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SUMMARY
An autonomous mobile robot operating in an unknown
indoor environment often needs to map the environment
while localizing within the map. Feature-based world models
including line and point features are widely used by
researchers. This paper presents a novel delayed-classi-
fication algorithm to categorize these features using a
recently developed high-performance sonar ring within
a simultaneous localization and map-building (SLAM)
process. The sonar ring sensor accurately measures range and
bearing to multiple targets at near real-time repetition rates
of 11.5 Hz to 6 m range, and uses 24 simultaneously fired
transmitters, 48 receivers and multiple echoes per receiver.
The proposed algorithm is based on hypothesis generation
and verification using the advanced sonar ring data and an
extended Kalman filter (EKF) approach. It is capable of
initiating new geometric features and classifying them within
a short distance of travel of about 10 cm. For each new sonar
reading not matching an existing feature, we initiate a pair
of probational line and point features resulting from accurate
range and bearing measurements. Later measurements are
used to confirm or remove the probational features using
EKF validation gates. The odometry error model of the filter
allows for variations in effective wheel separation required
by pneumatic robot tyres. The implementation of the novel
classification and SLAM algorithm is discussed in this paper
and experimental results using real sonar data are presented.

KEY WORDS: Sonar; Map building; Sonar ring; Classification;
SLAM; Odometry

1. Introduction
Mapping is a fundamental requirement for a mobile robot
to autonomously navigate in an a priori unknown indoor
environment. The error growth of odometry dead-reckoning
resulting from wheel distortion and slippage is usually
unacceptable and environmental sensing is therefore needed.
Building a map requires the interpretation of sensor inform-
ation to estimate the locations of geometric features
(landmarks) in a global reference map. This map is also used
to determine the robot position in the environment. A large
variety of sensor systems, such as sonar, radar, laser, infrared
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and vision are commonly used to make mobile robots capable
of sensing their environment.1–7 Also different world models
such as feature-based and grid-based ones are widely used by
researchers to map the environment.8–13 To build a feature-
based map, one has to decide what features to use to describe
the robot’s environment. Some researchers have used only
line segments14 and others have built maps containing lines
and points.2, 15, 16 Cylinders and arcs are rarely included in
the feature set.17 All measurements of geometric features
are contaminated with background noise, false targets and
phantom targets. The crucial problem in using sensory
information to generate a map is the uncertainty in the origin
of measurements and that in the robot position. Stochastic
mapping using an extended Kalman filter (EKF) is widely
used by researchers to solve this problem.7, 11, 15, 16, 18–20

Other crucial problem for sonar sensors is to classify
the sensor information to discriminate planes, corners and
edges. This is important in terms of being able to predict
the measurements from a new position and hence apply an
update procedure such as the Kalman filter. Some researchers
have developed sonar sensors that allow target classification
at one position.16, 21–23 However, typical sonar sensors are
commonly unable to classify the targets from one position
because sonar observations are discrete points. Therefore,
while navigating along a wall, the robot sees the wall not as
a line but as a set of points. It is only through accumulation
of observations over time that a correct feature classification
can be made and a map can be constructed. Delayed decision-
making techniques using Hough transforms are widely used
by researchers to classify the landmarks.8, 9, 24–28

This paper presents a novel classification method within
the simultaneous localization and map-building (SLAM)
process. The proposed algorithm is based on delayed decision
making using hypothesis generation and verification and
accurate sonar data. The map considered in this paper is
feature-based and consists of natural landmarks that occur
in indoor environments; planes, corners and edges modeled
into lines and points. The work presented here is the first
reported mapping result from a recently developed fast and
accurate sonar ring29 mounted on the robot Sombrero shown
in Fig. 1 in real indoor environments. Confirmation, deletion
and initiation of new geometric features and SLAM process
using EKF are included in the algorithm. If a new sonar
reading is not associated with current features, a pair of
probational features (a line and a point) will be initiated. The
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Fig. 1 The robot Sombrero.

point feature is initiated in the location of the observed target
and the line feature, perpendicular to the line connecting the
transmitter to the target. The validation gate condition of the
Kalman filter is used to confirm or remove the probational
features within the next 10 robot positions. Due to the high
repetition rate of the advanced sonar ring of about 11.5 Hz,
the confirmation and deletion process can be performed by
the robot within 10 cm from where the feature is first sensed
(or about 0.8 s at robot speeds of 10 cm/s). The high-speed
classification helps to minimize the number of probational
features and to speed up the mapping process. The odometry
error model similar to the one in ref. 16 is used in this work,
which incorporates variations in effective wheel separation
and angle measurements. This model is suited to pneumatic
tyre odometry errors where the wheel separation has been
found to vary unpredictably with floor surface and path
curvature. This paper also describes a novel sonar data-
filtering technique to eliminate many phantom targets due
to multipath echoes.

