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Direct numerical simulation of free convection
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Direct numerical simulations of free convection over a smooth, heated plate are
used to investigate unbounded, unsteady turbulent convection. Four different boundary
conditions are considered: free-slip or no-slip walls, and constant buoyancy or constant
buoyancy flux. It is first shown that, after the initial transient, the vertical structure
agrees with observations in the atmospheric boundary layer and predictions from
classical similarity theory. A quasi-steady inner layer and a self-preserving outer layer
are clearly distinguished, with an overlap region between them of constant turbulent
buoyancy flux. The extension of the overlap region reached in our simulations is
more than 100 wall units (κ3/Bs)

1/4, where Bs is the surface buoyancy flux and κ

the corresponding molecular diffusivity (the Prandtl number is one). The buoyancy
fluctuation inside the overlap region already exhibits the −1/3 power-law scaling
with height for the four types of boundary conditions, as expected in the local, free-
convection regime. However, the mean buoyancy gradient and the vertical velocity
fluctuation are still evolving toward the corresponding power laws predicted by the
similarity theory. The second major result is that the relation between the Nusselt and
Rayleigh numbers agrees with that reported in Rayleigh–Bénard convection when the
heated plate is interpreted as half a convection cell. The range of Rayleigh numbers
covered in the simulations is then 5 × 107–109. Further analogies between the two
problems indicate that knowledge can be transferred between steady Rayleigh–Bénard
and unsteady convection. Last, we find that the inner scaling based on {Bs, κ} reduces
the effect of the boundary conditions to, mainly, the diffusive wall layer, the first
10 wall units. There, near the plate, free-slip conditions allow stronger mixing than
no-slip ones, which results in 30 % less buoyancy difference between the surface
and the overlap region and 30–40 % thinner diffusive sublayers. However, this local
effect also entails one global, substantial effect: with an imposed buoyancy, free-slip
systems develop a surface flux 60 % higher than that obtained with no-slip walls,
which implies more intense turbulent fluctuations across the whole boundary layer and
a faster growth.
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Direct numerical simulation of free convection over a heated plate 419

1. Introduction
Turbulent free convection next to a horizontal interface is a common and important

process in nature and engineering, whether it occurs due to variations in the fluid
temperature, composition, or a combination thereof. It often appears in the form of
a boundary layer, extending vertically over a length scale z∗ which is much smaller
than the horizontal one. It is expected that such a system develops an inner layer
close enough to the surface in which z∗, the outer scale, drops out of the local
scalings (Turner 1973; Monin & Yaglom 2007). This inner layer, also referred to
as the surface layer, has been investigated within the context of the convective
boundary layer that grows in the atmosphere under strongly unstable conditions, in
which case z∗ is commensurate with the height of a temperature inversion frequently
capping the turbulence zone (Businger et al. 1971; Panosfky & Dutton 1984; Garratt
1992; Wyngaard 2010). It has also been studied within the scope of Rayleigh–Bénard
convection, z∗ then being the height of the convection cell (Townsend 1959; Belmonte,
Tilgner & Libchaber 1994; Lui & Xia 1998; Fernandes & Adrian 2002; Maystrenko,
Resagk & Thess 2007; du Puits et al. 2007; Reeuwijk, Jonker & Hanjalić 2008b).
Some aspects of the problem were discussed by Prandtl (1932), who considered
precisely the unbounded configuration studied in this paper.

However, both the fundamental understanding and the available data about the
vertical structure in turbulent free convection are still incomplete, especially when
compared to shear-driven wall-bounded turbulent flows (Tennekes & Lumley 1972;
Pope 2000; Jimenez 2012). This last appreciation is arguably due at least in part to
the physics of free convection, which might be intrinsically more complex because
we have to cope with an active scalar and the details of the inner layer participate in
shaping the forcing mechanism (Lohse & Xia 2010). Besides, considerable attention
in Rayleigh–Bénard convection has been drawn to other relevant aspects of the
problem, such as the functional relation between the Nusselt and Rayleigh numbers
and the identification of different regimes (Siggia 1994; Grossmann & Lohse 2000;
Ahlers, Grossmann & Lohse 2009; Stevens, Lohse & Verzicco 2011; He et al. 2012).
Comparisons among the atmosphere, the laboratory and the simulations are further
complicated by the observed strong dependence on the Rayleigh numbers and on
the large-scale structures (du Puits et al. 2007; Reeuwijk, Jonker & Hanjalić 2008a;
Bailon-Cuba, Emran & Schumacher 2010). Available data are also limited. In the
laboratory, it is difficult to obtain accurate measurements inside that relatively thin
inner layer, with simultaneous access to several quantities at several positions. In
field campaigns, a controlled environment is unavailable and additional phenomena
can complicate the problem significantly, e.g. moisture transport and cloud formation
in the atmospheric boundary layer (Emanuel 1994; Stevens 2005; Weidauer, Pauluis
& Schumacher 2010). Moreover, it is rare to find pure free convection and data
are normally extrapolated from mixed convection (Businger 1973; Beljaars 1994;
Grachev, Fairall & Bradley 2000). All this motivates our work, in which we use
direct numerical simulations of temporally evolving turbulent free convection over a
smooth, heated plate to analyse the structure of the flow, especially the inner layer,
under controlled conditions.

One reason to consider the heated plate instead of the two conventional frameworks
mentioned before is to extend that existing research with an unbounded configuration.
Both Rayleigh–Bénard convection and the convective boundary layer constrain the
vertical motion at a height z∗, with a rigid plate or with an inversion, respectively.
In the former case, the aspect ratio is added as a second geometrical parameter. The
removal of those length scales in the heated plate changes the large-scale structure

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

42
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.428


420 J. P. Mellado

and thus the aforementioned interaction between this large-scale organization of the
flow and the near-wall region. Analysis and comparison of systems with different
large-scale structure can contribute to better understanding of its role inside the inner
layer.

A second reason to consider the heated plate is the study of statistically unsteady
convection and transient effects, important because there are many situations in
which the external forcing changes frequently or varies continuously in time, e.g. a
horizontal advection or the diurnal cycle. Therefore, this work complements again
previous studies on Rayleigh–Bénard convection and on the developed stages of a
convective boundary layer working against a stably stratified fluid, which are steady
and quasi-steady problems, respectively. We refer to the latter as quasi-steady because
the time rate of change of the height z∗ is increasingly small compared to the velocity
scale w∗ of the turbulent fluctuations inside the convective boundary layer, namely,
(1/w∗) dz∗/dt ∝ t−2/3 (e.g. Fedorovich, Conzemius & Mironov 2004); in contrast, in
the heated plate, dz∗/dt is always comparable to w∗.

It is also interesting to note that the configuration studied here corresponds to the
convective boundary layer growing into a neutrally stratified fluid. Hence, on the
one hand, this work provides reference data for the limit of small stratification in
the more common case of free convection penetrating into a stably stratified fluid
(Willis & Deardorff 1974; Deardorff, Willis & Stockton 1980; Fernando & Little 1990;
Fedorovich et al. 2004; Sullivan & Patton 2011). On the other hand, it contributes
to the understanding of transients of the convective boundary layer during which
the background stratification is not yet felt by the turbulent motion. An example
of this is the morning transition during which the residual layer is replaced by the
new convective boundary layer (Garratt 1992; Wyngaard 2010). Despite the arguably
short duration of these early stages, it is particularly interesting to investigate their
surface layer because certain statistics therein tend toward a steady vertical structure
in the developed phase, and therefore the initial properties of that layer might be
representative of, and relevant to, the later-time behaviour.

Besides the characterization of the system in terms of basic properties such as
buoyancy, velocity and vorticity, we also discuss the effect of the following boundary
conditions: free-slip or no-slip for the velocity field, and constant buoyancy b0 or
constant buoyancy flux B0 for the buoyancy field. Detailed work on this aspect of the
problem is scarce, despite its relevance. For instance, in turbulent Rayleigh–Bénard
convection, the role of the finite conductivity of the plates (Hunt et al. 2003; Verzicco
2004) and the differences between Dirichlet and Neumann boundary conditions for the
active scalar (Verzicco & Sreenivasan 2008; Johnston & Doering 2009; Stevens et al.
2011) have been addressed only recently. Another example, this time in a geophysical
context, is the air–water interface. Turbulent motion inside the atmosphere during the
day experiences close to no-slip conditions at the bottom and approximately a constant
temperature because of the higher heat capacity of the water. On the other hand,
during the night, a combination between free- and no-slip conditions characterizes
better the interface from the point of view of the sea-surface turbulent layer, along
with a fixed flux imposed by radiative and/or evaporative cooling (Katsaros et al.
1977; Kraus & Businger 1994; Leighton, Smith & Handler 2003). Obviously, the
above problems involve more phenomena than just free convection. Nevertheless,
it is desirable to have a thorough understanding and characterization of simpler
configurations, to be used as a reference; we provide one such reference in this
paper.
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Direct numerical simulation of free convection over a heated plate 421

Case Velocity Buoyancy z0 Grid z+∗ Ra∗ δ+ cb2

NsD No-slip b0 (κ2/b0)
1/3 3072×3072×1536 298 1.8×109 4.2 1.18

FsD Free-slip b0 (κ2/b0)
1/3 2048×2048×1536 329 1.7×109 3.0 1.17

NsN No-slip B0 (κ3/B0)
1/4 2048×2048×1536 274 1.3×109 4.0 1.15

FsN Free-slip B0 (κ3/B0)
1/4 3072×3072×1536 308 1.3×109 2.7 1.21

TABLE 1. Simulations. The second and third columns indicate the boundary conditions in
the velocity, no-slip or free-slip, and in the buoyancy, Dirichlet (constant buoyancy b0) or
Neumann (constant buoyancy flux B0). The corresponding length z0 provides the remaining
reference scales to non-dimensionalize the problem: w0 = κ/z0, a velocity; t0 = z2

0/κ , a
time. B0 = w0b0 relates the parameters B0 and b0 in all cases. The convection length
z+∗ , (3.5), the Rayleigh numbers Ra∗, (3.6), the gradient thicknesses δ, (3.11), and the
power-law coefficients cb2, (3.13), are given at the final time t2.

