrival before time t (less than or
equal to t), so that T−(k+1)(t) < T−k(t) ≤ t for all k ≥ 1. Let W−k(t) ≡ W (T−k(t)) be the
waiting time by the arrival at time T−k(t). Then the number in system can be expressed as
an infinite sum of random variables or, equivalently, as an elementary stochastic integral via

L(t) ≡
∞∑

k=1

1{W−k(t)≥t−T−k(t)} =
∞∑

k=1

1{W (T−k(t))>t−W (T−k(t))}

=
∫ t

−∞
1{W (s)>t−s} dA(s). (2.2)

Taking expectations in (2.2) and letting Gc
s(x) ≡ P (W (s) > x|As) (or, more rigorously, by

applying the Campbell-Mecke formula as in the proof in [8]), we get the TVLL:
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Theorem 2.1 (The TVLL, from [1,8]): Under the conditions above,

E[L(t)] =
∫ t

−∞
Gc

s(t − s)λ(s) ds. (2.3)

Just like LL, the TVLL in Theorem 2.1 has important connections to infinite-server (IS)
queueing models, and thus has some history prior to [1]. The connection between LL and
the IS queueing model was discussed and emphasized by the sentence in italics on p. 238 of
[26]; a corresponding representation holds for the TVLL. The TVLL can be regarded as part
of the theory for IS models, because the abstract system can be regarded as a general IS
model if we simply call the waiting time the service time in the IS model. This observation
is supported by observing that the TVLL formula (2.3) coincides with the expected number
of busy servers in the Mt/GIt/∞ IS model in (6) of [11], where the waiting times coincide
with the service times. The Mt means that the arrival process in the IS model is a non-
homogeneous Poisson process, while the GIt means that the service times are mutually
independent and independent of the arrival process, with a general time-varying service-
time cdf Gt. Thus, if we made the stronger assumption that our system can be approximated
by the Mt/GIt/∞ IS model, where the waiting times play the role of the service times, then
we would obtain the same formula in (2.3). Indeed, that is a setting in which the meaning
of the cdf Gt(x) is straightforward. The remaining content of Theorem 2.1 is the conclusion
that the formula remains valid if the stochastic assumptions of the Mt/GIt/∞ IS model are
relaxed.

The remaining issue is: does formula (2.3) for the mean E[L(t)] in the Mt/GIt/∞ IS
model remain valid if the stochastic assumptions are replaced by much weaker conditions?
Such general conditions are provided by Theorem 1 of [1] and Theorems 2.1 and 3.1 of [8], but
without discussing IS models. The fact that the stochastic assumptions in the Mt/GIt/∞
IS model can be relaxed was observed previously in Section 5 of [11] and Remark 2.3 of
[22]. The martingale arguments in Section 2 of [22] are in the spirit of the earlier martingale
argument of [23].

The greater validity of (2.3) occurs primarily because the expectation is a linear opera-
tor; that is, the expected value of a sum of random variables is the sum of the expectations,
without any stochastic assumptions. (Recall that an integral is essentially a sum.) The
biggest drawback of (2.3) is that it is hard to specify the time-varying conditional waiting-
time distribution Gt(x) for a general model, beyond the Mt/GIt/∞ IS model. In general,
the cdf Gt should be a derived quantity. Nevertheless, [1,8] show that there are important
applications of the TVLL.

Remark 2.1 (Mean values versus sample path relations): The TVLL in (2.3) is obtained by
taking expected values in the sample path relation (2.2). Thus, the finite-interval relation
in (1.3), which is the basis for the previous refined estimator in (1.4), parallels (2.2) rather
than the TVLL (2.3). In that respect, (1.3) is stronger than the TVLL in (2.3). When we
focus on the bias, which involves the expected value of the estimator, there is no difference.
Thus, we anticipate that refinements of the indirect estimator WL,λ(t) in (1.2) based on the
TVLL should compare favorably with WL,λ,r(t) in (1.4) when viewed as an estimator of
E[W (t)]. In contrast, the estimator WL,λ,r(t) has an advantage when viewed as an estimator
of W (t) for one sample path. This insight is substantiated in our experiments.

3. THE TVLL WITH FIXED WAITING TIME DISTRIBUTION

It is not immediately apparent how to apply the TVLL in Theorem 2.1 to estimate waiting
times, but we show that the TVLL can be used to reduce estimation bias under two
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additional assumptions. First, as in [12], we assume that the waiting time distribution
remains fixed throughout the measurement interval.

Assumption 3.1: The distribution of W (t) is distributed as W , independent of t.

Second, we make the statistical estimation parametric by assuming that the fixed
waiting time W has a cdf that is known except for its mean.

Assumption 3.2: There is a specified cdf G with mean 1 such that P (W ≤ xE[W ]) = G(x),
x ≥ 0.

Given Assumptions 3.1 and 3.2, we will be concerned with estimating the mean E[W ]
for given cdf G.

Fortunately, in many applications, Assumptions 3.1 and 3.2 are reasonable. For example,
in well-managed call centers, the waiting times often remain approximately stationary, even
though the arrival rate may be time varying. That is primarily achieved by using appropriate
time-varying staffing. With appropriate staffing, the time spent in queue usually is relatively
short compared to the service time, so that the waiting times tend to not greatly exceed
the service times. Even if the service times and waiting times do vary over the day, they
often change relatively slowly compared to the rate of change of the arrival rate, so that it
is often reasonable to regard the waiting times as stationary over subintervals, and to have
approximately the form of the service time distribution.

Furthermore, as in [12], it is often reasonable to assume that the service time and
waiting time distributions are exponential, in which case G(x) = 1 − e−x. In fact, there
is now considerable evidence that service times are better fit to lognormal distributions
than exponential distributions, for example, see [3], but those lognormal distributions often
can be regarded as approximately exponential, because the squared coefficient of variation
(SCV, c2, variance divided by the square of the mean) is often very close to 1. That was
the case for the call center data studied in [12]. However, Assumption 3.2 also holds more
generally, for example, when the cdf G is the two-parameter lognormal distribution with
specified SCV and unknown mean.

Under Assumption 3.1, the TVLL in (2.3) reduces to the corresponding Mt/GI/∞ IS
formula in Theorem 1 of [5], that is,

E[L(t)] =
∫ t

−∞
P (W > s)λ(t − s) ds = E[λ(t − We)]E[W ], (3.1)

where the W and We are random variables with the fixed waiting-time cdf and the associated
stationary-excess cdf, that is,

P (We ≤ x) ≡ 1
E[W ]

∫ x

0

P (W > u) du, E[W k
e ] =

E[W k+1]
(k + 1)E[W ]

. (3.2)

Equivalently, in terms of G, the cdf of W/E[W ] defined in Assumption 3.2, we have

E[L(t)] =
∫ t

−∞
Gc(s/E[W ])λ(t − s) ds. (3.3)

We now show under minor regularity conditions that this version of the TVLL uniquely
determines the mean E[W ], both for a single t and for an average over [0, t]. Paralleling the
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definition of L̄(t) as the average over the interval [0, t], let

λ̄t(s) ≡ 1
t

∫ t

0

λ(u − s) du (3.4)

for each s under consideration.

Theorem 3.1 (Characterization of E[W ]): If the complementary cdf Gc ≡ 1 − G(x)
defined in Assumption 3.2 is positive, continuous and strictly decreasing for all x with
Gc(x) → 0 as x → ∞, and if

E[L(t)] < Gc(0)
∫ t

−∞
λ(s) ds, (3.5)

then the mean E[W ] is characterized as the unique solution to Eq. (3.3). If

E[L̄(t)] < Gc(0)
∫ t

−∞
λ̄t(s) ds, (3.6)

where λ̄t(s) is defined in (3.4), then the mean E[W ] is the unique solution to the equation

E[L̄(t)] =
∫ t

−∞
Gc(s/E[W ])λ̄t(s) ds. (3.7)

Proof: Under the conditions, Gc(s/E[W ]) in the integrand is strictly increasing in E[W ]
for each s, converging to 0 as E[W ] ↓ 0 and converging to Gc(0) as E[W ] ↑ ∞. Hence, the
right side of Eq. (3.3) is continuous and strictly increasing in E[W ]. Condition (3.5) then
implies that there is a unique solution. The same reasoning applies to (3.7) under condition
(3.6). �

Given estimates of L̄(t) and the arrival rate function λ(s) for s ≤ t, Theorem 3.1 provides
an estimator for E[W ]. In particular, let the estimator W tvll(t) be the unique solution to
Eq. (3.7) after replacing E[L̄(t)] by its estimate L̄(t) and after replacing λ(s) in (3.4) and
(3.7) for s ≤ t by its estimate based on arrival data. An algorithm can be based on bisection
search, exploiting the monotonicity used in the proof of Theorem 3.1.

Given that the values of E[L̄(t)] and λ̄t(s), s ≤ t, are being estimated, it may be useful
to employ the following elementary corollary.

Corollary 3.1 (Bounds for E[W ]): Suppose that the assumptions of Theorem 3.1 hold for
i = 1, 2 with

E[L̄i(t)] =
∫ t

−∞
Gc(s/E[Wi])λ̄i,t(s) ds for i = 1, 2

for some t. If E[L̄1(t)] ≤ E[L̄(t)] ≤ E[L̄2(t)] and λ̄1,t(s) ≥ λ̄t(s) ≥ λ̄2,t(s), s ≤ t, then the
assumptions of Theorem 3.1 hold for the unsubscripted system and E[W1] ≤ E[W ] ≤ E[W2].

We now proceed to develop simple alternatives to the estimator provided by
Theorem 3.1. Since these new estimators involve roots of equations, these estimators
could fail to be unique, but it is always possible to confirm these estimators by applying
Theorem 3.1.
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4. AN APPROXIMATING LINEAR ARRIVAL RATE FUNCTION

Even though the arrival rate function is typically highly time-varying over a day, it is often
approximately linear over subintervals, such as an hour or two. We thus can apply a linear
approximation,

λ(s) ≈ λl(s) ≡ a + bs, 0 ≤ s ≤ t, (4.1)

where a and b are constants such that λl(s) ≥ 0, 0 ≤ s ≤ t, with [0, t] denoting the designated
time interval. Since the number in system at any time depends on the arrival rate prior to
that time, it is important that this approximation also be reasonable prior to time 0 as well
as over the interval [0, t]. It usually suffices to go back a few (e.g., 4) mean waiting times.
(That is supported by the rate of convergence to steady-state in IS models, as given in (20)
of [5]. A mean waiting time can be roughly estimated by WL,λ(t) in (1.2).) Obviously no
non-constant linear approximation can be valid on the entire real line, because it would
necessarily be negative in one semi-infinite interval. Nevertheless, judiciously applied, the
linear approximation can be very useful, as we will show.

