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This paper studies coalgebras from the perspective of finite observations. We introduce

the notion of finite step equivalence and a corresponding category with finite step

equivalence-preserving morphisms. This category always has a final object, which generalises

the canonical model construction from Kripke models to coalgebras. We then turn to logics

whose formulae are invariant under finite step equivalence, which we call logics of rank ω.

For these logics, we use topological methods and give a characterisation of compact logics

and definable classes of models.

1. Introduction

Coalgebras for an endofunctor T on Set encompass many types of state base systems,

including Kripke models and frames, labelled transition systems, Moore and Mealy

automata and deterministic systems – see, for example, Rutten (2000). The research on

modal logics as specification languages for coalgebras began with Moss (1999) and was

taken up in, for example, Kurz (2001c), Rößiger (2000a; 2001) and Jacobs (1999; 2001a).

The relationship between modal logic and coalgebras was explained in Kurz (2001a)

as follows. If Z denotes the carrier of the final coalgebra, we can consider the semantics

of a modal formula ϕ as the subset [[ϕ]] ⊆ Z of states that satisfy ϕ. Intuitively, the

elements of Z are behaviours, and every modal formula ϕ determines a set of behaviours

that satisfy ϕ. When the logic is fully expressive in the sense that it allows us to define all

subsets of Z , we can identify modal formulae with subsets of Z , resulting in an algebraic

approach to the investigation of modal logics (Kurz 2001a; Kurz 2001b).

In general, however, finitary modal logics are not fully expressive. It is the main issue

of this paper to present a semantics that adapts the ‘formulae as subsets of the final

coalgebra’ idea to the case of finitary logics. We use the so-called terminal sequence

(Tn1)n∈� of the underlying endofunctor to capture the notion of finitely observable

behaviour. The terminal sequence can be understood as approximating the final coalgebra

(Adámek and Koubek 1995). Intuitively, the elements of the n-th approximant represent

the behaviour that can be observed in n transition steps. Following Pattinson (2001; 2003),

we represent the semantics of a modal formula ϕ of rank n as the subset [[ϕ]]n ⊆ Tn1.

The terminal sequence also gives rise to a notion of finite step equivalence. Intuitively,

two processes are n-step equivalent iff they show the same n-step behaviour, that is, if

their projections into Tn1 coincide. The main novelty of the paper is the introduction of

the category Behω(T ), which has coalgebras as objects and functions that preserve finite

step behaviours as morphisms (Section 4). This paper argues that the role of Behω(T )
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for finitary logics is the same as that of Coalg(T ) for fully expressive logics. In Section 5,

we show that Behω(T ) always has a final object, the subsets of which represent formulae

of finitary logics. Moreover, we show that the final object in Behω(T ) generalises the

canonical model construction from Kripke models to coalgebras.

In Section 6, we begin the study of logics whose formulae are invariant under finite

step equivalence. These logics are called logics of rank ω. When the semantics of every

formula ϕ can be represented as a subset [[ϕ]]n ⊆ Tn1, n < ω, we speak of logics of

finite rank. Whereas fully expressive modal logics allows us to express all predicates of the

carrier of the final coalgebra, logics of rank ω do not, in general, allow us to express all

predicates on the final object of Behω(T ). This is the reason for considering topologies

on coalgebras. The main idea here is that clopen subsets are precisely the predicates that

can be expressed through a single formula.

This topology is then used to prove compactness and definability results. Section 7

shows that – assuming the induced sub-logics of formulae of finite rank to be compact

and expressive – a logic of finite rank is compact iff the functor T weakly preserves the

limit of the finite part (Tn1)n<ω of the terminal sequence. Section 8 characterises classes

of coalgebras that are definable by a logic of rank ω as being closed under images,

subcoalgebras, coproducts and topological closure.

2. Preliminaries and notation

Throughout this paper, T denotes an endofunctor on the category of sets and functions.

A T -coalgebra is a pair (C, γ) where C is a set and γ : C → TC is a function. A coalgebra

morphism f : (C, γ) → (D, δ) is a function f : C → D such that δ◦f = Tf◦γ. The category

of T -coalgebras and coalgebra morphisms is denoted Coalg(T ). Given two T -Coalgebras

(C, γ) and (D, δ), two states c ∈ C and d ∈ D are called behaviourally equivalent if they

can be identified by a morphism of coalgebras, that is, if there exists (E, ε) ∈ Coalg(T ),

f : (C, γ) → (E, ε) and g : (D, δ) → (E, ε) with f(c) = g(d). If Coalg(T ) has a final object

(Z, ζ) and !C : (C, γ) → (Z, ζ) and !D : (D, δ) → (Z, ζ) denote the unique morphisms into

the final object, this is clearly equivalent to !C(c) =!D(d). We think of a coalgebra (C, γ)

together with a state c as a process and call !C (c) its behaviour.

Example 2.1 (Streams). For a set D consider TX = D × X. Given a coalgebra γ =

〈head , tail〉 : C → D × C the behaviour of an element c ∈ C is the infinite list

(head (c), head (tail (c)), head (tail (tail (c))), . . .). Hence, the structure (Dω, 〈head , tail〉) of in-

finite lists over D is final in Coalg(T ).

Example 2.2 (Kripke models). Suppose Prop is a (usually countable) set and TX =

PX × PProp. Then T -coalgebras are in 1-1 correspondence with Kripke models and

behavioural equivalence coincides with bisimilarity.

We have seen that the final coalgebra defines a notion of behaviour. In general, every

state of the final coalgebra represents an infinite amount of information. This paper

suggests a framework to study finitely observable properties of systems. Hence the final

coalgebra (containing the infinite behaviours of all coalgebras) has to be replaced by
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finitary approximations. These approximations are provided by the (finitary part of the)

so-called terminal sequence of the endofunctor T .

2.1. The terminal sequence

The terminal sequence can be thought of as approximating the final coalgebra. The

following definition has been taken from Worrell (1999).

The terminal sequence of T is an ordinal indexed sequence of sets (Zn) together with a

family (pnm)m�n of functions pnm : Zn → Zm for all ordinals m � n such that:

— Zn+1 = TZn and pn+1
m+1 = Tpnm for all m � n.

— pnn = idZn and pnk = pmk ◦ pnm for k � m � n.

— The cone (Zn, (p
n
m))m<n is limiting whenever n is a limit ordinal.

Thinking of Zn as the n-fold application of T to the limit 1 = {0} of the empty diagram,

we write Tn1 for Zn in the rest of this paper. Intuitively, Tn1 represents behaviour that

can be observed in n steps. If, for example, TX = D×X, then Tn1 ∼= Dn contains all lists

of length n.

Note that every coalgebra (C, γ) gives rise to a cone (C, (γn : C → Tn1)) over the

terminal sequence.

Definition 2.3. If (C, γ) ∈ Coalg(T ), define γn : C → Tn1 to be Tγm ◦ γ if n = m+ 1 is a

successor ordinal, and the unique map satisfying γm = pnm ◦ γn for all m < n if n is a limit

ordinal.

