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Linked equations

(piy
0
i )0 + qi yi =

2

j = 1

¶ j rij yi ; i = 1; 2;

are studied on [0; 1] subject to boundary conditions of the form

yi(0) cos ¬ i = (piy
0
i )(0) sin ¬ i ;

(ai ¶ i + bi)yi(1) = (ci ¶ i + di)(piy
0
i)(1):

Results are given on existence, location, asymptotics and perturbation of the
eigenvalues ¶ j and oscillation of the eigenfunctions yi .

1. Introduction

One of the central results for the Sturm{Liouville equation

(py0)0 + qy = ¶ ry on [0; 1]; (1.1)

with p, q, r continuous and p; r > 0 subject to separated end conditions

y(0) cos ¬ = (py0)(0) sin ¬ ; (1.2)

y(1) cos ­ = (py0)(1) sin ­ ; (1.3)

is Sturm’s oscillation theorem. In full generality this is an existence and uniqueness
result for eigenvalues ¶ = ¶ n and (up to scalar multiples) the eigenfunctions yn,
the ¶ n being ordered ¶ 0 < ¶ 1 < ¢ ¢ ¢ , accumulating at 1, and the yn possessing n
zeros in (0; 1) (see [8, x 8.3]). Of many related results we mention continuous and
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monotonic dependence on parameters and asymptotic expansions in n as relevant
to the discussion below. We refer to such (oscillation, comparison, etc.) results as
`Sturm theory’.

Equation (1.1) has also been investigated subject to ¶ -dependent boundary con-
ditions. See [11,18] for extensive bibliographies on the case where (1.3) is replaced
by

(a¶ + b)y(1) = (c¶ + d)(py0)(1): (1.4)

More recent reference lists, for what remains an active research area, can be found
in [9] and [12]. Most authors have studied completeness and expansion theory,
the extension of Sturm theory to (1.4) being comparatively recent. In the case
¯ = ad bc > 0, a modi­ ed oscillation theorem holds, where there is a unique eigen-
value for each oscillation count (except one, where there are two distinct eigen-
values); there are also parametric dependence results and asymptotic expansions
(see [6] and x 2 below). We remark that (1.1), (1.2), (1.4) can be cast as an abstract
equation Ax = ¶ Bx, where B > 0 provided r > 0 and ¯ > 0 (cf. [18]), but alterna-
tive de­ niteness conditions are possible (cf. [4]).

Another generalization of Sturm theory is to linked two-parameter equations of
the form,

(piy
0
i)

0 + qiyi =

2X

j = 1

¶ jrijyi on [0; 1]; i = 1; 2; (1.5)

again subject to separated end conditions,

yi(0) cos ¬ i = (piy
0
i)(0) sin ¬ i; (1.6)

yi(1) cos ­ i = (piy
0
i)(1) sin ­ i; (1.7)

Under the condition det R > 0 (R = [rij ]), which is known as right de­ niteness
(RD), Klein’s oscillation theorem states that for each non-negative integer pair
n = (n1; n2) there is a unique eigenvalue ¸n in R2 and (up to scalar multiples) a
unique pair of eigenfunctions yn

i with ni zeros in (0; 1). A special case was proved
by Klein, the general one (for continuous coe¯ cients) by Ince [15]. Asymptotics
are discussed in, for example, [7, 11, 16], parameter dependence in [2]. For weaker
conditions on the coe¯ cients, alternative de­ niteness conditions and completeness
and expansion theory we refer to [17]. We remark that many of these works treat
problems involving more than two parameters.

So far there seems to be no analysis of multiparameter Sturm theory with ¸-
dependent boundary conditions, and it is our aim to start such a theory by consid-
ering a special case. We study (1.5) subject to (1.6) and

(ai ¶ i + bi)yi(1) = (ci ¶ i + di)(piy
0
i)(1); i = 1; 2; (1.8)

which generalizes (1.4). As an application of such a system, we can consider the
following generalization of a problem from [13]. Fulton and Pruess discuss the tem-
perature of a cylindrical bar immersed in liquid, with imperfect thermal contact.
They obtain a singular one-parameter problem with a boundary condition of the
form (1.4), for a cylinder of circular cross-section, after separating out the angular
variable in polar coordinates. If we allow a general elliptical cross-section, then it
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is natural to use elliptical coordinates (cf. [5]) and then a corresponding separation
yields a regular system of the form (1.5), (1.6) and (1.8).

