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Abstract
A new theoretical method for examining gerrymandering is presented based on lattice models of voters,

in which districts are constructed by partitioning the lattice. We propose three novel algorithms for con-

structing equal-population, connected districts which favor the gerrymanderer and incorporate the spatial

distribution of voters. Due to the probabilistic population fluctuations inherent to our voter models, Monte

Carlo techniques can be applied to study the impact of gerrymandering. We use themethod developed here

to compare our different gerrymandering algorithms, show approaches which ignore spatial data lead to

(legally prohibited) disconnected districts, and examine the effectiveness of isoperimetric quotient tests.

Keywords: spatial voting model, Monte Carlo methods, lattices

Representative democraciesmust necessarily group constituents into voting districts by partition-

ing larger geographical territories. Gerrymandering is the act of purposely constructing voting

districtswhich favor aparticular electoral outcome. In theUnitedStates, thepower todrawdistrict

lines within a state belongs to the state legislature or districting commission. Thus, self-interested

politicianswith this authority could gerrymander—manipulate the district lines of their territory—

tomaximize the electoral outcome for their ownparty. Gerrymandering for political gain ismorally

questionable as it reduces the power of the electorate, and this practice is not restricted to any

political party or country. Indeed, the Supreme Court of the Untied States has recently heard two

gerrymandering cases, the first Whitford v. Gill (2018) concerned the 2011 redistricting plan for

Wisconsin due to Republican legislators, and the second Benisek v. Lamone (2018) was regarding

changesmade to theboundaries ofMaryland’s sixthdistrict by theDemocratic Party. Furthermore,

in principle, there are instances in which elaborate redistricting could be applied with benevolent

intent, suchas ensuring theproper representationofminority groups (basedonethnicity, religion,

or other identifiers) which are not spatially localized. Such majority-minority districts have also

been the focus of Supreme Court hearings, for example Shaw v. Reno (1993) andMiller v. Johnson

(1995).

Political gerrymanderers aim to maximize the number of districts in which constituents of an

opposing party will lose the majority vote, therebyminimizing the opponent’s political influence.

However, districts are commonly required to conform to certain general requirements:

• Connectedness: Each district must comprise a single, connected region.

• Uniformity: All districts in a territory must have approximately equal populations.

• Shape: Districts should be generally compact, but legal stipulation is limited.

Despite these requirements, clever redistricting can have significant consequences. Consider

an election involving two parties, which we label red and blue, and a territory which can be

modeled as a 5 × 5 grid. Each of the 25-unit squares denotes a territorial unit, and its color

represents the overall party affiliation of its voters. For the purpose of this simple example, we

will assume a uniform population (thus each unit has equal voting weight) and a voter preference

such that 60% (40%) of the units favor red (blue).
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Figure 1. Sample 5 ×5 territory with two different district allocations.

Given the split in voter preference, an impartial districting into five districts should be expected

to yield three red-majority districts and two blue-majority districts. However, as shown in Figure 1,

it is possible for the blue party to gerrymander the territory so that it wins three out of the five

districts, thereby winning a majority of districts. Conversely, the red party can construct four red-

majority districts instead of three. Thus, an entity with the power to set the district lines can

potentially arrange for whatever result it desires if unconstrained by other considerations. This

illustrates a simple but powerful gerrymandering strategy inwhichopposition voters are “packed”

into districts in a manner which wastes opposition votes.

The main pursuit of this work is to construct algorithms which take a distribution of voters

on a lattice and returns a set number of gerrymandered, equal-population, connected (or mostly

connected) districts. Lattice studies of redistricting can clearly provide a great deal of insight, and

thusweuseourmodel toquantify somegeneral statements concerninggerrymandering. Inpartic-

ular, we use our lattice population models to compare gerrymandered districts to geometrically

constructed “fair” districts and examine how this changes the net vote in each district and the

overall election result, in order to quantify to what extent gerrymandering is advantageous to

the proponent party. Moreover, by applying commonmeasures of gerrymandering to the districts

generated via our algorithm, we are able to provide a quantitative assessment of whether these

measures can detect and potentially constrain gerrymandering.

An influential paper of Friedman and Holden (2008) systematically explored algorithmic

approaches of “packing” and “cracking” voters into districts, arriving at the mantra “sometimes

pack, but never crack,” and propose a novel packing procedure for strategically gerrymandering

a territory. Despite providing a number of excellent insights, the gerrymandering algorithm

proposed in Friedman and Holden (2008) entirely neglects the spatial distribution of voters and

thus generally leads to highly disconnected voting districts. In the present paper, we develop

a lattice model which encodes population distributions and voter preferences. Using this lattice

model,westudy thespatial profileof theaggressivegerrymandering strategyoutlined inFriedman

and Holden (2008) and shall show that it generally leads to highly disconnected districts.

Specifically, in this work, we study four strategies for gerrymandering. The first strategy is

an implementation of the Friedman and Holden (2008) method which references a lattice voter

distribution. The latter three strategies are novel algorithmic approaches we propose here:

• Friedman–Holden (FH) packing (Section 2): Districts are formed from the most partisan

voters from both parties, with a bias such thatmost districts favor the gerrymander’s party.

The algorithm does not required the districts to be connected.

• Spatially Restricted Friedman–Holden (SRFH) packing (Section 3.1): The FH packing

strategy is adapted to ensure almost all districts are connected.
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• Saturation packing (Section 3.2): Opposition voters are packed into a small number of

districts, skewing the partisan bias in the majority of districts.

• Genetic gerrymandering (Section 4): Starting from sets of random districts, we iteratively

mutate these configurations to maximize some predefined fitness function. Choosing the

fitness function appropriately yields both fair or gerrymandered sets of districts.

To some extent the algorithms developed here are driven by two competing goals

i) Maximising the number of districts won by the gerrymanders party;

ii) Aiming for connected (or mostly connected) districts.

Indeed, it is a common legal requirement that voting districts are a single connected region,

however, as we show in Section 2, the approach of Friedman and Holden (2008) leads to all

districts beinghighly disconnected. In contradistinction, in the genetic gerrymandering algorithm,

we develop here all districts are guaranteed to be connected, and in the Saturation and SRFH

packing strategies, only the final district remains disconnected. In the latter case, the final district

typicallyhasonlya small numberofdistinctpiecesandconnectivity cano�enbeachieved through

minor swaps between districts. Hence, providing a significant improvement on the algorithmic

gerrymandering strategy of Friedman and Holden (2008).

We note here that there is a sizeable body of literature focusing on minimizing, optimizing,

and detecting gerrymandering. In particular, several groups have proposedmethods to construct

fair districts, which are population equal and non-partisan (for instance (Sherstyuk, 1998; Altman

and McDonald, 2011; Puppe and Tasnadi, 2015)), or which favor a particular outcome (see e.g.,

(Sherstyuk, 1998; Friedman and Holden, 2008; Puppe and Tasnadi, 2009; Apollonioa et al., 2009).

Additionally, several studies have presented a range of geometric tests, such as voting district

compactness and convexity, to detect gerrymandering, for example (Roeck, 1961; Schwartzberg,

1966; Oxtoby, 1977; Young, 1988; Niemi et al., 1990; Polsby and Popper, 1991; Chambers and Miller,

2010; Hodge et al., 2010; Wang, 2016; Duchin, 2018).

This work is structured as follows: In Section 1, we outline a new procedure for generating

lattice models of population and voter distributions. In Section 2, we outline a specific model

of aggressive gerrymandering, proposed by Friedman and Holden (2008), and using our lattice

models, wedemonstrate that this leads to disjointeddistricts. In Section 3,weoutline twopacking

algorithms, one of which is based on similar principles to Friedman and Holden’s approach, and

both of which take into account spatial information regarding voters. Section 4 presents a further

algorithmic gerrymandering strategy based on genetic algorithms, with the distinct advantage

that it automatically outputs connected districts. In Section 5, we apply our codes to generate

a number of gerrymandered territories, presenting both instructive examples and Monte Carlo

studies which quantify the impacts of gerrymandering. Then, in Section 6, we apply our Genetic

Gerrymandering algorithm to a voter distribution which models the rural-urban partisan slit

observed in the United States. Finally, in Section 7, we give a summary of results, a discussion

of their implications, and suggest potential directions for subsequent studies.1

1 Modelling Voter Distributions on Lattices
Amanner of generating large sets of quasi-randompopulation and voter distributions can provide

a flexible tool for studying the general features of population subdivisions and gerrymandering.