We will often use the following easy fact without further reference.

Proposition 2.4. Let n be an ordinal.

1 Let f : (C, γ) → (D, δ) be a coalgebra morphism. Then δn ◦ f = γn.

2 Let (C, γ) ∈ Coalg(T ). Then pn+1
n ◦ T (γn) ◦ γ = γn.

3. Introductory examples

For illustration and motivation of the later development, we will now discuss two different

logics in detail. The main claim that we want to substantiate is that modal formulae can

be semantically represented as subsets of Tn1, where n is the rank of the formula.

3.1. Propositional modal logic

This section argues that modal formulae of finite rank, interpreted over coalgebras, have

a natural representation as subsets of some Tn1, where n ∈ ω is a finite ordinal. We start

by re-considering Example 2.2 and show that a formula of rank n can be represented as

a subset of Tn1.

Suppose TX = PX × PProp. Then T -coalgebras are Kripke models, which is why

we use propositional modal logic to describe properties of T -coalgebras. We denote the
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language of propositional modal logic by ML, that is, ML is the least set according to

the grammar

ML 	 ϕ,ψ ::= ff | p | ϕ → ψ | �ϕ

where p ∈ Prop ranges over the set of atomic propositions.

Given a T -coalgebra (C, γ), the semantics [[ϕ]] = [[ϕ]]C ⊆ C of a modal formula

ϕ ∈ ML is then inductively defined by

— [[ff]] = �
— [[p]] = {c ∈ C | p ∈ π2 ◦ γ(c)}
— [[ϕ → ψ]] = (C \ [[ϕ]]) ∪ [[ψ]]

— [[�ϕ]] = {c ∈ C | π1 ◦ γ(c) ⊆ [[ϕ]]}.
This definition is a coalgebraic formulation of the standard semantics of propositional

modal logic (cf., for example, Goldblatt (1992)). Given a formula ϕ ∈ ML, the rank

of ϕ, which represents the nesting depth of �-operators, is then given inductively

by rank (ff) = 0, rank (ϕ → ψ) = max{rank (ϕ), rank (ψ)}, rank (p) = 1 for p ∈ Prop,

rank (�ϕ) = rank (ϕ) + 1.

Semantically, the rank can be thought of as the number of transition steps a formula

contains information about. A similar intuition applies to the approximants Tn1 of

the endofunctor: we think of predicates on Tn1 as representing behaviour that can be

observed in n transition steps. The following proposition makes this relationship precise.

Proposition 3.1. Suppose ϕ ∈ ML has rank n. Then there exists t ⊆ Tn1 such that

[[ϕ]]C = γ−1
n (t) for all (C, γ) ∈ Coalg(T ).

Proof. We use induction on the structure of formulae. For ϕ = ff, evidently, [[ϕ]] =

γ−1
0 (�). For the case ϕ = p for p ∈ Prop, let t = {(X,Y ) | X ⊆ 1, Y ⊆ Prop, p ∈ Y } ⊆ T1.

Then [[p]] = γ−1
1 (t). If ϕ,ψ ∈ ML with rank (ϕ) = n, rank (ψ) = m, we put k = max{n, m}

and assume that [[ϕ]] = γ−1
n (t), [[ψ]] = γ−1

m (s). For u = (Tk1 \ (pkn)
−1(t)) ∪ (pkm)−1(s) ⊆ Tk1,

the fact that (C, (γn)) is a cone over the terminal sequence implies that [[ϕ → ψ]] = γ−1
k (u).

For the most interesting case ϕ = �ψ, consider the operation defined by

λ(X)(x) = {(x′, a) ∈ P(X) × P(Prop) | x′ ⊆ x}

where X is a set and x ⊆ X. An easy calculation shows that we can rephrase the

semantics of the �-operator as [[�ψ]] = γ−1 ◦ λ(C)([[ψ]]). Now assume that ψ has rank

n with [[ψ]] = γ−1
n (s). Put t = λ(Tn1)(s). Then [[�ψ]] = γ−1

n+1(t) follows from the fact that

λ : 2 → 2 ◦ T is a natural transformation, where 2 denotes the contravariant powerset

functor.

Remark 3.2. We have seen that formulae of rank n correspond to subsets of Tn1 of the

terminal sequence of T . This generalises from TX = PX × PProp to arbitrary functors

T : Set → Set. Indeed, in the proof of the above proposition, we only used the fact

that atomic propositions can be represented as subsets of Tn1 and that the semantics

of the �-operator can be formulated in terms of a natural transformation 2 → 2 ◦ T .

Such natural transformations are often called predicate liftings and have been used by a

number of authors (Rößiger 2001; Rößiger 2000a; Jacobs 1999; Jacobs 2001a) to describe
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the semantics of modal logics over coalgebras. We thus obtain a wealth of examples for

arbitrary endofunctors T if we consider modal logics where atomic propositions can be

represented as subsets of T1 and modal operators are interpreted using predicate liftings

(see Pattinson (2001) for more information).

3.2. Linear temporal logic on streams

Linear temporal logic LTL (see Kröger (1987) and Manna and Pnueli (1992), for

example) is a temporal logic to describe properties of infinite runs of programs, that

is, streams. We use T -coalgebras for TX = X × PProp (cf. Example 2.1), with Prop

countably infinite, as semantics. This is a slight deviation from the standard semantics,

which is given in terms of infinite sequences of subsets of Prop. The language LTL of

linear temporal logic is the least set according to the grammar

LTL 	 ϕ,ψ ::= ff | p | ϕ → ψ | �ϕ | �ϕ

where p ∈ Prop ranges over the set of atomic propositions. We read � as ‘next’ and

� as ‘always’. Given a T -coalgebra (C, γ), we define the semantics [[ϕ]] = [[ϕ]]C of an

LTL-formula ϕ inductively by

— [[ �ϕ]] = {c ∈ C | π1 ◦ γ(c) ∈ [[ϕ]]}
— [[�ϕ]] =

⋂
n<ω[[ �nϕ]]

where �n stands for a sequence of n ‘ �’ and the semantics of boolean operators and atomic

propositions is as in the previous example. In contrast to the previous example, not all

formulae can be represented as subsets of some approximant Tn1.

Example 3.3. Let p ∈ Prop and ϕ = �p. Then there is no n < ω and t ⊆ Tn1 with

[[ϕ]]C = γ−1
n (t) for all (C, γ) ∈ Coalg(T ).

We can, however, represent every formula as a subset of Tω1 ∼= (PProp)ω:

Proposition 3.4. For all ϕ ∈ LTL there is t ⊆ Tω1 such that [[ϕ]]C = γ−1
ω (t).

Proof. Consider (K, κ) = ((PProp)ω, 〈head , tail〉). Then we have K ∼= Tω1 and [[ϕ]]C =

γ−1
ω ([[ϕ]]K).