In xx 2 and 3 we study the eigencurves for (1.5) for each ­ xed i and we obtain
expressions for the derivative d ¶ 2=d ¶ 1 along the eigencurves, and certain asymp-
totics. In x 4 we give the basic existence and uniqueness theorem for eigenvalues
¸n and we obtain an oscillation theorem (theorem 4.4) which generalizes all those
mentioned above. In x 5 we re­ ne the analysis, showing how to locate the ¸n in
certain cones and establishing asymptotic and perturbation results. We conclude
with an illustrative example.

2. Preliminaries

In this section we shall discuss existence and perturbation results for eigenvalues
of Sturm{Liouville di¬erential equations on the unit interval [0; 1] involving two
eigenparameters ¶ 1 and ¶ 2, one equation at a time. We assume that the coe¯ -
cients qi and rij are real-valued continuous functions. By a transformation of the
independent variable, we can assume without loss of generality that p1 and p2 are
identically 1 (see [6, Appendix]). Then the di¬erential equations become

y00
i + qiyi = ( ¶ 1ri1 + ¶ 2ri2)yi; (2.1)

with boundary conditions

y0
i

yi
(0) = cot ¬ i and

y0
i

yi
(1) =

ai ¶ i + bi

ci ¶ i + di
; (2.2)

where i = 1; 2.
The angles ¬ 1, ¬ 2 are given constants in (0; º ) and ai, bi, ci, di are real numbers

satisfying ¯ i = aidi bici > 0 and ci 6= 0 for each i. (If ¯ i = 0 or ci = 0, analogous but
slightly di¬erent results hold, cf. [6, x 5] for the one-parameter case.) By changing
the ¸ origin to ( d1=c1; d2=c2), we may (and shall) assume in what follows that
d1 = d2 = 0. Note that the above reductions (to pi = 1, di = 0) do not a¬ect the
continuity of qi and rij . We shall use rij also to denote the corresponding quadratic
forms on L2[0; 1], so

rij(y) =

Z 1

0

rij jyj2:

We shall assume the RD condition,

det

³
r11(y1) r12(y1)

r21(y2) r22(y2)

´
> 0 for all y1; y2 2 L2[0; 1]:

By continuity of rij , the determinant has a positive lower bound, so the RD is
in fact uniform. It follows that the multiplication operator induced by rij can be
given a prescribed sign, after an invertible linear eigenvalue transformation (see [1,
lemma 2.3]). In the sequel we shall assume that this transformation has been per-
formed in such a way that ( 1)i+ jrij(y) > 0 for all y 2 L2[0; 1]. By virtue of the
continuity of rij , this is equivalent to ( 1)i + jrij(x) > 0 for 0 6 x 6 1.
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Lemma 2.1. Given the system (2.1), (2.2), we have two sequences f ¶ 1
2ng and f ¶ 2

2ng
of continuous monotone increasing functions of ¶ 1 and two sequences of eigenfunc-
tions y1n and y2n such that, for each integer n > 0, the pair ( ¶ 1; ¶ i

2n( ¶ 1)) and the
function yin satisfy the equations (2.1), (2.2). Moreover, ¶ 1

20( ¶ 1) > ¶ 1
21( ¶ 1) > ¢ ¢ ¢

and ¶ 2
20( ¶ 1) < ¶ 2

21( ¶ 1) < ¢ ¢ ¢ . There are natural numbers N1 and N2 depending on
¶ 2 and ¶ 1, respectively, such that yin has n zeros in (0; 1) for n 6 Ni and n 1
zeros for n > Ni, i = 1; 2.

Proof. Our method will rely on parametrized one-parameter equations. A one-
parameter Sturm{Liouville di¬erential equation y00 + qy = ¶ ry with boundary
conditions

y0

y
(0) = cot ¬ (const:) and

y0

y
(1) =

a¶ + b

c¶ + d

is said to be parametrized if the coe¯ cient functions q and r and the constants a, b,
c, d involved in the boundary condition depend on a parameter t. For parametrized
one-parameter equations, existence of eigenvalues, oscillation of eigenfunctions and
variation of eigenvalues with respect to the parameter t were established in [6,
theorems 3.1 and 3.2]. In the present context, we rewrite the second equation in (2.1)
as

y00
2 + (q2 ¶ 1r21)y2 = ¶ 2r22y2;

with boundary conditions

y0
2

y2
(0) = cot ¬ 2 and

y0
2

y2
(1) =

a2 ¶ 2 + b2

c2 ¶ 2 + d2
:

This Sturm{Liouville problem involving one eigenparameter ¶ 2 is parametrized
by ¶ 1. Only the coe¯ cient of y2 depends on the parameter and, since r21(x) < 0,
the function q2 ¶ 1r21 is increasing in ¶ 1. Then the above-mentioned two theorems
imply that, for each ¶ 1, the eigenvalues ¶ 2n( ¶ 1) can be ordered as

¶ 20( ¶ 1) < ¶ 21( ¶ 1) < ¶ 22( ¶ 1) < ¢ ¢ ¢

and there exists an integer N2 = N2( ¶ 1) de­ ned by

¶ 2;N2 1 < 0 6 ¶ 2;N2 (2.3)

such that y2n has n zeros for n 6 N2 and n 1 zeros for n > N2. Moreover, ¶ 2n is
a continuous increasing function of ¶ 1 for each n.