Abstracting away from purely data-driven studies of voter distributions can allow both more

general analyses and more specialized studies depending on how one implements the model.

In this section, we outline an elegant manner of constructing models of a voter distribution.

Specifically, we propose to study a population distribution which is modeled on a binomial

1 The replication materials for this paper can be found at Unwin (2019).
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distribution which approximates well a discretized Gaussian distribution with random fluctua-

tions. Such a distribution is a goodmodel for a city or town in the absence of natural boundaries.

We then superimpose a spread of partisan bias on this population. While the notion of modeling

voters via lattice distributions has been previously explored in applications of statistical physics to

sociopolitical research for example (Chou and Li, 2006; Wall, 2008; Castellano, Santo, and Vittorio

2009), to our knowledge, there are no previous studies which apply lattice techniques to assess

the viability of specific gerrymandering strategies for a given voter distribution.

1.1 Lattice Models of Population Distributions
We first define the key concepts that will be used throughout this work, which concern modelling

geographical regions with a population of voters, which we refer to as territories. In most repre-

sentative democracies, it is common to split territories into small indivisible cells called territorial

units (such as census units), with each unit containing a potion of voters. In this work, we model

territories as lattices:

DEFINITION 1. A territory S is a square lattice in Ú2, where each lattice site (i , j ) defines a terri-

torial unitTi ,j carrying a population value Pi ,j ∈ Î and a voter preference vi ,j ∈ (−1,1). The total
population of the territory is defined as PS =

∑

i ,j Pi ,j .

We shall call a population distribution on a territory S a set of fixed values for all Pi ,j and call

a “voter” (or “partisan”) distribution a set of fixed values for all vi ,j . We call S equipped with a

population distribution a “population model” and S equipped with both a population and voter

distribution will be referred to as a “voter model.”

DEFINITION 2. Given a territory S, a districtD is a finite union of territorial units, that is,

D = ∪(i ,j )∈ITi ,j for an index set I. The district population is defined as PD =
∑

(i ,j )∈I Pi ,j .

In contrast to arbitrary graphs, lattice territories can be efficiently manipulated and are ideal for

our analysis, since the distributions input to our algorithms and the districts output can all be

represented as square matrices. Furthermore, the lattice structure provides intuitive notions of

adjacency and connectedness between the territorial units:

DEFINITION 3. Territorial units atTi ,j andTk ,l are said to be adjacent if i = k ± 1 and j = l , xor

(exclusive or) j = l ±1 and i = k .

DEFINITION 4. A territorial unitTi ,j is reachable fromTk ,l if there exists a sequence of adjacent

territorial units beginning atTi ,j and ending atTk ,l .

Given the above definitions of adjacent units and reachable units, we can express a simple

notation of district connectedness:

DEFINITION 5. A district D is connected if anyTi ,j ∈ D is reachable for everyTk ,l ∈ D .

Sincewe are interested in caseswhere the territory is partitioned into a set of equal population

districts, we introduce the following definition:

DEFINITION 6. A valid districting is a set of n disjoint districts {Di } for i ∈ {1,2, ...,n} such that
S = ∪i ≤nDi and for fixed t ∈ Ò one has −t ≤ |Di | − |Dj | ≤ t for i , j ∈ {1,2, ...,n}.

The quantity n denotes the total number of districts in S. We call t the population threshold, which

allows for small variations in population between districts, while requiring approximately equal
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district populations. Throughout this work, we will take t ∼ 0.01 × PS/n , such that differences
between districts are percent-level.

Since it is of interest to consider population distributions which model real world situations,

here we initiative a study in this direction by considering a quasi-Gaussian distribution of popula-

tion much as would be appropriate in a large city in which the population is highly dense toward

the center and becomes diffuse at large radial distances. To approximate a Gaussian population

spread with random fluctuations, we implement a walker function (see e.g., Shiffman (2012)) on

a m ×m lattice with m ∈ Úodd with the central lattice site designated (0,0). The walker function

is essentially a simple agent-based model (see e.g., Macal and North (2005)) which undergoes

time step evolution. In this case, an agent is an object associated to a single lattice site at a

given time step and the walker function is a set of probabilistic rules which determine how the

spatial location of agents evolve between time steps. The agent represents an individual of the

population and thus the probabilistic evolution of agents leads to random fluctuations in the

population distribution. We will exploit these random fluctuations in the population distribution

to implement Monte Carlo methods later in this work.

For a given territory S, one can construct a population model with total population PS via

the walker function, as detailed below. We take a m ×m lattice and consider PS agents with the

following starting distribution (at time step t = 0)

Pi ,j
�

�

t=0
=

{

PS for (i , j ) = (0,0)

0 otherwise
. (1)

Thus, each integer unit of population is associated to anagent on the lattice and, prior to evolution

via the walker function, the whole population of the territory is located at the central lattice site.

For each time step, an agentmoves with fixed probability to any lattice site adjacent to its current

location with equal probability, with the restriction that agents remain within the m ×m lattice.

Each agent is allocated a fixed number of moves, and move counts across all agents follow a

normal distribution centered at theminimumnumber ofmoves needed to reach (m,m) from (0,0).

Once an agent has used its prescribed moves, it remains in its terminal unit.

A�er all agents have taken their prescribed moves the walker function outputs the number of

agents at each lattice site (i , j ) and this is identified with the population Pi ,j of the territorial unit

Ti ,j . The walker function provides a value for Pi ,j for eachTi ,j ∈ S and thus defines a population

model (but not a voter model, since the vi ,j remain undetermined at this stage). The popula-

tion spread due to this algorithm well approximates a two-dimensional Gaussian distribution.

The default output for population units Pi ,j along j = 0 well approximates the Gaussian Px ,0 =

P0,0 exp[−x 2/2c2] thewidth, controlled by c, can be varied in the codewith the default value used
herein being c = 3.3.

1.2 Modelling Elections on the Lattice
With this latticemodel of population distributions, we next implement a voting distributionwithin

the population which shall lead to the premise of voting and electoral events.

DEFINITION 7. The proponent (opponent) is the party which benefits (loses) from gerrymander-

ing. A territorial unitTi ,j is a proponent unit if vi ,j > 0, an opponent unit if vi ,j < 0, or neutral if

vi ,j = 0.

We let the proponent party correspond to positive extremity, that is vi ,j > 0, and designate this

the “red” party, with the opponent the “blue” party. We assume all voters cast ballots, so vi ,j > 0
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corresponds to the average vote in territorial unitTi ,j favoring the proponent.We also assume that

the gerrymander knows the values vi ,j with certainty, although this could be relaxed.

DEFINITION 8. Thenet territory vote (or popular vote) of a territory S is the sumNS :=
∑

i ,j Pi ,jvi ,j .

A territory is said to be balanced if NS ≈ 0. For a district D = ∪(i ,j )∈ITi ,j in S, the district vote is
ND =

∑

(i ,j )∈I Pi ,jvi ,j and the percentage district vote share isXD = 100×ND /PD .

We say that the red party wins the popular vote in S if NS > 0; conversely, blue wins (red loses)

the popular vote if NS < 0. However, rather than the popular vote of the whole territory, what is

typicallymost important is the district-wise overall vote. Similar to the popular vote, for ndistricts,

we say that red wins the district vote of district Dk for k ∈ {1,2, ...,n} if NDk
> 0 and we say blue

wins (red loses) the district vote if NDk
< 0.

The distinction between the district vote and the popular vote implies that a given party

can lose the latter, while securing the most districts. Typically, the most important outcome is

the number of districts won by each party. Thus, gerrymandering fundamentally exploits the

differences between the local and global properties of distributions. Realistic numbers of districts

n in a given territory range from 2 to O(10); for example, Hawaii has only 2 congressional districts,
while California has 53. In our statistical studies, we will typically take n = 5.

Since elections are dynamic and inherently uncertain, the gerrymanderer risks losing if the

plan is to win a district by only a single vote. Introducing a vote threshold w ensures that the

gerrymanderer’s partywins a givendistrictwith aminimummargin.We call a district “safe” for red

if NDk
>w , for a fixed prescribedw ∈ Úwhich is called the vote threshold (conversely, NDk

< −w
is safe for blue). We typically takew ∼ 0.01×PS/n , for n districts, such that safe districts favor the
proponent with a margin of at least 1%.