4. Finite step equivalence and the category Behω(T )

The previous section showed that, for logics interpreted via predicate liftings as described

in Remark 3.2, formulae of finite rank can be represented as subsets of the elements Tn1

of T ’s terminal sequence. For the remainder of the exposition, we take a semantical view

and take subsets of the Tn1 as representing formulae of finite rank; this allows us to

consider logics for coalgebras in broad generality without making a commitment to any

particular syntax.

We begin by introducing a notion of equivalence on states that reflects the fact that

two states cannot be distinguished by a predicate of finite rank.
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Definition 4.1. Let n be an ordinal and suppose (C, γ),= (D, δ) ∈ Coalg(T ). For c ∈ C we

call γn(c) the n-step behaviour of c.

1 Two states (c, d) ∈ C × D are called n-step equivalent, denoted c ∼n d, if γn(c) = δn(d).

We call c and d finite step equivalent if c ∼n d for all n < ω.

2 The systems (C, γ) and (D, δ) are n-step equivalent, denoted (C, γ) ∼n (D, δ), if γn(C) =

δn(D). They are called finite step equivalent, denoted (C, γ) ∼<ω (D, δ), if (C, γ) ∼n (D, δ)

for all n < ω.

Under the assumption that the final coalgebra exists, two states of coalgebras are

behaviourally equivalent, if they are identified by the unique morphism into the final

coalgebra. As shown in Adámek and Koubek (1995), this is equivalent to γn(x) = γn(y)

for all ordinals n. Finite step equivalence, as introduced above, restricts the validity of

this equation to finite ordinals. Note that c, d are finite step equivalent iff c ∼ω d. In the

context of modal logic, (that is, for TX = PX×PProp), finite step equivalence is (a slight

variation of) the bounded bisimulation of modal logic as studied in Gerbrandy (1999).

The next proposition clarifies the relationship between finite step equivalence and

behavioural equivalence on states of coalgebras.

Proposition 4.2. Suppose (C, γ), (D, δ) ∈ Coalg(T ) and (c, d) ∈ C × D.

1 If c and d are behaviourally equivalent, they are finite step equivalent.

2 If T is ω-accessible, c and d are behaviourally equivalent if and only if they are finite

step equivalent.

Proof. The first claim is an easy induction, the second follows by terminal sequence

induction, see Worrell (1999) or Pattinson (2004, Theorem 4.1).

In order to obtain an example of two states which are finite step equivalent but not

behaviourally equivalent, one therefore needs to consider a functor that is not ω-accessible.

The following is a standard example.

Example 4.3. Let TX = P(X) and consider C = ω + 2, γ(c) = c. One can show by

induction that γn(c) = c ∩ n. Hence ω and ω + 1 are finite step equivalent. If they were

behaviourally equivalent, one would obtain γω+1(ω) = γω+1(ω + 1), which is not the case.

While for states finite step equivalence and ω-step equivalence define the same notion

of equivalence, for coalgebras, ω-step equivalence is, in general, not implied by finite step

equivalence.

Example 4.4. Let TX = {a, b} × X, (C, γ) be the final coalgebra with carrier {a, b}ω and

(D, δ) be the subcoalgebra with carrier {s · aω : s ∈ {a, b}∗}. Then (C, γ) and (D, δ) are

finite step equivalent, but not ω-step equivalent.

In the category Coalg(T ), morphisms are easily seen to preserve behavioural equival-

ence. We now introduce the category Behω(T ), the morphisms of which are only required

to preserve finite step equivalence. Recall that δω ◦ f = γω iff δn ◦ f = γn for all n < ω

whenever (C, γ), (D, δ) ∈ Coalg(T ) and f : C → D is any function.
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Definition 4.5 (Behω(T )). The category Behω(T ) has T -coalgebras as objects. Morphisms

f : (C, γ) → (D, δ) of Behω(T ) are functions f : C → D such that δω ◦ f = γω .

Remark 4.6. Clearly, every morphism of coalgebras f : (C, γ) → (D, δ) ∈ Coalg(T ) is also

a morphism f ∈ Behω(T ). Hence, we obtain a functorial inclusion Coalg(T ) → Behω(T ).

In order to explain the relationship of Behω(T ) to Coalg(T ), consider the following

categories

c-Beh(T ) Beh(T )

c-Behω(T ) Behω(T )

which all have coalgebras as objects and morphisms as follows. f : (C, γ) → (D, δ) is a

Beh(T )-morphism iff γn(c) = δn(f(c)) for all ordinals n and all c ∈ C . The definitions

of c-Beh(T ) and c-Behω(T ) follow the same idea, but take colourings into account,

giving f : (C, γ) → (D, δ) is a c-Behω(T )-morphism iff f is a Behω(T × X)-morphism

(C, 〈γ, v ◦ f〉) → (D, 〈δ, v〉) for all X ∈ Set and v : D → X.

If Coalg(T ) has cofree coalgebras, then c-Beh(T ) = Coalg(T ). If T is finitary (that

is, ω-accessible), then Behω(T ) = Beh(T ) and c-Behω(T ) = c-Beh(T ). Whether the

converse holds, that is, whether c-Behω(T ) = c-Beh(T ) implies that T is finitary is an

open question.

We conclude the section with a couple of simple properties of Behω(T ), all of which

are also true for Coalg(T ).

Proposition 4.7. Let U : Behω(T ) → Set be the forgetful functor.

1 Behω(T ) ↪→ Coalg(T ) preserves and reflects coproducts.

2 Injective and surjective morphisms form a factorisation system for Behω(T ). In

particular, every morphism f ∈ Behω(T ) factors as f = m ◦ e with Um mono,

Ue epi.

Proof. The claim for coproducts is immediate. For factorisations, let f : (C, γ) → (D, δ)

be a morphism in Behω(T ) and C
e→ I

m→ D be its epi-mono factorisation in Set. Choose

h with e ◦ h = id I and define ι : I → TI as Te ◦ γ ◦ h. Assuming ιn ◦ e = γn, we verify

ιn+1 ◦ e = Tιn ◦ ι ◦ e
= γn+1 ◦ h ◦ e
= δn+1 ◦ f ◦ h ◦ e
= δn+1 ◦ f
= γn+1,

showing that e : (C, γ) → (I, ι) is a morphism, and hence also m. We have seen that

factorisations exist in Behω(T ). The remaining conditions on a factorisation system (see,

for example, Adámek et. al. (1990)) are easy to check.
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5. Final and quasi-canonical models

When reasoning about behaviours, the final coalgebra plays a central role because, given

the unique coalgebra morphism !C : (C, γ) → (Z, ζ) from a coalgebra (C, γ) into the final

coalgebra (Z, ζ), for every element c of (the carrier of) (C, γ), we can consider !C (c) as the

behaviour of c. Similarly, final objects of Behω(T ) (cf. Definition 4.5) consist of the finite

behaviours. This section shows that Behω(T ) always has a final object, which generalises

the canonical model construction from Kripke models to coalgebras.

5.1. Final objects in Behω(T )

A final object of Behω(T ) should ‘realise’ all n-step behaviours, n < ω. Accordingly, the

carrier of a final object in Behω(T ) will be a subset of Tω1.