Applying the same analysis to the second equation of (2.1), this time with ¶ 2

as the parameter, we get the existence of parametrized eigenvalues ¶ 10( ¶ 2) <
¶ 11( ¶ 2) < ¢ ¢ ¢ and corresponding eigenfunctions y1n which have the same proper-
ties as above. By virtue of the fact that ¶ 1n( ¶ 2) is a continuous increasing function
of ¶ 2, we can consider the inverse function which we denote by ¶ 1

2n( ¶ 1) and which
will satisfy ¶ 1

20( ¶ 1) > ¶ 1
21( ¶ 1) > ¢ ¢ ¢ . The superscript 1 denotes the fact that it is

obtained from the ­ rst equation. Similarly, ¶ 2n( ¶ 1), the parametrized eigenvalues
obtained from the second equation, will henceforth be denoted by ¶ 2

2n( ¶ 1). The
integer N1 in this case depends on ¶ 2 and satis­ es the analogue of (2.3). Thus we
have the result.
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The next result is about continuous dependence of the eigenfunctions on the
parameter. It will be an important tool for di¬erentiating ¶ i

2n, but has some inde-
pendent interest also. The norm of any eigenfunction y will always mean the L2[0; 1]
norm

kyk =

³Z 1

0

jyj2
1́=2

:

Lemma 2.2. Let n > 0 be any integer, yin be as de¯ned above with kyink = 1 and
K1 be a compact subset of R. Then, for each x in [0; 1] and ¶ 1 in K1,

yin(x; ¶ 1; ¶ i
2n( ¶ 1)) and y0

in(x; ¶ 1; ¶ i
2n( ¶ 1))

are continuous functions of ¶ 1. Similarly, if K2 is a compact subset of R, then

yin(x; ( ¶ i
2n) 1( ¶ 2); ¶ 2) and y0

in(x; ( ¶ i
2n) 1( ¶ 2); ¶ 2)

are continuous functions of ¶ 2 in K2 for each x 2 [0; 1].

Proof. Let

Yi =

³
yi

y0
i

´
and Ai(x; ¶ 1) =

³
0 1

qi ¶ 1ri1 ¶ i
2n( ¶ 1)ri2 0

´
:

Then Yi is a solution of

Y 0 = Ai(x; ¶ 1)Y:

Note that Ai is a continuous function of both x and ¶ 1. Thus, for ¶ 1 lying in a
compact subset K, kAi(x; ¶ 1)k has an upper bound (which may depend on x). This
will imply that the function f ¶ 1 : R3 ! R3, de­ ned by

f¶ 1 (x; Y ) = Ai(x; ¶ 1)Y for x 2 [0; 1]; Y 2 R2;

is Lipschitz in Y for any ­ xed x and the Lipschitz constant is independent of
¶ 1 2 K. Let

Z1 =

³
z1

z0
1

´
and Z2 =

³
z2

z0
2

´

be two fundamental solutions of the di¬erential equation Y 0 = f¶ 1 (x; Y ) subject
to boundary conditions [Z1(0) Z2(0)] = I2. It is a standard result of the theory of
linear di¬erential equations that in such a case the solutions Z1(x) and Z2(x) depend
continuously on the parameter ¶ 1 (see, for example, [14, theorem 3.2]). If yin(0) = 0,
then yin = z2=kz2k and if yin(0) 6= 0, then yin = (z1 + (cot ¬ i)z2)=kz1 + (cot ¬ i)z2k.
Since norm is a continuous function, yin(x) and, similarly, y0

in(x) are continuous
functions of ¶ 1 on K1.