The paper is organized as follows: Section 2 contains an
overview of the robot Sombrero and gives an overview of
the software and hardware structure of the advanced sonar
ring. Section 3 explains the details of the proposed landmark
classification and the SLAM approach. Section 4 presents
implementation details of the algorithm. Section 5 presents
the experimental results to show the effectiveness of the
proposed algorithm. Section 6 presents conclusions and a
discussion of future work.

2. Overview of the Mobile Robot Sombrero
The robot Sombrero consists of an advanced sonar ring sensor
mounted on an ActivMedia Pioneer 3 DX mobile robot. The
locomotion method of the Sombrero is the differential drive
method and the powered wheel steering (PWS) mechanism
is used to control the robot motion. The advanced sonar ring
works by the simultaneous firing of all transmitters emitting
a burst of ultrasound in all directions, and then waiting
for the echoes reflected from any objects within the sound
beam. Then, the potential echo sample intervals are extracted
from all 48 receivers using a thresholding method. These

Fig. 2 The block diagram of the advanced sonar ring hardware.

echo sample intervals are later processed on digital signal
processors (DSPs) to obtain echo accurate arrival times.

To maximize the speed of the sensor and to be able to
perform the task in the limited memory of the DSP, an
interrupt service routine performs thresholding while the
receivers are listening to echoes. The delays, known as the
time-of-flight (TOF), are estimated for all the echoes reflected
from different objects to every receiver in each firing.
Then, the calculated distance-of-flight (DOF) of the returned
echoes is twice the distance to the object. The bearing
angle is determined by combining multiple measurements
on different receivers. The basic idea is to calculate the TOF
for each receiver by means of matched filtering (also called
template matching), which is the minimum variance arrival
time estimator in the presence of additive white Gaussian
noise on the echo. A matched filter is based on finding the
peak of the cross correlation of the echo with an a priori
calculated template. This technique has been extensively
used in refs. 15, 21, 22, and 30.

The field of view of the Polaroid 7000 transducers used in
the advanced sonar ring is about 15◦; therefore, 24 pairs of
transducers are considered to cover the robot enabling it to
estimate the bearing using one transceiver and one receiver
in every pair. Figure 2 shows an overview of the hardware
structure of the advanced sonar ring.

Six DSP boards called slave PCBs are designed to manage
all 48 transducers. Each DSP processes the echoes returned
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Fig. 3 Overview of the host software of Sombrero.

to the eight receiver channels. Each slave board is responsible
for controlling the transmission and data acquisition process
for four pairs of transceiver and receivers. Also, the board
contains a high-voltage dc–dc converter to produce a 300-V
bias on the eight transducers.

Finally, a master DSP is designed to communicate with
and manage all the slave PCBs. A master DSP also in turn
relays results of all slaves to a host computer over a serial
line. One of the advantages of this configuration is that
it relieves the computational burden of the host computer
allowing computationally intensive applications to take place
on a moving platform. Figure 3 shows an overview of the
software structure of the host computer that controls the robot
Sombrero and communicates with the sonar ring. The sonar
ring can sense smooth targets, such as planes and right-angled
corners, with an accuracy of approximately 0.6 mm and 0.2◦
for ranges from 0.2 to 4 m.29

3. Landmark Classification and SLAM for Autonomous
Navigation
We assume that the actual three-dimensional (3-D) world
model is orthogonal to the horizontal plane of the sonar ring,
therefore, the environment can be adequately represented by
a two-dimensional (2-D) map. A stochastic feature-based
mapping method based on EKF is used for simultaneous
localization of Sombrero and mapping of the environment.
The method is based on the description by Davison,6 where
all map features are updated on each measurement result. In
each robot pose, only one set of sensor results are applied
to the SLAM in order to speed up the process. This means
that if multiple firings occur in the same robot pose, the
results of the first firing are applied to the algorithm and

Fig. 4 Geometry of the robot movement.

the rest are ignored. In the following Sections 3.1 and 3.2,
a vehicle model, and its associated errors, is developed that
allows odometry inputs to predict the motion of the robot.
The Kalman filter facilitates the fusion of these odometry
inputs with sonar measurements (discussed in Section 3.3)
by predicting environmental features (discussed in Section
3.4), and correcting them using an error model of the
sonar measurements as described in Section 3.5. Section 3.6
describes how the sonar features are classified and integrated
into the map-building process.