Recall that, given any coalgebra (C, γ), we write γω for the unique mediating map

γω : C → Tω1. That is, all ω-step behaviours appear as some γω(c) in Tω1. On the

other hand, it may happen that not every point t ∈ Tω1 can be presented as t = γω(c)

by some structure (C, γ) and some c ∈ C . Consider, for example, the finite powerset

functor T = Pω . It was shown in Worrell (1999) that for the final T -coalgebra (Z, ζ) the

morphism ζω : Z → Tω1 is (injective but) not surjective. Hence we construct the carrier

of the coalgebra final in Behω(T ) by collecting all t ∈ Tω1 that can be ‘realised’ by some

structure, that is, for which there are (C, γ) ∈ Coalg(T ) and c ∈ C such that γω(c) = t. It

then remains to find an appropriate coalgebra structure.

Throughout, we fix the set K of ‘realisable’ elements t ∈ Tω1, which is given by

K = {t ∈ Tω1 | ∃(C, γ) ∈ Coalg(T ) . ∃c ∈ C . γω(c) = t}.

For each k ∈ K , we can now choose (Ck, γk) ∈ Coalg(T ) and ck ∈ Ck such that γkω(ck) = k.

Note that K is a set, which enables us to consider

(C, γ) =
∐

k∈K
(Ck, γk)

where the coproduct is taken in Coalg(T ). Denoting the coproduct injections by ink :

Ck → C (which, by the construction of coproducts in Coalg(T ), are also coproduct

injections in the category of sets), we are ready to note the following result.

Lemma 5.1. γω ◦ ink(c) = γkω(c) for all k ∈ K and c ∈ Ck .

Proof. Since γkω is the unique mediating map into the limiting cone with vertex Tω1, it

suffices to prove that γn ◦ ink(c) = γkn(c) for all n < ω. For n = 0, this is obvious. For the

induction step, we calculate

γn+1 ◦ ink(c) = Tγn ◦ γ ◦ ink(c)

= Tγn ◦ T ink ◦ γk(c)
= Tγkn ◦ γk(c)
= γkn+1(c).
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We obtain the following immediate corollary.

Corollary 5.2. For all k ∈ K there exists c ∈ C with γω(c) = k.

In other words, γω factors through K as γω = m◦ e, m injective, e surjective. Now consider

the diagram

TTω1 TK
Tm

TC
Te

Tω1 Km

κ

o

C
e

γ

(1)

where o is any one-sided inverse of e, that is, e ◦ o = idK , the existence of which is

guaranteed by e being a surjection. We let

κ = Te ◦ γ ◦ o.

Note that κ : K → TK makes K into a T -coalgebra. Recalling the notation for the limit

projections pωn : Tω1 → Tn1, we obtain the following lemma.

Lemma 5.3. For all n < ω, κn = pωn ◦ m, and hence m = κω .

Proof. We proceed by induction on n, where the case n = 0 is evident. We calculate

κn+1 = Tκn ◦ κ
= T (pωn ◦ m) ◦ Te ◦ γ ◦ o
= Tpωn ◦ T (m ◦ e) ◦ γ ◦ o
= Tpωn ◦ Tγω ◦ γ ◦ o
= Tγn ◦ γ ◦ o
= γn+1 ◦ o
= pωn+1 ◦ γω ◦ o
= pωn+1 ◦ m ◦ e ◦ o
= pωn+1 ◦ m

for the induction step, as desired.

The proof of the main theorem of this section is now straightforward.

Theorem 5.4. Behω(T ) has a final object.

Proof. We show that (K, κ), as constructed above, is final in Behω(T ). Take any object

(D, δ) ∈ Behω(T ). Consider the mapping δω : D → Tω1, which is the unique mediating

map between the cones (D, (δn)n<ω) and (Tω1, (pωn )n<ω). By construction, δω factors as

δω = m ◦ h where m : K → Tω1 is as above. By Lemma 5.3,

δω = κω ◦ h,

which implies that h is a Behω(T )-morphism. h is unique since κω is injective.
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Using ! to denote the morphisms into the final Behω(T )-object (K, κ), the fact that

κω : K → Tω1 is injective gives us the following corollary.

Corollary 5.5. Let (C, γ), (D, δ) be T -coalgebras and c ∈ C , d ∈ D. Then c and d are finite

step equivalent iff !C (c) = !D(d).

Final objects in Behω(T ) are not determined uniquely up to Coalg(T )-isomorphism.

This is due to the fact that not all Behω(T )-morphisms are also coalgebra morphisms and

that, accordingly, objects isomorphic in Behω(T ) may fail to be isomorphic in Coalg(T ).

When pω+1
ω : TTω1 → Tω1 is surjective†, we can classify, up to coalgebra isomorphism,

the final objects of Behω(T ) as being given by the right inverses of pω+1
ω .

Corollary 5.6. Assume that pω+1
ω is surjective. An object is final in Behω(T ) iff it is

isomorphic in Coalg(T ) to some (Tω1, θ) with pω+1 ◦ θ = idTω1.

Proof.

— If : To show that (Tω1, θ) is final, it suffices to observe that θω = idTω1. This follows

from θn = pωn , n < ω, the inductive case being θn+1 = T (θn) ◦ θ = T (pωn ) ◦ θ =

pωn+1 ◦ pω+1
n ◦ θ = pωn+1.

— Only if : Let (C, γ) be final in Behω(T ). Consider a final object (K, κ) as constructed in

the proof of the theorem. Let f : (C, γ) → (K, κ) be the unique morphism. In particular,

f is iso and κω ◦ f = γω . Since κω is injective, γω is also. By Proposition 2.4(ii), γω =

pω+1
ω ◦T (γω) ◦ γ, so γω is also surjective, and hence iso. Now define θ = T (γω) ◦ γ ◦ γ−1

ω .

We conclude with the useful observation that all t ∈ Tn1, n < ω, are realised as

n-step behaviours in the final Behω(T )-coalgebra. We first note that every element of an

approximant Tn1 is realised by a coalgebra.

Proposition 5.7. Let f be any mapping 1 → T1 and (C, γ) = (Tn1, T nf). Then γn = idC .

As a corollary, we get that the maps κn are surjections.

Corollary 5.8. Suppose (K, κ) is final in Behω(T ) and n < ω. Then κn is a surjection.

Proof. Let (C, γ) be given as in the above proposition. If x ∈ Tn1, we have x = γn(x) =

κn◦!(x), where ! : (C, γ) → (K, κ) is the map given by finality.

5.2. The canonical model

In this section we consider the functor M = P×PProp where Prop is a countably infinite

set.