3. Eigenvalues for one equation in two parameters

The graphs of the functions ¶ i
2n given by lemma 2.1 will be called the eigencurves

of the ith equation (2.1). The ­ rst result of this section gives us the slopes of these
eigencurves ¶ i

2n( ¶ 1) for i = 1; 2.
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Theorem 3.1. For i = 1; 2, let ¶ i
2n and yin be as above. Then

d ¶ 1
2n

d ¶ 1
= (r12(y1n)) 1

³
¯ 1y1n(1)2

(c1 ¶ 1 + d1)2
+ r11(y2n)

´
; (3.1)

d ¶ 2
2n

d ¶ 1
= r21(y2n) 1

³
¯ 2y2n(1)2

(c2 ¶ 2
2n( ¶ 1) + d2)2

+ r22(y2n)

´ 1

: (3.2)

Proof. For simplicity of notation, we ­ x n and suppress it. To calculate the deriva-
tive of ¶ 1

2, we start with (2.1) in the form,

y00
1 + q1y1 = ( ¶ 1r11 + ¶ 1

2( ¶ 1)r12)y1:

Choose any ° > 0 and let z1 be the eigenfunction corresponding to ¶ 1 + ° , i.e.

z00
1 + q1z1 = (( ¶ 1 + ° )r11 + ¶ 1

2( ¶ 1 + ° )r12)z1:

Multiplying the ­ rst equation by z1 and the second by y1 and subtracting, we obtain

z00
1 y1 + y00

1 z1 = ( ° r11 + ( ¶ 1
2( ¶ 1 + ° ) ¶ 1

2( ¶ 1))r12)y1z1;

which yields

1

°
(y0

1z1 y1z0
1)j10 =

Z
r11y1z1 +

1

°
( ¶ 1

2( ¶ 1 + ° ) ¶ 1
2( ¶ 1))

Z
r12y1z1: (3.3)

Using the continuity established in the last lemma, we have

lim
° ! 0

z1 = y1:

So, in the limit, the right-hand side of (3.3) is

r11(y1) +
d ¶ 1

2

d ¶ 1
( ¶ 1)r12(y1):

Recall that y1 and z1 satisfy the same boundary condition at 0, but not at 1, where
they are as follows:

y0
1

y1
(1) =

a1 ¶ 1 + b1

c1 ¶ 1 + d1
and

z0
1

z1
(1) =

a1( ¶ 1 + ° ) + b1

c1( ¶ 1 + ° ) + d1
:

Thus the left-hand side of (3.3) is

1

°

³
y1(1)z1(1)

³
a1( ¶ 1 + ° ) + b1

c1( ¶ 1 + ° ) + d1

a1 ¶ 1 + b1

c1 ¶ 1 + d1

´´
;

which in the limit tends to

y1(1)2 ¯ 1

(c1 ¶ 1 + d1)2
:

Thus

y1(1)2 ¯ 1

(c1 ¶ 1 + d1)2
= r11(y1) +

d ¶ 1
2

d ¶ 1
( ¶ 1)r12(y1);

and the desired result follows.
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For the other derivative, one has to carry out the same analysis with the roles of
¶ 1 and ¶ 2 interchanged and then take the reciprocal. This is due to the fact that
the boundary condition in this case is ¶ 2 dependent.

Remark 3.2. Our analysis so far has depended on the signs of the rij , but not on
the values of ¯ i. In the case of eigenparameter-independent boundary conditions,
ai = ci = 0 so that one has ¯ i = 0. Then the derivatives in (3.1) and (3.2) simplify
to

d ¶ 1
2n

d ¶ 1
=

r11(y1n)

r12(y1n)
and

d ¶ 2
2n

d ¶ 1
=

r21(y2n)

r22(y2n)
:

To conclude this section we give two asymptotic results which will also be used to
analyse the eigencurves in subsequent sections. In the next result we do use ¯ i > 0.

Lemma 3.3. ¶ 2
20( ¶ 1) is always negative and lim¶ 1 ! 1 ¶ 2

20( ¶ 1) = 0. On the other
hand, the graph of ¶ 1

20 lies in the left half-plane and lim¶ 1 % 0 ¶ 1
20( ¶ 1) = 1.

Proof. For any given ¶ 1, · = cot ³ 2(1; ¶ 1; ¶ 2) decreases continuously on its leftmost
branch B0 (see [6] for more details). Thus the intersection of B0 with the hyperbola
(a2 ¶ 2 +b2)=c2 ¶ 2 is in the left half-plane. It follows that ¶ 2

20( ¶ 1) < 0, and since ¶ 2
20 is

increasing, we can let lim¶ 1 ! 1 ¶ 2
20( ¶ 1) = l. To show that l = 0, it is enough to show

that lim ¶ 1 ! 1 cot ³ 2(1; ¶ 1; ¶ 2
20( ¶ 1)) = 1. Choose ² > 0 such that ² < º ¬ 2 and