3.1. Mobile vehicle model
The robot state vector is denoted as

xR = [θ x y]
T

(1)

comprising a heading and the Cartesian location of the centre
of the drive wheel axis defined with respect to the global
coordinate frame shown in Fig. 4. The state vector of the
robot is initialized to [0 0 0]T .

Internal sensors (encoders) give information about the
speed and the distance the robot wheels move. This
information must be integrated to give the robot’s global
position and direction. On Sombrero, the encoder counts are
accumulated for 20 ms, and then used to update the position
of the robot. Based on the encoder counts of the wheel, the
distance moved by each wheel is estimated. Therefore, at the
end of 20 ms, the right wheel has traveled a distance �r and
the left wheel has traveled a distance �l.

Figure 4 shows the path of the robot when it moves to a
new position. The combined rotation and translation motion
is shown in the figure. We assume that the robot travels in an
arc while it translates a distance �s and turns an angle �θ .
By using the notation of Fig. 4, the distances traveled can be
expressed as

{
�l = �θR

�r = �θ(R + B) (2)
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and therefore

{
�θ = (�r − �l)/B
R = (�lB)/(�r − �l). (3)

From the law of cosines

�s2 = 2(R + B/2)2 − 2(R + B/2)2 cos(�θ). (4)

Using Eq. (3), �s can be rewritten as

�s = B(�r + �l)

(�r − �l)
sin(�θ/2)

�θ→0≈ (�r + �l)/2. (5)

It can be proved that the angle between the translation
vector (�s) and the heading of the robot is �θ /2 as shown
in Fig. 4. Therefore, if in the next time increment the robot
moves a distance �s and turns �θ , then the new position of
the robot [θ ′ x ′ y ′]T can be calculated as

⎧⎨
⎩

θ ′ = θ + �θ

x ′ = x + �s cos(θ + �θ/2)
y ′ = y + �s sin(θ + �θ/2).

(6)

3.2. The odometry error propagation under robot motion
We denote the robot state vector at time step k by xR(k) =
[θ(k) x(k) y(k)]

T

. Using Eqs. (3)–(6), the robot’s motion
through the environment is described as

xR(k + 1) = xR(k) + f(xR(k), y(k))

y(k) = [�r �l B]T (7)

f(xR(k), y(k)) =

⎡
⎢⎢⎢⎢⎢⎢⎣

�r −�l

B
�r +�l

2
cos

(
θ(k) + �r −�l

2B

)
�r +�l

2
sin

(
θ(k) + �r −�l

2B

)

⎤
⎥⎥⎥⎥⎥⎥⎦ .

As the robot moves, the odometry errors accumulate to
make the robot’s overall position very uncertain with respect
to the global frame. This uncertainty is produced by two
mechanisms: the addition of new position integration errors
and the development of previous errors under motion. The
error model explained in this section, which is similar to
the one presented in ref. 16, considers noise on �r, �l
and B. Sombrero has inflatable tyres that provide good
traction at the expense of wheel separation uncertainty.
Using a first-order Taylor expansion of equations given
in Eq. (7), the iterative equation can be derived in terms
of the Jacobians ∂f/∂x and ∂f/∂y (see ref. 16 for more
details)

�xR(k + 1) ∼=
(

I + ∂f
∂x

)
�xR(k) + ∂f

∂y
�y(k). (8)

The covariance of the error in the robot pose at step k + 1
is now derived in terms of step k

PRR(k + 1) ≡ E〈�xR(k + 1)�xR(k + 1)T 〉
=

(
I + ∂f

∂xR

)
E〈�xR(k)�xR(k)T 〉

(
I + ∂f

∂xR

)T

+ ∂f
∂y

E〈�y(k)�y(k)T 〉 ∂f
∂y

T

= PRR(k) + PRR(k)
∂fT

∂xR
+ ∂f

∂xR
PRR(k) + ∂f

∂xR
PRR(k)

∂fT

∂xR︸ ︷︷ ︸
covariance propagation

+ ∂f
∂y

Q(k)
∂f
∂y

T

︸ ︷︷ ︸
new error

(9)

where E is the expectation and Q(k) is the error covariance
of y(k), the wheel measurements and separation. We assume
that in Eq. (9), the errors in robot pose x at time k and the new
errors in odometry parameters y at time k are independent.
The errors in �r, �l and B are assumed to be independent

Q =

⎡
⎢⎢⎣

σ 2
r 0 0

0 σ 2
l 0

0 0 σ 2
B

⎤
⎥⎥⎦ (10)

The covariance update Eq. (9) can be calculated in a
computationally effective manner as explained in ref. 16.
The values for the variances σ 2

r and σ 2
l must be proportional

to �r and �l at each step to make the system consistent,
which means that for a given range or angle change,
the final covariance should be independent of the number
of steps to traverse a path.16 Since the covariances add
when independent noise segments are concatenated, these
covariances must be proportional to the distance traveled as{

σ 2
r = E2|�r|

σ 2
l = E2|�l| (11)

where E is the error standard deviation for a 1-m travel. Also
from ref. 16 σ 2

B can be written as

σ 2
B = A2B2

2π |�θ | (12)

where A is the angle error standard deviation for a full
2π revolution of the robot in one step that is attributed to
variations in the wheel separation B.