For a specified smooth arrival rate function, the approximation (4.1) can be obtained by
a Taylor series approximation, as discussed in [5]. Ways to fit a linear arrival rate function to
data from a non-homogeneous Poisson process were studied in [21]. Experiments conducted
there show that it suffices to use an ordinary least square fit unless the arrival rate is nearly
0 at one endpoint. Then an iterated least-squares fit is better; it produces the maximum
likelihood estimator.

Given the linear approximation (4.1), Theorem 3.1 is immediately applicable with
λt(s) = (a + b(t − 2s)/2)+, where (x)+ ≡ max {x, 0}. However, if the linear approximation
is really appropriate, then it is not necessary to apply Theorem 3.1. As noted in (7) of
[5], the mean number of busy servers in the Mt/GI/∞ model, and thus the TVLL with
non-time-varying waiting time W in (3.1), simplifies if we assume that the arrival rate is
approximately linear as in (4.1), that is, if we can ignore the non-negativity constraint. The
simple expression involves the parameter

γ2
W ≡ (c2

W + 1)/2, where c2
W ≡ Var(W )/E[W ]2 (4.2)

is the SCV of the cdf G. (The parameters c2
W and γ2

W provide partial characterizations
of the cdf G and are independent of the mean E[W ]. For the common case in which G
is exponential, γ2

W = c2
W = 1.) Using Eqs. (3.1) and (3.2), we we get the associated linear

approximation for E[L(t)]:

E[L(t)] ≈ λl(t − E[We])]E[W ] = λl(t − γ2
W E[W ])]E[W ] = (a + bt)E[W ] − bγ2

W E[W ]2.
(4.3)

By integrating over [0, t] and dividing by t in (4.3), we obtain

E[L̄(t)] ≡ t−1

∫ t

0

E[L(s)] ds ≈ (a + b(t/2))E[W ] − bγ2
W E[W ]2. (4.4)

Observing that the linear equations as a function of t in (4.3) and (4.4) can also be
viewed as quadratic equations as a function of E[W ], we immediately obtain the following
result. (The second formula in (4.6) follows from (4.5) below by rearranging terms.) Let
λ̄l(t) be the average arrival rate over [0, t].
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Theorem 4.1 (Exact expression for E[W ]): If the linear approximations in (4.1) and (4.3)
can be taken to be exact, then E[W ] is a solution to the quadratic equation

γ2
W λ′

lx
2 − λ̄l(t)x + E[L(t)] = 0, (4.5)

and the bias in E[L̄(t)]/λ̄l(t) can be expressed as

(E[L̄(t)]/λ̄l(t)) − E[W ]
E[W ]

= −γ2
W λ′

lE[W ]
λ̄l(t)

. (4.6)

Now continuing to the estimation, we use Eq. (4.4) to estimate E[W ] based on the
estimate L̄(t) of E[L̄(t)] and estimates ā and b̄ of the parameters a and b. We use the average
arrival rate over [0, t] of the linear approximation, λ̄l(t) ≡ ā + (b̄t/2) and λ̄′

l ≡ b̄, where the
prime denotes a derivative. (Typically, we will have λ̄l(t) = λ̄(t).) Then, paralleling (4.5),
we obtain the new refined estimator based on a linear approximation of the arrival rate
function by solving the quadratic equation

γ2
W λ̄′

lx
2 − λ̄l(t)x + L̄(t) = 0, (4.7)

from which we get

WL,λ,l(t) ≡ x ≡ B ±√
B2 − 4C

2
, (4.8)

for B ≡ λ̄l(t)/γ2
W λ̄′

l and C ≡ L̄(t)/γ2
W λ̄′

l.
Formula (4.6) is very important because it provides an a priori estimate of the bias in the

indirect estimator, assuming that the linear arrival rate function is a suitable approximation.
In particular, we can estimate the relative bias in the indirect estimator WL,λ(t), given
WL,λ(t) and estimates of the linear arrival rate function by

WL,λ(t) − E[W ]
E[W ]

≈ (E[L̄(t)]/λ̄l(t)) − E[W ]
E[W ]

= −γ2
W λ′

lE[W ]
λ̄l(t)

≈ −γ2
W λ̄′

lWL,λ(t)
λ̄l(t)

, (4.9)

where only available estimates appear on the right-hand side. Formula (4.9) provides an
estimate of the bias in WL,λ(t) once WL,λ(t) has been determined. Formulas (4.6) and (4.9)
show that the estimated bias reduction is directly proportional to three separate factors:
(i) the variability of the waiting time distribution, as quantified by the scale-free parameter
γ2

W ≡ (c2
W + 1)/2, (ii) the relative slope of the arrival rate function, as quantified by the

ratio λ̄′
l/λ̄(t) and (iii) the mean waiting time itself, E[W ], as estimated by WL,λ(t). We

can thus anticipate the change in bias reduction when one or all of these factors change.
For example, for given arrival rate function and given waiting time variability, the bias
reduction (as quantified by the relative error) is directly increasing in the expected waiting
time E[W ]. This shows that the bias reduction is more important when the mean waiting
time is larger and quantifies the impact.

Since the coefficients of the quadratic equation in (4.7) are estimated, they should be
regarded as random variables. Hence the estimator WL,λ,l(t) in (4.8) is the root of a random
polynomials, as in [2,10]. From Theorem 3.1, we know that the multiple roots in (4.8) is a
consequence of the linear approximation for the arrival rate function. If λ̄′

l < 0, then C < 0,
so that

√
B2 − 4C > B and both roots are real, one positive and one negative; then x is

the one positive root. If λ̄′
l > 0, then we require as a condition that B2 − 4C > 0 to obtain

a real root. We can then check the roots in Eq. (3.7).
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There can be numerical instability if |γ2
W λ̄′

l| is too small, because we divide by γ2
W λ̄′

l

when calculating B and C above. In that case, we provide an alternative estimator in the
next section.

5. PERTURBATION ANALYSIS WITH A LINEAR ARRIVAL-RATE FUNCTION

We have observed that the estimation can be unstable if λ̄′
l in (4.7) is small, because we

divide by it in the solution (4.8). An alternative estimator to the estimator in (4.8) when
λ̄′

l is small, and additional insight, can be gained by performing perturbation analysis.

Lemma 5.1: Consider the quadratic equation c2x
2 − c1x + c0 = 0 with c1 > 0 and c0 > 0,

and let ε(c2) ≡ c2c0/c2
1. If 4ε(c2) < 1, then the equation has two positive real roots and the

minimum positive root can be expressed as

x =
c0

c1
(1 + ε(c2) + o(c2)) as c2 → 0. (5.1)

Proof: Apply the Taylor series expansion

√
x + ε =

√
x +

ε

2
√

x
− ε2

8x3/2
+ o(ε2) as ε → 0.

�

Based on Lemma 5.1, and assuming that λ̄l(t) = λ̄(t), we can approximate the minimum
positive root of the quadratic equation in (4.7) by the perturbation approximation

WL,λ,l,p(t) ≡ WL,λ(t)
(

1 + WL,λ(t)
(

γ2
W λ̄′

l

λ̄(t)

))
. (5.2)

The estimator WL,λ,l,p(t) is to be preferred to the estimator WL,λ,l(t) when γ2
W λ̄′

l is small.
The advantage may be apparent by much smaller confidence intervals when confidence
intervals are estimated for both, which is desirable.

Like formula (4.9), formula (5.2) quantifies the importance of the bias reduction, because
it too provides a simple estimate of the approximate relative change in going from WL,λ(t)
to the refinement WL,λ,l(t), yielding essentially the same result as (4.9); that is,

WL,λ,l(t) − WL,λ(t)
WL,λ(t)

≈ WL,λ,l,p(t) − WL,λ(t)
WL,λ(t)

≡ γ2
W λ̄′

lWL,λ(t)
λ̄(t)

. (5.3)

6. COMBINING THE TWO APPROACHES: ESTIMATING R(0) − L(T ) IN
W L,λ,r(t)

We may want to apply the previous refined estimator WL,λ,r(t) in (1.4), but we may be
unable to observe R(0) and L(t), because we only have available L̄(t) and arrival process
data, and do not have a full observation of L(s), 0 ≤ s ≤ t. If that is the case, then we might
elect to use an estimate of E[L(0)] − E[L(t)] instead (assuming that L(0) = R(0), as is the
case w.p.1 with an arrival rate function). We now show that we can apply the TVLL to
obtain such an estimate.
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We first fit the arrival rate function to a linear function. Then we can use (4.3) to
estimate E[L(0)] − E[L(t)]. From (4.3), we get

E[L(0)] − E[L(t)] ≈ −btE[W ] = −λ′tE[W ]. (6.1)

If we estimate E[W ] by WL,λ(t) and λ′ by λ̄′ = b̄, then we can estimate R(0) − L(t) by
−λ̄′tWL,λ(t). Let WL,λ,r,e(t) be the resulting estimator:

WL,λ,r,e(t) ≡ WL,λ(t)
(

1 +
λ̄′tWL,λ(t)

A(t)

)
. (6.2)

Before connecting this new estimator to what we have already done, we extend the
estimator WL,λ,r(t) in (1.4) to non-exponential distributions. As a natural approximation,
we approximate the expected residual waiting time of each customer in service at time t by
E[We] = E[W ]γ2

W , where We has the stationary-excess waiting-time distribution in (3.2).
We obtain the new approximation

WL,λ,r,γ(t) ≡ WL,λ(t) − (R(0) − L(t))WL,λ(t)γ2
W

A(t)
= WL,λ(t)

(
1 − γ2

W (R(0) − L(t))
A(t)

)
,

(6.3)

which of course reduces to the previous approximation in (1.4) for exponential waiting times.
Now let WL,λ,r,γ,e(t) be the resulting estimator based on (6.3) and estimating R(0) − L(t)
as described above:

WL,λ,r,γ,e(t) ≡ WL,λ(t)
(

1 +
γ2

W λ̄′tWL,λ(t)
A(t)

)
. (6.4)

Theorem 6.1 (Connection between the estimators): If we (i) fit the arrival rate function
to a linear function, (ii) use (4.3) to estimate E[L(0)] − E[L(t)] as described above and (iii)
use that to estimate R(0) − L(t) in (6.3) to obtain the estimator WL,λ,r,γ,e(t), then

WL,λ,r,γ,e(t) = WL,λ,l,p(t)

for WL,λ,l,p(t) in (5.2).