The canonical model (see, for example, Blackburn et. al. (2001) and Goldblatt (1992)) for

the modal logic ML is the M-coalgebra (L, 〈λR, λV 〉)

† With the exception of T = Pω , this is the case for all examples in this paper. A sufficient condition for pω+1
ω

to be surjective is that T weakly preserves limits of ωop-chains.

https://doi.org/10.1017/S0960129505004755 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004755


Coalgebraic modal logic of finite rank 463

L {Φ ⊆ ML : Φ is maximally consistent}
λR : L → PL Φ �→ {Ψ : ψ ∈ Ψ ⇒ �ψ ∈ Φ}
λV : L → PProp Φ �→ Φ ∩ Prop.

The canonical model is final in the category ThML that has M-coalgebras as objects and

whose morphisms f : (C, γ) → (D, δ) are functions f : C → D such that for all c ∈ C , c

and f(c) have the same modal theory.

Proposition 5.9. Behω(M) ∼= ThML.

Proof. We have to show that for any coalgebras (C, γ), (D, δ) and any function f :

C → D,

δω ◦ f(c) = γω(c) ⇔ Th(c) = Th(f(c)),

which is equivalent to [∀n < ω . δn ◦ f(c) = γn(c)] ⇔ [∀n < ω . ∀ϕ ∈ ML . rank (ϕ) =

n ⇒ (c |= ϕ ⇔ f(c) |= ϕ)], which can be shown using induction on n.

It follows that the canonical model is final in Behω(M). We now show that, conversely,

every final object in Behω(M) satisfies the so-called truth-lemma, which is the main

property of the canonical model.

Definition 5.10. An M-coalgebra (L, λ) is called a quasi-canonical model if L is the set of

maximal consistent sets of formulae and

(L, λ),Φ |= ϕ ⇐⇒ ϕ ∈ Φ (2)

for all Φ ∈ L.

The canonical model is quasi-canonical. In fact, it is Property (2) that makes the

canonical model useful. In other words, any quasi-canonical model can serve potentially

the same purpose as the canonical model. The following theorem characterises the quasi-

canonical models as – up to isomorphism of coalgebras – the final coalgebras constructed

in the previous subsection. This gives a syntax-free description of the quasi-canonical

models.

Theorem 5.11. Suppose (C, γ) is an M-coalgebra. Then (C, γ) is final in Behω(M) iff (C, γ)

is Coalg(M)-isomorphic to a quasi-canonical model.

Proof. First, every quasi-canonical model is easily seen to be final in ThML, and hence,

by Proposition 5.9, final in Behω(M). Now suppose (C, γ) is final in Behω(M). Since the

canonical model (L, 〈λR, λV 〉) is also final in Behω(M), the map f : C → L, c �→ {ϕ ∈
ML | c |= ϕ} is a bijection. Let γ′ = Mf−1 ◦ γ ◦ f−1. Then (C, γ) ∼= (L, γ′) ∈ Coalg(M). It

remains to show the truth lemma for (L, γ′):

(L, γ′),Φ |= ϕ ⇔ (C, γ), f−1(Φ) |= ϕ

⇔ ϕ ∈ f(f−1(Φ))

⇔ ϕ ∈ Φ.

https://doi.org/10.1017/S0960129505004755 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129505004755


A. Kurz and D. Pattinson 464

Since the projection pω+1
ω : MMω1 → Mω1 is surjective, Corollary 5.6 shows that the

choice of a transition relation on a quasi-canonical model corresponds to the choice of a

right inverse of the projection pω+1
ω .

Corollary 5.12. There is a 1-1 correspondence between the set of quasi-canonical models

and the set of right inverses of pω+1
ω .

6. Abstract logics and their topologies

In this section, we give an abstract account of the logics we are going to work with

later: logics of finite rank and logics of rank ω. These logics are the subject of our

study in the remainder of this paper, where we prove a compactness theorem and give

a characterisation of definable classes of models. Both results rely on (and can be best

explained in terms of) the topologies that are defined by the logics under consideration;

we give a short account of these topologies.

6.1. Logics of finite rank and logics of rank ω

In Section 4, we introduced a notion of finite step equivalence between elements of

coalgebras. This section starts the investigation of logics whose formulae are invariant

under finite step equivalence. Since we do not want to commit ourselves to a particular

syntax, we assume that a logic L for T -coalgebras already comes with an interpretation

function [[·]]C : L → P(C) for every T -coalgebra (C, γ) that maps a formula ϕ ∈ L to

the set [[ϕ]] ⊆ C of states that satisfy ϕ.

Definition 6.1. An abstract logic for T -coalgebras is a pair (L, [[·]]) where

— L is the set of formulae and

— [[·]] is a family of mappings [[·]]C : L → P(C) indexed by the T -coalgebras,

such that L has (classical) negation and conjunctions that are interpreted as complement

and intersection, respectively.

Given an abstract logic (L, [[·]]), (C, γ) ∈ Coalg(T ) and c ∈ C , we write c |=C ϕ if

c ∈ [[ϕ]]C and Th(c) = {ϕ ∈ L | c |= ϕ}. Our interest in abstract logics lies in studying

the properties that we now introduce.

Definition 6.2. Let ϕ ∈ L and t ⊆ Tn1. We say that t represents ϕ iff [[ϕ]]C = γ−1
n (t) for

all T -coalgebras (C, γ). In this case, ϕ has rank n. We say a logic (L, [[·]]) is:

1 of finite rank iff every ϕ ∈ L has finite rank;

2 of rank ω if every ϕ ∈ L has rank ω;

3 invariant under finite step equivalence if c ∼n d for all n ∈ � =⇒ Th(c) = Th(d);

4 finite step expressive if for all n < ω and all t ⊆ Tn1 there is ϕ ∈ L such that t

represents ϕ.

Finite step expressive logics play a role similar to the fully expressive logics mentioned in

the introduction.
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Example 6.3. Propositional modal logic is our prime example of a logic of finite rank

(Proposition 3.1). A logic of finite rank is also of rank ω. Linear temporal logic is an

example of a logic of rank ω that is not of finite rank (Example 3.3). For an endofunctor

T , the coalgebraic logic of Moss (1999) associated with T is a logic of rank ω if T is

ω-accessible.

We conclude with two characterisations of logics of rank ω.

First, when the final coalgebra (Z, ζ) exists, we can represent any logic L whose

formulae are invariant under behavioural equivalence by [[·]]Z : L → PZ , the [[·]]C being

determined by [[·]]C = !−1
C ◦[[·]]Z , where !C : (C, γ) → (Z, ζ) is given by finality in Coalg(T ).

Similarly, a logic L of rank ω can be represented by [[·]]K , where (K, κ) is the final object

in Behω(T ) and !C : (C, γ) → (K, κ) is again given by finality.

Second, logics of rank ω are precisely those logics whose formulae are invariant under

finite step equivalence.

Proposition 6.4. Suppose L is an abstract logic and (K, κ) is the final object of Behω(T ).

The following are equivalent:

1 L is of rank ω.

2 [[ϕ]]C = !−1
C ([[ϕ]]K) for all ϕ ∈ L and all T -coalgebras (C, γ).