The paper is organized as follows. In § 2 we summarize the formulation and the set
of simulations used in the analysis. Results are presented in § 3. In § 3.1 we define
the vertical structure of the system, identifying outer and inner layers. In § 3.2 we
describe some major features of the outer layer; the remainder of the paper focuses on
the inner layer. First, some properties at the wall are studied in § 3.3 and the influence
of the different boundary conditions on them are analysed in § 3.4. Thereafter, the
buoyancy, velocity and vorticity profiles are investigated in turn. Concluding remarks
are presented in § 4.

2. Formulation
The system is described in terms of the velocity vector v(x, t), with components

(v1, v2,w) along the directions Ox1, Ox2 and Oz, respectively, and the buoyancy b(x, t),
equal to zero far enough above the plate. The evolution in time of these fields is
determined by

∂v
∂t
+∇ · (v⊗ v)=−∇p+ ν∇2v+ bk, (2.1a)

∇ ·v= 0, (2.1b)
∂b

∂t
+∇ · (vb)= κ∇2b. (2.1c)

The kinematic viscosity is ν, κ is the molecular diffusivity, p is a modified pressure
divided by the reference density, and k is the unit vector along Oz. The system is
statistically homogeneous inside the horizontal planes and the statistics depend on the
distance z to the plate and time t.

The plate is rigid and impermeable (w= 0) and two boundary conditions are studied:
no-slip (vi = 0) and free-slip (∂vi/∂z = 0). In terms of the buoyancy, two different
forcings are considered: constant buoyancy at the wall (b = b0 given) and constant
surface buoyancy flux (−κ∂b/∂z = B0 given). The set of configurations analysed in
this work is summarized in table 1.

The initial velocity field is set to zero, and its mean value remains zero for all times.
The initial condition for the buoyancy is

b(x, 0)= bi

[
1− erf

(√
π

2
z

δi

)]
, (2.2)
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422 J. P. Mellado

where the buoyancy at the surface bi(x1, x2) and the thickness δi(x1, x2) are specified
differently depending on the case. The local vertical buoyancy flux at the surface
corresponding to this initial condition is −κ∂b/∂z = κbi/δi. An initial broadband
perturbation is defined by δi(x1, x2) = (κb0/B0)(1 + ζ(x1, x2)), the random field ζ to
be given. The case of constant buoyancy b0 at the wall, corresponding to a Dirichlet
boundary condition b = b0, is obtained by setting bi(x1, x2) = b0. The case of constant
surface flux B0, corresponding to a Neumann boundary condition ∂b/∂z = −B0/κ ,
is obtained by setting bi(x1, x2) = b0(1 + ζ(x1, x2)). The random field ζ(x1, x2) is
characterized by a zero mean value and a Gaussian power spectral density centred at
some given spatial frequency 1/λ and with a standard deviation equal to 1/(6λ), so
that there is practically no energy with spatial frequencies below 1/(2λ). The phase of
ζ is random.

The problem so defined depends on the parameters {ν, κ, b0} or {ν, κ,B0}, according
to the case, and the corresponding additional sets {λ, ζrms,B0} or {λ, ζrms, b0}
characterizing the initial condition. Hence, the general solution can be expressed in
non-dimensional form in terms of the Prandtl number Pr = ν/κ and non-dimensional
parameters corresponding to the initial condition. In this work, the Prandtl number
is set to 1 in all the cases and we study exclusively the fully developed turbulent
regime that is established after the initial transient, once the initial conditions have
been sufficiently forgotten. We will learn during the paper that some regions of the
system become quasi-steady and others become self-similar inside this fully developed
regime (Tennekes & Lumley 1972; Monin & Yaglom 2007). The initial condition (2.2)
has been explained above in detail simply for completeness in the description of the
simulations; further discussion can be found in the Appendix. Table 1 summarizes the
corresponding reference scales constructed from the controlling parameters for each of
the four configurations (Townsend 1959; Turner 1973).

High-order spectral-like compact finite differences are used to discretize (2.1) on a
structured grid, along with a low-storage fourth-order accurate Runge–Kutta scheme
to advance in time. The discrete solenoidal constraint is satisfied down to machine
accuracy using a Fourier decomposition along the periodic horizontal planes x1Ox2 and
a factorization of the resulting set of equations along the vertical coordinate (Mellado
& Ansorge 2012). The top boundary of the computational domain is placed far enough
from the turbulent region to avoid any significant interaction; no-penetration free-slip
boundary conditions are used there, along with Neumann conditions for the scalar.

The reference grid size is 2048 × 2048 × 1534, where the grid stretching in
the vertical direction in the upper non-turbulent region leads to a height of the
computational domain equal to 0.83L0, if L0×L0 is the horizontal size. The simulations
are stopped when the boundary layer thickness is ∼0.3L0, to avoid finite-size effects
on the results. It is argued in § 1 that cases NsD and FsN (see table 1) are
presumably the most interesting, since they are often used as an approximation (under
certain conditions) to the air–water interaction at the common interface. Therefore, a
larger domain 1.5L0 × 1.5L0 was considered in those two configurations to improve
statistical convergence (i.e. 3072 × 3072 × 1534). The reference Rayleigh number
is Ra0 = b0L3

0/(νκ) = 3.6 × 109, or Ra0 = B0L4
0/(νκ

2) = 6.8 × 1011, depending on
the case. The thickness δi used in the initial condition (2.2) has a mean value
κb0/B0 = 0.0053L0, which corresponds to ∼11 mesh points. The random field ζ

is defined by λ/(κb0/B0) = 4 and the root-mean-square (r.m.s.) is ζrms = 0.1. The
resolution requirements and other aspects of the numerical solution are discussed in
the Appendix.
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FIGURE 1. Visualization inside a vertical plane at the final time t2: (a) scaled buoyancy b/bs;
(b) vertical velocity w+; (c) vertical flux w+b+; (d) logarithm of the local dissipation rate
log10 ε

+
b . The bars in the bottom-left corner indicate, from long to short: convection length z∗,

(3.5); height of the inner layer, 0.4z∗; thickness of the wall diffusive layer, 10 wall units.

3. Results
Figure 1 depicts the turbulent boundary layer inside a vertical plane in terms of the

buoyancy b, the vertical velocity w, the vertical buoyancy flux wb and the local rate
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of scalar dissipation εb = κ |∇b|2. The buoyancy varies between 0 far enough above
the plate and b0 at the plate itself, but a large part of that variation occurs in a very
thin region next to the wall, the diffusive wall layer, and that is the reason to show
only the range 0–0.3b0 in figure 1(a), emphasizing thereby the morphology of the
turbulence inside the bulk of the flow. Next to the wall, we observe the relatively small
ascending plumes, shown in red. The upward motion of these structures is inferred
from figure 1(b). These plumes extend approximately all across the inner layer and
tend to merge into larger thermals as they rise, accelerating but becoming less buoyant
as a result of the mixing with environmental fluid. (The exact definitions of the outer,
inner and diffusive wall layers marked in that figure, as well as the normalization
employed for the fields, will be provided in this section.)

Figures 1(a)–1(c) reveal unambiguously the structural similarity between the
buoyancy and the vertical velocity fields, associating high values of buoyancy with
ascending motions and thus an upwards buoyancy flux. Figures 1(a)–1(c) also reveal
that intermittency characterizes the zone on top of the inner layer: turbulent thermals
alternate with non-turbulent, unmixed fluid entrained from above (Pope 2000). This
feature is illustrated even more clearly by the scalar dissipation rate in figure 1(d),
where those regions of outer fluid are coloured in black and the turbulent/non-turbulent
interface is defined more sharply. The typical lamellar structure of a scalar turbulent
field is also readily observed in that last panel, with variations in εb of several orders
of magnitude across relatively thin regions.

Figure 1 corresponds to case NsD in table 1, with no-slip boundary conditions and
a constant buoyancy imposed at the surface. The other three cases considered in this
study display a similar general structure, the only difference being the details of the
region near the wall. As a function of time, the boundary layer simply thickens. In that
mixing process, turbulence brings relatively cold fluid from above (shown in blue in
figure 1a) near the hot plate below (red), and a dynamic balance is eventually achieved
in which some mean properties within the inner layer become stationary. We focus on
this fully developed turbulent regime.

3.1. Buoyancy flux and vertical structure
The vertical structure can be studied in terms of the mean buoyancy flux

B(z, t)= 〈b′w′〉 − κ∂〈b〉/∂z, (3.1)

where angle brackets indicate horizontal averages and an apostrophe denotes a
turbulent fluctuation. Both turbulent and molecular contributions are plotted in figure 2,
normalized by the surface value

Bs(t)= B(0, t)=−κ∂〈b〉/∂z(0, t). (3.2)

The height z above the wall is measured in diffusion lengths – or wall units – by

z+ = z
(
Bs/κ

3
)1/4

. (3.3)

We follow in this way the notation commonly used for shear-driven wall-bounded
turbulent flows (Tennekes & Lumley 1972; Pope 2000; Jimenez 2012). This
normalization based on {Bs, κ} constitutes the inner scaling and will be used
throughout the paper (Townsend 1959; Fernandes & Adrian 2002). When the buoyancy
flux at the wall Bs is fixed and equal to B0, as occurs for cases FsN and NsN with
Neumann boundary conditions for the buoyancy field, this set of scaling parameters
is of course the same as that presented in table 1. On the other hand, if the mean
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(c)
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FIGURE 2. (Colour online) Profiles of the mean buoyancy flux: (a,b) turbulent contribution
and (c,d) molecular contribution. (a,c) Cases NsD and FsD (Dirichlet, or constant buoyancy)
and (b,d) cases NsN and FsN (Neumann, or constant buoyancy flux). Dashed line, early
time t+1 ' 50; solid line, final time t+2 ' 120. The straight, solid line in (c,d) is cb1 (z+)

−4/3

according to (3.14) using the value cb1 = 0.23 measured in the atmospheric boundary layer
(Sorbjan 1996).

buoyancy at the surface

bs(t)= 〈b〉(0, t) (3.4)

is fixed and equal to the control parameter b0, as occurs in cases FsD and NsD with
Dirichlet conditions, then Bs(t) is not known a priori and it depends on the time t.
However, we will learn below that this surface flux remains approximately constant
after an initial transient, and the scales in table 1 still provide the correct order of
magnitude. The inner velocity and buoyancy scales corresponding to the length scale
(κ3/Bs)

1/4 defined by (3.3) are (Bsκ)
1/4 and (B3

s/κ)
1/4, respectively.