The threshold ω is taken to be fixed value for all districts. A more refined threshold could

require a relative (percentage) excess of the population in each district, however, fixing ω to a

predefined value for all districts greatly simplifies the algorithmic construction. Moreover, since

thepopulations arenot fixeduntil the endof the redistricting and since thedistrict populations are

required to be approximately balanced this is a very reasonable approximation. The results with

a fixed ω for all districts will not discernibly differ from constructions using a district population

dependent threshold, providing the district populations are comparable.

1.3 Modelling Voter Preference Distribution
We implement voter preference in terms of a number of specified points of peak partisan bias,

“sources,” with voter preference falling towards neutrality away from these peaks.

DEFINITION 9. Given a territory S, a source point is a pair Ei ,j = {(i , j ),e} characterized by its
location (i , j ) ∈ S and themagnitude e ∈ Ò of the source. We require that any set of source points

gives |vi ,j | ≤ 1[Ti ,j ∈ S .

To match with our previous (arbitrary) assignment that vi ,j > 0 corresponds to the red party, we

call Ei ,j a red source when e > 0 and a blue source when e < 0. Source points can be located at

arbitrary lattice sites, and the voter preference at a given territorial unit Ti ,j is a function of the

distance d from these source points, following a 1/d power law:

DEFINITION 10. The vote contribution∆k ,l from a source by E = {(i , j ),e} to the net vote of
territorial unitTk ,l , where (i , j ) and (k , l ) are separated by distance d (Ti ,j ,Tk ,l ) is

∆k ,l =
e

max[1,d (Ti ,j ,Tk ,l )]
, (2)
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Model #1 Model #2 Model #3 Model #4

Figure 2. Visualization of voter distributions for models #1–#4 of Table 1.

Table 1. Modelswith twoor four sourcepoints for territoriesbasedon21×21 square lattices. Adash indicates
that the source point is not included in a given model.

Model # EB E′B ER E′R

1 ((1,0),−1) - ((−1,0),1) -

2 ((4,0),−1) - ((−4,0),1) -

3 ((6,0),−1) ((0,6),−1) ((−6,0),1) ((0,−6),1)
4 ((6,0),−1) ((−6,0),−1) ((0,6),1) ((0,−6),1)

where the distance function (the metric) is taken to be d (Ti ,j ,Tk ,l ) :=
√

(k − i )2+ (l − j )2 . Given α

source points {Eα } for α ∈ {1,2, ...,m}, whose positions are chosen independently, we denote
their contribution to vi ,j as ∆i ,j ,α (where α labels the contribution from each source)

vi ,j =

m
∑

α=1

∆i ,j ,α . (3)

This implies that the vote contribution from a given source falls linearly with distance d from the

source.2 Because of the 1/d power law, the source points represent local maxima of the voter
preference, with sign (e) indicating the favored party. Balanced territories require at least one blue

and one red source, so we will be focus on scenarios with two or more sources.

To summarize, given a territory S, we use the walker function of Section 1.1 to fix the Pi ,j values

of S and by designating a set of source points and referring to Equation (3), we fix vi ,j values of S,

thus defining a voter model. As an example, we assign lattice sites immediately le� and right of

the origin (0,0) to serve as blue and red source points {EB , ER } with ER = {(−1,0),1} and EB =

{(1,0),−1}. The combination of the two-dimensional quasi-Gaussian population distribution and
the sources {EB , ER } produces the voter distribution shown in Figure 2 (le�most panel). The color
intensity indicates the magnitude of the net voter preference vi ,j and the center of these colored

regions corresponds to the positions of the two source points.

In subsequent examples and statistical analyses presented throughout the remainder of this

work, we shall consider a number of specific benchmark voter models3 with a quasi-Gaussian

population distribution and particular source point distributions, as given in Table 1 above:

All of the benchmark models have balanced territorial votes: NS ≈ 0. The voter distribution

of models #1–#4 are illustrated in Figure 2. These examples show that the method above can

implement a variety of voter distributions. In Section 6, we consider one additional voter distribu-

tion whichmodels the urban–rural partisan divide prevalent in the United States. The benchmark

models of Table 1 are particularly instructive since the lack of spherical symmetry makes them

more challenging to gerrymander and thus are ideal for testing the utility of our algorithms.

2 In principle one could study other power laws or consider sources each with different d dependencies.
3 We use benchmark to indicate awell-definedmodel against which our algorithms can be systematically evaluated, and do
not claim that these benchmarks imply any specific or general application to real world scenarios.
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2 The FH Packing Strategy
There are two fundamental strategies in algorithmic gerrymandering: packing and cracking.

First, a gerrymanderer can dilute the voting power of the opponent party either by packing the

most concentrated opponent-voting subpopulations into a small number of districts. Second,

one can crack the most concentrated opponent population into several districts so that the

most concentrated or extreme voting base for the opponent party never gains a majority.

A strategic application of voter packing underlies the approach of Friedman and Holden

(2008).

As an the example consider a gerrymanderer that favors the red party and whose goal is

that NDk
> 0 in the maximum number of districts Dk for k ∈ {1,2, ...,n} in a given territory.

Friedman andHolden (2008) considered a pseudo-normal voter extremity distribution and gener-

ated districts by simply partitioning the bell curve of the population by extremity. The first district

is formed by joining the most extreme subpopulations, that is, the bell curve tails, so that (i) their

combined population is approximately the average district population and (ii) the right tail is

sufficiently larger than the le� tail. The latter condition signifies that the extreme right-party voters

are sufficient to override the extreme le�-party vote in their district.

The above process will, in essence, “waste” the opponent’s strongest voting population in a

district it cannot likely win. This process is repeated on the subsequent districts and the final

district is composedof the remainingpopulation. Thus, byconstruction, the laterdistricts are com-

prised of mostly moderate voters and, for balanced territories, are typically won by the opponent

party. This approach has a number of merits but suffers from the lack of spatial considerations.

The FH method equates to unrestricted “cherry picking”: the gerrymanderer has the freedom

to select scattered population chunks for placement in the same category, as we demonstrate

shortly. Notably, if even a single district is disconnected, the districting plan is typically legally

prohibited.

A useful measure of failure, is the number of connected components of each district:

DEFINITION 11. A connected componentC ⊆ D of a district D is a (nonempty) set of territorial

units in D such that given a territorial unitTi ,j ∈ C , another territorial unitTk ,l also lies in C if and

only ifTi ,j is reachable fromTk ,l .

A district can be decomposed into its set of connected components Ci and we shall write D =

∪i ≤rCi , where r is the number of connected components. If any territorial unit in D is reachable

from all other territorial units in D, then r = 1 and we say that D is connected. The number of

connected components is important for the analysis of the spatial distributions arising through

the algorithms studied.

2.1 Friedman and Holden’s Algorithm on Lattice Territories
Friedman andHolden (2008) outline a packing strategywhich ignores the spatial data of the voter

distribution. In order to demonstrate how this strategy leads to highly disconnected districts, we

shall reformulate the strategy of Friedman and Holden (2008) for generating districts in terms of

an algorithmic approach applied to a lattice voter model and we will refer to this algorithm as

“FH Packing.” Then by neglecting spatial data during the redistricting process, but tracking the

positions of the territorial units allocated to each district, we can assess the connectivity of the

districts constructed via FH packing.

First, since voting districts are legally required to have comparable populations, we define a

target populationPD± := (PS/n ± t ) to ensure that all districts have approximately equal popula-

tions, in terms of t the population threshold t (from Definition 6), the total population PS , and the
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number of districts n. The value of PD± is computed before the algorithm is executed and each

district should satisfy the following population condition

PD− ≤ PDk
≤ PD+ . (4)

Also, the majority of district should satisfy the district win condition

NDk
>w . (5)

Later districts, in particular, the final district, must have an opponent bias if the territory is

balanced. Only when the algorithm is satisfied with the composition of a given district will it

proceeds to form the next district, until all n districts are formed.

To implement FHpacking strategy on a lattice our algorithm iteratively assigns single territorial

units to a district, one district at a time, such that the end result favors the proponent. We call a

territorial unit unassigned unit if it has not yet been assigned to a district and denote the set of

unassigned units U. As territorial units are assigned to districts by the algorithm, they are deleted

fromU. For a territory Son am×m lattice there are initiallym2 unassigned territorial units inU and

n (empty) districtsDk for k ∈ {1,2, ...,n}. We implement the FHpacking strategy by first sorting the
territorial units in order of decreasing voter extremity vi ,j , using a quicksortmethod (Hoare, 1961),

and relabeling the elements of this ordered set {T̂1,T̂2, . . .T̂m2 }, such that T̂1 corresponds to the

strongest unit vote for the opponent party and T̂m2 is the strongest unit vote for the proponent.