3.3. Geometric feature models
The environmental landmarks are modeled as lines and
points. The lines represent plane reflectors while the point
features are used for corners and edges. The point feature
is characterized by its 2-D Cartesian coordinates [xp yp]

T

.
The plane feature is represented by a line with an angle ϕ

and the minimum distance d to the global coordinate system
origin as shown in Fig. 5. The line [ϕ d]

T

can be represented
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Fig. 5 Line representation.

by a parametric equation{
x = d cos ϕ + t sin ϕ

y = d sin ϕ − t cos ϕ
(13)

where t is the signed distance from the nearest point on the
line to the origin. In order to model a partial plane, parameters
tmin and tmax are saved to determine line endpoints. The length
of the partial line is also represented by tmax − tmin. The
parametric Eq. (13) can also be written as

g(x, y) = y sin ϕ + x cos ϕ − d = 0. (14)

The representation [ϕ d]
T

has the alternative of [ϕ +
π − d]

T

that results in the same parametric equations except
that t reverses sign. Here, the two lines are considered

different since they correspond to sensing from different
sides of the line. If the line were sensed from the other side
of the coordinate origin, a negative distance parameter would
be recorded. This representation differentiates between two
sides of a partial plane. That means⎧⎨

⎩
if (sign(g(0, 0)) == sign(g(trxx, trxy)))

⇒ change d to positive
else ⇒ change d to negative

(15)

where (trxx, trxy) are the coordinates of the transceiver that
observes the partial plane (Fig. 5). New sonar measurements
are only fused with the line if their t parameter lies in the line
or in the extension of the line by less than 0.2 m. When an
extension of the line is accepted by the EKF as described by
the validation gate of Eq. (41) given later the values of tmin

and tmax are updated.

3.4. Prediction of geometric feature positions
The advanced sonar ring consists of 24 transducer pairs
numbered from 0 to 23 (see Fig. 2). Each pair has a
transceiver and a receiver. The sensor fires all transceivers
simultaneously. Then, the results of echo signal processing
including the pair number that senses the reflector and the
DOFs of the transducers are sent to the host program. This
information is used to estimate the reflector state parameters
as follows.

The geometry of sensing a plane, a corner and an edge
are shown in Fig. 6. The label Trx is used for a transceiver
and Rx for a receiver. The DOFs are labeled doftrx and dofrx.
Based on the geometry shown in Fig. 6, the incidence angle
θobj can be calculated by applying the law of cosines

θobj =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

π

2
− cos−1

(
D2 + doftrx

2 − dofrx
2

2Ddoftrx

)
for a corner or a plane

π

2
− cos−1

(
D2 + (0.5doftrx)2 − (dofrx − 0.5doftrx)2

2D(0.5doftrx)

)
for an edge

(16)

Fig. 6 The geometry of sensing a plane, a corner and an edge.
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where D is the separation between the transceivers of each
pair. The distance of an object to a transceiver, robj is
determined by

robj = 0.5 doftrx. (17)

As the map primitives are lines and points and there is no
differentiation between corners and edges, the first equation
in Eq. (16) is used to calculate the bearing angle of the
reflector. However, the sensor does not classify the objects
at the first step; therefore, the application assumes that the
reflector is a corner or a plane feature and uses the same
equation for all sonar measurements. This assumption is
acceptable because the difference in results of both equations
in Eq. (16) is usually small. For example, the difference is
less than 0.4◦ for ranges greater than 1.5 m. When accuracy
is important, a target classified as an edge can be adjusted in
angle accordingly.

The coordinates of the transceiver that senses the object
with respect to the global system is determined using
the robot state [θ ′ x ′ y ′]

T

and the definitions shown in
Fig. 5 ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Trxx = x + L cos(θ + C2)

Trxy = y + L sin(θ + C2)

C2 ≡ π

12
pairno + π + C1

(18)

where pairno is the sequence number of the transducer pair
(P0 to P23 in Fig. 2). The parameters L, C1 and C2 are
shown in Fig. 5 and are determined by the geometric design
and construction of the sonar ring. The measured values of
L and C1, used in this work are 0.3083 m and 0.1966 rad,
respectively.