Several regions can be identified in figure 2 based on the relative contribution
from molecular and turbulent transport to the total buoyancy flux, as sketched in
figure 3 and now explained. Close enough to the wall, the molecular flux −κ∂〈b〉/∂z
dominates. It decreases rapidly with height and becomes less than 1–5 % of the total
flux at ∼10 wall units. We will refer to this relatively thin layer as the diffusive wall
region, a term that, once more, has been borrowed from terminology used for shear-
driven boundary layers. The observed width can be explained in terms of marginal
stability (Townsend 1959) or using a surface strain model (Leighton et al. 2003). The
diffusivity κ is important inside it.

A second region that is frequently differentiated next to the wall is the so-called
diffusive sublayer, where the turbulent transport is still negligible compared to the
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Inner layer

Diffusive wall layer

Overlap region

Diffusive sublayer

Buffer layer

Power-law region

Outer layer

0.1 0.4 2.010–210–3

100 6001 10

FIGURE 3. Vertical structure in free convection over a heated plate in terms of both outer
variables z/z∗, with the convection length z∗ defined by (3.5), and inner variables z+, defined
by (3.3); note the logarithmic scale. Simulations reach z+∗ ' 300 at the final time t2. This
sketch follows that commonly used for the shear-driven boundary layer (Pope 2000).

molecular transport. For no-slip cases, figures 2(a) and 2(b) reveal that 〈b′w′〉 accounts
for less than ∼10 % of the total flux for z+ < 1, which suggests using this value as
reference. Alternative definitions of this layer are also available in the literature and
some of them will be used below explicitly. The remaining 90 % of the diffusive
wall region where both molecular and turbulent fluxes are important constitutes the
buffer layer. It is also observed in figure 2(a,b) that free-slip systems have a larger
turbulent contribution at z+ ' 1. This dependence on the boundary conditions of the
slope of 〈b′w′〉 next to the wall can be explained by the leading-order terms in the
Taylor series expansion of the vertical velocity w and the buoyancy b around z = 0.
The impermeability condition leads to the expansion w′ ∝ z, which further reduces to
w′ ∝ z2 for no-slip walls due to the solenoidal constraint at z = 0. Similarly, systems
with a fixed surface buoyancy yield b′ ∝ z, and cases with an imposed buoyancy
flux have a constant non-zero value b′ ∝ brms, to leading order. Hence, we obtain
the following variations next to the wall for the four types of boundary condition in
table 1: case NsD, 〈b′w′〉 ∝ z3; case FsD, 〈b′w′〉 ∝ z2; case NsN, 〈b′w′〉 ∝ z2; case FsN,
〈b′w′〉 ∝ z. These power laws are precisely those observed in figure 2(a,b).

Outside of the diffusive wall region, beyond 10 wall units, we find the outer layer.
This zone is characterized by the convection scale

z∗(t)= 1
Bs

∫
〈b′w′〉 dz, (3.5)

where the integral extends over the whole domain (Deardorff 1970, 1980; Fernandes
& Adrian 2002). The evolution of the system can be discussed in terms of this length
instead of the time. Indeed, the one-to-one correspondence between z∗ and t allows
us to replace the set {κ,Bs, z, t} of independent variables by the set {κ,Bs, z, z∗}, for
any statistic. Then, we can write this dependence non-dimensionally as {z+, z+∗ } or,
equivalently, as {z/z∗,Ra∗}, where the convective Rayleigh number is defined by

Ra∗(t)= (2z∗)
3 2bs

νκ
= (2z+∗ )

3 2b+s , (3.6)
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FIGURE 4. (Colour online) Profiles of the mean buoyancy. (a) The two cases NsD and FsN
at different times: dashed line, t+1 ' 50; dot-dashed line, t+ ' 80; solid line, t+2 ' 120. (b) Plot
of all cases in table 1 at time t+2 : solid line, case NsD; dashed line, case FsD; dot-dashed
line, case NsN; dotted line, case FsN. The thin, solid line in (b) is the profile (3.15) using the
values cb1 = 0.23 and A= 1.1.

having used the condition Pr = 1. (The factor of 2 in front of the length and the
buoyancy is due to the interpretation of the heated plate as half of a convection cell,
and will be explained more thoroughly in the next section.) By definition of the outer
layer, the molecular diffusivity κ , and therefore Ra∗, drop out of the analysis inside
that zone and z/z∗(t) remains as the only independent variable. This outer scaling
implies that the flow exhibits self-similarity as z∗, or equivalently Ra∗, increases with
time. Further discussion is presented in § 3.2. In our simulations, this length scale
grows from z+∗ ' 100 at t+1 ' 50 to z+∗ ' 300 at the final time t+2 ' 120. The Rayleigh
number varies between Ra∗ ' 5× 107 and Ra∗ ' 109 in that same interval; final values
are summarized in table 1. The outer velocity and buoyancy scales corresponding to
the length scale z∗ defined by (3.5) are (Bsz∗)

1/3 and (B2
s/z∗)

1/3, respectively.
So far, the previous regions have been defined based on the relative turbulent and

molecular contributions to the total buoyancy flux. In contrast, the inner layer is
identified based on a quasi-steady behaviour developed in some of the statistics near
the wall. For that purpose, let us consider the sum B of both molecular plus turbulent
fluxes, (3.1). We can infer from figure 2 that B remains approximately constant over a
large extent all the way down to the surface, that is,

〈b′w′〉/Bs − ∂〈b〉+/∂z+ ' 1. (3.7)

The variation is less than 2 % in the no-slip cases and ∼6 % or less with free-slip
walls. The main evolution of that region is simply a broadening – in our simulations,
from ∼40 wall units at t+1 ' 50 to ∼120 at the final time t+2 ' 120. This result implies
an approximately steady mean buoyancy 〈b〉 according to the transport equation
∂〈b〉/∂t = −∂B/∂z. This is corroborated in figure 4(a). The profiles in this figure
show a relatively small 10 % variation close enough to the wall between the early and
the last times, whereas the broadening of the boundary layer within that same interval
of time is of the order of 200 %, from 100 to 300 wall units (note the logarithmic
scale in the horizontal axis). Further, Bs is constant in the cases NsN and FsN, by
definition, and Bs becomes constant, to leading order, in the configurations NsD and
FsD. We have already anticipated this last behaviour in the beginning of this section
and we will devote § 3.3 to its detailed analysis. Altogether, these observations suggest
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that the term z∗(t) containing the time dependence drops out of the set of independent
variables {κ, Bs, z, z∗} inside this region, and the first three variables allow us to
write any functional relation in the form f+(z+). This region is the so-called inner or
surface layer and the expression f+(z+) is the equivalent to the law of the wall in
the shear-driven case (Tennekes & Lumley 1972; Pope 2000). In the heated plate, this
inner layer extends to ∼0.4z∗.

Finally, the area common to both the inner and outer layers is called the overlap
or inertial region and it is characterized by a constant turbulent buoyancy flux
approximately equal to Bs (see figure 2). Different scaling laws have been proposed in
this region and some of them will be thoroughly explored later in § 3.5. In particular, a
power law for the mean buoyancy profile is predicted by similarity theory, which
suggests using the name power-law region to refer to this zone in analogy to
shear-driven configurations, where a logarithmic-law region is defined based on the
corresponding functional form of the mean velocity profile.

The vertical structure discussed hitherto is summarized schematically in figure 3.
Based on that structure, the system evolves as follows. As energy is introduced
continuously through the surface, the turbulent boundary layer broadens in time and
generates increasingly larger scales, but it does so keeping the near-wall structure
approximately constant: figure 3 is only modified in that the end points of the
inner and outer layers (thick lines) move to the right. Concomitantly, the overlap
region thickens proportionally to z+∗ , the outer velocity scale w+∗ = (z+∗ )1/3 increases,
the outer buoyancy scale b+∗ = (z+∗ )−1/3 decreases, the Rayleigh number defined in
(3.6) grows proportionally to (z+∗ )

3, to leading order, and the outer-scale Reynolds
number w∗z∗/ν = (z+∗ )4/3 increases too. The Kolmogorov length η = (ν3/ε)

1/4 remains
approximately constant because of the inviscid scaling of the viscous dissipation rate
ε ' w3

∗/z∗ = Bs (Tennekes & Lumley 1972). In fact, this latter relation indicates that
the Kolmogorov length characterizing the small scales inside the turbulent region is
comparable to the diffusion length z0 characterizing the diffusive sublayer next to the
wall (see table 1), which implies that the resolution requirements imposed by each of
them are similar (see also Fedorovich & Shapiro 2009).

It is noted that, although the different regions have already been introduced in the
literature for similar configurations, we provide here the specific defining heights for
each of them. It is also worth observing that, in geophysical flows, the outer layer
is usually not extended over the inner layer and an overlap region is not explicitly
defined, so that only a local free-convection region as a part of the inner layer is
considered in the discussion (Wyngaard, Coté & Izumi 1971; Garratt 1992). We have
preferred here to follow the convention adopted in shear-driven flows on the basis
that the investigation of parallelisms between the two driving mechanisms – velocity
and buoyancy mean gradients – can provide further insight into each of them, and
we need a common framework (Eckhardt, Grossmann & Lohse 2000, 2007). In this
respect, it is also appropriate to comment on the fact that the logarithmic-law and the
overlap regions in shear-driven systems do not coincide exactly with each other, the
former being slightly broader than the latter (Pope 2000). The current simulations do
not allow us to make an equivalent distinction between the power-law and the overlap
regions in the heated plate, because of either limited statistical convergence or limited
scale separation (moderate Reynolds and Rayleigh numbers).

3.2. The outer layer
We discuss briefly in this section some aspects of the outer layer before moving on
to the analysis of the inner layer, which is the main focus of this paper. Apart from
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the motivations explained in § 1, another reason to concentrate on the inner layer is
merely a technical one: the outer layer is characterized by intermittency and large-
scale structures, and thus the statistical convergence there is less than it is closer to
the wall (see the Appendix). Nonetheless, uncertainties of some properties relevant in
geophysical flows are within 10–15 %, which is small enough to draw some interesting
conclusions.