More precisely, the strongest unassigned opponent unit isTi ,j ∈ U if vi ,j ≤ vk ,l for allTk ,l ∈ U , or

equivalently it is T̂β ∈U if for all other T̂γ ∈U one has β < γ. Conversely, T̂β for β the largest index

in U is the strongest unassigned proponent unit.

Implementing a discretised version of the strategy outlined in Friedman and Holden (2008),

our algorithm forms each district D by iteratively adding the strongest the unassigned proponent

unit followed by the strongest unassigned opponent units, until PD > PD− . The algorithm then

calculates the district vote NDk
and compares it to the vote threshold w. If NDk

> w and PD <

PD+
then the district is complete and the algorithm repeats this process to create the remaining

districts, with the exception of the last district. It may be that in forming a given district, while

the district satisfies PD > PD− , the district vote is calculated to be less than the vote threshold. In

this case, the algorithm adds the strongest remaining unassigned proponent units untilNDk
>w ,

and at each step checks that PD < PD+
. Once the district vote is sufficiently large, the district is

complete. When the population limit is exceeded, PD > PD+
, our algorithm removes the last unit

added and tries the next in the ordered list until it identifies an addition to the district that does

not violate the limit. For large vote thresholds w or small population thresholds t, this districting

algorithmmay fail (i.e., no district satisfies simultaneously Equations (4) and (5)), but this is rarely

a problem for percent-level w and t. Finally, the last district Dn is identified with the remaining

unassigned territories a�er the first ( n −1) districts are constructed. If the territory is balanced, as

we assume, then it is impossible for all districts to favor the proponent, and thus it is expected that

for the final districtNDn
< 0. By design, the final district is primarily comprised ofmoderate voters.

The only requirement on the final district is that it satisfies PD− ≤ PDn
≤ PD+ which is commonly

the case for reasonable t.

For a smaller population threshold, and thus a more stringent requirement of population

uniformity, the final district may fail the population constraint. In this case, a�er constructing

the final district the algorithm will make a number of amendments to the district compositions

such that the populations are within the threshold. In the case that PDn
> PD+, the proponent-

favoring territorial units on the exterior of the final district are transferred to adjacent districts. If
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Figure 3. Example districting results for benchmark model #1 (top) & #4 (bottom) of Table 1 with a Gaussian
population distribution and a balanced vote. The gerrymander’s party is colored red, and in both cases wins
the popular vote in three of the five districts.

PDn
< PD−, then the opponent-favoring units in other districts and adjacent to the final district will

be transferred to the final district.

Exampleexecutionsare shown inFigure3anda flowchart illustrating thestepsof this algorithm

is presented in the online Supplementary Material. We show the output of our implementation of

the algorithm of Friedman and Holden (2008), as described above, partitioning a 21× 21 lattice

territory into five districts for benchmark models #1 and #4 (defined in Table 1). The intensity of

the color indicates the partisan extremity of a given territorial unit and the black lines indicate

divides between districts. The le� most panel illustrates the whole territories, while the panels to

the right show, in order, the composition of Districts 1–5 in order of construction. Observe that

the district compositions output by this algorithm are all typically disconnected, and this shall be

quantified through Monte Carlo studies shortly.

2.2 Impact of Friedman and Holden Packing Method
Before examining whether the districts constructed emulating the Friedman and Holden method

are connected, we shall first look to quantify what degree of advantage this gerrymandering

procedure gives to the proponent by comparing to a nonpartisan model of districting. To assess

the impact of gerrymandering we construct a voter model on a 21× 21 lattice territory S, where

the population distribution is quasi-Gaussian as in Section 1.2, the source points follow the

benchmarks of Table 1, and the total population4 is fixed to be PS ≈ 4700 (up to 0.5%fluctuations).

Since the walker function introduces random fluctuation in the population distribution, each run

returns a different redistricting. Thus, we can assess the impact of gerrymandering for a given set

of source points via a Monte Carlo approach using multiple runs of the algorithm.

Specifically, we generate a set of distinct redistricting plans on 30 different 21 × 21 lattice

population models with balanced votes NS ≈ 0 for each of the four benchmark source point

placements (as shown in Figures 2, andpartition the territory into five districts (i.e., take n = 5). For

eachdistrictDk , for k ∈ {1,2, ...,5} , we calculate the averagedistrict voteNDk
andpopulationPDk

,

and the average number of district wins for the proponent #win. In Table 2, we show the average

vote share XDk
(cf. Definition 8) in each district (where the districts are enumerated by order of

construction) following redistricting via FH packing and averaging over 30 runs. The vote share is

normalized such that if the entire population votes for one partyXD = ±100 and an even vote split
returnsXD = 0.

It is insightful to compare these results to some “fair” partitions of the population. Since

the population approximates a two-dimensional Gaussian, any spherically symmetric partition

4 The typical population of U.S. congressional districts is 700,000; our results can be rescaled accordingly if desired.
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Table 2. Average population and percentage vote shareXD in each district formed using the FHmethod.

Model PD1 XD1 PD2 XD2 PD3 XD3 PD4 XD4 PD5 XD5 #win

#1 902 4.7 968 0.6 977 0.2 947 -3.5 915 -1.8 3

#2 898 6.9 902 1.8 952 1.0 949 -2.9 1005 -5.9 3

#3 896 9.1 898 4.0 903 3.3 947 -1.8 1061 -12.2 3

#4 900 9.4 898 1.8 946 1.0 947 -7.5 1018 -3.9 3

Figure 4. A fair symmetric districting of a 21×21 lattice.

Table 3. Average percentage vote share per district XD for idealized non-partisan symmetric districts.

Model XD1 XD2 XD3 XD4 XD5 #win

#1 0.0 4.1 3.7 -3.7 -4.1 2.47

#2 0.0 17.9 14.4 -14.5 -17.9 2.57

#3 0.0 36.3 -5.7 5.7 -36.2 2.5

#4 0.0 -5.3 -5.2 -5.3 5.3 2.43

of the population which does not take into account the voter distribution can be considered a

nonpartisan districting.We shall construct a nonpartisan n = 5 districting by allocating the central

cells to District 1 and then symmetrically partitioning the set of territorial units not assigned to

District 1 to create Districts 2–5. We choose to partition Districts 2–5 by simply drawing the district

lines along the horizontal and vertical mid axes, and assigning the territorial units on the borders

to the adjacent district in the clockwise direction. The size of District 1 is fixed such that the five

territories have approximately equal populations, thus it is determined by the Gaussian spread

and population threshold t. The resulting districts are illustrated in Figure 4.

To assess the impact of gerrymandering we compare predicted results for the case of gerry-

mandered districts determined by our implementation of the FH packing strategy to the vote

for the symmetric districts outlined above for balanced territories. Generating 30 population

distributions on S, we calculate both the average vote share per district XDk
and the average

number of proponent district wins #win, as shown in Table 3.

Through the comparison of Tables 2 and 3 it is clear that FH packing significantly impacts the

electoral outcome, skewing the predicted number of district wins #win in favor of the proponent

party. However, as we show next, the districts constructed via FH packing are generically discon-

nected and therefore typically legally prohibited.
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Table 4. Number of connected components for districts created by our algorithmic implementation of the
FH packing strategy.

Model D1 D2 D3 D4 D5 Average

#1 2.4 4.6 8.7 1.2 1.3 3.7

#2 2.0 9.1 8.6 8.5 1.0 5.8

#3 4.0 18.6 14.5 12.2 1.1 10.1

#4 4.0 16.5 24.3 25.8 7.0 15.5

2.3 Connectivity of Friedman and Holden Districts
Since the FH method includes no spatial data, one might expect disconnected districts. In what

follows, we shall quantify the failure of the FH packing method to produce connected (and

thus legal) districts. To this end, we shall take the districts constructed in Table 2, output the

assignments of the territorial units, and identifying the number of connected components in each

district.

To show that the districts constructed via FH packing are highly disconnected, we take the

outputs of the 30 runs of FH packing on S generated previously and calculate themean number of

connected components for each district (labeled D1 to D5) and the mean over all districts for the

four benchmark source point models. The results are displayed in Table 4 and Figure 3 shows one

(of the 30) district composition output by the algorithm for each benchmark model, where one

can see that the districts are highly disconnected.