2 ² 6 º . Then, for ² 6 ³ 2 6 º ² and ¶ 1 > 0, we have ¶ 1r21 sin2 ³ 6 ¶ 1r21 sin2 ² ,
¶ 2

20( ¶ 1)r22 sin2 ³ 6 ¶ 1r22 sin2 ² and q2 sin2 ³ 6 jq2j sin2 ³ , so

³ 0
2 = cos2 ³ 2 + ( ¶ 1r21 + ¶ 2

20( ¶ 1)r22 q2) sin2 ³ 2

< 1 + ( ¶ 1r21 + lr22) sin2 ² + jq2j:

Thus ³ 0
2 < 0 for large ¶ 1 at ³ 2 = ² , whence ³ 2 6 ² . Since ² was arbitrary, we are

done. The proof for the other assertion is similar.

Lemma 3.4. If

Mi = supf ri1(x)=ri2(x) : 0 6 x 6 1g

and

mi = inff ri1(x)=ri2(x) : 0 6 x 6 1g

for i = 1; 2, then M1 < 1 and m2 > 0. Moreover,

lim
¶ 1 ! 1

¶ 2
2n( ¶ 1)

¶ 1
= m2 for n > 0

and

lim
¶ 1 ! 1

¶ 1
2m( ¶ 1)

¶ 1
= M1 for m > 0:

Proof. M1 < 1 and m2 > 0 because they are extrema of positive continuous
functions on the compact unit interval.
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For i = 2, let ¶ 2A
2n ( ¶ 1) be the eigenvalues of the equation (2.1) with asymptotic

boundary conditions

y0(0)

y(0)
= cot ¬ 2 and

y0(1)

y(1)
=

a2

c2
:

Then

lim
¶ 1 ! 1

¶ 2A
2n ( ¶ 1)

¶ 1
= m2 by [3, theorem 3.1]

and

¶ 2A
2(n 1)( ¶ 1) < ¶ 2

2n( ¶ 1) < ¶ 2A
2n ( ¶ 1) for n > 0 by [6, theorem 3.3]:

This gives the ­ rst result and the proof for the second one is similar.

4. Existence and oscillation

Before examining the intersections of the eigencurves for the two simultaneous
equations, we detail one more result about their separate behaviours. In the case
where the boundary conditions are independent of ¸, it is a well-known fact (proved,
for example, via the Pr�ufer angle) that eigenfunction oscillation counts are constant
along eigencurves. In the present situation, this result fails, but the following is a
suitable analogue.

Lemma 4.1. If ¸ is the nth eigencurve for the ith equation, i.e. ¶ 2 = ¶ i
2n( ¶ 1), then

yin has n (respectively, n 1) zeros in ]0; 1[ if ¶ i < 0 (respectively, ¶ i > 0).

Proof. Consider i = 2. If ¶ 1 is such that ¶ 2 = ¶ 2
2n( ¶ 1) < 0, then n < N2( ¶ 1)

by (2.3), so the oscillation count of y2n is n by lemma 2.1. By the same reasoning,
if ¶ 2 > 0, then n > N2( ¶ 1), so y2n has n 1 zeros. The argument for i = 1 is
similar.

Remark 4.2. This result is consistent with the continuity expressed in lemma 2.2,
since the discontinuity in oscillation count occurs at ¶ i = 0, and this is precisely
where yin(1) = 0.

Theorem 4.3. The system (2.1), (2.2) has countably many two-parameter eigen-
values. For each non-negative integer pair n = (n1; n2), there is a unique two-
parameter eigenvalue ¸n on the nith eigencurve of equation i (i = 1; 2).

Proof. By virtue of the fact that rij(y) < 0 for y 2 L2[0; 1] and i 6= j, we see from
the expressions of the derivatives of the eigencurves in theorem 3.1 that

d ¶ 1
2n1

d ¶ 1
> r11(y1n1 )

r12(y1n1 )
and

d ¶ 2
2n2

d ¶ 1
6 r21(y2n2 )

r22(y2n2 )
for all n1; n2 > 0:

Since RD holds, there are constants ® and ² so that

d ¶ 1
2n1

d ¶ 1
> ® > ² >

d ¶ 2
2n2

d ¶ 1
for all n1; n2 > 0: (4.1)

Thus, if we plot ¶ 1
2n1

and ¶ 2
2n2

against ¶ 1, then these two curves meet exactly
once, say, at ¶ n

1 . We denote the point ¶ 1
2n1

( ¶ n
1 ) = ¶ 2

2n2
( ¶ n

1 ) by ¶ n
2 . Then it follows
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from lemma 2.1 that ( ¶ n
1 ; ¶ n

2 ) satisfy (2.1) and (2.2), with eigenfunctions given by
y1(x) = y1n1

(x; ¸n ) and y2(x) = y2n2
(x; ¸n ). To complete the proof of uniqueness,

we note that two eigencurves from the same equation (say, i = 2) cannot intersect.
For if they did at ¸, say, then, by lemma 4.1, there would be two distinct oscillation
counts (and hence two linearly independent eigenfunctions) corresponding to the
same boundary value problem (2.1), (2.2) and this is impossible.