It is first observed that the definition of the outer scale z∗ varies from author to
author and from case to case. Here we follow Deardorff (1980) and use the integral
definition (3.5) for two reasons. First, because of the neutral stratification in the fluid
above the boundary layer there is no inversion with a more or less well-defined
maximum mean buoyancy gradient or minimum turbulent buoyancy flux which can be
used instead (Garratt 1992; Wyngaard 2010). Second, an integral definition is more
robust than a pointwise one and it appears naturally in the integral analysis of the
transport equations, as shown below. It is also observed that Deardorff (1980) uses a
coefficient 2.5 in front of the integral and we do not. That is partly due to the shape
of the buoyancy flux profile 〈b′w′〉, which has a triangular shape in the case of a
convective boundary layer capped by an inversion while in the case of the heated plate
the shape is more rectangular (recall figure 2). Moreover, visualizations in figure 1
support (3.5) and the discussion presented later in § 3.3 favours this definition too.

The outer scaling described in § 3.1 is confirmed in figure 5. This figure plots
the r.m.s. wrms = 〈w2〉1/2 of the vertical velocity and the r.m.s. v1,rms = 〈v2

1〉1/2 of one
of the two horizontal velocity components at different times (the symmetry of the
problem implies v1,rms = v2,rms). When normalized with the outer, convective scales
for the length z∗ and velocity w∗, profiles at different times collapse on top of each
other, that is, they become self-similar. This self-similar – or self-preserving – regime
occurs in our simulations beyond t+ ' 80. We will see below that inner-layer statistics
approach their corresponding fully developed behaviour earlier in time, around t+ ' 50.
The reason is merely that the outer region involves longer time scales. The maximum
vertical r.m.s. occurs at ∼0.4z∗, which coincides with the upper limit of the inner
layer. The maximum of the horizontal r.m.s. is found closer to the wall or even
at the wall itself (free-slip systems). Last, the variability of the profiles within the
interval z/z∗ = 1–2 also seen in figure 5 illustrates the limited statistical convergence
already mentioned at the beginning of this section. That interval of heights corresponds
precisely to the region of intermittency observed in figure 1.

Deardorff (1970) also proposed that the outer scales for the length z∗, the velocity
w∗ and the buoyancy b∗ could be used to bring together data from different free-
convection configurations, and not only for one individual problem at different times.
This is indeed confirmed by figure 5 too, where the four different cases studied in this
paper are plotted along with data reported in the cloud-top mixing layer. The latter is
a relatively different system in which convection is driven by the evaporative cooling
of the droplets at the horizontal cloud-top boundary in the presence of a strong, thin
inversion (Mellado 2010). When the buoyancy difference across it is large enough, the
inversion mimics the rigid plate in that it restricts the local vertical motion strongly
and remains relatively flat. Then, a convective boundary layer develops downwards
into the cloud, as in figure 1 but upside-down. The only difference from the plate is
that the reference buoyancy flux B0 is not imposed but results from a local equilibrium
at the cloud top. However, once the appropriate reference buoyancy flux is identified,
the two problems are alike, as proposed by Deardorff (1970): the collapse among the
different curves in figure 5 is evident.
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FIGURE 5. (Colour online) Profiles of the velocity r.m.s. using the outer (Deardorff) scaling:
(a,b) vertical component and (c,d) horizontal component, (a,c) Cases NsD and FsD (Dirichlet,
or constant buoyancy) and (b,d) cases NsN and FsN (Neumann, or constant buoyancy flux):
dashed line, early time t+ ' 80; solid line, final time t+2 ' 120. Red lines indicate free-slip
conditions, black indicates no-slip walls. Symbols correspond to evaporatively driven free
convection at the cloud top (Mellado 2010).

There are more analogies among those cases that further support the relevance
of the outer scales in free convection. For instance, an explicit expression for the
convection length z∗(t) can be obtained from the analysis of the transport equation of
the turbulence kinetic energy k = (w2

rms+ 2v2
1,rms)/2. The integral of this equation yields

d
dt
(ckz∗w2

∗)= (1− cε)w
3
∗, (3.8)

having introduced the non-dimensional coefficients

cε = 1
w3∗

∫ ∞
0
ε dz, ck = 1

w2∗z∗

∫ ∞
0

k dz. (3.9)

In this expression, ε is the viscous dissipation rate. Details of the derivation can be
found in Mellado (2010) and similar approaches have also been employed in the case
of the convective boundary layer growing into a stratified fluid (Tennekes & Driedonks
1981; Zilitinkevich 1991; Fedorovich et al. 2004). In that case, the upper limit in the
integrals above are set at the inversion height and certain assumptions are necessary
regarding the turbulent transport term there, but the essence of the analysis is the same
as here. The key point is that the coefficients (3.9) tend towards a constant value
for a large enough Reynolds number. The ratio ck does so because the convection
scales w∗ and z∗ characterize the turbulent motion of the outer, convection layer and
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FIGURE 6. Temporal evolution of the parameters ck and cε in the transport equation (3.8):
solid line, case NsD; dashed line, case FsD; dot-dashed line, case NsN; dotted line, case FsN.

this layer accounts for almost all of the system at later times. Such a behaviour is
observed in figure 6 beyond t+ ' 80. The approximately steady evolution of cε after
that initial transient, shown in figure 6(b), represents the inviscid scaling of the viscous
dissipation rate (Tennekes & Lumley 1972).

Then, the assumption of constant coefficients and the identity w3
∗ = Bsz∗ leads to

dz∗
dt
= f2w∗, f2 = 3(1− cε)/(5ck), (3.10)

provided that Bs is constant or slowly varying. Similarly, we obtain explicitly the
growth law z∗ ' [(2f2/3)

3 Bst3]1/2. In principle, the growth-rate coefficient f2 is of order
one but could vary from case to case. However, this variability is relatively small and
f2 ' 0.48–0.54 is found in the cloud-top mixing layer while changing the controlling
parameters by a factor of 2. We find f2 ' 0.4–0.5 for the four configurations of the
heated plate studied here. As occurred with the profiles in figure 5, the similarity of
the numerical values of f2 among different cases is striking.

These values of f2 are larger than previous estimates derived from related
configurations. Deardorff et al. (1980) estimated f2 ' 0.24 from tank experiments.
The values summarized in Tennekes & Driedonks (1981) based on field data are even
lower, of the order of 0.14. There are several possible reasons for these differences,
e.g. deviations from complete neutral conditions, the exact definition of z∗ or the
role of the horizontal wind. In this respect, direct numerical simulations can be used
to clarify some of these aspects and set accurate reference values. Our results have
reduced the uncertainty to ∼10–15 % in both coefficients ck and cε, as observed in
figure 6, and to ∼20 % in f2. It is difficult to ascertain if this variability reflects a
systematic dependence on the boundary conditions, or if it is just a consequence of
the limited statistical convergence inside this outer region or the moderate Rayleigh
numbers achieved in our simulations. Larger domains will answer this question in the
future.

The remainder of the paper is devoted to the analysis of the inner layer.

3.3. Wall values and dynamical balance
The gradient thickness

δ(t)= bs

Bs/κ
(3.11)
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FIGURE 7. Temporal evolution of (a) the gradient thickness δ, equation (3.11) and (b) the
compensated Nusselt number as a function of the Rayleigh number: solid line, case NsD;
dashed line, case FsD; dot-dashed line, case NsN; dotted line, case FsN.

introduced by Belmonte et al. (1994), where bs(t) is the mean buoyancy at the
wall, defined in (3.4), and Bs(t)/κ is the magnitude of the mean buoyancy gradient
at the wall, defined in (3.2), proves useful in what follows. It is equal to the
height at which the line tangent to 〈b〉 at the wall crosses the line 〈b〉 = 0. From
its definition and the inner scaling introduced in the § 3.1, we obtain the identity
δ+ = b+s , where δ+(t) = δ (Bs/κ

3)
1/4 and b+s (t) = bs (κ/B3

s )
1/4. It is easy to show

that Bs/B0 = (δ/z0)
−1 = (δ+)−4/3 for cases NsD and FsD with an imposed buoyancy

bs = b0, using thereby the (constant) parameters z0 and b0 from table 1 explicitly. For
cases NsN and FsN with an imposed buoyancy flux Bs = B0, this relation is equivalent
to bs/b0 = δ/z0 = δ+. Therefore, all the information regarding those mean surface
properties is contained in δ+.

The temporal evolution of δ+ is plotted in figure 7(a) and some important aspects
of it are readily noticed. First, the values of order one confirm that the inner scaling
is the appropriate one for δ. This result, in turn, indicates that this variable provides
another measure of the diffusive-layer thickness, one often used in Rayleigh–Bénard
convection (Belmonte et al. 1994; Lui & Xia 1998; Maystrenko et al. 2007; Stevens,
Verzicco & Lohse 2010). Final values of δ+ are collected in table 1. Second,
figure 7(a) also shows that δ+ remains approximately constant after the initial transient,
between t+1 ' 50 and t+2 ' 120 (for comparison, z∗ grows by a factor of 3 in that
same interval of time). This steady behaviour quantifies the dynamical balance already
mentioned in this section because of the equivalence between δ+ and Bs in the
Dirichlet cases NsD and FsD, and between δ+ and bs in the Neumann cases NsN and
FsN: turbulence entrains outer fluid with low buoyancy and brings it close to the wall,
where its buoyancy is increased, and it does so at that particular rate for the buoyancy
and its flux at the surface to be constant, to leading order.