Under the above settings we find the strategy of Friedman and Holden (2008) typically outputs

districts with O(10) components. Importantly, disconnected districts are legally prohibited. Thus,
while the FHmethod is simple and easy to implement, it is too simplistic to give a realistic model

of redistricting and makes it clear that it is critical that algorithmic approaches take into account

the spatial distribution of voters.

3 Packing with Spatial Restriction
We dedicate this section to introduce two novel algorithms that gerrymander voter distributions

on lattices in a manner that strongly favors the proponent and gives mostly connected districts:

SRFH Packing and “Saturation” Packing. In SRFH, packing the gerrymander aims to guarantee

wins in the majority of districts, but lose the later constructed (moderate) districts, whereas

the saturation strategy relies on constructing districts to be discarded with significant opponent

biases. In Section 4, we introduce one further strategy based on genetic algorithms. Python codes

for each algorithm are provided online.

3.1 Spatially Restricted FH Packing
We introducehere theSRFHPackingalgorithm,which isamodification to theFHpackingapproach

that allows the inclusion of spatial data. This SRFH algorithm forms each district by first including

the strongest opponent and proponent unassigned units, as well as a path of territorial units

between them (which necessarily includes moderate voters). The algorithm then successively

adds highly polarized units of both parties which are adjacent to the forming district, until it

satisfies the population requirement and the net vote favors the proponent party, that is until the

district satisfies Equations (4) and (5).

Districts are construction as follows districts, with the exception of the final district. Initially

there are x unassigned territorial units; similar to the FH algorithm the first step is to sort, via

quicksort, the unassigned units in order of decreasing voter extremity5vi ,j and relabel the ordered

5 Alternative one can sort in decreasing magnitude of Pi j vi j (rather than vi j ), we have tested that in the lattice voter models
studied here that this variant gives similar results, but it could impact more complicated distributions.
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Figure 5. Le�: An example of the most extreme proponent and opponent units. Center: One of the four
shortest paths through unassigned territory between the extreme endpoints. Right: the set of territorial units
(orange) considered for addition to the district.

set {T̂1,T̂2 . . .T̂x }. To form a new district, the algorithm adds the unassigned units T̂1 and T̂x to the

district and the shortest path between them that avoids all already assigned territorial units, as

in Figure 5. We use a Grassfire algorithm Bium (1964) to remove assigned units when determining

the shortest path. If a given path between T̂1 and T̂x exceeds the target population PD±, then the

next shortest path is selected, but this is typically not an issue.

While PDk
< PD−, the algorithm will repeatedly add to the district the most extreme territorial

unit that is unassigned and adjacent to it. If the net vote of the district does not sufficiently favor

the proponent party, as determined by a vote threshold parameter w, then the algorithm will

successively add proponent units to the district. Once the net vote favors the proponent, the

algorithm adds opponent units to balance the vote. A�er adding each unit to a given district, the

algorithmcalculates thecurrentdistrictpopulationPD and fixes thedistrictwhenPD > PD−. It then

checks that PD < PD+, if this check fails, the most recent territorial unit added is replaced with an

alternative adjacent unit, until the above is satisfied. A�er a connected set is validated as a district,

the algorithm recurs on the remaining sorted list of territorial units to create another district. The

algorithmwill typicallyproducedistricts inorderofdecreasingNDk
,with theproponent votebeing

stronger than the opponent vote. The remaining unassigned units a�er the construction of n − 1

districts are assigned to the final district, and thus the last district is typically disconnected. The

SupplementaryMaterial provides a flowchart of this algorithm. Figure 6 shows an example output

of the SRFH Packing strategies, in which we partition a 21 × 21 lattice into five districts for the

benchmark voter models #1 and #4 of Table 1.

3.2 A Saturation Packing Algorithm
We now introduce an alternative approach we call Saturation Packing, which implements the

simple strategy of packing extreme opponent voters into a single compact district. The Saturation

Packing algorithm builds on the previous framework of the SRFH method, however, prior to

constructing any districts, each territorial unit is assigned a priority value based on its net vote

and its average distance from proponent source points.6

DEFINITION 12. For a territory S with α proponent source points E1, . . . ,Eα , we define the prior-

ity zi ,j of a territorial unitTi ,j to be

zi ,j := −vi ,j ·
1

α

α
∑

j=1

d
(

Ej ,Tj ,k

)

. (6)

Onceall priorities areassigned, the list of territorial units is sorted inorderof decreasingpriority

and the territorial unit with the greatest negative priority at the beginning of the sorted list is

6 An alternative choice would be to weigh the assigned priorities with Pi j vi j rather than simply vi j , we have tested that in
the lattice voter models studied here this variant gives similar results and will not change any conclusions.
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Sample Executions for Spatially Restricted Friedman-Holden Packing

Figure 6. The Spatially Restricted Friedman–Holden Packing algorithm applied to benchmark voter model #1 (top) andmodel #4 (bottom) of Table 1, analogous to Figure 3,
in both red wins three districts.

https://doi.org/10.1017/pan.2020.22 Published online by Cambridge University Press
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Sample Executions for Saturation Packing

Figure 7. Saturation Packing applied to the benchmark voter model #1 (top) andmodel #4 (bottom) of Table
1, analogous to Figures 3 and 6, in both red wins four districts.

Table 5. Average number of connected components for District 5, and average number of connected com-
ponents over all five districts, for the Saturation and SRFH algorithms.

Model SRFH: D5 # SRFH: average Saturation: D5 # Saturation: average

#1 3.5 1.5 2.4 1.3

#2 3.5 1.5 4 1.6

#3 5.4 1.9 4.6 1.7

#4 8.9 2.6 4.9 1.8

Average 5.3 1.9 4.0 1.6

added to the collectionD1, thatwill eventually form the first district. Then, the algorithm searches

over all territorial units adjacent toD1 and adds the next highest negative priority unit toD1. This

last process is repeated until PD1
> PD−. A�er District 1 is constructed via the Saturation Packing

algorithm,all subsequentdistricts are createdusing theSRFHPackingalgorithmfromtheprevious

section. A flowchart for this algorithm is given in the SupplementaryMaterial. Figure 7 presents an

example outputs of the Saturation Packing strategy.

Observe in Figures 6 and 7 that, with the exception of District 5, the districts created are con-

nected, which is a notable improvement on the original strategy of Friedman and Holden (2008)

which typically produced O(10) components for each district. Following similar methodology to
Table 4 with 30 trails, in Table 5, we quantify the number of connected component in the final

district (“D5 #”) for both Saturation and SRFH Packing, as well as stating the average number of

connected components for all districts (“average”) for comparison with Table 4.

As shown in Section 2.3, the basic FH Packing method, which does not account for the spa-

tial distribution of voters, the average number of connected components is O(10) components
(cf. Table 4), whereas for our algorithms with spatial restrictions the average is O(1). With so few
components one can potentially achieve connectivity in postprocessing with a small number of

swaps, and in a real world environment one could also possibly exploit geographical features or

utilize the empty area external to territory to arrange for the final district to be connected. We

quantify the effectiveness of these different districting strategies in Section 5.

4 Genetic Gerrymandering Algorithm
In Section 3, we advanced on the basic strategy of Friedman and Holden (2008) by including

spatial restrictions throughwhatwe called the Saturation andSRFHpacking algorithms.However,

those methods both rely on assigning territorial units to districts in manner that satisfies local

requirements without reference to the global assignments and thus typically the final districts

are disconnected. While one can potentially “fix” the final district following the completion of
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the algorithm, this is somewhat unsatisfactory. In order to resolve this issue that the final district

remains disconnected, we introduce here a new class of gerrymandering algorithmwhich we call

GeneticGerrymandering (GG), basedon thegeneral ideasof genetic algorithmapproaches. Rather

than constructing districts by selecting particular territorial units, this genetic algorithm takes a

starting configuration of districts and evolves it over a number of iterations towards some goal.

From some arbitrary initial “seed” set of districts the algorithm generates a number of mildly

altered variants (mutations), it then calculates a fitness index for each of the sets of districts and

retains the district sets with the highest index values, before repeating the process. A�er several

iterations the system converges on a particular outcome.

One distinct benefit of this procedure is that since the initial seed is a set of connected districts,

provided that connectivity is respected in subsequent mutations, then the final set of gerryman-

dereddistrictswill alsobeconnected. Toourknowledge, genetic algorithmshavenotbeenapplied

to the question of how to optimally gerrymander a territory to provide highly partisan outcomes.