Therefore, the position of the object can be written as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

objectx = Trxx + robj cos(θ − θobj + C3)

objecty = Trxy + robj sin(θ − θobj + C3)

C3 ≡ π

12
pairno + π + π

24
.

(19)

If we assume that the measured reflector is a partial plane,
then using Eqs. (14), (18) and (19), we can calculate the
parameters ϕ and d of the line feature that is perpendicular to
the line between Trx and the object for the object position⎧⎪⎨

⎪⎩
ϕ = tan−1

(
objecty − trxy

objectx − trxx

)
d = objecty sin ϕ + objectx cos ϕ

(20)

Equation (15) is then applied to achieve a consistent
representation.

If we assume that the target is a point feature then
the coordinates of the target can be used as the feature
parameters, and from Eqs. (18) and (19){
xp = x + L cos (θ + C2) + robj cos (θ − θobj + C3)

yp = y + L sin (θ + C2) + robj sin (θ − θobj + C3).
(21)

3.5. Measurement model
At time step k, the robot obtains sonar measurements doftrx

and dofrx from a pair of transducers. Then, using Eqs. (16)
and (17), the measurement vector is formed as

z(k) = [θobj(radian) robj(metre)]T . (22)

However, the value of measurement z(k) is a function of
the robot state at time k and the location of the feature from
which it originated, subject to a noise disturbance, as given
by the measurement model{

z(k) = h(k, x(k)) + w(k)

x(k) = [xR(k) x1(k) . . . xn(k)]T
(23)

where x(k) is the system state vector including the robot state
vector and all n geometric features. The measurement model
h, takes different forms depending on the type of feature, and
w is the measurement noise with error covariance which is
defined as

R(k) = E
〈
w(k)w(k)T

〉 =
⎡
⎣(

2◦ × π

180

)2
0

0 (0.004 m)2

⎤
⎦ .

(24)

To define the measurement model h, of a plane reflector, we
assume that the line state [ϕ d] is known. Then, by using
the robot state and pairno at time step k, the measurement
elements θobj and robj are calculated as

⎧⎪⎨
⎪⎩

θobj = θ − ϕ + C3

robj = |(x + L cos(θ + C2)) cos ϕ

+(y + L sin(θ + C2)) sin ϕ − d|.
(25)

To define measurement model h for a corner or an edge
reflector, we assume that the point state [xp yp] is known.
Then by using the robot state and pairno at time step k, the
measurement elements θobj and robj are derived as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θobj = θ + C3 − tan−1

(
yp − y − L sin(θ + C2)

xp − x − L cos(θ + C2)

)
robj = √

(xp − x − L cos(θ + C2))2 + (yp − y − L sin(θ + C2))2.

(26)

3.6. Proposed classification and SLAM algorithm
Accurate measurements of the range and bearing angle are
performed within the multi-DSP architecture of the advanced
sonar ring as explained in Section 2. Each measurement
introduces a dot in the world frame that can be part of
a partial plane or the position of a corner (or an edge).
The advantage of accurate bearing angles provided by the
advanced sonar ring29, 31, 32 is that it allows us to precisely
calculate the state parameters of the predicted partial plane
from each measurement result. The predicted plane feature
is a line perpendicular to the line between the transmitter
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Fig. 7 The block diagram of the proposed classification and SLAM
algorithm. The error and err_threshold are explained after Eq. (41)
and relate to the validation gate of the Kalman filter. The ‘matched
points counter’ is incremented when a measurement falls in the
validation gate.

and the object in the object position. A predicted corner or
edge feature is a point in the measured reflector position
as explained in Section 3.4. This prediction of the object
position from one sonar result is not possible for conventional
sonar sensors due to a large uncertainty in the bearing angle.
The proposed classification and SLAM algorithm uses an
EKF to update the robot position and the features’ positions
and also to classify the targets. It uses the method introduced
by Davison,6 where all map features are updated on each
measurement result. The method here differs from that of
Davison6 in the sensor employed (i.e. sonar ring) and the
method for classifying the sonar targets as the robot moves,
as described later. Figure 7 shows a flow chart of the
proposed classification and SLAM method that is detailed
later.

Measurement to feature association plays an important role
for both the classification and the SLAM processes. In fact,
data association (which feature a measurement is generated
from), can significantly affect the map. The validation gate
condition for a Kalman filter is used for data association. This
is explained in detail in Section 4. The new measurements

can either generate new map features or be fused to the
existing ones. After each association, all error covariance
and cross-covariance matrices are updated by the fusion of a
new result.