Quantitatively, the values of δ+ obtained here for the heated plate agree with
previous results from related configurations. For this comparison, it is appropriate
to introduce the Nusselt number Nu∗ = Bs/(κbs/z∗) = z∗/δ and to calculate the
compensated Nusselt number Nu∗Ra−1/3

∗ , which is related to the gradient thickness
by Nu∗Ra−1/3

∗ = (2δ+)−4/3. This identity follows from the definition (3.6) and from the
identity δ+ = b+s . In figure 7(b) we plot this compensated Nusselt number as a function
of the Rayleigh number itself, as is customary in the study of Rayleigh–Bénard
convection. It is then revealed that the data for no-slip walls vary between 0.06
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and 0.07 within the interval Ra∗ ' 5 × 107–109 achieved in the present simulations.
These values agree with measurements and simulations in Bénard cells (Siggia 1994;
Ahlers et al. 2009; Stevens et al. 2011). The current results are also consistent
with previous work in systems with free-slip conditions. Katsaros et al. (1977)
measured NuRa−1/3 ' 0.12 for Ra ' 109 in tank experiments where convection was
driven by the cooling at the air–water interface. Leighton et al. (2003) performed
direct numerical simulations of this configuration at Ra ' 107 and obtained δ+ ' 3.5.
More recently, Schumacher (2009) has reported compensated Nusselt numbers ∼0.12
for Ra ' 108. All these values compare favourably with the data from the heated
plate, indicating that turbulent free-slip systems increase the buoyancy transfer rate
with respect to pure conduction more than no-slip configurations. This aspect of the
problem is important and it is further discussed in § 3.4.

It is also worth noting at this point that the mild but monotonic increase of δ+ with
time depicted in figure 7(a) (equivalently, the decrease in the compensated Nusselt
number in figure 7b) is equally a distinctive feature of Rayleigh–Bénard convection
(Siggia 1994; Ahlers et al. 2009; Bailon-Cuba et al. 2010; Stevens et al. 2011). In
agreement with these references, if a relation Nu∗ ∝ Raγ∗ is fitted to our data between
Ra∗ = 5 × 107 and 109, values of the exponent γ are ∼0.28–0.30 instead of 1/3,
closer to the result γ = 2/7 proposed by Castaign et al. (1989). Physically, this trend
translates into a gentle but persistent modification of the dominant steady behaviour
discussed so far: an increase in time of the buoyancy at the wall when the surface
buoyancy flux is imposed, and a decrease in time of the flux when the buoyancy at the
wall is fixed.

All these similarities between stationary Rayleigh–Bénard convection and unsteady
convection indicate that properties from the former can be transferred to the latter,
once the fully developed state is reached. These results also support the use of z∗ as
an outer scale, (3.5), and justifies the factor 2 in front of the length and the buoyancy
scales used in the definition of the Rayleigh number, (3.6). The physical explanation
for this factor is that the heated plate studied here can be interpreted as half the
convection cell (Adrian 1996). In the former, the decrease of 〈b〉 with z from bs at the
wall towards b = 0 far from it occurs across a distance z∗. In the latter, 〈b〉 falls from
the wall to the bulk value in the centre across half the cell height, and that bulk value
is equal to half the buoyancy difference between the plates.

3.4. Effect of the boundary conditions on the wall values
In addition to the observed dynamical balance and the resulting analogy between
unsteady and steady convection presented so far, another major aspect of the problem
is the influence that different boundary conditions have on δ+ (or, equivalently, on
the compensated Nusselt number). With respect to the conditions imposed on the
buoyancy field, the system forced with a constant buoyancy behaves similarly to that
forced with a constant flux: ∼5 % variation for no-slip walls and ∼10 % for free-slip
walls, according to figure 7(a) (see also table 1). In terms of the Nusselt number,
figure 7(b), this means an increment of ∼7 and 15 %, respectively, when a constant
surface flux is fixed. Notwithstanding the arguably small magnitude of this variation,
this result differs from those reported in convection cells for similar Rayleigh numbers,
where the sensitivity of the Nusselt number to this particular boundary condition is
found to be negligible, at least for no-slip configurations (Johnston & Doering 2009;
Stevens et al. 2011). The offset of ∼7 % observed here is quite robust through time
and larger than uncertainties associated with the numerical simulation, which are
shown in the Appendix to be less than 3 %. It would be interesting to learn if those
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discrepancies are a consequence of the different large-scale organization of the flow
in the different configurations, and if they diminish as the Rayleigh number increases
beyond the values attained in these simulations.

The effect of the boundary condition imposed on the velocity field is, on the other
hand, remarkable. Free-slip conditions lead to 30 % smaller δ+, approximately (see
table 1), which translates into a larger Nusselt number by ∼60 % (see figure 7b). The
same result is observed in convection cells: the Nusselt number reported by Schmitz
& Tilgner (2009) for free-slip conditions is between 60 and 70 % larger than the same
case with no-slip walls studied later by those same authors in Schmitz & Tilgner
(2010) (see their reference case without rotation at Ra = 107 and Pr = 7). A similar
increase of the rate of heat transfer is also observed by Julien, Legg & McWilliams
(1996) in rapidly rotating configurations. This behaviour is similarly reported in earlier
work, as reviewed by Katsaros et al. (1977).

Because of the relation b+s = δ+, this dependence entails immediately a smaller
normalised mean buoyancy at the surface for free-slip conditions. This is clearly
shown in figure 4(b), where the mean profiles 〈b〉 at the final time t2 are plotted:
the inner scaling based on {Bs, κ} collapses all the curves on top of each other
inside the overlap region, but the effect of having free-slip conditions penetrates all
across the diffusive wall layer, the first 10 wall units where the strong variation
of 〈b〉 concentrates. Quantitatively, for cases with no-slip walls, the mean buoyancy
drops from the surface value bs to ∼0.18bs at 15 wall units; for cases with free-slip
conditions, that drop is less pronounced, from bs to ∼0.25bs.

This effect has important consequences. For a fixed surface flux B0, it means that a
significantly smaller mean buoyancy at the wall bs will be measured with free-slip than
with no-slip conditions, ∼30 % smaller (e.g. at the air–water interface: Katsaros et al.
1977; Leighton et al. 2003). This is consistent with the fact that free-slip systems do
not restrict the horizontal motion at z = 0, which leads to stronger mixing next to the
surface and thus to a more effective reduction of the mean buoyancy near the wall
toward the far-field value. The measured gradient thickness δ is also ∼30 % smaller,
which increases the resolution requirements to capture the corresponding structures.

Equivalently, for a fixed buoyancy b0 at the wall, the higher turbulence intensity
next to the surface with free-slip conditions increases the buoyancy transport in that
region and eventually Bs itself. This is consistent with the smaller δ+ observed for the
configuration FsD compared to NsD and the relation Bs/B0 = (δ+)−4/3. The physical
interpretation of the profiles in figure 4(b) in this situation, where we fix the buoyancy
at the surface, is that the buoyancy inside the overlap region is ∼30 % higher in the
case of free-slip walls (simply multiplying the two curves for cases NsD and FsD
by (B3

s/κ)
1/4 so that both share a common value b = b0 at z = 0). The corresponding

reduction of the thickness δ of the diffusion layer is ∼40 % and the increase in the
measured flux Bs is 60 %. This last observation is very relevant: free-slip boundaries
lead to a larger Bs, i.e. an increase of the rate at which energy is introduced into
the system, which leads to a modification of global properties. In particular, from
the scaling law z∗ ∝ (Bst3)

1/2 and the definitions w∗ = (Bsz∗)
1/3 and b∗ = (B2

s/z∗)
1/3

discussed in §§ 3.1 and 3.2, it means a faster growth of the convective boundary layer
and stronger fluctuations inside it for a given value of z∗, that is, for a given height of
the turbulent region.

The effect of the velocity boundary condition on the near-wall structure underscored
during the last paragraphs is portrayed in figure 8. The buoyancy field inside the
plate at the final time t2, as seen from above, is visualized there for the two systems
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–1 0 1 2 3–2

(a)

(b)

FIGURE 8. Normalized buoyancy (b− 〈b〉)/brms inside a domain 3z∗ × 2z∗ of the plate at the
final time t2: (a) no-slip conditions, case NsN; (b) free-slip conditions, case FsN. The white,
longer bar in the top-left corner indicates the height of the inner layer, 0.4z∗, and the shorter
one indicates the thickness of the diffusive wall layer, 10 wall units.

NsN and FsN with an imposed flux B0, the first one with no-slip walls and the
second one with free-slip conditions. (The asymmetric range between bs − 2brms and
bs + 3brms used in that figure is due to the positive skewness of the corresponding
probability distribution function.) There are obvious similarities as well as some
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differences between the two cases. As similarities, both cases reproduce coherent
structures common to free convection: we observe cells of relatively low buoyancy
fluid associated with descending currents and convergence lines of higher buoyancy
defining the boundary of those cells. From the reference bars included in the figure,
we infer that the typical diameter of the cells is comparable to the height of the
inner layer, ∼0.4z∗. We can also infer that the typical width of the convergence
lines is a few wall units, a fraction of the diffusive wall layer and thus comparable
to δ, the gradient thickness (Asaeda & Watanabe 1989; Theerthan & Arakeri 2000;
Flack, Saylor & Smith 2001; Shishkina & Wagner 2008). The convergence lines
constitute the base of sheet-like updraft motion transporting relatively high buoyancy
fluid, the plumes identified in figure 1. Visualizations at different heights within
the diffusive wall layer (not shown) also indicate the formation of mushroom-like
plumes as those sheet-like plumes collide with each other, in agreement with recent
analysis in Rayleigh–Bénard convection (Shishkina & Wagner 2006; Zhou, Sun & Xia
2007; Shishkina & Wagner 2008; Schumacher 2008, 2009). The same morphology
(convergence bands, updraft curtains, dust devils) has often been observed in the
atmospheric boundary layer (Stull 1988).

However, there are also differences between figures 8(a) and 8(b). In free-slip
systems, there exists a tendency to thinner sheet-like plumes between the convective
cells and a enhanced vorticity inside the mushroom-like plumes at the nodal points
of the cellular network. This observation is consistent with the formation of stronger
horizontal near-wall currents, a recurrent argument throughout the paper that helps
to explain several features: thinner convergence lines as those currents collide with
each other; faster horizontal jet-like velocities along them and thereby stronger vertical
vorticity; enhanced mushroom-like plumes in the convergence nodes; faster ascent
currents inside the plumes. Eventually, it also explains the larger values of the Nusselt
number, since the plumes are responsible for a large amount of the transport of
buoyancy away from the plate (Shishkina & Wagner 2008). This phenomenology
is supported by the buoyancy, velocity and vorticity r.m.s. profiles discussed in the
following sections.