Proof: The conclusion follows directly from the expressions above, using λ̄(t) = A(t)/t. �

7. AN APPROXIMATING QUADRATIC ARRIVAL RATE FUNCTION

If the arrival rate function is neither approximately constant nor approximately linear, then
we can consider the quadratic approximation

λ(s) ≈ λq(s) ≡ a + bs + cs2, 0 ≤ s ≤ t. (7.1)

Let γ2
W ≡ (c2

W + 1)/2 as before and

θ3
W ≡ E[W 3]/6E[W ]3, (7.2)
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noting that γ2
W = θ3

W = 1 if W has an exponential distribution. Given (7.1) with λ′′
q ≡ 2c,

we can apply (14) of [5] and the moment formula in (3.2) to obtain the formula:

E[L(t)] ≈ E[Lq(t)] ≡ λq(t − E[We])E[W ] + (λ′′
q /2)V ar(We)E[W ]

= (a + bt + ct2)E[W ] − (b + 2ct)γ2
W E[W ]2 + 2cθ3

W E[W ]3

= λq(t)E[W ] − γ2
W λ′

q(t)E[W ]2 + θ3
W λ′′

q E[W ]3, (7.3)

which gives us

E[L̄(t)] ≡ t−1

∫ t

0

E[L(s)] ds ≈ λ̄q(t)E[W ] − γ2
W λ̄′

q(t)E[W ]2 + θ3
W λ′′

q E[W ]3, (7.4)

where

λ̄q(t) ≡ 1
t

∫ t

0

λq(s) ds = a + (bt/2) + (ct2)/3, λ̄′
q(t) ≡

1
t

∫ t

0

λ′
q(s) ds = b + ct.

Given the estimator L̄(t) for E[L̄(t)] and the estimators λ̄q(t), λ̄′
q(t) and λ′′

q associated
with the quadratic equation in (7.1) fit to the arrival rate data, we obtain a new refined
estimator of E[W ], denoted by WL,λ,q(t), by solving the following cubic equation

θ3
W λ′′

q x3 − γ2
W λ̄′

q(t)x
2 + λ̄q(t)x − L̄(t) = 0, (7.5)

Paralleling Section 5, we can do a perturbation analysis assuming that λ′′
q << λ̄′

q(t) <<

λ̄q(t) in (7.5) to get the approximation

x ≡ WL,λ,q(t) ≈ WL,λ,q,p(t) ≡ w

(
1 + wδ − w2ε

(
1

1 − 2wδ

))
, (7.6)

for w ≡ WL,λ(t) in (1.2), δ ≡ γ2
W λ̄′

q(t)/λ̄q(t) and ε ≡ θ3
W λ′′

q /λ̄q(t) with ε << δ << 1. (We
assumed that x = x0 + εx1 + o(ε) and λ′′

q = O(ε) as ε → 0 and then used (5.2) for the O(1)
terms.)

8. SIMULATION EXPERIMENTS

We now report the results of simulation experiments to evaluate the new waiting time
estimators. We consider the Mt/GI/st + M multi-server queueing model, having a non-
homogeneous Poisson arrival process (the Mt), i.i.d. service times distributed according
to a random variable S with a general distribution (the GI), a time-varying staffing level
(number of servers, the st) and customer abandonment with i.i.d. exponentially random
patience times (the +M). The arrival process, service times and patience times are mutually
independent. We let the mean service time be E[S] = 1, so that we are measuring time in
units of mean service times. Consistent with many call centers, we let the mean patience
time be 2.

In Section 8.1 we describe the experimental design for the main experiment. The base
case has an increasing linear arrival rate function, but we also consider quadratic and
constant arrival rate functions. In Section 8.2 we discuss two important theoretical ref-
erence points, for which we can do exact mathematical analysis for comparison: (i) the
corresponding Mt/GI/∞ infinite-server (IS) queueing models and (ii) the corresponding
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stationary M/M/s + M models. In Section 8.3 we present the results of our main simu-
lation experiments for exponential (M) and Erlang (E4) service times. In Section 8.4 we
present corresponding results for hyperexponential (H2) service times. In order to provide an
example with greater bias, in Section 8.5 we consider an example with longer service times,
specifically, E[S] = 4. In order to consider the impact of decreasing staffing, in Section 8.6
we consider an example with decreasing linear arrival rate and thus decreasing staffing.
In order to illustrate how the procedures work for more general arrival rate functions, in
Section 8.7 we consider the case of a sinusoidal arrival rate function.

8.1. Experimental Design

We consider three service time distributions: exponential (M , having parameters γ2
S ≡ (c2

S +
1)/2 = θ3

S ≡ E[S3]/6E[S]3 = 1), Erlang E4 (less variable, a sum of four i.i.d. exponentials,
having parameters γ2

S = 0.6125 and θ3
S = 0.3125) and hyperexponential H2 (more variable, a

mixture of two exponentials, having parameters γ2
S = 3.0 and θ3

S = 15.0). (The parameters
γ2

W and θ3
W are defined in (4.2) and (7.2), respectively. The same definition applies to

the service time S.) The third H2 parameter is chosen to produce balanced means as in
(3.7) of [25]; the cdf is P (S ≤ x) ≡ 1 − p1e

−λ1x − p2e
−λ2x, where p1 = 0.0918, p2 = 0.9082,

λi = 2pi, yielding pi/λi = 1/2, c2 = 5, and E[S3] = 90. The H2 case is included to illustrate
more difficult cases caused by high variability.

Since we consider multi-server queues with reasonable staffing (specified below), the
waiting times (time spent in system) do not differ greatly from the service times. For
customers that are served, the waiting times are somewhat longer because of the time spent
in queue, but that usually is relatively short compared to the service times. Longer waiting
times in queue are reduced by customer abandonment. Thus, in our estimation procedures,
we approximate the unknown (γ2

W , θ3
W ) by the specified (γ2

S , θ3
S).

Our base case for the time-varying arrival rate is the linear arrival rate function λ(t) =
36 + 3t over the interval [0, t] for t = 4 and t = 8, assuming the system starts empty at time
t = −12, with λ(−12) = 0. To avoid a startup effect, that is, serious deviations from the
approximating linear and quadratic arrival rate functions, we start empty in the past. The
time lag in the linear approximation in (4.3) is E[We] ≈ E[Se] = γ2

SE[S] = γ2
S . Since γ2

S = 3
for our H2 distribution, the system starts empty 4 time lags in the past for H2. For the
other distributions, the system starts empty more time lags in the past.

The average arrival rate λ̄(t) is 42 over [0, 4] and 48 over [0, 8]. Thus, the expected total
number of arrivals in [0, 4] is 168, while it is 384 in [0, 8]. For comparison, we also consider
quadratic and constant arrival rate functions, also starting empty at time −12. Figure 1
shows the three different arrival rate functions. The quadratic arrival rate function has
the form λ(t) = 53.333 + 2.222t − 0.185t2 based on λ(−12) = λ(24) = 0 and peak of 60.0 at
t = 6. Thus, λ(0) = 53.333 and λ(4) = λ(8) = 59.262. The case of constant arrival rate has
λ = 45. For these alternative arrival rate functions, we also estimate average waiting times
over the intervals [0, 4] and [0, 8] via the direct estimator in (1.1).

The time-varying staffing is chosen to stabilize the performance at typical performance
levels, following the method of Feldman et al. [7] and Jennings et al. [11]. In particular, the
staffing is set using the square root staffing formula

s(t) ≡ �m(t) + β
√

m(t)�, (8.1)

where m(t) is the offered load and �x� is the least integer greater than or equal to x. The
offered load is m(t) ≡ E[L(t)] in the associated IS model, which has formula (3.1) with the
service time S playing the role of the waiting time W there. We consider three cases for
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Figure 1. (Color online) The three arrival rate functions used in simulation experi-
ments: constant (λ(t) = 45), linear (λ(t) = 36 + 3t) and quadratic (λ(t) = 53.333 + 2.222t −
0.185t2). More details in the fourth paragraph of Section 8.1 and Section 2.1 of the appendix.

the quality-of-service (QoS) parameter β in (8.1): 0, 1, and 2. With abandonment in the
model, the first two cases produce typical performance, while β = 2 corresponding to high
QoS, producing performance close to the IS model.

For the three arrival rate functions, we obtain explicit expressions for the offered load
m(t) using the linear and quadratic approximations in (4.3) and (7.3), and then the staffing
via (8.1). For the linear arrival rate function 36 + 3t, the offered load has approximately
the form in (4.3), yielding m(t) = 36 + 3t − 3γ2

W . For the quadratic arrival rate, the offered
load has approximately the form in (7.3), yielding m(t) = 53.333 − 2.222γ2

W − 0.370θ3
W +

(2.222 + 0.370γ2
W )t − 0.185t2. (All these offered loads are non-decreasing, so that the staffing

is non-decreasing. We consider cases with decreasing staffing in Sections 8.6 and 8.7.) For
the constant arrival rate, m(t) = λ(t) = 45. We simulated these models using matlab, per-
forming 100 replications in each case. We report the halfwidths of 95% confidence intervals
for all estimates.

8.2. Theoretical Reference Points

There are two special cases for which we can analyze the performance analytically. These
two useful theoretical reference points are: (i) the corresponding IS models and (ii) the
corresponding models with constant arrival rate and exponential service times.

8.2.1. Infinite-Server Model For the IS model, the waiting times coincide with the ser-
vice times, so that we can calculate everything analytically. For the IS model, E[L(t)] = m(t)
in (3.1). We first consider the case of the linear arrival rate function. Since the approximation
(4.3) is accurate for our example, there is essentially no bias at all in the refined estimator
WL,λ,l(t) in Section 4. For the linear arrival rate function λ(t) = 36 + 3t, the relative slope is
λ′/λ̄(t) = 3/42 = 0.071 for the interval [0, 4] and 3/48 = 0.0625 for [0, 8]. Thus, by formula
(4.6), we anticipate that the estimation bias in WL,λ(t) is γ2

W (λ′/λ̄(t))E[W ] = 7.1γ2
W % for

[0, 4] and 6.25γ2
W % for [0, 8].
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For the M , H2, and E4 service time distributions, and the linear arrival rate function,
we have respectively, E[L̄(t)] = 39.0, 33.0 and 40.125 over [0, 4] and 45, 39.0 and 46.125 over
[0, 8]. Since the average arrival rate λ̄(t) is 42.0 over [0, 4] and 48.0 over [0, 8], for the three
M , H2 and E4 service time distributions, the indirect estimator WL,λ(t) in (1.2) takes the
values 39/42 = 0.929, 33/42 = 0.786 and 40.125/42 = 0.955 over [0, 4], and 45/48 = 0.938,
39.0/48 = 0.813 and 46.125/48 = 0.961 over [0, 8]. That means that the estimation bias in
WL,λ(t) in (1.2) is, respectively, 7.1%, 21.4%, and 4.5% over [0, 4], and 6.2%, 18.7% and
3.9% over [0, 8], as predicted above (by (4.6)).

For the quadratic arrival rate function, we can do a corresponding analysis. For the
M , H2, and E4 service time distributions, and the quadratic arrival rate function, we have
respectively, E[L̄(t)] = 56.173, 55.432, and 58.140 over [0, 4] and 62.840, 60.617, and 65.363
over [0, 8]. Since the average arrival rate λ̄(t) is 58.765 over [0, 4] and 66.173 over [0, 8], for the
three M , H2, and E4 service time distributions, the indirect estimator WL,λ(t) in (1.2) takes
the values 56.173/58.765 = 0.956, 55.432/58.765 = 0.943, and 58.140/58.765 = 0.989 over
[0, 4], 62.840/66.173 = 0.950, 60.617/66.173 = 0.916, and 65.363/66.173 = 0.988 over [0, 8].
That means that the estimation bias in WL,λ(t) in (1.2) is, respectively, 4.4%, 5.7%, and
1.1% over [0, 4], and 5.0%, 9.2%, and 1.2% over [0, 8]. The bias is approximately δ − ε/(1 −
2δ) × 100%, consistent with (7.6), especially for the M and E4 service time distributions.
We see for the IS model that the bias is less in the quadratic case than in the linear case.
We will see that tends to be true for the simulations below as well.