The classification algorithm is based on multi-hypothesis
generation and verification. If a new result is not associated
with the existing features, two probational features as
hypotheses, are generated, i.e. a line and a point. The
state parameters of these features are calculated from single
measurement result as explained in Section 3.4. The robot
inserts them into its probational feature matrix. The features
are partitioned into probational and confirmed features, with
only the confirmed features being used for SLAM. The
verification is performed based on the association results
on sensor measurements within the robot’s next 10 positions.
The repetition rate of the sensor is 11.5 Hz.29 Therefore, the
verification process is performed within about 1 s when the
robot is moving. The method is capable of initiation, confir-
mation and deletion of the geometric features. After
confirmation, the feature is moved from probational to the
confirmed partition and is used in the SLAM process.

4. Implementation Details
As explained earlier, the robot state vector at time step k, xR(k)
and state vectors of the confirmed features xi(k) comprise
the system state vector x(k) = [xR(k) x1(k) · · · xn(k)]T ,
where n is the number of the confirmed features and xi(k)
is [ϕ d]

T

for line features and [xp yp]
T

for point features.
The measurement model of the system z(k) is defined in
Eq. (23). The objective of SLAM is to use the EKF to recur-
sively compute an estimate for x(k)

x̂(k) = [x̂R(k) x̂1(k) · · · x̂n(k)]T (27)

which is called the system state estimate, and its covariance
is called the system state prediction covariance matrix

P(k | k) =

⎡
⎢⎢⎢⎢⎢⎣

pRR(k | k) pR1(k | k) . . . pRn(k | k)
pR1(k | k) p11(k | k) . . . p1n(k | k)

. . . .

. . . .

. . . .

pRn(k | k) p1n(k | k) . . . pnn(k | k)

⎤
⎥⎥⎥⎥⎥⎦ (28)

where pRi(k | k) is a robot-to-feature cross-covariance matrix
at time step k given measurements z(k), z(k − 1), . . .,

pij (k | k) is a feature-to-feature cross-covariance matrix and
a covariance of error in the feature state is denoted as
pii(k | k).

The EKF can be formulated into a two-stage process as

(1) System state prediction: x̂(k + 1 | k)—estimate of x at
step k + 1 given measurements z(k), z(k − 1), . . . ;

(2) System state update: x̂(k + 1 | k + 1) and p(k + 1 | k + 1).

In order to perform the first stage, such a system state
is estimated that contains the robot position vector and all
the features states. Robot state prediction x̂R(k + 1 | k) is
calculated using �r and �l, given by the odometry system as
explained in Section 3.2, Eq. (7). The prediction of features
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states x̂i(k + 1 | k), due to the assumption of a stationary
environment, is taken to be the same as x̂i(k | k).

Stage two of the EKF can be divided into state estimation
and state covariance estimation.

State estimation consists of

(1) measurement prediction:

ẑ(k + 1 | k) = h(k + 1, x̂(k + 1 | k)); (29)

(2) measurement residual:

v(k + 1) = z(k + 1) − ẑ(k + 1 | k); (30)

(3) updated state estimate:

x̂(k + 1 | k + 1) = x̂(k + 1 | k) + W(k + 1)v(k + 1) (31)

where W(k + 1) is called the Kalman gain defined later in
the state covariance estimation.

State covariance estimation consists of

(1) state prediction covariance:

P(k + 1 | k)

=

⎡
⎢⎢⎢⎢⎢⎣

pRR(k + 1 | k) pR1(k + 1 | k) . . . pRn(k + 1 | k)
pR1(k + 1 | k) p11(k + 1 | k) . . . p1n(k + 1 | k)

. . . .

. . . .

. . . .

pRn(k + 1 | k) p1n(k + 1 | k) . . . pnn(k + 1 | k)

⎤
⎥⎥⎥⎥⎥⎦

(32)

where pRR(k + 1 | k) is calculated based on Eq. (9), and other
elements are taken from the previous time step;
(2) residual covariance or innovation covariance:33

S(k + 1) = R(k + 1) + H(k + 1)p(k + 1 | k)H(k + 1)T

(33)
where R(k + 1) is defined in Eq. (24) and H(k + 1) is a
Jacobian evaluated as

H(k + 1) = ∂h(k + 1)

∂x

∣∣∣∣
x=x̂(k+1|k)

; (34)

(3) filter gain:

W(k + 1) = p(k + 1 | k)H(k + 1)T S(k + 1)−1;
(35)

(4) updated state covariance based on Joseph’s form:

p(k + 1 | k + 1) = [I − W(k + 1)H(k + 1)] p(k + 1 | k)

× [I − W(k + 1)H(k + 1)]T

+ W(k+)R(k + 1)W(k + 1)T . (36)

Based on Eqs. (25) and (26), the Jacobians of h(k + 1) have
different forms for line and point features. For a line feature,