There has, however, been a good deal of work on implementing fair districting using genetic

algorithms, for example (Forman and Yue, 2003; Bacao, Lobo, and Painho 2005; Chou et al., 2007;

Altman and McDonald, 2011; Vanneschi et al., 2017).

4.1 The Gerrymandering Index
In order to gerrymander the districts, one needs to construct a fitness index which favors the

proponent party. Although there is no unique way to construct this index, any good fitness index

for gerrymandering should take into account the number of districts which are winnable for the

gerrymanders’ party and the population spread. The latter is taken into consideration to ensure

that thedistricts have approximately equal populations, in order tomake thedistricts legally valid.

The fitness function we construct depends on these two qualities and it allows the algorithm to

skew the populations if it provides an advantage to the proponent party.

Let W be the number of safe proponent districts plus half the number of contended districts

(those with |ND | <w ) given by

W =

n
∑

k=1

Θ(NDk
−w )+ 1

2

[

n −
n
∑

k=1

Θ(NDk
−w )−

n
∑

k=1

Θ(−NDk
)Θ(|NDk

| −w )
]

, (7)

where Θ is the Heaviside Θ function. The safe proponent districts are those with ND > w and

the number of contended districts can be counted as the total number of districts n minus the

total number of safe (proponent and opponent) districts. We also define the following population

measure

g :=
1

PS

(

max
1≤k ≤n

(

PDk

)

− min
1≤k ≤n

(

PDk

)

)

. (8)

The quantity W and the measure g characterize the salient properties of a given district plan for

the purposes of gerrymandering, and using these we define the following gerrymandering fitness

index, given by the ratio of districts wonminus the population spread:

G :=
W

n
−g . (9)

The index G takes values in the interval [0,1], with the most desirable outcome for the gerry-
manderer occurring for those sets of districts with the highest fitness index. For this algorithm

the populationmeasure g replaces the earlier population threshold t and the algorithm positively

weights, and thus overmultiplemutations tends toward, balanced populations between districts.
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This index Gwe consider is fairly simple, defined by just two parameters, and one could certainly

construct more elaborate indexes, but this simple form is sufficient to explore the prospects of

gerrymandering a given territory.

4.2 Random Seed
The other component of the genetic algorithm is the definition of a set of seed districts for the

genetic gerrymandering algorithm, being a random starting configurations of districts, and the

mutation procedure which generates the iterations. Our starting point for the genetic gerryman-

dering algorithm is anarbitrarypartitionof the territory inton connecteddistrictswhich is referred

to as the seeddistricting.We construct this randomseedas follows: for a partition of the territories

into n districts we randomly select n territorial units label these T̃k for k = 1, . . .n , and perform

a flood fill (Smith, 1979; Glassner, 2013) around these units. Via the flood fill algorithm each of

the territorial units is assigned to the nearest unit in {T̃k }, calculated using the distance function
defined in Section 1.3. Thus each initial district Dk is the set of units which are closest to the

seed T̃k . Units which are equidistant from two seeds are assigned to the set carrying the lowest

numerical label k ∈ (1,n).
This flood-fill approach to random districting guarantees connected districts that are typically

convex and compact. Although this method does not enforce population equality, the random

districtings start out highly equitable from a geometric standpoint, and the district populations

tend to balance out as they evolve due to the definition of the index G.

In our implementation the random seeds are chosen with a flat distribution, that is every unit

has equal probability regardless of population, however, in the real world, the size of census units

commonly varies according to the population density which could potentially lead to clustering

of random seeds around urban areas. This clustering could be remedied by weighting the seed

placements accordingly, however, note that the subsequent genetic evolution makes the system

somewhat (but not entirely) insensitive to the placement of the seeds. Additionally, we note that

the known voter distribution might be used to inform the seed placement (rather than being

entirely random), we intend to return to explore this refinement in future work.

4.3 Mutation Procedure
The final component of the genetic gerrymandering algorithm is to randomly alter the districts,

identify the mutated district which maximizes G, and iterate this procedure. Our mutation proce-

dure swaps certain units between adjacent districts on each iteration in a manner that preserves

connectedness of each district and favors balanced populations.

DEFINITION 13. For a territorial unit T in district D, a district D ′ (for D , D ′) is said to be an

adjacent district to T if there exists aT ′ ∈ D ′ which is an adjacent unit to T.

To implement the mutation process, we assign a value Li ,j to each Ti ,j ∈ S and define M :=

max[Li ,j ] over all Ti ,j ∈ S . The quantity Li ,j describes a territorial units propensity to switch to

a different adjacent district during the mutation procedure. Then for all Ti ,j ∈ S with Li ,j > 0,

a mutation on T is performed with probability Li ,j /M , removing Ti ,j from its old district and

adding Ti ,j to the lowest-population district adjacent to Ti ,j . By choosing the assignments of

Li ,j appropriately this transfer of territorial units always make the district populations more

balanced and thus the voting districts quickly become significantly more equitable (in just a few

generations). Specifically,weassign the valueLi ,j = 0 to the territorial unitTi ,j in districtD ifD −Ti ,j
is not connected. Otherwise, Li ,j := max(PD −PD ′) over all districts D ′ adjacent toTi ,j . Thus, if a

given territorial unitTi ,j lies in the same district as each of its adjacent territorial unit, then Li ,j = 0

and Li ,j , 0 occurs only for territorial units on a border between districts.
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Sample Executions for Genetic Gerrymandering

Figure 8. Genetic Gerrymandering applied to benchmark model #1 (top) and model #4 (bottom) of Table 1,
analogous to Figures 3, 6, and 7, in both red wins three districts.

In summary, a set of N seed districts forms generation 1 and our algorithm then performs the

following iterative procedure for generation i: it identifies the
√
N cases (rounding appropriately)

with the highest G indices and to these
√
N cases it applies the mutation procedure

√
N times.

Because of the probabilistic nature of the mutations this produces N different offspring, which

comprise generation i +1. With each iteration, the set of districts evolve toward a local maximum

of G. A�er a preset set number of iterations the algorithm outputs the set of districts with the

best G index from the final generation. Typically, a�er O(10) iterations the algorithm converges.

A flowchart is provided in the Supplementary Material.

4.4 Sample Executions of Genetic Gerrymandering
For our example run, we construct N = 100 random seed districtings for the first generation and

the algorithm selects the 10 with highest G index to mutate. At each stage, the algorithm runs the

mutation method 10 times on each parent, producing 10 · 10 = 100 offspring. This evolution is

iterated over 12 generations, and the final districting output is the set in the last generation with

the highest G index. In Figure 8, we present a sample executions of the genetic gerrymandering

algorithm applied to the benchmarkmodels #1 and #4 of Table 1, in analogy to Figures 3, 6, and 7.

Before closing this section, we note that the genetic gerrymandering algorithm developed

above can be adapted to construct fair districtings simply by changing the fitness index, and we

present thesemodifications alongwith a sample execution in the online Supplementary Material.

As mentioned above, the use of genetic algorithms to fair districting has been previously studied

in the literature, for instance (Forman and Yue, 2003; Bacao et al., 2005; Chou et al., 2007; Altman

and McDonald, 2011; Vanneschi et al., 2017) and, indeed, many of the existing algorithms for

fair districting are far more sophisticated than the one we discuss below. However, the genetic

heuristic and mutation procedure developed in our genetic gerrymandering algorithm is distinct

and original, and it is interesting that, at least in our simplified lattice models, fair districts can be

readily constructed from the simple and intuitive criteria we stipulate.

5 Results
Through the algorithms developed here, we shall quantify some general statements about ger-

rymandering. To this purpose, we consider the subdivision of a 21 × 21 lattice S into n = 5

districts, with population PS ≈ 4700 and voter distributions as in Table 1. The population and vote

thresholds are fixed to be t = 0.05×PS/n andw = 5 in all relevant cases.

Due to the inherent randomness built into the population distribution we can use the districts

output by the redistricting algorithms with spatial restrictions, developed in Sections 3 and 4,

to study aspects of gerrymandering via a Monte Carlo approach. Specifically, we generate a
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Table 6. Average district vote share (%) a�er SRFH Packing of Section 3.1.