8.2.2. Constant Arrival Rate and Exponential Service Times For a constant arrival rate
function and exponential service times, we have the stationary M/M/s + M Erlang-A
model, so that we can calculate the steady-state performance measures. (We used the
algorithm described in [27], which also applies as an approximation to non-exponential
patience times.) Since the constant arrival rate is λ = 45 and E[S] = 1, the stationary
offered load is m = λE[S] = 45, so that the staffing level with QoS parameter β = 0, 1 and
2 is s = 45, 52 and 59. In these three cases of β, the mean waiting time (in system) is
1.043, 1.0077, and 1.0008; the variance of the waiting time is 0.923, 0.938, and 0.986; the
probability of delay is 0.602, 0.185, and 0.028; the probability of abandonment is 0.049,
0.0084, and 0.0008 and the mean number in system L is 47.21, 45.38, and 45.04. First, we
see that the mean waiting time differs little from the mean service time E[S] = 1, but the
variance is reduced (less than V ar(S) = 1), evidently because the abandonments produces
some short waiting times. The probability of abandonment is less than 0.01 for β ≥ 1, but
significant for β = 0. From [7,11], we anticipate that the performance in the Mt/M/st + M
model with the same service and abandonment distributions should be similar for these
same QoS parameters β. Thus, we can predict the performance in advance.

8.3. Simulation Results for M and E4 Service

In each case, we first fit constant, linear and quadratic arrival rate functions to the arrival
data using least squares methods, as in [21]. (The exact arrival rates are as in Section 8.1
and are treated as unknown.) For the target intervals [0, 4] and [0, 8], we used data from
the intervals [−4, 4] and [−8, 8], respectively. The estimates with 95% confidence intervals
are shown in Table 1.

In Table 1, the actual arrival process model is shown in the rows of the second column,
while the results for the different fitting methods are shown in the subsequent columns of
that row. Table 1 shows that fitting a more complex model to the arrival rate function (e.g.,
linear for constant) still produces pretty good results.
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Table 1. Fitting constant, linear and quadratic arrival rate functions over the intervals [−4, 4] and [−8, 8] to the arrival
data for each arrival process; estimates with associated 95% confidence intervals based on 100 replications

Constant Linear Quadratic

Int. Arrival λ̄(t) a b a b c

[−4, 4] Constant 45.2 ± 0.7 44.9 ± 0.5 0.099 ± 0.197 44.9 ± 0.7 0.099 ± 0.197 −0.013 ± 0.084
Linear 41.7 ± 0.6 35.8 ± 0.5 2.907 ± 0.162 35.4 ± 0.6 2.907 ± 0.162 0.069 ± 0.083
Quadratic 56.6 ± 0.7 52.1 ± 0.5 2.167 ± 0.212 52.8 ± 0.8 2.167 ± 0.212 −0.120 ± 0.112

[−8, 8] Constant 45.1 ± 0.5 45.0 ± 0.4 0.017 ± 0.058 44.7 ± 0.6 0.017 ± 0.058 0.011 ± 0.018
Linear 48.0 ± 0.5 35.9 ± 0.3 3.025 ± 0.064 35.6 ± 0.5 3.025 ± 0.064 0.016 ± 0.016
Quadratic 58.3 ± 0.6 49.5 ± 0.4 2.185 ± 0.071 53.1 ± 0.5 2.185 ± 0.071 −0.167 ± 0.015
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Figure 2. (Color online) Linear arrival rate and M service with QoS parameter β = 0
– average waiting time over periods of length 0.5 with associated 95% confidence interval
based on 100 replications.
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Figure 3. (Color online) Linear arrival rate and M service with QoS parameter β = 0
– average percent of arrivals abandoning over periods of length 0.5 with associated 95%
confidence interval based on 100 replications.

We next verified that the performance was indeed stabilized over the intervals [0, 4] and
[0, 8] in all cases. For each case, we plotted the time-dependent average waiting time, the
percentage of arrivals delayed, and the percentage of arrivals abandoning over the interval
[−12, 12], each estimated over intervals of length 0.5. We illustrate here with Figures 2–4
for the case of linear arrival rate and M service.

The story is clearest for the average waiting times in Figure 2. Since the waiting times
tend to differ little from the service times, the average waiting time tend to be stabilized
approximately from the beginning at time −12. However, estimates of the time-dependent
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Figure 4. (Color online) Linear arrival rate and M service – average percent of arrivals
delayed over periods of length 0.5 with associated 95% confidence interval based on 100
replications.
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Figure 5. (Color online) Linear arrival rate and E4 service – average percent of arrivals
delayed over periods of length 0.5 with associated 95% confidence interval based on 100
replications.

abandonment probability and probability of delay have more statistical error and require
some time to stabilize. It is reasonable to conclude that they are stabilized by time t = −8,
after 4E[We] ≈ 4E[S] = 4. Figure 5 shows the estimated time-dependent probability of delay
for E4 service, in which the less variability makes stabilization faster. Overall, we conclude
that, as expected, the performance is stabilized over [0, 4] and [0, 8] by the staffing method
we have used. Similar figures for all cases are given in Figures 2-55 of the appendix.

Table 2 shows the estimated waiting times by ten different methods for the linear arrival
rate function. The first estimator is the direct average W (t) in (1.1), which we could not
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Table 2. Waiting time estimates by ten different methods (described in the fourth paragraph of Section 8.3) with associated 95%
confidence intervals in the Mt/GI/st model with linear arrival rate function and the staffing set using the square root staffing formula in
(8.1) with the QoS parameter β

GI Int β W (t) W L,λ(t) W L,λ,r(t) W L,λ,r,γ(t) W L,λ,l(t) W L,λ,l,p(t) W L,λ,l,b(t) W L,λ,q(t) W L,λ,q,p(t) W L,λ,q,b(t)

M [0, 4] 0 1.038 ± 0.019 0.980 ± 0.020 1.047 ± 0.020 1.047 ± 0.020 1.058 ± 0.023 1.046 ± 0.022 1.046 ± 0.022 1.062 ± 0.021 1.046 ± 0.021 1.046 ± 0.021
1 1.002 ± 0.016 0.939 ± 0.015 1.005 ± 0.015 1.005 ± 0.015 1.011 ± 0.016 1.000 ± 0.016 1.011 ± 0.016 1.014 ± 0.015 1.000 ± 0.015 1.014 ± 0.015
2 0.996 ± 0.016 0.933 ± 0.014 1.000 ± 0.014 1.000 ± 0.014 1.003 ± 0.015 0.993 ± 0.015 1.003 ± 0.015 1.007 ± 0.013 0.993 ± 0.014 1.007 ± 0.013

[0, 8] 0 1.051 ± 0.013 0.983 ± 0.015 1.050 ± 0.015 1.050 ± 0.015 1.052 ± 0.017 1.044 ± 0.016 1.044 ± 0.016 1.054 ± 0.016 1.045 ± 0.016 1.045 ± 0.016
1 1.010 ± 0.010 0.944 ± 0.011 1.006 ± 0.011 1.006 ± 0.011 1.008 ± 0.012 1.001 ± 0.012 1.001 ± 0.012 1.009 ± 0.011 1.002 ± 0.011 1.009 ± 0.011
2 1.003 ± 0.009 0.938 ± 0.010 0.998 ± 0.010 0.998 ± 0.010 1.000 ± 0.011 0.993 ± 0.011 0.993 ± 0.011 1.002 ± 0.010 0.994 ± 0.010 1.002 ± 0.010

Avg 1.017 0.953 1.018 1.018 1.022 1.013 1.016 1.025 1.013 1.021

E4 [0, 4] 0 1.039 ± 0.009 0.997 ± 0.012 1.069 ± 0.010 1.042 ± 0.011 1.045 ± 0.013 1.040 ± 0.013 1.040 ± 0.013 1.048 ± 0.012 1.041 ± 0.012 1.048 ± 0.012
1 1.010 ± 0.008 0.963 ± 0.010 1.039 ± 0.008 1.011 ± 0.008 1.008 ± 0.010 1.004 ± 0.010 1.008 ± 0.010 1.012 ± 0.009 1.005 ± 0.009 1.012 ± 0.009
2 1.005 ± 0.007 0.959 ± 0.009 1.033 ± 0.008 1.005 ± 0.008 1.003 ± 0.010 0.998 ± 0.010 1.003 ± 0.010 1.006 ± 0.008 1.000 ± 0.009 1.006 ± 0.008

[0, 8] 0 1.048 ± 0.008 1.001 ± 0.008 1.070 ± 0.008 1.044 ± 0.008 1.043 ± 0.010 1.040 ± 0.009 1.040 ± 0.009 1.044 ± 0.009 1.041 ± 0.008 1.041 ± 0.008
1 1.011 ± 0.005 0.967 ± 0.005 1.033 ± 0.006 1.008 ± 0.005 1.006 ± 0.006 1.003 ± 0.005 1.003 ± 0.005 1.007 ± 0.006 1.005 ± 0.005 1.005 ± 0.005
2 1.004 ± 0.005 0.960 ± 0.005 1.026 ± 0.005 1.001 ± 0.005 0.999 ± 0.005 0.997 ± 0.005 0.997 ± 0.005 1.000 ± 0.005 0.998 ± 0.005 0.998 ± 0.005

Avg 1.020 0.974 1.045 1.018 1.017 1.014 1.015 1.020 1.015 1.018

Results are based on 100 replications of the model over the intervals [0, 4] and [0, 8].
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Table 3. Absolute difference of the waiting time estimates by ten different methods
from the direct estimate W (t) averaged over varying QoS parameter β = 0, 1, and 2
and two estimate intervals [0, 4] and [0, 8]

Arrival GI WL,λ(t) (r) (r, γ) (l) (l, p) (l, b) (q) (q, p) (q, b)

Constant M 0.4 0.2 0.2 0.4 0.4 0.4 0.3 0.3 0.2
E4 0.4 0.1 0.1 0.4 0.4 0.4 0.4 0.2 0.2

Linear M 6.4 0.4 0.4 0.7 0.7 0.8 0.8 0.6 0.6
E4 4.5 2.5 0.2 0.4 0.6 0.5 0.4 0.5 0.5

Quadratic M 3.5 0.4 0.4 0.8 0.7 0.7 0.5 0.9 0.9
E4 0.8 0.9 0.1 0.8 0.6 0.6 0.2 0.3 0.4

(·) refers to W L,λ,(·)(t). Results are in units of 10−2. Details in Tables 9–11 of the appendix.

use if the waiting times were not actually observed. The second is the indirect estimator
WL,λ(t) in (1.2) based on LL, whose bias we want to reduce. Then we give the estimators
WL,λ,r(t) in (1.4) from [12] and its extension WL,λ,r,γ(t) in (6.3), which are based on the
sample path relation in (1.3). Next is the estimator WL,λ,l(t) from Section 4 based on the
fitted linear arrival rate function, its perturbation refinement WL,λ,l,p(t) from Section 5 and
the estimated best of these two, WL,λ,l,b(t), chosen as the one with the smaller confidence
interval. Finally there are the corresponding three estimators from Section 7 based on the
fitted quadratic arrival rate function.