3 L is invariant under finite step equivalence.

Proof. First suppose that L is of rank ω and ϕ ∈ L. By assumption, there is t ⊆ Tω1

such that [[ϕ]]C = γ−1
ω (t) for all T -coalgebras (C, γ). Since !C is a morphism of Behω(T ),

we have γω = κω◦!C . Thus [[ϕ]]C = γ−1
ω (t) =!−1

C ◦ κ−1
ω (t) =!−1

C ([[ϕ]]K).

Next assume [[ϕ]]C = !−1
C ([[ϕ]]K) for all ϕ ∈ L. Furthermore, let (C, γ), (D, δ) be T -

coalgebras and (c, d) ∈ C × D be such that c ∼n d for all n ∈ ω. To show Th(c) = Th(d),

pick ϕ ∈ Th(c), that is, !C (c) |=K ϕ. From Corollary 5.5, we know !D(d) =!C(c), so

!D(d) |=K ϕ, and thus d |=D ϕ by assumption.

Finally, assume that L is invariant under finite step equivalence and ϕ ∈ L. For

t = [[ϕ]]K ⊆ K ⊆ Tω1 and (C, γ) ∈ Coalg(T ), we obtain [[ϕ]]C = γ−1
ω (t).

We conclude that logics of rank ω are precisely those logics whose formulae are

invariant under finite step equivalence.

Corollary 6.5. A logic is of rank ω iff its formulae are invariant under finite step

equivalence.

Proof. The statement follows from the above proposition and the observation that,

given T -coalgebras (C, γ), (D, δ) and (c, d) ∈ C×D, we have c ∼ω d iff !C (c) =!D(d), where

!C and !D are the unique morphisms into the final object of Behω(T ).

6.2. Topologies on coalgebras

We now study logics for coalgebras from a topological perspective, where the topology

on a model is generated by the set of denotations of logical formulae. We have seen that

every formula of rank ω can be represented as a subset of the final object in Behω(T ).
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Topology comes into play since one cannot expect that all subsets of the final object can

be represented in the logic (since the set of formulae of a logic is in general countable). For

introductory material on the relation between logic and topology, refer to Smyth (1993)

and Vickers (1998). For the rest of the paper, we assume that (L, [[·]]) is an abstract logic

(Definition 6.1). We begin with the definition of the topologies of interest.

Definition 6.6 (Topologies τC). Suppose (C, γ) is a T -coalgebra. The topology τC on C is

generated by the basis {[[ϕ]]C | ϕ ∈ L}.

Remark 6.7. Suppose f : (C, γ) → (D, δ) ∈ Behω(T ). If L is of rank ω, the semantics of

formulae is stable under Behω(T )-morphisms (Corollary 6.5), hence f : (C, τC ) → (D, τD)

is continuous. Since every morphism of coalgebras qualifies as a Behω(T )-morphism, we

have a chain of functors Coalg(T ) → Behω(T ) → Top, where Top is the category of

topological spaces.

By definition, every formula of a logic of finite rank can be represented as a subset

t ⊆ Tn1 for some n < ω. If the approximants Tn1 are finite it is natural to assume that

all subsets of Tn1 can be expressed by a formula, that is, that L is finite step expressive

(cf. Definition 6.2). Since this is not the case in general (see, for example, propositional

modal logic over an infinite set of atomic propositions as discussed in Section 3.1), we

also introduce topologies on the approximants Tn1.

Definition 6.8 (Topologies τn, τ
ω
C). For n < ω, the topology τn on Tn1 is given by the

basis {t ⊆ Tn1 | ∃ϕ ∈ L . t represents ϕ}. If (C, γ) is a T -coalgebra, the topology τωC on

C is given by the basis {γ−1
n (U) | U ∈ τn, n < ω}.

The topology on the approximants would not be worth its salt if it did not turn the

connecting morphisms pnm : Tn1 → Tm1 into continuous functions.

Remark 6.9. Suppose m � n < ω and t ⊆ Tn1 represents a formula ϕ of L (that is, t is a

basic open of (Tn1, τn)). Then (pnm)−1(t) also represents ϕ, showing that pnm is continuous.

The following easy proposition is useful in that it allows us to compute the topologies τC
via the topologies on the approximants Tn1.

Proposition 6.10. Let L be a logic of finite rank and (C, γ) be a coalgebra. Then the

topologies τωC and τC coincide.

The converse of the proposition only holds in compact spaces. Before we turn to

compactness issues, we discuss an important special case.

Definition 6.11 (Cantor space topology). When L is finite step expressive, that is, when

the topologies τn are discrete, we call τωC the Cantor space topology.

The terminology is motivated by the following example.

Example 6.12. Suppose TX = 2 × X, where 2 = {0, 1}. Consider the (final) T -coalgebra

(C, γ) with C = 2ω = {f : ω → 2} and γ(f) = (f(0), λn . f(n + 1)). Then (C, τC ) is

homeomorphic to the Cantor discontinuum � (also known as the middle-third set, see,

for example, Jelley (1995)) via the mapping 2ω → �, f �→
∑∞

i=0
2

3i+1 · f(i).
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Remark 6.13. Let (C, γ) ∈ Coalg(T ), and let, for c0, c1 ∈ C , dC (c0, c1) = inf{2−n : ∀k <
n . γk(c0) = γk(c1)}. Then dC is a pseudo-ultrametric on C , and dC is an ultrametric if

γω : C → Tω1 is injective. The Cantor space topology τC coincides with the topology

induced by dC , as studied in Barr (1993) and Worrell (2000).

In the remainder of the section we relate topological and logical notions. All of the

results below are consequences of the following observations:

— The subsets expressible by single formulae form a basis.

— This basis is closed under complements (and finite unions).

The second point is due to the requirement that the logics are closed under boolean

operators (Definition 6.1).

We shall often require our topologies to be compact and Hausdorff†. The relationship of

these properties to logical issues becomes apparent in the context of final coalgebras in

Behω(T ).

Proposition 6.14. Suppose (K, κ) is final in Behω(T ).

1 K is Hausdorff iff for all distinct k1, k2 ∈ K there is ϕ ∈ L such that k1 |=K ϕ and

k2 /|=k ϕ.

2 K is compact iff for all Φ ⊆ L with Φ |=K ϕ there is a finite subset Φ′ ⊆ Φ with

Φ′ |= ϕ.

Logically speaking, K is Hausdorff iff L is expressive in the sense that every pair of

different states can be separated by a formula. Compactness says that if ϕ is a consequence

of a set Φ of formulae, there is a finite subset Φ′ ⊆ Φ such that Φ′ already forces the

validity of ϕ. For finitary logics with a sound and complete axiomatisation this is always

the case, since a proof of ϕ from Φ can only use finitely many premises. Since we

study logics without making any commitment to a particular syntax, this property is not

guaranteed, and we have to require it for a number of results later in the paper.

The following are easy consequences of the definition of the topologies as generated by

the semantics of modal formulae, where we call a T -coalgebra (C, γ) logically compact if

every set Φ of formulae that is finitely satisfiable in (C, γ) (that is, for every finite subset

Φ′ ⊆ Φ there exists c ∈ C such that c |= Φ′) is satisfiable in (C, γ) (that is, there exists

c ∈ C such that c |= Φ).