Model XD1 XD2 XD3 XD4 XD5 #win

#1 1.54 0.66 0.29 -0.74 -1.82 2.9

#2 1.53 0.65 0.63 -1.38 -1.52 3

#3 1.44 4.73 0.36 5.04 -7.2 3.2

#4 1.17 1.17 1.32 1.23 -4.62 4.0

large sets of gerrymandered territory for the case of five districts and undertake a statistical

analysis to quantify the advantagewhich gerrymandering brings to theproponent party andother

characteristics of gerrymandered territories.

While Monte Carlo methods have been previously employed for detection of gerrymandering,

for instance (Herschlag, 2018; Herschlag et al., 2017), and also toward constructing fair districts,

for example (Fifield et al., 2015), to our knowledge, this is the first study to apply a Monte Carlo

approach to look to quantify general features of gerrymandering.

5.1 Quantitative Impact of Different Gerrymandering Strategies.
The primary aim of the gerrymanderer is tomaximize the predicted number of districts won #win
during an election. The secondary aims are to construct proponent districts with ND ≫ 0 and to

arrange for opponent districts with ND ≈ 0, such that the districts constructed are secure from

potential swings in the voting preferences against them, and can capitalize on swings in their favor

to pick up additional districts.

To assess the impact of gerrymandering we compare predicted election results for each of

the gerrymandering algorithms developed above to the nonpartisan symmetric districtingmodel

outlined in Section 2.2 and illustrated in Figure 4. The predicted election results of the symmetric

districting model are given in Table 3. Taking first the SRFH Packing algorithm, and following a

similar methodology to Section 2.2, we generate 30 population distributions on S and calculate

the average net vote per district NDk
and the average number of district wins for the proponent

(#win):

In the case of gerrymandering via Saturation packing, we find that, although blunt, it can be

extremely effective in securing districts for territories with a balanced vote:

Finally, we consider applications of the Genetic Gerrymandering algorithm, a�er each run we

label the districts in order of net vote (prior to calculating the district averages):

Since in each case above, the territorial vote is close to balanced, NS ≈ 0, in a fair election

the expected average number of proponent districts wins is #win ≈ 2.5. This is seen to be the

case in Table 3 for symmetric districting with symmetric sources. However, as anticipated, for

the gerrymandered districts generated by our algorithms one observes clear skews in favor of

the proponent. Specifically, SFRH Packing (Table 6) leads to the proponent always winning 65%

of districts and Saturation Packing (Table 7) results in an impressive 80% of district wins for the

proponent. ForGeneticGerrymandering (Table 8) theproponentwins around70%ofdistricts and,

moreover, this has the important benefit of guaranteed connected districts.

5.2 Compactness Tests
One of themost identifiable traits of gerrymandering is that it typically leads to highly nonconvex

or noncompact districts. Motivated by this common trait, researchers (Roeck, 1961; Schwartzberg,

1966; Oxtoby, 1977; Young, 1988; Niemi et al., 1990; Polsby and Popper, 1991; Chambers and Miller,

2010; Hodge et al., 2010) have proposed geometric measures that can potentially be used to

identify gerrymandering. It should be noted that simple geometric tests, while intuitive, do have
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Table 7. Average district vote share (%) a�er Saturation Packing of Section 3.2.

Model XD1 XD2 XD3 XD4 XD5 #win

#1 -19.68 14.81 3.49 1.65 0.49 4

#2 -35.24 19.26 9.31 4.9 3.31 4

#3 -46.2 7.0 20.75 16.78 6.07 4

#4 -22.98 1.16 14.0 4.08 4.45 4

Table 8. Average district vote share (%) a�er Genetic Gerrymandering algorithm of Section 4.

Model XD1 XD2 XD3 XD4 XD5 #win

#1 7.2 2.8 1.3 -0.1 -9.8 3.8

#2 16.8 7.0 3.2 -3.1 -19.7 3.7

#3 27.7 14.4 4.3 -11.5 -33.0 3.4

#4 11.8 3.6 2.1 -4.6 -19.7 3.4

Table 9. Isoperimetric quotient of districts produced by genetic gerrymandering.

Model ID1 ID2 ID3 ID4 ID5 Iaverage

#1 0.12 0.11 0.13 0.14 0.14 0.13

#2 0.12 0.13 0.1 0.15 0.5 0.13

#3 0.13 0.1 0.08 0.1 0.13 0.1

#4 0.1 0.11 0.09 0.11 0.14 0.11

Table 10. Isoperimetric quotient indices for idealized nonpartisan symmetric districts

Model ID1 ID2 ID3 ID4 ID5 Iaverage

Symmetric 0.40 0.71 0.71 0.71 0.71 0.65

certain drawbacks. For instance, they o�en do not account for variations in district boundaries

due to natural or legal borders (e.g., coastlines or national borders) and do not incorporate

information on population distributions or demographics. Regardless, it is interesting to calculate

thesegeometricmeasures for thegerrymandereddistricts arising inourwork, in order to ascertain

which index values likely indicate aggressive gerrymandering.

We shall examine themost intuitive dimensionless gerrymanderingmeasure: the isoperimetric

quotient index (Polsby and Popper, 1991), defined as ID := 4πA/P 2, for a district D of area A and

perimeter P. The index is normalized to the circle, and deviations of a district from a circle give

ID < 1. In Table 9, we give the average ID for each district produced via Genetic Gerrymandering

(labeling districts in ascendingND a�er each run) as well as themean ID for all districts averaged

over 30 runs.

In order to demonstrate that the districts generated by the Genetic Gerrymandering algorithm

could potentially be detected and constrained by isometric quotient tests, we compare the ID

values of Table 9 to the isometric quotients calculated for the idealized nonpartisan symmetric

districts of Section 2.2, these are given in Table 10.

Since the idealizednonpartisan symmetric districts followsimple geometric construction rules,

without reference to the voter distribution, the same ID value is found for models #1–#4 (up to

negligible fluctuations in the population distribution).
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From the above analysis we find that our gerrymandering method always leads to an average

ID which ismuch lower than the symmetric “fair” districts. Moreover, some of the gerrymandered

districts have very low ID values, for instance the average value for District 3 of model 3 was

I
(#3)
D3

≈ 0.08, which is significantly lower than the isoperimetric quotient of the typical symmetric

district with ID ≈ 0.71. We conclude that gerrymandered districts constructed via our Genetic

Gerrymandering algorithm typically lead to highly noncompact districts for realistic distributions

of voters.

These results suggest that if redistricting were restricted by compactness constraints then the

extent towhich one can impact an election could be curtailed, andmany aggressive gerrymander-

ing methods (in particular our own) would be less effective. Thus, this provides further support

for the need for democratic governments to place some form of compactness requirement on

redistricting schemes, and complements similar arguments and findings presented in for example

(Schwartzberg, 1966; Polsby and Popper, 1991; Altman, 1998; Hodge et al., 2010; Humphreys, 2011;

Chou et al., 2014; Bowen, 2014)

6 Application to Partisanship Trends in the United States
In the previous sections, we have applied our algorithms to the task of gerrymandering some

benchmark votermodels withmultiple high density centers of partisan polarisations. While these

toy models are perhaps not representative of realistic U.S. partisan distributions, the configura-

tions of models #1–#4 provide a good test of the districting algorithms developed here since they

are challenging to gerrymander effectively. In this section, we turn to consider an alternative voter

model inspired by observations of voting patterns in the United States.

A common trend which has been noted that in the United States is that typically urban centers

vote for the (relatively le� leaning) Democratic Party, and the average voter is generallymore likely

to vote for the (right wing) Republican party as population density decreases (Politicalmaps.org,

2016). Indeed, it has been widely reported that “small-town and rural areas tilt so much more

toward the GOP than urban areas” (Brownstein, 2018). We next outline a lattice voter model

to represent this general trend which leads to a distribution which favors Democrats near the

population peak and the voter extremity transitions to increasingly favor the Republican Party as

population density decreases.

We first highlight that a logistic curve is an intuitive model for population density, since as

one approaches an urban center it is reasonable to expect that the population density grows

exponentially at first and then subsequently starts to saturate as one approaches the central

region. In particular, consider the following function (which builds on a logistic function)

L(∆) =M0×∆Max

[(

1− ∆

∆Max

)

− 1

1+exp [k (∆0−∆)]

]

, (10)

where ∆ is the radial distance from the population peak, ∆Max is the average maximum distance

of units from the peak as determined by the lattice size (for 21×21 lattice this is ∆Max ≈ 12), ∆0 is

the distance at which partisanship is neutral and the parametersM0 and k control aspects of the

shape and magnitude of the function. The inclusion of the (∆/∆Max) term modifies the standard

logistic function to make the partisan falloff more gradual.