First, consistent with the very low probabilities of abandonment and delay for β = 1
and 2, we see that E[W ] is very close to E[S] = 1 in those cases, but is 3–5% higher for
the QoS parameter β = 0. Second, the bias is evident in the indirect estimator WL,λ(t); the
confidence intervals are approximately the same as the others, but the correct values are
not inside these confidence intervals. The same is true for the estimator WL,λ,r(t) for the
non-exponential E4 distribution, as expected from Section 6. All other estimators produce
estimates and confidence intervals much like the direct estimator W (t) itself. Very roughly,
the confidence interval halfwidth is approximately

√
γ2

W % for [0, 8] and
√

2γ2
W % for [0, 4].

We estimate the bias reduction achieved by our estimators by computing the absolute
difference between (i) the average of the estimate of interest over the 100 replications and (ii)
the average of the direct estimate W (t) over the same 100 replications. Table 3 summarizes
these results for all cases; see Tables 9–11 in the appendix for details. Since the mean waiting
time is approximately 1 in each case, these also are approximately percentage errors.

As expected, Table 3 shows that there is very little bias in WL,λ(t) for the constant
arrival rate case. In contrast, Table 3 shows that there is substantial bias for the linear and
quadratic cases, agreeing closely with the values predicted by the IS results in Section 8.2.
Moreover, the refined estimators do succeed in significantly reducing that bias. Indeed, the
estimated bias is less than 1%, the confidence interval halfwidth for the direct estimator
W (t), in all cases by all methods.

Overall, as illustrated by Table 3, we find that the quadratic methods are less reliable
and contribute relatively little improvement over the linear approximation even to non-
linear arrival rate functions. Also, we find that the best estimator is WL,λ,r,γ(t) in (6.3).
However, the three estimators based on the linear approximation are also consistently good.
By Theorem 6.1, we know that the advantage of WL,λ,r,γ(t) over WL,λ,l,p(t) is due to
knowing R(0) − L(t) rather than estimating it.

8.4. Simulation Results for H2 Service

In this section, we consider H2 service times, in order to illustrate difficult cases caused by
higher variability. Figures 6 and 7 show that the performance is approximately stabilized
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Figure 6. (Color online) Linear arrival rate and H2 service with QoS parameter β = 0
– average waiting time over periods of length 0.5 with associated 95% confidence interval
based on 100 replications.
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Figure 7. (Color online) Linear arrival rate and H2 service – average percent of arrivals
delayed over periods of length 0.5 with associated 95% confidence interval based on 100
replications.

over the intervals [0, 4] and [0, 8] for the H2 case as well. However, the greater variability
makes stabilization slower and statistical estimation less precise for the same amount of
data; for example, compare to Figures 2 and 4 for M service times.

Table 4 shows the estimated waiting times by ten different methods for the linear arrival
rate function with H2 service times. We first did 100 replications, just as in Section 8.3.
As expected from Section 8.2, the bias in the indirect estimator WL,λ(t) is much greater
now than in Table 2. Second, we see that the halfwidths of the confidence intervals are
larger, as expected because of the greater variability. As before, the estimates and the
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Table 4. Waiting time estimates by 10 different methods (described in the fourth paragraph of Section 8.3) with associated 95% confidence
intervals in the Mt/H2/st model with linear arrival rate function and the staffing set using the square root staffing formula in (8.1) with
the QoS parameter β

N Int β W (t) W L,λ(t) W L,λ,r(t) W L,λ,r,γ(t) W L,λ,l(t) W L,λ,l,p(t) W L,λ,l,b(t) W L,λ,q(t) W L,λ,q,p(t) W L,λ,q,b(t)

100 [0, 4] 0 1.041 ± 0.035 0.854 ± 0.026 0.909 ± 0.029 1.017 ± 0.043 1.157 ± 0.061 1.007 ± 0.036 1.007 ± 0.036 0.348 ± 1.511 1.230 ± 0.568 1.230 ± 0.568
1 1.006 ± 0.035 0.811 ± 0.020 0.868 ± 0.021 0.981 ± 0.033 1.058 ± 0.041 0.948 ± 0.027 0.948 ± 0.027 0.567 ± 1.488 −11.3 ± 24.2 0.567 ± 1.488
2 0.998 ± 0.035 0.802 ± 0.017 0.858 ± 0.018 0.971 ± 0.028 1.043 ± 0.038 0.935 ± 0.021 0.935 ± 0.021 0.520 ± 1.490 1.444 ± 1.305 1.444 ± 1.305

[0, 8] 0 1.063 ± 0.027 0.873 ± 0.019 0.931 ± 0.022 1.048 ± 0.029 1.116 ± 0.040 1.018 ± 0.026 1.018 ± 0.026 0.852 ± 0.244 1.009 ± 0.026 1.009 ± 0.026
1 1.021 ± 0.026 0.831 ± 0.014 0.884 ± 0.015 0.991 ± 0.021 1.038 ± 0.027 0.962 ± 0.019 0.962 ± 0.019 0.853 ± 0.202 0.954 ± 0.019 0.954 ± 0.019
2 1.013 ± 0.025 0.822 ± 0.012 0.874 ± 0.013 0.980 ± 0.018 1.020 ± 0.021 0.949 ± 0.015 0.949 ± 0.015 0.970 ± 0.095 0.942 ± 0.015 0.942 ± 0.015

Avg 1.024 0.832 0.887 0.998 1.072 0.970 0.970 0.685 −0.959 1.024

1000 [0, 4] 0 1.052 ± 0.012 0.863 ± 0.008 0.915 ± 0.009 1.018 ± 0.013 1.177 ± 0.018 1.019 ± 0.011 1.019 ± 0.011 −0.65 ± 0.23 0.969 ± 0.219 0.969 ± 0.219
1 1.008 ± 0.011 0.815 ± 0.006 0.868 ± 0.006 0.974 ± 0.010 1.070 ± 0.013 0.952 ± 0.007 0.952 ± 0.007 −0.47 ± 0.18 0.366 ± 0.888 −0.47 ± 0.18
2 0.999 ± 0.011 0.806 ± 0.005 0.859 ± 0.006 0.965 ± 0.009 1.051 ± 0.011 0.941 ± 0.006 0.941 ± 0.006 −0.40 ± 0.17 0.852 ± 0.048 0.852 ± 0.048

[0, 8] 0 1.058 ± 0.009 0.885 ± 0.007 0.940 ± 0.008 1.051 ± 0.011 1.135 ± 0.014 1.033 ± 0.010 1.033 ± 0.010 0.695 ± 0.106 1.029 ± 0.010 1.029 ± 0.010
1 1.009 ± 0.008 0.835 ± 0.005 0.885 ± 0.005 0.986 ± 0.007 1.039 ± 0.008 0.966 ± 0.006 0.966 ± 0.006 0.942 ± 0.049 0.962 ± 0.007 0.962 ± 0.007
2 0.999 ± 0.007 0.825 ± 0.004 0.875 ± 0.005 0.974 ± 0.006 1.022 ± 0.007 0.953 ± 0.005 0.953 ± 0.005 1.005 ± 0.022 0.949 ± 0.006 0.949 ± 0.006

Avg 1.021 0.838 0.890 0.995 1.082 0.977 0.977 0.188 0.855 0.715

Results are based on N = 100 and 1,000 replications of the model over the intervals [0, 4] and [0, 8].
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Figure 8. (Color online) Linear arrival rate and H2 service with QoS parameter β = 1 –
Histogram of WL,λ,q,p(t) on [0, 4] from 100 replications; counts at −0.5 (2.5) indicate the
number of estimates that are less (greater) than −0.5 (−2.5).

confidence intervals for the estimators WL,λ(t) and WL,λ,r(t) show bias. The other estimates
and confidence intervals are close to those for the direct estimator W (t), except now poor
performance is seen for the quadratic approximation. Fortunately, the confidence intervals
remain quite accurate. When there is poor performance, it is revealed by the large confidence
intervals. We see that some of the problem is caused by dividing by small numbers; there is
clear improvement in going from WL,λ,q(t) to WL,λ,q,p(t) in all cases except for β = 1 over
[0, 4]. However, for the interval [0, 4], the performance of both methods remains weak.

We anticipated that the poor performance was caused by the greater variability. To
better understand, we investigated further. As an initial step, we performed 1,000 replica-
tions instead of 100. However, this does not help. (More results for H2 service with 1,000
replications can be found in Section 2.5 of the appendix). The results in Table 4 for 1,000
replications show that the poor performance is not due to the small sample size. The poor
cases remain bad.

Since we know that much of the problem with WL,λ,q(t) is caused by dividing by small
numbers, we focus on understanding the result of WL,λ,q,p(t) on [0, 4] better. Figure 8 shows
the histogram of WL,λ,q,p(t) from the 100 replications for β = 1 and [0, 4]. It turns out that
it has five outlier estimate values (WL,λ,q,p(t) less than 0 or greater than 2) that badly
influence the average and confidence interval; the estimates for these outlier cases were:
−1234.700, −0.838, −0.122, 2.320, and 18.218. We observe that in all these cases, either
L(0) is too low or L(t) is too high, making corrections to the estimators invalid. For instance,
Figure 9 shows the sample path of the case with WL,λ,q,p(t) = −1234.700. In this sample
path, the H2 random service times have unusually large values: we observe 191 arrivals in
the interval [0, 4], and their average service times is 1.8 with maximum value of 35.5, and
10 arrivals whose service time is greater than 10.

We observe similar patterns in other cases. For the cases with β = 0 and β = 2, we used
the same arrival process and service times for different values of β and observe that the six
outlier cases when β = 0 and four outlier cases when β = 2 are caused by the same set of
sample paths that caused problems for the β = 1 case. By getting rid of these (at most six)
outlier values, we get WL,λ,q,p′(t) = 0.902 ± 0.066 for β = 0, WL,λ,q,p′(t) = 0.863 ± 0.049
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Figure 9. (Color online) Linear arrival rate and H2 service with QoS parameter
β = 1 − L(t) of a sample path (dashed line) with an extreme value of WL,λ,q,p(t) on [0, 4].
Average L(t) with associated 95% confidence interval based on 100 replications are also
shown.