Proposition 6.15. Let (C, γ) ∈ Coalg(T ).

1 A subset of C is definable by a set of formulae iff it is closed with respect to τC .

2 If (C, τC ) is compact, any clopen is expressible by a single formula.

3 (C, γ) is logically compact iff (C, τC ) is topologically compact.

The proof is standard and therefore omitted. From a logical point of view, compactness

corresponds to finiteness of proofs and is therefore not an issue for finitary logics that have

a sound and complete axiomatisation. However, there are models that are not compact.

† A set is compact iff any open cover has a finite subcover. This is sometimes called quasi-compact. A space

(X, τ) is Hausdorff iff ∀x, y ∈ X . x �= y ⇒ ∃U,V ∈ τ . x ∈ U ∧ y ∈ V ∧U ∩ V = �.
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Example 6.16. Let TX = D×X and consider the final coalgebra (Z, ζ) given by Z = Dω .

1 (Z, ζ) is compact in the Cantor space topology iff D is finite.

2 Suppose D = {a, b}. Then examples of non-compact coalgebras are given by the

carriers Z \ {bω} and {s · aω : s ∈ {a, b}∗} (and inheriting the structure from ζ).

Example 6.17. Let TX = {a, b} × X + 1 and consider the final coalgebra (Z, ζ) with

Z = {a, b}∗ ∪ {a, b}ω . Then Z is compact in the Cantor space topology (since the limit of

compact Hausdorff spaces is compact Hausdorff, see Engelking (1989, 3.2.13)) and {a, b}∗

is not compact. The topology on Z is as follows. A subset of Z is open iff it is a subset

of {a, b}∗ or of the form V · ({a, b}∗ + {a, b}ω) for some V ⊆ {a, b}∗. In particular, every

open cover of {a, b}ω also covers {a, b}∗.

Another example where the final coalgebra is not compact is obtained for TX = Pω(X)

by applying Proposition 6.15 (3).

Example 6.18. For finitely branching Kripke structures, that is, T = Pω , it is not difficult

to write down formulae ϕn that force any point satisfying ϕn to have at least n successors.

The set Φ = {ϕn | n < ω} is then finitely satisfiable, but not satisfiable by a Pω-coalgebra.

7. Compactness for logics of rank ω

It is well known that (standard) model logic is compact. Generalising to coalgebras com-

pactness may fail, for example, in the case of image-finite Kripke models (Example 6.18).

Hence we are drawn to investigate sufficient and necessary conditions for the compactness

theorem to hold.

Extending the terminology we introduced in Section 6.2 for the level of models, we say

a set Φ ⊆ L is satisfiable if there exists a T -coalgebra (C, γ) such that Φ is satisfiable

in (C, γ). We say Φ is finitely satisfiable if every finite subset of Φ is satisfiable. Finally,

a logic L is compact if every finitely satisfiable set of formulae is satisfiable. Using this

terminology, we are in a position to present the first version of the compactness theorem.

Theorem 7.1. Suppose L is of rank ω. Then L is compact iff Behω(T ) has a compact

final object.

Proof.

— Only if : By Theorem 5.4, there exists a final object (K, κ) ∈ Behω(T ). We show that

(K, κ) is logically compact, from which the result then follows by Proposition 6.15. So,

suppose Φ ⊆ L is finitely satisfiable in (K, κ). By compactness, Φ is satisfiable. Hence

there is (C, γ) and c ∈ C such that c |=C Φ. Since (K, κ) is final in Behω(T ), there is a

mapping u : (C, γ) → (K, κ) ∈ Behω(T ). By definition of morphisms in Behω(T ), we

obtain u(c) |=K Φ. Hence Φ is satisfiable in (K, κ).

— If : Let (K, κ) be compact and final in Behω(T ) and suppose Φ ⊆ L is finitely

satisfiable. Then, by finality and the definition of morphisms in Behω(T ), we have

Φ is finitely satisfiable in (K, κ), and hence satisfiable in (K, κ) by compactness and

Proposition 6.15.
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We now proceed to characterise those endofunctors T for which Behω(T ) has a compact

final object. Concerning the logics, we need to impose the following condition.

Condition 7.2. The topologies τn are compact and Hausdorff.

Logically speaking, this condition says that, for a given a logic L, the induced sub-logics

Ln of formulae of finite rank are compact and expressive. See Section 6.2 for a brief

discussion of compactness and the Hausdorff property in the context of logics.

It will turn out that Behω(T ) has a compact final object iff T weakly preserves the

limit of its final sequence up to ω. More precisely, we say that T weakly preserves the

limit of the sequence (Tn1)n∈ω , if the cone (TTω1, (Tpωn )n∈ω) is weakly limiting†. We first

show that the carrier of a compact final object in Behω(T ) is isomorphic to Tω1. This is

the crucial step in our proof.

Lemma 7.3. Assume Condition 7.2. If (K, κ) is compact and final in Behω(T ), then

κω : K → Tω1 is iso.

Proof. It follows from the construction of (K, κ) that κω , called m in Diagram (1),

is injective. To see that κω is surjective, consider t ∈ Tω1. The elements of the

set S = {κ−1
n ({pωn (t)}) | n ∈ ω} are closed (since one-element sets are closed in a

Hausdorff space) and non-empty (this follows from Corollary 5.8). It follows from

κ−1
n ({pωn (t)}) ∩ κ−1

m ({pωm(t)}) = κ−1
min(n,m)({pωmin(n,m)(t)}) that S has the finite intersection

property. By compactness, there is k ∈
⋂

S. Since κn(k) = pωn (t) for all n ∈ ω, it

follows that κ(k) = t.

We are now able to prove our second compactness theorem showing that, under suitable

hypotheses, a logic of finite rank is compact iff T weakly preserves the limit of (Tn1)n<ω .

Theorem 7.4. Let L be a logic of finite rank satisfying Condition 7.2. The final object of

Behω(T ) is compact iff T weakly preserves the limit of (Tn1)n<ω .

Proof. Observe that T weakly preserves the limit of (Tn1)n<ω iff pω+1
ω has a one-sided

inverse i, pω+1
ω ◦ i = idTω1.

⇒Let (K, κ) be final and compact in Behω(T ). Due to the lemma above, we can define

i = Tκω ◦ κ ◦ κ−1
ω . It remains to check that, indeed, pω+1

ω ◦ i = pω+1
ω ◦Tκω ◦ κ ◦ κ−1

ω =

κω ◦ κ−1
ω = idTω1.

⇐Let pω+1
ω ◦i = idTω1. It was shown in Corollary 5.6 that (Tω1, i) is final in Behω(T ). It is

compact since Tω1 is the limit of compact Hausdorff spaces and the induced topology

on a limit of compact Hausdorff spaces is compact Hausdorff (Engelking 1989,

3.2.13).

Remark 7.5. An inspection of the proof shows that ‘⇒’ also holds for logics of rank ω.