We realize the urban–rural distribution in lattice voter models via a single central blue source

point at (0,0) and 4n (for n ∈ Î) red sources distributed symmetrically on the perimeter of

the lattice with equal partisan strength ER . Therefore, on a 21 × 21 lattice, a model which well

characterizes the observed partisan distribution can be found taking n = 2with red source points

at: {(−10,−10), (10,−10), (10,−10), (10,10), (0,−10), (0,10), (−10,0), (10,0)}. Let us consider the
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Figure9.Voter extremityvi j asa functionofdistance fromcentre∆ for a21×21 latticewithurban-ruralmodel
sourcepoint distribution. Eachpoint is thevi j of oneormore territorial unit (somepoints aredegenerate) and
the lattice model is seen to reasonably approximate the trend of the modified logistical curve (red, solid) of
the form stated.

Table 11. Average district vote share (%) for a model of U.S. partisanship a�er Genetic Gerrymandering.

Proponent XD1 XD2 XD3 XD4 XD5 #win

Blue 9.97 0.85 -3.65 -10.69 -22.63 4.0

Red 11.29 3.46 1.64 -2.8 -39.01 3.8

case that the territorial net vote is balanced, this can be arranged by judiciously fixing the relative

magnitudes of the source points, with EB = −1 and ER ≈ 0.7.

In Figure 9, we compare the expression of Equation (10) with the vi j values of every unit

produced from our code. We find that the radial partisanship distribution produced by the code

can be reasonably approximated by the logistic function of Equation (10) withM0 ≈ 0.05 and k = 3

with x0 fixed to the point at which vi j ≈ 0 in the lattice data, being x0 ≈ 1.5 in this case.

To study territories with balanced total votes in this set up, wemust either change the Binomial

distributionparametersof ourpopulationmodel toarrange for amore sharplypeakeddistribution

than the default model used in earlier sections or add a density spike in the central region.

Specifically, in the analysis below we implemented a density spike on top of the initial Gaussian

distribution by including a second randomly walking population with a very restricted number

of moves. In our study below, we restricted the second walker population to 3 moves and set

the population of the second group to be 40 times that of the first walker population. Thus, this

construction gives a sharply peaked population in the central few lattice sites appended with

shallow Gaussian tail, such that taking the extremity distribution of the urban–rural model results

in a balanced vote for the territory .

The purpose of this voter model is to better imitate representative U.S. partisan distributions

by gradually altering the partisanship from le�-leaning to right as distance from the urban center

is increased. Note that unlike the previous models of Table 1 which had a Red↔Blue interchange

symmetry, the placement of sources is very different for the two partisan extremities and thus

it is interesting to consider how either party would best gerrymander a given territory. We apply

ourGenetic Gerrymandering algorithm to this distribution, and illustrations of the gerrymandered

districts which favor the Red party is shown in Figure 10. Furthermore, we can run the algorithm

multiple times following theMonte Carlo approach of Section 5 and in Tables 11 and 12,wepresent

theexpecteddistrict net vote, isoperimetric quotient, andnumberof districtwins in the case that a

gerrymanderer divides a balanced territory into five districts favoring first the Blue Party and then

the Red Party.
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Table 12. Isoperimetric quotients for a model of U.S. partisanship a�er Genetic Gerrymandering.

Proponent ID1 ID2 ID3 ID4 ID5 Iaverage

Blue 0.08 0.11 0.11 0.13 0.12 0.11

Red 0.1 0.09 0.10 0.09 0.14 0.11

Sample execution in which the Gerrymanderer constructs three Red leaning districts

Figure 10.Genetic Gerrymandering applied to a realistic U.S. partisan distribution. The partywhich occupies
the population peak is shown blue to indicate a match to the tendency for urban centers to lean toward the
Democratic Party. The example shows a territory with balanced vote is gerrymandered such that the Blue
party is expected to win three out of five districts.

Comparing with the previous applications of the Genetic Gerrymandering algorithm in Tables

8 and 9, we observe that the method is comparably effective for voter extremities modeling the

rural–urban split, however, the isoperimetric quotients scores are noticeably worse. The expected

number of district wins is approximately 4 (out of 5) for gerrymandering in favor of the Blue

Party, which provides a notable benefit to the Blue Party. For the Red Party this is seen to be a

similar result of 3.8 expected wins, which is a significant advantage. This is comparable to the

results for the benchmark models of Table 1 for which the expected number of districts wins was

approximately 3.7 out of 5.

7 Summary and Conclusions
The assignment of power to the electorate is the fundamental strength of representative democ-

racies. Political gerrymandering, if le� unchecked, threatens to undermine democratic systems.

Since gerrymandering issues can be formulated as well-stated mathematical problems, one can

develop tools and tests to identify and inhibit such practices.

We have presented a number of tools for studying gerrymandering and used these to examine

central questions to gerrymandering. A lattice model for population distributions was developed

and we proposed several algorithms to partition lattice territories into gerrymandered, equal-

population, connected (or mostly connected) districts. We used our lattice model to argue that

the method of Friedman and Holden (2008) is unrealistic since it generally leads to disconnected

districts. However, the techniques of packing and cracking remain central tools for gerrymander-

ing, and we carried these ideas in constructing our own algorithmic approaches. To this end, we

developed threenovel gerrymanderingalgorithms, SRFHPacking, SaturationPackingandGenetic

Gerrymandering, and example executions of these strategies are shown in Figures 6–8. Moreover,

we subsequently applied our Genetic Gerrymandering algorithm to study a voter models of the

rural-urban partisan divided which has been observed in U.S. congressional districts.

The probabilistic population fluctuations inherent to our voter models, allowed us to employ

Monte Carlo methods to study the effectiveness of our gerrymandering algorithms. We found

that Saturation Packing, the blunt strategy of packing opposition voters into a small number of

districts, provided the most effective manner to secure district for a balanced vote. Moreover,

our Saturation Packing algorithm led to a less fractured final district than SRFH Packing, with

around 25% fewer components. Genetic Gerrymandering was highlighted as our most complete

algorithm, since it outputs districts which are connected with balanced populations as typically
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required to be legally valid, and moreover the model presented won 70% of districts on average

for the gerrymanderer in the trials ran.

This work is focused on providing a “proof-of-principle” regarding the potential of lattice

studies for gerrymanderingwith theaimof identifyinggeneral classesof algorithmsmightbemost

well suited for redistricting problems. The next logical step for this research direction would be

a systematic analysis of diverse theoretical configurations and studies using real world data. In

particular, to provide robust claims regarding the impact of gerrymandering to the likely number

of districts wins and isopermetric quotient score one should undertake a comprehensive analysis

that systematically considers different partisan and population distributions in the context of a

specific gerrymandering algorithm. Moreover, it would be insightful to consider different popu-

lation distributions other than quasi-Gaussian distributions centered in the middle of a square

grid, including the addition of natural boundaries, such as coastlines and rivers. Such natural

boundaries could be reasonably included within a lattice model with predefined units with zero

population during the construction of the population model.

Another important aspect that we will study in subsequent work is to explore the application

of such lattice models to real world data. One clean and simple study which may be insightful

would be to extract a trend line for the vote margin X as a function of population density ρ

and then define a function vi j (ρ) which reproduces the trend line, replacing the source model

of voter extremity used here. Indeed, there are several other extensions of our algorithms which

would be interesting to explore, such as incorporating third-party candidates and nonvoting

electors. Furthermore, our current algorithms assume complete knowledge about the population

distribution and voter preferences, but in reality, a gerrymanderer has imprecise information

about these distributions, which leads to uncertainty in the voter preference distributions. Voter

uncertainty can be implemented by allowing each vi ,j to have some probabilistic fluctuations.

One might also implement “voter shocks” to model swings in the popular vote by O(10%) a�er
redistricting is complete, as discussed in Friedman and Holden (2008). Both of these extensions

directly affect the required vote thresholdw, since ifw during redistricting is not sufficiently large,

the proponent party may lose the election.

We used the outputs of our gerrymandering algorithms to empirically argue that gerryman-

dering can provide a significant advantage for the gerrymanderer’s party, and that the partisan

connected districts output by our algorithms typically fail isoperimetric quotient tests. Notably,

while connectivity is legally mandated, compactness is not always. Thus, our work adds further

support for implementing some legally mandated compactness requirements for redistricting to

inhibit political gerrymandering.
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