Table 5. Absolute difference of the waiting time estimates by ten different methods from
the direct estimate W (t), averaged over varying QoS parameter β = 0, 1, and 2 and two
estimate intervals [0, 4] and [0, 8]

N Arrival WL,λ(t) (r) (r, γ) (l) (l, p) (l, b) (q) (q, p) (q, b) (q, p′)

100 Constant 4.3 3.0 1.0 3.6 4.2 4.2 40.7 7.1 7.1 7.1
Linear 19.1 13.6 2.6 4.8 5.4 5.4 33.9 219.4 21.1 10.1
Quadratic 15.0 11.8 5.5 3.0 6.0 6.0 73.4 6.5 6.5 5.7

1,000 Constant 2.8 2.3 1.4 2.6 3.1 3.0 40.4 6.4 20.5 6.2
Linear 18.3 13.0 2.6 6.2 4.3 4.3 83.5 16.6 30.5 7.3
Quadratic 13.0 10.0 3.9 1.8 3.8 3.8 86.2 3.4 3.4 3.1

Estimates are based on N = 100 and 1,000 replications of the model over the intervals [0, 4] and [0, 8]. (·) refers

to W L,λ,(·)(t) and results under (q, p′) are computed using the new waiting time estimate after removing extreme

values of WL,λ,q,p(t). Results are in units of 10−2. More details in Sections 2.3–2.5 of the appendix.

for β = 1, and WL,λ,q,p′(t) = 0.866 ± 0.050 for β = 2, whose confidence intervals are now
much smaller. For more detailed discussion on this, see Section 2.4 of the appendix.

Table 5 shows the bias reduction achieved by our estimators. Similar to Table 3, since the
mean waiting time is approximately 1 in each case, these also are approximately percentage
errors. The results are less spectacular compared to the M and E4 service in Table 3, but
still quite good considering that the halfwidth of confidence intervals for the direct estimator
W (t) are 2–4% for H2. From that perspective, all but the quadratic methods are consistently
good, yielding bias estimates less than 6%. Also, note that if we remove the (at most six)
outlier cases for the linear arrival rate case, the absolute difference of the estimates reduces
dramatically. For instance, the value 219.4 for linear arrival under (q, p) in Table 5 becomes
10.1, as shown under (q, p)′. These results suggest that in order to improve the performance
of quadratic estimators for H2 service time, one can increase the number of sample size,
but it is more effective if one can detect and remove the outlier values of WL,λ,q,p(t).
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Table 6. Absolute difference of the waiting time estimates from the direct
estimate W (t), averaged over varying QoS parameter β = 0, 1, and 2 and two
estimate intervals [0, 4] and [0, 8]

E[S] WL,λ(t) (r) (tvll) (l) (l, p) (l, b) (q) (q, p) (q, b)

1 6.4 0.4 0.7 0.7 0.7 0.8 0.8 0.6 0.6
4 106.1 29.1 5.3 4.3 50.0 50.0 151.4 69.4 69.4

Estimates are based on 100 replications of the model. (·) refers to W L,λ,(·)(t). Results are in

units of 10−2. More details in Section 2.6 of the appendix.

Table 7. Fitting constant, linear and quadratic arrival rate functions over the intervals
[−4, 4] and [−8, 8] to the linear decreasing arrival rate function; estimates with associated
95% confidence intervals over 100 replications

Constant Linear Quadratic

Int. λ̄(t) a b a b c

[−4, 4] 42.6 ± 0.6 48.4 ± 0.5 −2.877 ± 0.187 48.6 ± 0.8 −2.877 ± 0.187 −0.026 ± 0.100

[−8, 8] 36.1 ± 0.4 48.2 ± 0.4 −3.018 ± 0.068 48.4 ± 0.5 −3.018 ± 0.068 −0.009 ± 0.018

8.5. Longer Service Times

Formulas (4.6) and (4.9) show that the bias in WL,λ(t) should be proportional to E[W ].
Thus there should be more bias in WL,λ(t) and we should achieve more bias reduction
with longer service times. We illustrate that now by assuming that E[S] = 4 instead of 1.
However, for these longer service times, the linear and quadratic approximations become
less appropriate. Hence, we now use Theorem 3.1 with the exact arrival rate function, which
is 0 before t = −12, as well as the other methods to do the estimation. We consider the
previous case of the linear arrival rate function with exponential service. Since the system
starts empty at time −12, the linear approximation is valid three mean service times in the
past, and so should still be reasonable.

Table 6 presents a summary of the results; see Section 2.6 of the appendix for more.
First, for the previous case E[S] = 1, the results using Theorem 3.1 coincide with the results
for the linear approximation in the precision we use, so in that case it does indeed suffice
to consider the linear approximation, as claimed before. However, when E[S] = 4, Table 6
shows that the bias in WL,λ(t) is 106.1/4.00 ≈ 26.5%, consistent with formulas (4.6) and
(7.6). Moreover, that bias is reduced to just over 1%, and thus essentially removed, by an
application of the estimator W tvll(t) based on Theorem 3.1. The larger bias in WL,λ(t) make
all approximation methods that use it less accurate, including WLλ,r(t). The estimators
W tvll(t) and WLλ,l(t) based on the TVLL are clearly superior to all other methods in this
case.

8.6. Decreasing Staffing

In this section, we consider a minor modification of the previous linear arrival rate function,
with time reversed. Specifically, the arrival rate function is λ(t) = 48 − 3t over [0, 4] and [0,
8]. Otherwise the experimental design is just as in Section 8.1. Table 7 gives the estimated
parameters for the linear decreasing arrival rate function over 100 replications.

As indicated in Section 1, if a server is scheduled to depart when all servers are busy,
then in our simulations we let that server depart immediately and force the customer with

https://doi.org/10.1017/S0269964813000223 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964813000223


496 S.-H. Kim and W. Whitt

the least remaining service time to complete service at that time. In fact, we assume that the
server scheduled to leave would actually depart only after that minimum remaining service
time has elapsed. At that time, the server completing service can take over the service of
the departing server’s customer, because service switching is allowed.

To study this effect, Table 8 shows the number of staffing decreases (#dec), the number
of departures (#dep), the number of violation (#v) and the percentage of departures that
are violations (%v) in each case. From Table 8 we see that we could estimate the number of
violations in advance, before doing the simulation, by #dec × P (W > 0); see Section 2.7 of
the appendix for more discussion. Table 9 shows other key performance estimates, including
the total early termination time (TETT ), which can be divided by the number of arrivals
to estimate the addition to the mean waiting time. We show that, for M and E4 service,
the average waiting time is consistently increased by about 0.1% for β = 0 and much less
for β = 1 and 2. For H2 service, the average waiting time is consistently increased by about
1.0% or less, which is still negligible. The H2 case is relatively more problematic, because
the remaining waiting times tend to be much longer than E[W ] ≈ E[S] = 1, usually having
mean close to the larger of the two exponential means. Nevertheless, this effect is still
relatively small.

8.7. A Sinusoidal Arrival Rate Function

In order to illustrate how the estimation procedures should apply for a realistic arrival
rate function arising in applications, which will not be exactly linear or quadratic, we now
consider a sinusoidal arrival rate function, as is often done when studying staffing with
time-varying arrival rates; for example, see [7]. Specifically, we now consider the arrival rate
function λ(t) = 40 + 25 sin(t/2) over the intervals [0, 4] and [0, 8], starting empty at time
−36. As before, let the mean service time be E[S] = 1. We consider the cases of M and H2

service, using the same distributions as before.
Assuming that the system starts empty in the infinite past, as in (3.3), exact expressions

for the offered load with M and H2 service, respectively, are m(t) = 40 + 20(sin(t/2) −
(1/2) cos(t/2)) and m(t) = 40 + 25(0.5242 sin(t/2) − 0.2897 cos(t/2)) by (15) and (29) of
[4], after correcting an error in (29); see the short appendix here. We consider the same
three levels of staffing according to (8.1) with QoS parameter β = 0, 1 and 2. For M and
H2 service, the arrival rate, offered load and staffing with β = 1 are shown in Figures 10
and 11. These figures show that there is no staffing decrease in the interval [0, 4], but there
is in the interval [4, 8], so that we also study the effect of server release over [0, 8] when all
servers are busy. As shown in Section 2.8 of the appendix, the impact is negligible.

Figures 10 and 11 show that a linear quadratic approximation to the arrival rate function
should be appropriate over the interval [0, 4], but not over [0, 8]. However, a quadratic
approximation to the arrival rate function should be appropriate over both intervals [0, 4]
and [0, 8]. The experiment involves the same methods as before, after fitting linear and
quadratic functions to simulation data for the arrival process. For the target intervals [0, 4]
and [0, 8], we base the estimation on data from the intervals [−2, 4] and [−2, 8]. We then
simulate the systems over the interval [−36, 12], starting empty at time −36. Table 10 shows
the performance of the alternative estimators.

As expected, all the refined estimators perform very well for M service over [0, 4],
while all but the linear estimators do over [0, 8]. Evidently, the extra time lag for H2 ser-
vice prevents the linear and quadratic approximations for the arrival rate perform well,
so that the refined estimators do not perform nearly as well for H2. The estimators
WL,λ,r,γ(t) and WL,λ,l(t) clearly help, especially over [0, 4], but the quadratic estimators fail
completely.
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Table 8. Early service termination in the nine different models Mt/GI/st with linear decreasing arrival rate and the staffing set using
the square root staffing formula in (8.1) with the QoS parameter β

Int. [0, 4] [0, 8]

GI β #dec Pr(Delay) E[#v] #dep #v %v #dec Pr(Delay) E[#v] #dep #v %v

M 0 12 0.68 ± 0.06 8.18 ± 0.69 180.7 ± 2.7 7.97 ± 0.68 4.36 ± 0.36 24 0.67 ± 0.04 16.09 ± 1.06 314.3 ± 3.7 15.61 ± 1.02 4.93 ± 0.30
1 13 0.25 ± 0.05 3.19 ± 0.63 182.0 ± 2.8 3.00 ± 0.64 1.59 ± 0.34 26 0.23 ± 0.04 5.89 ± 0.93 313.4 ± 3.6 5.25 ± 0.90 1.63 ± 0.27
2 14 0.05 ± 0.02 0.69 ± 0.24 182.5 ± 2.9 0.64 ± 0.26 0.33 ± 0.14 28 0.04 ± 0.01 1.11 ± 0.34 313.3 ± 3.6 0.96 ± 0.32 0.29 ± 0.10

H2 0 12 0.37 ± 0.06 4.43 ± 0.74 177.6 ± 2.5 4.14 ± 0.73 2.30 ± 0.40 24 0.41 ± 0.05 9.83 ± 1.30 307.8 ± 3.5 9.42 ± 1.30 3.04 ± 0.41
1 13 0.07 ± 0.02 0.88 ± 0.31 179.2 ± 2.6 0.83 ± 0.31 0.46 ± 0.17 26 0.09 ± 0.03 2.29 ± 0.71 308.6 ± 3.4 2.23 ± 0.77 0.72 ± 0.25
2 14 0.01 ± 0.00 0.08 ± 0.06 179.5 ± 2.6 0.07 ± 0.06 0.04 ± 0.03 28 0.01 ± 0.01 0.27 ± 0.19 308.8 ± 3.4 0.29 ± 0.25 0.09 ± 0.08