H is calculated as

H =
[

H11 H12 H13 H14 H15

H21 H22 H23 H24 H25

]

H11 = ∂θobj
∂θ

= 1

H12 = ∂θobj
∂x

= 0

H13 = ∂θobj
∂y

= 0

H14 = ∂θobj
∂ϕ

= −1

H15 = ∂θobj
∂d

= 0

H21 = ∂robj
∂θ

= sign(A)(−L cos ϕ sin(θ + C2)

+L sin ϕ cos(θ + C2))

H22 = ∂robj
∂x

= sign(A) cos ϕ

H23 = ∂robj
∂y

= sign(A) sin ϕ

H24 = ∂robj
∂ϕ

= sign(A)(−(x + L cos(θ + C2)) sin ϕ

+ (y + L sin(θ + C2)) cos ϕ)

H25 = ∂robj
∂d

= −sign(A)
(37)

where A is defined as

A ≡ (x + L cos(θ + C2)) cos ϕ

+ (y + L sin(θ + C2)) sin ϕ − d. (38)

For a point feature, the Jacobian matrix H is calculated as

H11 = ∂θobj
∂θ

= 1 −
(

1
1 + A2

4

−L cos(θ + C2)A3 − L sin(θ + C2)A2

A2
3

)

H12 = ∂θobj
∂x

= −1
1 + A2

4

A2

A2
3

H13 = ∂θobj
∂y

= −1
1 + A2

4

−1
A3

H14 = ∂θobj
∂xp

= −1
1 + A2

4

−A2

A2
3

H15 = ∂θobj
∂yp

= −1
1 + A2

4

1
A3

H21 = ∂robj
∂θ

= 1
2
√

A1
(2L sin(θ + C2)A3

−2L cos(θ + C2)A2)

H22 = ∂robj
∂x

= 1
2
√

A1
(−2A3)

H23 = ∂robj
∂y

= 1
2
√

A1
(−2A2)

H24 = ∂robj
∂xp

= 1
2
√

A1
(2A3)

H25 = ∂robj
∂yp

= 1
2
√

A1
(2A2) (39)
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Fig. 8 (a) A corridor where the robot travels about 5 m, classifies line and point features and generates a map. The map features are labeled
with a sequence number and the number of associations. (b) The robot trajectory based on odometry and the raw sonar data. (c) The map
after application of SLAM EKF filtering and classification.

where A1 to A4 are defined as

A2 ≡ yp − y − L sin(θ + C2)
A3 ≡ xp − x − L cos(θ + C2)
A1 ≡ A2

2 + A2
3

A4 ≡ A2/A3.

(40)

A validation gate is used for association as follows

e2 = v(k + 1)T S(k + 1)−1v(k + 1) ≤ 9. (41)

The validation gate threshold, referred to as err_threshold in
Fig. 7, is 9 in Eq. (41) and the error that is compared to this
threshold in Fig. 7 refers to e in Eq. (41).

5. Experimental Results
Experiments have been carried out in different real
indoor environments. The robot Sombrero traveled at
different speeds and collected on-the-fly range and bearing
measurements using the advanced sonar ring. The sonar
data were used in the offline classification and the SLAM
algorithm was implemented with Matlab.

5.1. A corridor
Figure 8 shows a corridor where the robot travels about 5 m,
classifies the line and point features and generates a map.
Raw sonar data and the results of the proposed algorithm
are shown in the figure. The map features are labeled with
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Fig. 9 (a) The robot travels in a rectangular path in the small lab environment consisting of a wall, cardboard boxes and lab equipment.
(b) The robot trajectory based on odometry only and the raw sonar data. (c) The SLAM map.

a sequence number and the numbers of associations. The
numbers of the associations for the line features are quite
large depending on the length of the feature. This is due
to the low travel speed of 10 cm/s and high sensing rate of
11.5 Hz. However, for the point features, the numbers of
associations are not as large because of the limited viewing
angle of the point features and weak reflections from the

edges that make them invisible in some robot positions even
inside their viewing angle.

5.2. Small indoor environment
Figure 9 shows the outlines of the testing environment. Raw
sonar data and the generated 2-D map are also shown in
the figure. The robot travels in a rectangular path in the
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Fig. 10 A high-speed classification and SLAM of the environment shown in Fig. 8. (a) The robot trajectory and raw sonar data when the
robot travels at 30 cm/s. (b) The map.

small environment consisting of cardboard boxes, a wall
and some lab equipment. The raw measurements contain
many phantom objects that result from the large number
of multi-path echoes due to the small size and rectangular
form of the environment. Phantom objects are eliminated
by ignoring echoes that have a distance of flight that is
approximately an integer multiple of a nearer echo from
a confirmed partial plane in the path of the phantom target.
Dislocations of the walls are also due to the accumulating
odometry errors of the platform. However, these errors are
eliminated in the generated map by applying the proposed
method.