3.5. Buoyancy profiles

The vertical variation of the buoyancy r.m.s. brms = 〈b′2〉1/2 in cases NsD and FsD
with an imposed buoyancy b0 at the wall, presented in figure 9(a), is characterized by
a conspicuous maximum within the diffusive wall layer followed by a monotonic
decrease, first smoothly across the inner layer and then more abruptly across
the remaining part of the outer layer. The location of that maximum remains
approximately constant in time at a height δrms comparable to, though smaller than,
the gradient thickness δ, as shown in figure 10(a). This relation agrees with results
from Rayleigh–Bénard convection (Townsend 1959; Belmonte et al. 1994; Maystrenko
et al. 2007; Stevens et al. 2010), although differences by a factor of two have also
been reported (du Puits et al. 2007). On the other hand, the near-wall structure is
very different if a surface buoyancy flux B0 is imposed: figure 9(b) reveals that the
whole diffusive sublayer contains buoyancy fluctuations, in spite of molecular transport
dominating the system in that narrow region. There exists a slight maximum at ∼2–3
wall units, also observed by Leighton et al. (2003) beneath an air–water interface and
by Stevens et al. (2011) next to a no-slip wall, but the relative variation in brms is only
2–3 %, which is comparable to the uncertainty due to finite size effects and statistical
convergence in our simulations, and therefore inconclusive.
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No-slip
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Constant buoyancy
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FIGURE 9. (Colour online) Profiles of buoyancy r.m.s. (a) Cases NsD and FsD (Dirichlet,
or constant buoyancy) and (b) cases NsN and FsN (Neumann, or constant buoyancy flux):
dashed line, early time t+1 ' 50; solid line, final time t+2 ' 120. The straight, solid line is
cb2 (z+)

−1/3 according to (3.13) using the values cb2 shown in table 1.

(b)

0.1

0.2

0.3
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FIGURE 10. Temporal evolution of (a) the height of the maximum buoyancy r.m.s. and
(b) the magnitude itself normalized by the mean surface value: solid line, case NsD; dashed
line, case FsD; dot-dashed line, case NsN; dotted line, case FsN.

The temporal evolution of the maximum buoyancy fluctuation normalized with the
mean surface buoyancy bs, plotted in figure 10(b), tends to a constant between 0.2 and
0.3, depending on the boundary conditions. These turbulence intensities, in particular
the value 0.2 with no-slip walls, are comparable to those obtained in Bénard cells,
which vary between 0.1 and 0.2 (Belmonte et al. 1994; Maystrenko et al. 2007; du
Puits et al. 2007; Verzicco & Sreenivasan 2008). (Recall that bs in the current system
is equivalent to half the buoyancy difference between the plates in the convection
cell, and a factor of 2 needs to be taken into account when comparing this statistic
between the two configurations.) It is also seen that forcing the system with a constant
flux leads to intensities 30–40 % higher than those obtained with a constant buoyancy,
consistent with the fact that those profiles need not fall to zero at the wall. In
particular, the values in the interval 0.26–0.28 obtained here with no-slip conditions
agree with the results obtained in convection inside a cylinder (Verzicco & Sreenivasan
2008; Stevens et al. 2011).

We now turn to the discussion of the overlap region between the inner and outer
layers, which approximately corresponds to 10 < z+ < 120 in our simulations at the
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final time t2. Similarity theory predicts that molecular properties drop out from the set
of independent variables {κ,Bs, z} characterizing the inner layer, and some statistics
can be expressed solely in terms of Bs and z (Prandtl 1932; Obukhov 1946; Priestley
1954). This hypothesis leads to the introduction of the local, free-convection scales

wf (z)= (Bsz)
1/3, bf (z)= (B2

s/z)
1/3
, (3.12)

which may be applied to normalize different statistics (Wyngaard et al. 1971; Garratt
1992).

In terms of the buoyancy fluctuation, this theory yields

brms = cb2bf = cb2 (B
2
s/z)

1/3
, (3.13)

where cb2 is a constant of order one. It is confirmed by figure 9. A curve
b+rms = cb2 (z+)

−1/3 has been fitted in the range 10 < z+ < 120 at the final times, and
the values of the coefficient cb2 for the different cases are included in table 1. They
are indeed of order one for all the boundary conditions, the observed interval 1.1–1.2
agreeing reasonably well with the range 1.3–1.4 reported in the literature (Wyngaard
et al. 1971; Stull 1988).

The power law brms ∝ z−β , however, has often been a matter of debate. A faster
decay rate was documented in early work on Rayleigh–Bénard convection, with
exponents β varying between 0.6 and 0.8 instead of 1/3 (Townsend 1959; Belmonte
et al. 1994). Thus, alternative scalings have been proposed, in particular β = 1/2
and logarithmic relations (Adrian 1996; Fernandes & Adrian 2002); we do not find
any of these scalings. Plausible causes for this dispersion of results are the influence
of the large-scale coherent motions imposed by a specific geometry and Rayleigh
number effects. The former explanation was considered by Belmonte et al. (1994) and
has been confirmed more recently by Maystrenko et al. (2007), who observe a 20 %
variation in β for Ra ' 107 depending on the position in their rectangular cell where
the measurements were taken. Similarly, du Puits et al. (2007) find a non-monotonic
variation in β of ∼25 % as they change the aspect ratio from 1 to 10 in their
cylindrical cell, but unfortunately the Rayleigh number is not kept constant in this
set of experiments. Regarding the dependence on the Rayleigh number, Maystrenko
et al. (2007) report a strong one, with β decreasing from 0.63–0.77 at Ra' 5× 107 to
β ' 0.43–0.44 at Ra ' 6 × 108, closer to the theoretical prediction β = 1/3. Du Puits
et al. (2007) observe even smaller values, between 0.30 and 0.47, for higher Rayleigh
numbers, between 109 and 1011. This behaviour suggests that the overlap region where
the classical similarity theory applies might not be broad enough for the moderate
Rayleigh numbers considered in the early work. Our results support this interpretation.
Figure 2(a,b) indicates that the overlap region extends approximately between 10 and
40 wall units at t1, when Ra∗ ' 5 × 107. This is certainly too thin a region, still
comparable in size with the diffusive wall layer. Consequently, the profiles in figure 9,
in particular those corresponding to the cases with no-slip boundary conditions, do not
yet show a well-established power law at that early time. Actually, a variation close to
z−1/2 could be proposed between the maximum brms and 10 wall units, but this would
be inappropriate because that zone still belongs to the diffusive wall layer and not
to the overlap region. For later times t2, for which Ra∗ > 109, the overlap region is
broader and then the exponent β = 1/3 is observed.

In contrast to the buoyancy fluctuation discussed so far, the local, free-convection
scaling (3.12) is not yet established in the mean buoyancy profiles. This scaling can be
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written in terms of the derivative (e.g. Garratt 1992) as

z

bf

∂〈b〉
∂z
=−cb1, (3.14)

which implies ∂〈b〉+/∂z+ = −cb1 (z+)
−4/3 or the equivalent expression for the mean

buoyancy itself,

〈b〉+ = A+ 3cb1[(z+)−α −1], (3.15)

with α = 1/3 and A a constant of integration. Relation (3.14) is included in
figure 2(c,d) using the value cb1 = 0.23 estimated by Sorbjan (1996) from the
atmospheric data corresponding to the 1968 Kansas field program (Businger et al.
1971; Wyngaard et al. 1971). The profile (3.15) is included in figure 4(b), having
used a value A = 1.1. It is seen that the order of magnitude obtained from the
simulations inside the first half of the overlap region compares favourably with that
of the measurements, and there is certain tendency towards the result from similarity
theory, but it is equally observed, particularly in figure 2(c,d), that a clear power law
does not yet exist.

This difficulty in obtaining a well-defined scaling in the mean buoyancy is
also shared in laboratory and field observations. A thorough review of laboratory
measurements of the exponent α is provided by du Puits et al. (2007). Early work by
Townsend (1959) favoured α = 1 according to the Malkus theory instead of α = 1/3
according to the similarity theory. More recently, measurements closer to α = 1/2 have
been reported (Maystrenko et al. 2007; du Puits et al. 2007), but these values were
probably obtained within the buffer layer and not within the overlap region. Following
the discussion above about the r.m.s., one possible explanation for this difficulty is
that the overlap region is still too shallow and higher Rayleigh numbers are necessary,
apparently higher for 〈b〉 than for brms. Nevertheless, in atmospheric research, where
the Rayleigh numbers are much higher, available data for the exponent α are also
scattered between 1/3 and 1/2 (Businger et al. 1971; Grachev et al. 2000). In this
geophysical context, the variability has been attributed to the difficulty of having
pure free convection, in addition to the sensitivity to the mean shear next to the
surface being stronger in the mean profiles 〈b〉 than in the fluctuation profiles brms

(Businger 1973). Another possible explanation might be that the outer scales have a
weak influence on the r.m.s. but a strong one in the mean gradient. In this respect,
it is worth noting that such an interaction between the inner and outer layers is
observed not only in free convection, but also in shear-driven wall-bounded flows
(Jimenez 2012). Direct numerical simulations, where controlled conditions are possible,
are clearly advantageous in this respect, and future work with larger computational
domains, and therefore a broader overlap region, could address this issue.