Although the above result resembles Klein’s oscillation theorem, it says nothing
directly about eigenfunction oscillation. To obtain a genuine oscillation theorem,
we proceed as follows. By the oscillation count of an eigenvalue ¸ of (2.1), (2.2), we
mean the pair n = (n1; n2), where ni is the number of zeros of yi in ]0; 1[. Thus each
eigenvalue has a unique oscillation count and the following result addresses to what
extent the converse is true. From now on, we regard the ­ rst quadrant Q1 (respec-
tively, third quadrant Q3) as closed (respectively, open) and the second quadrant
Q2 (respectively, fourth quadrant Q4) as containing the negative ¶ 1- (respectively,
¶ 2-) axis.

Theorem 4.4. With the exceptions below, each oscillation count corresponds to
one eigenvalue. Let

M1 = minfn1 : ¶
(n1;0)
2 2 Q4 and ¶

(n1;1)
2 2 Q1g

and

M2 = minfn2 : ¶
(0;n2)
1 2 Q3 and ¶

(1;n2)
1 2 Q1g

(by lemmas 3.3, 3.4, M1 and M2 are well de¯ned). Then we have the following.

(a) For n1 > M1 and n2 > M2, each of the oscillation counts (n1; 0) and (0; n2)
correspond to exactly two eigenvalues.

(b) For n1 < M1 and n2 < M2, the oscillation count n = (n1; n2) corresponds to
at most four eigenvalues.

Proof. The oscillation count of the eigenvalue ¸n is (n1 1; n2 1) (respectively,
(n1; n2 1), (n1; n2), (n1 1; n2)) if ¸ 2 Q1 (respectively, Q2, Q3, Q4). Thus an
oscillation count can correspond to two or more eigenvalues only if they are in
separate quadrants. For n1 > M1, the oscillation count (n1; 0) occurs twice|once
each in the fourth and ­ rst quadrant corresponding to ¸(n1 + 1;0) and ¸(n1 + 1;1).
Similarly, when n2 > M2, the oscillation count (0; n2) occurs once each in the
second and ­ rst quadrants corresponding to ¸(0;n2 + 1) and ¸(1;n2 + 1).

Let n denote the curvilinear cell de­ ned by the vertices

¸n ; ¸(n1 + 1;n2); ¸(n1 + 1;n2 + 1); ¸(n1;n2 + 1)

and the corresponding eigencurve sections as edges. Since the repeated oscillation
counts must correspond to the vertices of some cell, there can be at most four
occurrences of a particular oscillation count. For n1 > M1 and n2 > M2, the cell

n is contained in the ­ rst quadrant. So, except as in (a) above, repetitions can
occur only for n1 < M1 and n2 < M2.
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Remark 4.5. Let us discuss case (b) above in more detail. The cell n contains
two eigencurve segments corresponding to equation 1 (respectively, 2) of (2.1),
(2.2) and we refer to them as 1-edges (respectively, 2-edges). By (4.1), 1-edges
have steeper slope than 2-edges. Whenever there are two adjacent vertices joined
by an i-edge of n in adjacent quadrants separated by ¶ i = 0, those two vertices
have the same oscillation count. Thus the oscillation count (n1; n2) corresponds to
four eigenvalues if and only if all four vertices of n are in separate quadrants.
(This forces (0; 0) 2 n , and so at most one oscillation count corresponds to four
eigenvalues.) If exactly two (respectively, three) adjacent vertices are in adjacent
quadrants (as above), then the oscillation count corresponds to exactly two (respec-
tively, three) di¬erent eigenvalues.

5. Asymptotics of eigenvalues

In this section we locate the eigenvalues in certain cones, identify the asymptotic
spectrum and re­ ne the asymptotics of the eigencurves obtained in lemmas 3.3
and 3.4 to get asymptotic expansions of the eigenvalues.