Moreover, for ‘⇒’, we can weaken Condition 7.2 and only require that elements of Tn1,

n < ω, are closed with respect to τn. On the other hand, ‘⇐’ does not hold for logics of rank

† A weak limit is defined like a limit, but the mediating morphism need not be unique.
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ω, as can be seen in the example of LTL (Section 3.2). Indeed, { �np | n < ω} ∪ {¬�p}
is finitely satisfiable but not satisfiable.

For the Cantor space topology, we have the following corollary.

Corollary 7.6. Let T map finite sets to finite sets. The final object of Behω(T ) is compact

in the Cantor space topology iff T weakly preserves the limit of (Tn1)n∈�.

Note that in this case Condition 7.2 is automatically satisfied.

8. Definability for logics of rank ω

In this section we prove a characterisation result for classes of coalgebras definable by

logics of rank ω. The main idea is again to replace Coalg(T ) by Behω(T ) and to reuse

well-known techniques†. We begin by relating morphisms of Behω(T ) and Coalg(T )-

morphisms.

Proposition 8.1. For any injective Behω(T )-morphism m : (C, γ) → (D, δ) there is δ′

such that m : (C, γ) → (D, δ′) is a Coalg(T )-morphism and idD : (D, δ′) → (D, δ) is a

Behω(T )-morphism.

Proof. Let L be the image of m, m0 : C → Lp be the induced mapping, and R = D \L.

Define λ : L → TD as Tm ◦ γ ◦m−1
0 and δ′ : D ∼= L+R → TD as [λ, δ ◦ inr]. Then m is a

Coalg(T )-morphism since δ′ ◦m = λ◦m0 = Tm◦γ. To see that idD is a Behω(T )-morphism,

assume δ′
n = δn and consider the following two cases:

— For d ∈ L, we have δ′
n+1(d) = γn+1(m

−1(d)) = δn+1(m(m−1(d))) = δn+1(d).

— For d ∈ R, we have δ′
n+1(d) = Tδ′

n ◦ δ′(d) = Tδn ◦ δ(d) = δn+1(d).

In addition to the classical closure operators, we need a further one to account for the

restricted expressiveness of logics of rank ω.

Definition 8.2. Let L be a logic and (K, κ) be the final object in Behω(T ). Define a

relation ∼L
ω on coalgebras via

(C, γ) ∼L
ω (D, δ) ⇐⇒ cl(!C(C)) = cl(!D(D))

where ! denotes the morphisms given by finality of (K, κ) and cl denotes the topological

closure with respect to (K, τK ) (Definition 6.6).

The theorem below parallels the definability theorem for infinitary modal logics, but

adds ∼L
ω to the closure operators.

Theorem 8.3. Let L be a logic of rank ω. A class B of T -coalgebras is definable by a

set of formulae iff B is closed under coproducts, subcoalgebras, and ∼L
ω .

† See, for example, Adámek et. al. (1990, Chapter 16) for a textbook presentation and Kurz (2000, Chapter 2)

for applications to modal logic.
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Proof. Since L is of rank ω, Proposition 6.4 shows that L can be represented by

[[·]]K : L → PK , where (K, κ) denotes the final object of Behω(T ). Recall that (C, γ) |=
ϕ ⇔ !C (C) ⊆ [[ϕ]] where !C is the morphism given by finality. The ‘only if’ direction

follows easily from this observation (for closure under ∼L
ω recall Proposition 6.15).

For the ‘if ’ direction, note first that the assumed closure conditions imply:

— (C, γ) → (D, δ) is a surjective Behω(T )-morphism only if (C, γ) ∈ B ⇔ (D, δ) ∈ B;

and

— (C, γ) → (D, δ) is a Behω(T )-morphism only if (D, δ) ∈ B ⇒ (C, γ) ∈ B (use

Proposition 8.1); and

— for a class {fi : (C,γi) → (D, δ) | i ∈ I} of Behω(T )-morphisms with (Ci, γi) ∈ B,

the union of the images of the fi carries a coalgebra structure and is in B (use

Proposition 4.7).

Let (S, σ) be the coalgebra given by the union of the images of all !D : (D, δ) → (K, κ),

(D, δ) ∈ B. By Proposition 6.15, cl is expressible in L by a set of formulae Φ. We show

that B = Mod(Φ). For (D, δ) ∈ B we have, by the definition of S , (D, δ) |= Φ. To show

B ⊇ Mod(Φ), define (S̄ , σ̄) as the largest subcoalgebra of cl(S). Since S ⊆ S̄ ⊆ cl(S), it

follows that cl(S) = cl(S̄), and hence (S̄ , σ̄) ∼L
ω (S, σ). Since B is closed under images

and coproducts, B is also closed under unions, so (S, σ) ∈ B, and hence (S̄ , σ̄) ∈ B.

Now assume (C, γ) |= Φ, that is, !C (C) ⊆ cl(S), and hence !C (C) ⊆ S̄ , that is, there is a

morphism (C, γ) → (S̄ , σ̄). Since B is closed under domains of morphisms, (C, γ) ∈ B.

For the Cantor space, we obtain the following corollary.

Corollary 8.4. Let L be a finite step expressive logic of finite rank. A class B of T -

coalgebras is definable by a set of formulae iff B is closed under coproducts, subcoalgebras,

and ∼<ω .

9. Conclusions and related work

We have studied definability and compactness for finitary coalgebraic modal logic. The

main instrument through which finitary logics have been studied is the terminal sequence

and the shift from the category Coalg(T ) to the category Behω(T ).

In this category, points (or states) can be distinguished iff their finite behaviour differs.

Also, Behω(T ) provides the correct framework in which the construction of canonical

models can be generalised to a coalgebraic setting. The main handle that allows us to

formalise the finitary character of the logics considered is to identify finitary predicates

with subsets of Tn1, where n is a finite ordinal. The idea of interpreting formulae on the

elements Tn1 of the terminal sequence has already been used in Pattinson (2001). The

same idea (without the restriction to finite ordinals) also prevails in Moss (1999). There,

formulae are constructed using infinitary conjunctions (which do not change the degree

of the formulae) and the application of the signature functor T (increasing the degree of

the constructed formulae by 1).

The signature functors (and hence the logics) that have been discussed in the present

paper are all one-sorted. The passage to multi-sorted signatures, that is, endofunctors
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Setn → Setn is standard and allows us to include the logics discussed in Rößiger (2000a)

and Jacobs (2001a), which also rely on (syntactically defined) predicate liftings. Since

the endofunctors discussed in loc. cit. are all ω-accessible, final coalgebras and canonical

models coincide for these logics (which is also reflected by the fact that they are strong

enough to characterise behavioural equivalence).

A coalgebraic representation of the Cantor discontinuum was also given in Pavlovic

and Pratt (2000) in the category of posets. However, the cantor space topology discussed

in the present paper arises in a different way: we start with a final coalgebra on the

category of sets, which is then equipped with a natural topology.
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