3.6. Velocity profiles
Some aspects of the velocity field have already been discussed in § 3.2 using the
outer scaling (see also figure 1b). In this section, we analyse the r.m.s. profiles
of the vertical and the horizontal components using the inner scaling. The vertical
r.m.s. wrms = 〈w2〉1/2, plotted in figure 11(a,b), is zero at the boundary because of the
no-penetration condition and increases within the diffusion sublayer according to the
Taylor expansions wrms ∝ z2 in the no-slip cases NsD and NsN and wrms ∝ z in the
free-slip cases FsD and FsN. At ∼10 wall units, the profiles incline towards the power
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FIGURE 11. (Colour online) Profiles of the velocity r.m.s.: (a,b) vertical component and
(c,d) horizontal component. (a,c) Cases NsD and FsD (Dirichlet, or constant buoyancy)
and (b,d) cases NsN and FsN (Neumann, or constant buoyancy flux): dashed line, early
time t+1 ' 50; solid line, final time t+2 ' 120. The straight, solid line in (a,b) is cw2 (z+)

1/3

according to (3.16) using the interval of values cw2 measured in the atmospheric boundary
layer (Wyngaard et al. 1971; Stull 1988).

law

wrms = cw2wf = cw2 (Bsz)
1/3 (3.16)

predicted by the similarity theory for the overlap region. However, despite an incipient
trend towards this scaling, a clear 1/3 power law is not yet established for the
Rayleigh numbers achieved in these simulations, of the order of 109. This is somewhat
surprising because we have learnt before that 〈b′w′〉 is constant inside that layer
and that brms ∝ z−1/3: it implies that the correlation coefficient between b and w is
still changing with height. Nonetheless, the prediction (3.16) has been included in
figure 11(a,b) using the interval cw2 = 1.1–1.34 reported in atmospheric measurements
(Wyngaard et al. 1971; Stull 1988), and it shows certain agreement with the data from
the simulations, especially with no-slip walls. Alternative scalings have been tested as
was done for the buoyancy field, in particular wrms ∝ ln z (Fernandes & Adrian 2002),
but also without success.

With respect to the temporal evolution of wrms, the maximum value continuously
increases and its location moves farther away from the surface as the boundary
layer broadens, since both properties are proportional to the outer scales w∗ and
z∗, respectively (recall figure 5a,b). On the other hand, for a fixed height z inside
the overlap region, wrms asymptotes to a constant as the system evolves in time, as
occurred with the buoyancy statistics discussed in the previous sections.
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In contrast, the horizontal fluctuations do not become steady next to the wall. This
is shown unequivocally in figure 11(c,d) plotting the r.m.s. v1,rms = 〈v2

1〉1/2 of the
velocity component along the Ox1 direction. The peak occurs at the plate for free-slip
conditions and increases monotonically in time. With no-slip conditions, that growing
maximum is off the plate and moving upwards, but still inside the diffusive wall
region at Ra∗ ' 109. In fact, figure 5(c,d) suggests that v1,rms scales inside the inner
region with the outer, convective velocity w∗(t) instead of doing it with the local, free-
convection scale wf (z), in agreement with observations in atmospheric flows at much
larger Rayleigh numbers (Panofsky et al. 1977; Garratt 1992). The implication of this
time dependence is that outer-scale characteristics penetrate all across the system down
to the surface, as already noted in the previous section. Another prominent signature
of the large-scale, coherent structures inside the near-wall region is the cellular pattern
at the surface itself seen in figure 8, the diameter of those cells being comparable to
the inner-layer height. This behaviour is remarkable because similarity theory assumes
precisely that z∗ is irrelevant inside the inner layer: some statistics seem to follow that
assumption well enough for the corresponding scalings to be obtained, whereas some
other statistics react more strongly to the outer variables.

In terms of the effect of the boundary conditions, the velocity statistics corroborate
the main conclusions drawn before from the study of the buoyancy statistics. First,
the normalization with inner variables restricts the differences to the near-wall region.
Surface properties penetrate into the overlap region slightly deeper in the velocity field
than in the buoyancy, as inferred from the comparison of figure 11 with figure 9.
Second, with respect to the boundary conditions for the buoyancy field, the difference
between forcing the system with constant buoyancy or constant flux is minor: the
latter leads to ∼10 % smaller intensities in the horizontal fluctuation and there is
no significant effect in the vertical fluctuation. Third and most important, boundary
conditions for the velocity field modify the near-wall region markedly: free-slip
systems have stronger velocity fluctuations and thus more intense mixing in that
zone, as noted earlier while discussing the gradient thickness δ, the planform structure
in figure 8 and the turbulent fluctuation brms. This is most evident in the horizontal
component, figure 11(c,d), which attains its maximum precisely at the surface. In the
case of the vertical component, figure 11(a,b), the difference is also maximum within
the diffusive sublayer because w grows proportionally to z instead of z2 with free-slip
walls, and thus we find there values of wrms up to 4–6 times larger than in the no-slip
case. This difference decreases to ∼8 % in the lower part of the outer layer, at ∼20
wall units in our simulations, and beyond that distance both curves tend to collapse on
top of each other; similar behaviour is observed in v1,rms.

3.7. Vorticity profiles
The last property discussed in this paper is the vorticity, interesting because it
emphasizes the differences in the near-wall region between free- and no-slip boundary
conditions and because it provides insight into the local kinematics of the flow. The
vorticity, like the velocity earlier, is discussed in terms of the r.m.s. ωz,rms = 〈ω2

z 〉1/2
of the vertical component and the r.m.s. ω1,rms = 〈ω2

1〉1/2 of the horizontal component
along the Ox1 direction (the symmetry of the problem implies ω1,rms = ω2,rms). Their
profiles are presented in figure 12.

Similarly to the velocity, the effect of having constant buoyancy or constant flux as
boundary condition is negligible compared to the influence of having free- or no-slip
walls. This influence is predominantly restricted to the diffusive wall layer, and the
curves collapse on top of each other far enough above the plate when normalized
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FIGURE 12. (Colour online) Profiles of the vorticity r.m.s.: (a,b) vertical component and
(c,d) horizontal component. (a,c) Cases NsD and FsD (Dirichlet, or constant buoyancy) and
(b,d) cases NsN and FsN (Neumann, or constant buoyancy flux): dashed line, early time
t+1 ' 50; solid line, final time t+2 ' 120.

with Bs and κ . It is also observed that the influence of the boundary conditions in the
vertical component ωz,rms penetrates into the overlap region slightly deeper than in the
horizontal one. This behaviour is opposite to that of the velocity (see figure 11), but
it is consistent with it because vertical velocity fluctuations are related to horizontal
rotational motions, by definition.

One prominent difference, however, between the vorticity and the velocity is that
the former approaches isotropy towards the end of the inner region: ω+1,rms = ω+2,rms '
ω+z,rms ' 0.45–0.50 at z+ ' 100. The velocity field, on the other hand, is strongly
anisotropic there: wrms/v1,rms ' 1.7–1.8 (see figure 11, or figure 5 at z/z∗ ' 0.4).

The vorticity field becomes conspicuously anisotropic near the wall. In the case of a
free-slip configuration, the vertical component in figure 12(a,b) remains relatively large
all across the diffusive wall layer, as anticipated before while discussing figure 8 in
§ 3.4. The flat character of those profiles has been also documented by Schumacher
(2009). This component of the vorticity vector has its source in the jet-like horizontal
velocities along the convergence lines inside that near-wall region (Shishkina &
Wagner 2008) and it is therefore consistent with higher values of v1,rms. The horizontal
component ω+1,rms, on the other hand, falls to zero at the surface, by definition. This
behaviour is reversed with no-slip walls, where the vertical component is forced to
be zero at the surface. As expected, the no-slip condition constitutes in this case an
intense source of horizontal vorticity, as reflected in figure 12(c,d).

To conclude, the temporal evolution in figure 12 provides a measure of the degree
to which the inviscid scaling of the viscous dissipation rate ε is achieved in our
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FIGURE 13. Temporal evolution of the vorticity r.m.s.: (a) vertical component and
(b) horizontal component: solid line, case NsD; dashed line, case FsD; dot-dashed line, case
NsN; dotted line, case FsN. In (a), no-slip cases correspond to the maximum in figure 12(a,b),
whereas free-slip cases indicate wall values. In (b), no-slip cases correspond to wall values,
whereas free-slip cases correspond to the maximum in figure 12(c,d).

simulations because of the relation ε/ν ' ω2
rms = ω2

z,rms + 2ω2
1,rms. The integral form

of this property has already been discussed in terms of the parameter cε in § 3.2
and we consider it here locally, at each height. The previous relation follows from
the identity ε/(2ν) = ω2

rms/2 + ∂2(w2
rms)/∂z2 and the scaling ∂2(w2

rms)/∂z2 ' w2
∗/z

2
∗ =

(Bsz∗)
2/3 /z2

∗ = (z2
∗/Bs)

−2/3, which shows that this last term becomes vanishingly small
as the boundary layer broadens. The inviscid scaling ε ' w3

∗/z∗ = Bs then implies that
the vorticity r.m.s. becomes steady or quasi-steady, since the surface flux Bs is steady
or quasi-steady itself.

Figure 12(c,d) confirms this prediction for the horizontal components inside the
overlap or inertial region, beyond 10 wall units approximately. On the other hand, the
variation in the vertical component r.m.s. between t1 and t2 is still non-negligible, but
the expected tendency is displayed in figure 13, which plots the continuous temporal
evolution of ωrms at some significant locations. This figure also indicates that wall
values seem to approach an asymptotic behaviour as well, despite the viscosity being
important there, although larger simulations are needed to be conclusive. Last, it is
noted that this tendency of the magnitude of the vorticity fluctuation towards a steady
state is not in contradiction with the continuous increase in the magnitude of the
velocity fluctuations, but simply restates the description of the evolution of the flow
included at the end of § 3.1: as the boundary layer grows and the integral scales of the
system increase, the small-scale characteristics, such as the diffusive sublayer and the
Kolmogorov length, remain the same.

4. Conclusions
Direct numerical simulations of temporally evolving free convection over a heated

plate have been presented, to the author’s knowledge, for the first time. This
unbounded, unsteady configuration complements previous work in buoyancy-driven
systems, such as Rayleigh–Bénard convection or the convective boundary layer, which
are bounded and steady, or quasi-steady. Free- and no-slip velocity conditions at the
surface have been studied, for both constant buoyancy and constant buoyancy flux at
the wall.
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The first of the three main results concerns the vertical structure. The fine, layered
structure of convection has been reproduced and, in addition, the defining heights
of the different zones have been provided. The system develops an outer and inner
layer, both broadening in time. The outer layer is defined by the molecular buoyancy
flux being negligible compared to the turbulent flux 〈b′w′〉. This layer approaches
a temporally evolving, self-preserving state characterized by the surface buoyancy
flux Bs and the convection length z∗ = (1/Bs)

∫∞
0 〈b′w′〉 dz. The molecular diffusivity

κ drops out of this outer (Deardorff) scaling and profiles become a function of
the normalized height z/z∗ only. On the other hand, the inner layer is defined by
a quasi-steady behaviour in which the surface flux Bs is balanced by the turbulent
transport of outer, less buoyant fluid into that region. The convection length z∗(t),
or equivalently the time t, drops out of the inner (Townsend) scaling, which is
then based on {Bs, κ}, and normalized statistics inside that region depend solely on
z+ = z (Bs/κ

3)
1/4 (the Prandtl number is one). The outer layer is found beyond z+ ' 10,

i.e. beyond approximately 10 wall units. The inner layer extends up to ∼0.4z∗, which
means 120 wall units at the final time of our simulations, when z+∗ ' 300.