E4 0 12 0.67 ± 0.06 8.04 ± 0.67 181.0 ± 2.2 7.95 ± 0.67 4.33 ± 0.34 24 0.66 ± 0.04 15.86 ± 1.06 314.2 ± 3.4 15.24 ± 1.08 4.78 ± 0.31
1 12 0.20 ± 0.04 2.45 ± 0.50 182.2 ± 2.5 2.35 ± 0.52 1.23 ± 0.26 26 0.19 ± 0.03 4.89 ± 0.81 313.2 ± 3.5 4.33 ± 0.74 1.34 ± 0.22
2 13 0.04 ± 0.02 0.56 ± 0.21 182.5 ± 2.6 0.53 ± 0.22 0.28 ± 0.11 27 0.03 ± 0.01 0.93 ± 0.30 313.1 ± 3.5 0.71 ± 0.26 0.22 ± 0.08

Results are based on 100 replications of the model over the intervals [0, 4] and [0, 8]; #dec indicates the number of staffing decreases, #dep indicates the number of
departures and v means violations.
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Table 9. Performance of the 9 different models Mt/GI/st with linear decreasing arrival rate and the staffing set using the square root
staffing formula in (8.1) with the QoS parameter β, averaged over periods of length 0.5

Int. [0, 4] [0, 8]

GI β E[W ] %Delayed %Aban. %EarlyTer. TETT E[W ] %Delayed %Aban. %EarlyTer. TETT

M 0 1.12 ± 0.02 67.7 ± 5.7 4.15 ± 0.78 4.85 ± 0.42 0.20 ± 0.02 1.11 ± 0.02 65.4 ± 4.4 4.97 ± 0.74 5.35 ± 0.34 0.45 ± 0.04
1 1.04 ± 0.02 23.7 ± 4.7 0.61 ± 0.21 1.61 ± 0.32 0.06 ± 0.02 1.03 ± 0.01 21.0 ± 3.4 0.66 ± 0.19 1.68 ± 0.27 0.12 ± 0.02
2 1.02 ± 0.02 4.6 ± 1.6 0.04 ± 0.03 0.35 ± 0.14 0.01 ± 0.01 1.02 ± 0.01 3.4 ± 1.1 0.04 ± 0.03 0.32 ± 0.10 0.02 ± 0.01

H2 0 1.05 ± 0.04 36.3 ± 6.2 1.93 ± 0.66 3.44 ± 0.49 2.09 ± 0.76 1.04 ± 0.03 41.0 ± 5.5 3.62 ± 1.02 4.13 ± 0.50 4.38 ± 1.25
1 1.01 ± 0.04 6.5 ± 2.3 0.13 ± 0.09 0.91 ± 0.26 1.70 ± 0.66 1.00 ± 0.03 8.8 ± 2.9 0.52 ± 0.35 1.25 ± 0.29 3.80 ± 1.18
2 1.01 ± 0.04 0.5 ± 0.4 0.01 ± 0.01 0.37 ± 0.12 1.51 ± 0.62 0.99 ± 0.03 1.0 ± 0.8 0.04 ± 0.06 0.54 ± 0.14 3.37 ± 1.12

E4 0 1.10 ± 0.02 66.6 ± 5.6 3.05 ± 0.63 4.76 ± 0.38 0.20 ± 0.02 1.08 ± 0.01 64.3 ± 4.4 3.84 ± 0.62 5.17 ± 0.32 0.43 ± 0.04
1 1.02 ± 0.01 19.5 ± 4.1 0.37 ± 0.14 1.39 ± 0.30 0.05 ± 0.01 1.01 ± 0.01 17.1 ± 2.8 0.39 ± 0.11 1.42 ± 0.22 0.10 ± 0.02
2 1.01 ± 0.01 4.0 ± 1.5 0.04 ± 0.03 0.28 ± 0.12 0.01 ± 0.00 1.00 ± 0.01 2.9 ± 0.9 0.04 ± 0.03 0.23 ± 0.08 0.01 ± 0.00

Results are based on 100 replications of the model over the intervals [0, 4] and [0, 8]; TETT is the total early termination time.
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Figure 10. (Color online) The sinusoidal arrival rate, offered load and staffing for M
service according to (8.1) with QoS parameter β = 1.
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Figure 11. (Color online) The sinusoidal arrival rate, offered load and staffing for H2

service according to (8.1) with QoS parameter β = 1.

9. COMPARISONS OF ESTIMATORS USING CALL CENTER DATA

We now compare the performance of the different estimators of the mean waiting time
using the same call center data as in [12,13]. The data are for one class of customers from
an American bank on 18 weekdays in May 2001. As in Section 8, we have data for waiting
times as well as arrivals and the number in the system, so that we can compare all the
estimators for E[W ] based on L̄(t) and the estimated arrival rate to the direct sample mean
W (t) in (1.1).

It is natural to start by computing and plotting the finite averages λ̄(t) and WL,λ(t) in
(1.1) and (1.2), as shown in Figures 12 and 13 below for the day May 7. From such plots
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Table 10. Absolute difference of the waiting time estimates from the direct estimate W (t) for varying QoS parameter β = 0, 1 and 2
and averages over them in the Mt/H2/st model with sinusoidal arrival rate function and the staffing set using the square root staffing
formula in (8.1) with the QoS parameter β

GI Int β WL,λ(t) WL,λ,r(t) WL,λ,r,γ(t) WL,λ,l(t) WL,λ,l,p(t) WL,λ,l,b(t) WL,λ,q(t) WL,λ,q,p(t) WL,λ,q,b(t) WL,λ,q,p′(t)

M [0, 4] 0 14.0 1.8 1.8 5.8 2.1 2.1 4.1 2.1 2.1 2.1
1 14.1 2.1 2.1 4.9 2.6 2.6 3.0 2.7 2.7 2.7
2 14.1 2.1 2.1 4.6 2.7 2.7 2.6 2.8 2.8 2.8

Avg 14.1 2.0 2.0 5.1 2.4 2.4 3.2 2.5 2.5 2.5

[0, 8] 0 0.3 0.1 0.1 9.6 0.7 0.7 1.1 0.2 0.2 0.2
1 0.5 0.1 0.1 9.3 0.5 0.5 0.7 0.5 0.5 0.5
2 0.5 0.1 0.1 9.2 0.5 0.5 0.7 0.5 0.5 0.5

Avg 0.4 0.1 0.1 9.3 0.6 0.6 0.8 0.4 0.4 0.4

H2 [0, 4] 0 20.4 12.2 4.0 6.9 11.7 6.9 263.2 100.2 100.2 44.7
1 20.5 12.9 2.2 10.1 8.8 8.8 260.2 91.0 91.0 47.8
2 20.6 13.0 2.0 10.5 8.4 8.4 259.7 93.1 93.1 50.6

Avg 20.5 12.7 2.8 9.2 9.6 8.1 261.0 94.7 94.7 47.7

[0, 8] 0 6.8 6.5 6.0 5.1 4.1 4.1 219.8 49.2 219.8 44.1
1 7.1 6.6 5.6 4.3 4.6 4.6 216.5 43.3 216.5 43.3
2 7.1 6.5 5.4 4.3 4.5 4.5 215.9 42.6 215.9 42.6

Avg 7.0 6.6 5.7 4.6 4.4 4.4 217.4 45.0 217.4 43.3

Two estimate intervals are [0, 4] and [0, 8]. Estimates are based on 100 replications of the model. (·) refers to W L,λ,(·)(t). W L,λ,q,p′ (t) is the new waiting time estimate

after removing the outliers (WL,λ,q,p(t) < 0 or WL,λ,q,p(t) > 2). Results are in units of 10−2. More details in Section 2.8 of the appendix.
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Figure 12. (Color online) Arrival rate and its approximations by constant, linear and
quadratic functions fitted to 5 intervals, [7, 10], [10, 13], [13, 16], [16, 18], and [18, 22], on
May 7.

we can evaluate when Assumption 3.1 is approximately valid and when the arrival rate is
approximately constant, linear or quadratic.

First, Figure 12 shows that the arrival rate is increasing in [7, 10], approximately sta-
tionary in [10, 13] and [13, 16], decreasing in [16, 18] and again decreasing in [18, 22] but
with less steep slope. Hence, we divide each day into five intervals, [7, 10], [10, 13], [13, 16],
[16, 18], and [18, 22]. Figure 12 also shows the fit to constant, linear, and quadratic func-
tions in each interval. Second, Figure 13 shows, in addition to a scatter plot of the waiting
times, (i) the direct estimator W (t) in (1.1), (ii) the indirect estimator WL,λ(t) in (1.2)
and (iii) the refined estimator WL,λ,p(t) from Section 5. Thus, we see that Assumption 3.1
tends to be good for the actual waiting times, that it is revealed by our indirect estimator
WL,λ(t), and that the bias and bias reduction are not great, as predicted by formulas (4.6)
and (4.9).

Figures 3, 5, and 6 of [12] show that the waiting times are relatively stationary over the
day, unlike the arrival rate and the number in the system. Nevertheless, the waiting times
do fluctuate over time substantially for some days, especially outside of normal business
hours ([9, 17], that is, nine to five). Possible reasons are inappropriate time-varying staffing
and the lower call volumes outside of normal business hours. Hence, among the 18 days,
we picked three days for which Assumption 3.1 holds approximately holds up to 6 pm. The
three days are May 7, 18, and 21. Figure 13 shows the results for May 7; see Section 3 of
the appendix for the others.

The estimated values of c2
W and E[W 3]/E[W ]3 for the three days were compared to the

exponential values 1 and 6. With rare exceptions, the estimates of c2
W consistently fell in

the interval [0.90, 1.10], while the estimates of E[W 3]/E[W ]3 tended to fall in the interval
[5.5, 8.5], with average about 7.0, which is somewhat higher that 6.0. Hence, Assumption 3.2
is approximately valid too for G exponential.

Tables 11 and 12 show the average absolute errors of the different estimators. for the
selected 3 days and all 18 days. As expected, there is more bias and bias reduction at the
ends of the day when the system is non-stationary, and the bias is reduced by the refined
estimators.
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Figure 13. (Color online) Scatter plot of the waiting times and its hourly averages, the
direct estimator W (t) in (1.1), the indirect estimator WL,λ(t) in (1.2) and the refined
estimator WL,λ,p(t) from Section 5 of each hour in [7, 22] on May 7.

Table 11. Comparison of the different estimators using call center data: Average
absolute error of the estimates for each time interval over 3 days ((·) refers to
WL,λ,(·)(t)), in units of 10−2. More details in Section 3.2 of the appendix.