5.3. High-speed mapping
The high repetition rate of the advanced sonar ring enables
the robot to travel faster while sensing the environment. The
speed of the robot was set to 30 cm/s and the experiment
performed in the same corridor as shown in Fig. 8. The
raw sonar data and the map are shown in Fig. 10. The
numbers of the associations are smaller than those in Fig. 8.
Some of the point features, such as number 19 and 8 in
Fig. 8, have disappeared in Fig. 10. A higher speed has less
effect on the line features due to the very large association
numbers that are still big enough even at the high speed
of 30 cm/s. Due to the limited viewing angle of the point
features, some of them are eliminated in high speed due
to the small sensing positions and therefore small numbers
of associations. However, the map generated at the speed

of 30 cm/s contains enough landmarks for navigation tasks.
At higher speeds, more point features and some short line
features will disappear. The execution time under Matlab
for the 1511 sonar readings and 27 landmarks generated
during a 17-s robot travel time was 5 s on a Pentium
IV 2.4-GHz laptop computer. That is, the processing time
would allow for a real-time implementation for this number
of landmarks and this is the case in all the experiments
above; however, the processing time per measurement
increases with the square of the number of landmarks.
Reducing the SLAM processing time in large-scale maps
is dealt with in many other research works, for example in
ref. 34.

5.4. Map quality
In order to show the quality of the maps, hand tape
measurements of the point features in an environment are
compared to the ones from a robot-generated map shown
in Fig. 11. The point features are vertical bars of diameter
2.5 cm. The sonar ring measures the position of the bars
from angles varying approximately within −45 to +45◦ as
it moves past and the map process integrates these into a
single point. The measured lengths are labeled L1 to L14 as
shown in Fig. 11. Table I presents the error in the measured
lengths. The results show a small bias in that the distances
are overestimated in the mapping process. This effect can be
attributed to an error in the speed of sound.
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Fig. 11 Generated map of the corridor as in Section 5.3.

6. Conclusions and Future Work
This paper has presented a novel approach to feature
classification within the SLAM process using a recently
developed advanced sonar ring. The advanced sonar
ring produces accurate measurements and allows reliable
measurement association with map features. The error in
range measurement has been measured to be less than 0.6 mm
and for bearing angle it is less than 0.17◦.29 The proposed
algorithm produces high-quality sonar maps with a Kalman
filter SLAM approach. This paper highlights the benefit of
accurate sonar measurements in robust feature classification
using a fast hypothesis-generation and verification technique.
The performance of the algorithm has been illustrated by
experimental results.

The system described in this paper allows reliable
measurement association with map features. However,
failure can rarely occur due to erroneous associations when
odometry errors exceed expectations, and errors occur in the
generation of probational features.

The advanced sonar ring senses the environment at the
high repetition rate of 11.5 Hz without mechanical problems
and delays associated with scanning sonar sensors as in
refs. 7 and 16. As a result, this system has the advantage of

providing high-density maps that enable the robot to travel
faster (30 cm/s) compared to the previous works.7, 16, 19, 21

However, in the previous works, object classification was
performed in one sensing cycle, which is not the case for
the advanced sonar ring. This is due to the sensor design
that employs one transmitter per pair. To enable the sensor
to classify objects in each measurement cycle, each direction
must contain at least two transmitters and two receivers.30, 35

To reduce the cost and complexity, the sensor design was
planned based on in-movement-classification. This paper
has presented a novel delayed classification algorithm that
categorizes features within the SLAM process. The method
is capable of classifying the objects within a short distance of
travel of about 10 cm. The main advantage of the proposed
system is that it enables the robot to travel faster while
providing dense maps of the indoor environment.

Future work will concentrate on the real-time imple-
mentation of the algorithm on Sombrero, improving associ-
ation and recovering from failure of SLAM. The related
problems of kidnapping, loop closure, large-scale SLAM
and a map matching strategy to re-establish the robot’s
position when its uncertainty is too large, will also be
investigated.

Table I Errors in map generation.

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14

Map value (cm) 190.3 65.4 65.9 63 61.6 65.4 62.9 64 76.6 101.4 102.6 102.1 101.7 77.2
Real value (cm) 189.5 64.5 64 62.6 62.1 64.5 62.6 65.1 76.4 101.2 101.2 101.2 101.2 76.7
Error (cm) 0.8 0.9 1.9 0.4 −0.5 0.9 0.3 −1.1 0.2 0.2 1.4 0.9 0.5 0.5
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