Let Cc be the cone of all points in the ¸-plane such that m2 6 ¶ 2=¶ 1 6 M1. This
is called the continuous cone. The union of the two positive semi-axes is de­ ned
to be the discrete cone C d . The union of Cc and C d will be denoted by C. The
asymptotic spectrum, denoted by AS, is the closure in S1 of the set

f¸=k¸k : ¸ is an eigenvalue of the system (2.1), (2.2)g;

where S1 denotes the unit circle.

Theorem 5.1. AS = C \ S1.

Proof. The following assertions, which follow from lemmas 3.3 and 3.4, show that
AS ³ C \ S1:

lim
n2 ! 1

¸(0;n2)

k¸(0;n2)k = (0; 1); lim
n1 ! 1

¸(n1;0)

k¸(n1;0)k = (1; 0)

and

lim
k¸n k! 1

¸n

k¸n k 2 Cc for n1; n2 > 0:

For the reverse inclusion, lemma 3.3 gives C d \ S1 » AS, and the proof of
theorem 6.2 of [7] can be adapted to yield Cc \ S1 » AS.

Let · n
i denote the eigenvalues of the one-parameter problem y00

i +qiyi = ¶ iriiyi,
with eigenparameter-dependent boundary condition

cot ¬ i(1) = (ai ¶ i + bi)=(ci ¶ i + di):

It is known from [6, corollary 3.4] that

· n
i =

³
nº

¼ i

2́

+ o(n2); where ¼ i =

Z 1

0

r
1=2
ii : (5.1)

The next two results give asymptotics of ¸n .
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Theorem 5.2. ¸(n1;0) = · n1

1 + O(n 1
1 ) and ¸(0;n2) = · n2

2 + O(n 1
2 ).

Proof. Since m2 > 0, we choose positive ² < m2 and let

® = supfr21(x) + ² r22(x) : 0 6 x 6 1g:

For large ¶ 1, by lemma 3.3, ¶ 2
20( ¶ 1)=¶ 1 < ² . Let

° = fsup jq2j(x) : 0 6 x 6 1g:

Then

³ 0
2 = cos2 ³ 2 + ( ¶ 1r21 + ¶ 2

20r22 q2) sin2 ³ 2

< cos2 ³ 2 + ( ¶ 1(r21 + ( ¶ 2
20=¶ 1)r22) + ° ) sin2 ³ 2

< cos2 ³ 2 + ( ® ¶ 1 + ° ) sin2 ³ 2:

It follows that
d

d ³ 2
cot ³ 2 > cot2 ³ 2 + ® ¶ 1 ° :

Letting cot ³ 2 = u and s2 = ® ¶ 1 ° (> 0 for large positive ¶ 1), we have

u0 > s2 u2:

This di¬erential inequality with the boundary condition u(0) = cot ¬ 2 leads to

cot ³ 2(1) > s
exp(2s)(s + cot ¬ 2) (s cot ¬ 2)

exp(2s)(s + cot ¬ 2) + (s cot ¬ 2)
:

It follows that

lim
s! 1

cot ³ 2(1)

s
> 1:

Recalling that cot ³ 2(1) = (a2 ¶ 2
20( ¶ 1) + b2)=(c2 ¶ 2

20( ¶ 1)) and s =
p

® ¶ 1 ° , we have

lim
¶ 1 ! 1

b2

c2 ¶ 2
20( ¶ 1)

p
® ¶ 1 °

> 1:

Hence ¶ 2
20( ¶ 1) = O( ¶

1=2
1 ) as ¶ 1 ! 1. Since the derivatives of the ¶ 1

2n1
are bounded

below by m1, this implies that j¸(n1;0) · n1

1 j = O(( · n1

1 ) 1=2). In view of the asymp-
totic estimates (5.1), the proof of the ­ rst contention is complete, and the second
follows analogously.

The corresponding result for nj > 0 is slightly better. Let ¸An denote the eigen-
values of the asymptotic two-parameter problem, i.e. (2.1) with boundary conditions

y0
i

yi
(0) = cot ¬ i;

y0
i

yi
(1) =

ai

ci
: (5.2)

Theorem 5.3. ¸n + (1;1) = ¸An + O(knk 1) as n1 + n2 ! 1.