Int. WL,λ(t) (r) (l) (l, p) (q) (q, p)

[7, 10] 3.77 0.76 4.69 0.81 110.96 5.54
[10, 13] 0.25 0.19 0.56 0.56 58.88 0.70
[13, 16] 0.50 0.55 0.54 0.54 108.87 0.87
[16, 18] 3.30 0.44 0.64 0.66 101.88 2.42
[18, 23] 1.44 0.78 1.26 1.07 91.09 1.22

Table 12. Comparison of the different estimators using call center data: Average
absolute error of the estimates for each time interval over 18 days ((·) refers to
WL,λ,(·)(t)), in units of 10−2. More details in Section 3.3 of the appendix.

Int. WL,λ(t) (r) (l) (l, p) (q) (q, p)

[7, 10] 3.28 0.57 2.01 0.89 165.03 4.99
[10, 13] 0.87 0.34 0.82 0.82 749.41 2.19
[13, 16] 0.58 0.51 0.57 0.57 96.30 1.10
[16, 18] 3.14 0.78 1.50 1.68 756.52 4.85
[18, 23] 1.23 1.05 1.56 1.59 93.62 1.08
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10. CONCLUSIONS

When waiting times cannot be observed directly, Little’s law can be applied to estimate the
average waiting time by the average number in system divided by the average arrival rate.
However, for estimation based on data over a finite time interval [0, t], that simple indirect
estimator WL,λ(t) ≡ L̄(t)/λ̄(t) in (1.1) and (1.2) tends to be biased significantly when the
arrival rates are time-varying and the service times are relatively long, as we have shown in
examples here, see especially Section 8.5.

In this paper we have shown how the time-varying LL (TVLL, in Theorem 2.1) can be
used to estimate the bias in WL,λ(t) and produce refined estimators that reduce that bias
under Assumptions 3.1 and 3.2, stipulating that the waiting time distribution is not time-
varying and is specified except for its mean. Theorem 3.1 shows that the TVLL uniquely
characterizes the mean waiting time under those assumptions and thus produces a well
defined estimator for the expected wait E[W ] given an estimate of L̄(t) and the arrival rate
function over the subinterval. When E[W ] is relatively large, the estimator W tvll(t) based
on Theorem 3.1 can perform much better than all other methods, as shown for the case
E[S] = 4 in Table 6 in Section 8.5.

The TVLL estimator W tvll(t) based on Theorem 3.1 in Section 3 is somewhat compli-
cated, requiring numerical integration, search and an estimation of the arrival rate function.
However, we show that convenient modifications of the TVLL estimator can be developed
if we fit a linear or quadratic function to the arrival rate data. We have shown that the
arrival rate function can be fit to linear and quadratic functions using least squares meth-
ods, as shown in [21]. We developed the estimators WL,λ,l(t) in Section 4 and WL,λ,q(t)
in Section 7 based on approximating the arrival rate function by, respectively, linear and
quadratic functions over a subinterval. When the arrival rate function can be regarded as
approximately linear (quadratic) over the intended interval and some time into the past (a
few mean waiting times), then it suffices to specify only the second moment or SCV (second
and third moments) of the cdf G instead of the full cdf G. For multi-server queueing models,
the waiting times do not differ greatly from the service times, so we may use the service
time distribution as an approximation for the shape of the waiting time distribution, that
is, to specify the parameters γ2

W in (4.2) and θ3
W in (7.2), representing the scaled second

and third moments. When the arrival rate function is approximately linear (quadratic), the
mean waiting time satisfies a quadratic (cubic) equation. The new estimator based on the
TVLL is a positive real root of that equation.

Solving the quadratic and cubic equations can lead to dividing by small quantities.
To address that problem, we developed alternative perturbation estimators WL,λ,l,p(t) and
WL,λ,q,p(t) in (5.2) and (7.6), respectively. These are appropriate when the first derivative of
the approximating linear arrival rate function or the second derivative of the approximating
quadratic arrival rate function are too small. When confidence intervals are estimated, the
perturbation estimator should be used if its confidence intervals are much smaller.

For the common case of an approximating linear arrival rate function, formulas (4.6)
and (4.9) based on Theorem 4.1 provides valuable insight, giving a simple expression for
the bias in WL,λ(t) in (1.2), all of which could be removed if there were no noise in the
estimation. Moreover, our experience indicates that this bias estimate is also good for non-
linear arrival rate functions. Formulas (4.6) and (4.9) show that the estimated bias is directly
proportional to three separate factors: (i) the variability of the waiting time distribution, as
quantified by the scale-free parameter γ2

W ≡ (c2
W + 1)/2, (ii) the relative slope of the arrival

rate function, as quantified by the ratio λ̄′
l/λ̄(t) and (iii) the mean waiting time itself, E[W ],

as estimated by WL,λ(t). We can obtain a rough estimate of the bias in WL,λ(t) before
considering any refined estimators. We can also see what happens when one or all of these
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factors change. We clearly see that the bias reduction is more important when the mean
waiting time is large, with the relative error removed being directly proportional to E[W ]. As
predicted, the bias for the Mt/GI/st + M queueing models in Section 8 is about four times
greater when the mean service time is increased from E[S] = 1 to E[S] = 4. As predicted,
the bias was also roughly proportional to the variability parameter γ2

W ≡ (c2
W + 1)/2 for

the three service time distributions M , H2, and E4 considered in Section 8. We could
predict in advance that the bias is relatively low (about 3%) in the call center example in
Section 9.

From the results of the simulation experiment for the Mt/GI/st + M model in Section 8
with E[S] = 1, as summarized by Table 3, we can draw several conclusions. First, the new
refined estimator WL,λ,r,γ(t) in (6.3), which is an extension of the previous refined estimator
WL,λ,r(t) in (1.4) for exponential waiting-time distributions studied in [12], was found to
consistently provide the most bias reduction. As explained in Remark 2.1, that is not too
surprising, because WL,λ,r,γ(t) is based on the sample path relation in (1.3), whereas the
TVLL in Theorem 2.1 is an expression for the mean. However, the estimator WL,λ,r,γ(t)
in (6.3) does require knowledge of R(0) and L(t), the number in system at the interval
endpoints.

In Section 6 we showed that, if we use a linear approximation for the arrival rate
function, then the TVLL can be applied to estimate the expected value E[R(0) − L(t)] when
R(0) and L(t) are not known. Theorem 6.1 shows that the resulting estimator WL,λ,r,γ,e(t)
reduces to the estimator WL,λ,l,p(t) in Section 5 based directly on the TVLL. Hence, the
advantage of the previous refined estimator WL,λ,r(t) in (1.4) and its refinement to non-
exponential service times WL,λ,r,γ(t) in (6.3) based on the sample path relation (1.3) over
the estimator WL,λ,l,p(t) based on TVLL is due to exploiting knowledge of R(0) and L(t).

In Section 8.5 we also considered examples of the Mt/M/st + M model with longer
service times, in particular, with E[S] = 4 instead of E[S] = 1. For these examples, the bias
in WL,λ(t) was approximately 25%. With such a large bias, the estimator WL,λ,r,γ(t) =
WL,λ,r(t) performs poorly. For this example with very long service times, the estimators
W tvll(t) and WL,λ,l(t) were far superior. As a consequence, we conclude that the estimator
WL,λ,r,γ(t) based on the sample path relation (1.3) and the estimators W tvll(t), WL,λ,l(t)
and WL,λ,l,p(t) based on the TVLL all can be useful.

We found that these refined estimators were also effective in the call center example
in Section 9. However, because the waiting times there were relatively short (3–4 minutes),
the bias in the indirect estimator WL,λ(t) in (1.2) was relatively small, less than 4%. In
the call center example, the estimator WL,λ,l,p(t) in Section 5 tended to perform best,
roughly equivalent to the refined estimator in Section 5.2.2 of [12] based on Theorem 2
of [12]. However, overall, the estimators WL,λ,q(t) and WL,λ,q,p(t) based on a quadratic
approximation for the arrival rate function were less useful.

It is also noteworthy that the confidence intervals for all the refined estimators (shown
in the appendix) were found to be roughly the same as for the indirect estimator WL,λ(t)
in (1.2), provided that division by small values did not require using the perturbation
estimators. Thus, we deduce that no additional variance must be incurred in order to reduce
the bias.

In summary, formulas (4.6) and (4.9) based on Theorem 4.1 provides valuable insight,
giving a simple approximate expression for the bias in WL,λ(t) in (1.2), most of which can
be removed by the methods here if there are ample data. If there is significant variation
in the arrival rate (as measured by λ′/λ̄(t) in a linear approximation of the arrival rate
function) and the waiting times are relatively long (as measured by E[W ] and estimated
by WL,λ(t)), then there can be significant bias, which can be estimated and reduced by the
methods here.
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APPENDIX MORE ON THE OFFERED LOAD

In this appendix we correct formula (29) of [4] for m(t), the time-varying mean number of busy
servers, in the Mt/Hk/∞ model with sinusoidal arrival rate λ(t) ≡ λ̄ + β sin(γt) as in (6) of [4],
service-time cdf

G(x) ≡ P (S ≤ x) ≡ 1 −
k∑

i=1

pie
−μix, x ≥ 0, (A.1)

where E[S] =
∑k

i=1(pi/μi) = 1, as in (28) of [4] and starting empty in the infinite past. The
following replaces formula (29) in [4], correcting errors in the constants Ai and Bi in Proposition 1
below.

Proposition 1: For the Mt/Hk/∞ model above,

m(t) = λ̄ + β
k∑

i=1

(Ai sin(γt) − Bi cos(γt)), (A.2)

where

Ai ≡ piμi

μ2
i + γ2

and Bi ≡ piγ

μ2
i + γ2

. (A.3)

Proof: Formula (A.2) can be derived from the general formula for m(t) in the Mt/GI/∞ model
with the sinusoidal arrival rate function above given in Theorem 4.1 of [4] in two different ways.
One way is to directly derive the distribution of Se given the distribution of S in (A.1) above,
which turns out also to be Hk with the same parameters μi but new parameters pi. We will use
another way, which is to represent the system as the sum of k independent Mt/M/∞ models,
with model i having arrival rate λ(t)pi and exponential service times having mean 1/μi. Then
we can write m(t) = m1(t) + · · · + mk(t); that is, we consider the different exponential phases of
service as types of customers and thin the original nonhomogeneous Poisson arrival process into k
independent Poisson processes with rates λ(t)pi. From this representation, we immediately obtain
(A.2) above with

Ai ≡ piE[cos(γX/μi)]

μi
and Bi ≡ piE[sin(γX/μi)]

μi
, (A.4)

where X is an exponential random variable with mean 1. We then can apply the formulas
E[cos(cX)] = 1/(1 + c2) and E[sin(cX)] = c/(1 + c2) given in the beginning of Section 5 of [4]
to (A.4) to obtain (A.3). �
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