Inside the overlap region between the inner and outer layers, the scaling based on
{Bs, z}, as proposed in the classical similarity theory, is observed in the buoyancy
fluctuation. The power law b+rms ' (z+)−1/3 obtained in the simulations agrees within
10 − 20 % with measurements in atmospheric flows close to that local, free-convection
regime. We have shown that the existence of an overlap region is a prerequisite
for this power law to emerge, which occurs approximately for z+∗ ' 200–300. This
requirement corresponds to a minimum Rayleigh number Ra ' 108–109 and explains,
at least in part, that this scaling has not been clearly observed in convection cells
for lower Rayleigh numbers. Unlike brms, the mean gradient and the vertical velocity
variance have not yet developed the expected power law, although numerical values
inside that overlap region are relatively close to measurements. The data do not
support either of the alternative scalings proposed in the literature. One possible
interpretation of this result is that even higher Rayleigh numbers are needed for the
behaviour of these quantities to become well defined; another plausible explanation is
that these properties are more sensitive to outer-scale variables, as argued below.

The second major finding is the analogy in inner-region statistics between the heated
plate and Rayleigh–Bénard convection. For instance, typical values of the compensated
Nusselt number Nu∗Ra−1/3

∗ between 0.06 and 0.07 for Ra∗ ' 5× 107–109 are recovered
under no-slip conditions when the heated plate is interpreted as half a convection
cell. Likewise, the thickness of the diffusive sublayer measured in terms of the mean
buoyancy gradient at the wall is ∼4 wall units for no-slip conditions and ∼3 wall units
for free-slip cases, and the maximum of the buoyancy r.m.s. profile is also found at
a similar height, both results in agreement with previous work on Bénard cells. Flow
structures common in free convection, such as the cellular patterns at the wall and the
sheet- and mushroom-like plumes in the near-wall region, are observed in the heated
plate too. All these analogies give us confidence to compare and transfer knowledge
between steady and unsteady convection.

Interestingly, the compensated Nusselt number also diminishes, though mildly, with
increasing Rayleigh numbers, just as in Rayleigh–Bénard convection. Physically, this
variation means a gentle but persistent drift in the inner-layer statistics and prevents
a state of complete steadiness inside that region. In turn, because of the one-to-
one relation between the time and the convection scales, this gradual shift entails
that the effect of these outer convection scales penetrate all the way down to the
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surface, behaviour also observed in atmospheric convection. It can be argued that this
coupling between the outer and inner layers varies among properties: for instance, it
is weak in the buoyancy variance – and similarity theory prevails – but it is strong
in the horizontal velocity variance. Hence, large-scale circulations can be a factor as
relevant as the Rayleigh number effects considered above, and further comparisons
of inner-layer statistics among different aspect ratios and with different configurations,
including unsteady systems like the one described in this paper, should be performed.

Third, the influence of the boundary conditions considered in this study was found
to be mainly restricted to the diffusive wall layer, approximately the first 10 wall
units, once the inner scaling is used to normalize the statistics. The key point is that
free-slip conditions allow horizontal motion at the surface and thus the velocity and
buoyancy fluctuations in that zone are stronger than with no-slip walls. This effect
leads to 30 % less buoyancy difference between the surface and the overlap region
in free-slip configurations. For systems with an imposed surface buoyancy flux, this
modification translates into a 30 % reduction of the mean buoyancy bs at the plate
and a 30 % narrower diffusive sublayer, compared to no-slip conditions. For systems
with an imposed buoyancy at the surface, free-slip conditions mean a decrease of
width of ∼40 % in these thin, sheet-like structures next to the wall, and 60 % higher
surface fluxes Bs. This last effect has substantial consequences in the global properties
because, for a given height z∗, it implies stronger turbulent fluctuations across the
whole boundary layer, not only inside the near-wall region, and consequently a faster
growth of the boundary layer.

To conclude, we think it is worth emphasizing that, despite the moderate Rayleigh
numbers, direct numerical simulations already reach sufficient scale separation to
reproduce part of the atmospheric data at much higher Rayleigh numbers and bring
it together with data from other buoyancy-driven systems, such as Bénard cells. The
possibility of controlled conditions and the removal of uncertainties associated with
any turbulence model make direct numerical simulations a very valuable tool, not only
for the fundamental study of free convection, but also, from an applied perspective, to
advance current models of some relevant geophysical systems.
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Appendix. Sensitivity to numerical parameters
We show in this appendix that the results discussed in the paper and the conclusions

drawn are independent of the parameters related to the size of the computational box,
resolution requirements and details of the initial conditions.

The aspect ratio of the turbulent boundary layer, which can be defined by the ratio
L0/z∗ using L0, the horizontal size of the computational domain, and z∗, the convective
length defined by (3.5), needs to be large enough for L0 to drop out from the analysis
(Bailon-Cuba et al. 2010). In our simulation, this aspect ratio is large in the beginning
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FIGURE 14. (a) Plot of δ, defined by (3.11): lines, the reference cases NsD and FsN,
as presented in figure 7(a); symbols, simulations using a smaller computational box.
(b) Resolution studies (see text), based on the budget of the turbulent kinetic energy at
the rigid wall: lines, double resolution; symbols, reference resolution. Solid line, dissipation
term g=−ε; dashed line, transport term g=−∂T/∂z.

but diminishes continuously as the boundary layer broadens in time. For all the cases
in table 1, L0/z∗ is ∼9 or larger at the time t1 and of the order of 3 or larger at
the final time t2, and we need to ascertain if that is large enough. This was done by
comparing the reference cases NsD and FsN in table 1, of horizontal size 1.5L0×1.5L0,
with corresponding simulations of size L0 × L0 on a grid 2048× 2048× 1534, keeping
the rest of the parameters the same. The wall values shown in figure 7(a) have been
used to quantify the possible differences because of their relevance to the analysis.
Figure 14(a) shows that those differences are negligible, less than 1 % for case NsD,
and less than 3 % for case FsN. The major influence of L0 for the range of aspect
ratios considered here is restricted to the outer part of the outer layer, beyond the
maximum of wrms seen in figure 5(a,b), where the external intermittency is significant
and the number of flow structures contained in the domain is not large enough for a
good statistical convergence (see figure 1).

The effect of the vertical extension of the computational domain also needs to
be addressed, since the turbulent convection layer broadens upwards in time and the
simulation should be stopped when the top boundary starts to be felt by the flow.
This is evaluated by monitoring the pressure r.m.s. at the top of the domain. Values
∼3 % or less than those inside the turbulent zone are observed at the final time t2,
when the height of the computational domain is ∼2.8z∗ (approximately 800 wall units).
For these levels of pressure r.m.s., comparison between a reference case and a second
simulation with a 20 % higher computational box shows no difference at all in the
statistics investigated in this paper.

The resolution requirement is more delicate because of the importance of the
diffusive layer adjacent to the wall. As part of the preliminary work, we considered
a reference case on a grid 1024 × 1024 × 768 and repeated the same simulation with
double the resolution, that is, on a grid 2048 × 2048 × 1536. We explored the cases
of no-slip boundary conditions with a constant buoyancy at the wall (NsD) and free-
slip with a constant buoyancy flux (FsN). We used the reference Rayleigh numbers
Ra0 = b0L3

0/(νκ)9× 108 and Ra0 = B0L4
0/(νκ

2)= 8.5× 1010, respectively (smaller than
those used for the set of simulations in table 1, described in § 2, to allow for a
one-to-one comparison between low- and high-resolution cases).
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Differences in the gradient thickness δ (not shown) are again small, less than
2 %. Mean and r.m.s. profiles are also practically indistinguishable between the two
simulations, and differences are to be sought in higher-order statistics. Figure 14(b)
plots the viscous dissipation rate ε and the divergence of the turbulent transport flux
of turbulent kinetic energy at the wall. These two quantities are the only non-zero
terms in the right-hand size of the budget equation of the turbulent kinetic energy at
z = 0. With no-slip boundary conditions, case NsD, the main difference develops in
the divergence ∂T/∂z, with a relative error of ∼2 % after the maximum during the
transient – the error in the dissipation rate is below 0.5 %. With free-slip boundary
conditions, case FsN, the error in the transport term is ∼5 %, the error in the
dissipation rate ∼1 %. This accuracy corresponds to δ/1z ' 6, where δ is defined
in (3.11) and 1z is the grid spacing. In terms of the Kolmogorov length η = (ν3/ε)

1/4

at the wall, where the dissipation rate ε is maximal, the grid spacing is η/1z ' 1 in
the configuration NsD and η/1z ' 1.9 in the case FsN (no-slip walls lead to stronger
dissipation rates in the self-preserving regime, as seen in figure 14b). These studies,
along with the scalings of the diffusive layer discussed in the paper, allow us to
estimate, for a given grid size, the maximum reference Rayleigh number Ra0 that still
guarantees a good enough resolution of the small scales. In particular, δ/1z > 6 in all
the simulations used in this work.

Last, the influence of the initial conditions on the statistics discussed in the paper
was verified to be negligible. For that purpose, we performed a simulation similar
to the case FsN on a grid 2048 × 2048 × 1536 but with a different spectrum of
ζ(x1, x2) of the initial perturbation. In particular, we specified it to be proportional
to (fλ)2 exp(−2fλ) instead of Gaussian, f being the spatial frequency, and with half
the value of λ used in the main simulations so as to distribute more energy into the
smaller scales (see § 2). In terms of δ, results show that the evolution of the system
is indeed different during the initial transient, but the effect is less than 1 % beyond
t+1 ' 50.
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