Proof. The proof depends on variation of the boundary condition at 1. For a ­ xed
¶ 1, consider the second equation with two di¬erent boundary conditions, namely,
equations (2.2) and (5.2). If ³ A

2 denotes the Pr�ufer angle for the asymptotic problem,
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then cot ³ 2(1) cot ³ A
2 (1) = O( ¶ 1

2 ) (cf. [6, eqn (2.8)]) = O( ¶ 1
1 ) by lemma 3.4. It

follows that

j¶ 2( ³ 2(1)) ¶ 2( ³ A
2 (1))j 6

­­­­
d ¶ 2

d ³ 2(1)

­­­­sin2 ³ 2(1)O( ¶ 1
1 ):

By corollary 5.2 of [2], we have

d ¶ 2

d ³ 2(1)
= (r22(y)) 1;

where y is of norm 1. Hence
­­­­

d ¶ 2

d ³ 2(1)

­­­­6 (inffr22(x) : 0 6 x 6 1g) 1:

Thus we have j¶ 2( ³ 2(1)) ¶ 2( ³ A
2 (1))j = O( ¶ 1

1 ). A similar analysis for the ­ rst
equation yields j ¶ 1( ³ 1(1)) ¶ 1( ³ A

1 (1))j = O( ¶ 1
2 ) = O( ¶ 1

1 ). Since

M1 >
d ¶ 1

2n1

d ¶ 1
> m1 > M2 >

d ¶ 2
2n2

d ¶ 1
> m2;

there is a constant c such that

¸n + (1;1) ¸An 6 c(j¶ 2( ³ 2(1)) ¶ 2( ³ A
2 (1))j + j ¶ 1( ³ 1(1)) ¶ 1( ³ A

1 (1))j) = O( ¶ 1
1 ):
(5.3)

Now we use the asymptotics for the eigenvalues of a two-parameter system
obtained by Faierman in [10]. He partitioned the ­ rst quadrant into three polar
sectors. In theorem 3.3 and eqn (4.2) in [10], he gives asymptotic formulas in all
three sectors and thus for the whole of the ­ rst quadrant. These yield constants
kj > 0 satisfying

k1 <
¸An

1

n2
1 + n2

2

< k2 and k3 <
¸An

2

¸An
1

< k4

in all three sectors. Hence ¸An = O(knk2). Now, from (5.3), we obtain

¸n + (1;1) = ¸An + O(knk 2):

We conclude with an example which illustrates the above results.

Example 5.4. Consider the equations

y00 + y = ¶ y 1
4 · y (5.4)

and

z00 + z = 1
4 ¶ + · z; (5.5)

with boundary conditions

y(0) = 0; y(1) + ¶ y0(1) = 0;

z(0) = 0; z(1) + · z0(1) = 0:
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When ¶ = 0, equation (5.4) is the Dirichlet problem for y00 + y = · =4y. So
1
4 · = n2 º 2 + 1. Since 1

4 · 1
1(0) is the minimal positive eigenvalue of this problem,

we have · 1
1(0) = 4. Now the solution for (5.5) with ¶ = 0 is z = sinh(x

p
1 · ).

The boundary condition at 1 implies that sinh
p

1 · + ·
p

1 · cosh
p

1 · = 0.
The solution of this equation gives the following inequalities:

0 > · 2
0(0) > 3:

By theorem 3.1, each · i
n is increasing, so lemma 3.3 shows that the graphs of

· 1
1 and · 2

0 meet in the fourth quadrant, i.e. ( ¶ ; · )(1;0) is in the fourth quadrant.
By symmetry of the problem, ( ¶ ; · )(0;1) is in the second quadrant. Since the · i

n

increase, we have four eigenvalues around the origin which have the same oscillation
count (0; 0) by remark 4.5. These eigenvalues are ( ¶ ; · )(0;0), ( ¶ ; · )(1;0), ( ¶ ; · )(0;1)

and ( ¶ ; · )(1;1).
From theorem 5.2, ( ¶ ; · )(n1;0) = (n2

1 º 2; 0) + O(n 1
1 ), with a similar formula for

( ¶ ; · )(0;n2). These eigenvalues approach the positive half-axes asymptotically. From
theorem 5.3,

( ¶ ; · )(n1 + 1;1) = ( ¶ ; · )A(n1;0) + O(n 2
1 ): (5.6)

The boundary conditions in (5.2) are Dirichlet at 0 and Neumann at 1. Thus
( ¶ ; · )A(n1;0) is at the intersection of the lines

¶ 1
4 · = 1 + (n1 + 1

2)2 º 2 and 1
4 ¶ + · = 1 + 1

4 º 2:

The second of these lines is the asymptote for the eigenvalues ( ¶ ; · )(n1 + 1;1) by (5.6).
Following remark 4.5, we see that the eigenvalue ( ¶ ; · )(n1 + 1;1) has the same oscil-
lation count as ( ¶ ; · )(n1 + 1;0), namely, (n1; 0) for all n1 > 0. Similar considerations
hold for the eigenvalues ( ¶ ; · )(0;n2 + 1) and ( ¶ ; · )(1;n2 + 1) for all n2 > 0.
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