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An electrokinetic model for a surfactant-stabilized nano-drop under oscillatory forcing is
solved. This generalizes a model for which an analytical solution was recently proposed
for large, highly charged drops. Calculations of the dynamic electrophoretic mobility
and the accompanying electrostatic polarization for a single drop provide a theoretical
foundation for interpreting electrokinetic sonic amplitude and complex-conductivity
spectra for dilute surfactant-stabilized oil-in-water emulsions and bubbly liquids. The
model is distinguished from earlier models by accounting for the internal fluid and
interfacial dynamics at finite frequencies (∼103–107 Hz). This dynamics accounts for
the electro-migration, diffusion and advection of surfactant ions on the interface, and
exchange of these ions with the immediately adjacent electrolyte. Surface gradients
induce Marangoni stresses, which couple to the electrical and hydrodynamic stresses,
modulating the magnitude and phase of the drop velocity and electrostatic polarization
induced by the electric field. Of particular interest, for sodium dodecyl sulphate stabilized
oil-in-water drops, is how the high surface-charge density manifests in a breakdown
of the Smoluchowski-slip approximation, even for drops with very thin diffuse layers.
More generally, the model furnishes dynamic mobilities for drops with arbitrary size and
charge, thus permitting appropriate averaging for polydisperse systems. Such calculations
may help to resolve long-standing challenges and controversy with regards to the
surface-charge density of nano-drops and their macro-scale counterparts, and may pave
the way to quantitative interpretations of more complex dynamic interfacial rheology and
exchange kinetics, e.g. for Pickering emulsions.
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1. Introduction

Surfactant-stabilized oil–water emulsions are ubiquitous, and have been studied
for many decades (Prosser & Franses 2001). More recently, interest has turned to
nano-emulsions, for which the oil droplet size is ∼100–600 nm (Bouchemal et al.
2004). The large surface-to-volume ratio is advantageous for purifying and releasing
oil-soluble drugs (Gupta et al. 2016; Hashemnejad et al. 2019), and there has been a
resurgence in efforts to understand the interfacial surface charge, which plays a pivotal
role in maintaining a small drop size: by providing an electro-steric barrier to the
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thermodynamic tendency for coalescence (Hunter 2001). Whereas surface-charge density
has conventionally been ‘measured’ using microelectrophoresis (i.e. the drop velocity
induced by a steady electric field), such measurements have provoked controversy. This is
because the conversion of a velocity to surface charge requires a model, and such models
are especially complex when the surface charge is high (Russel, Saville & Showalter
1989) – as seems to be the case for charged surfactants, such as sodium dodecyl sulphate
(SDS) (Borwankar & Wasan 1988; Hunter & O’Brien 1997). Another indirect means of
assessing the surface-charge density is to measure the interfacial surface tension, and
convert this to a surface-charge density by invoking an adsorption isotherm. While this
seems to furnish a robust interpretation of the surface tension (Borwankar & Wasan
1988), the accompanying surface charge densities are very high (compact monolayer
coverage), thus casting doubt on the isotherms (Kralchevsky et al. 1999) or the validity
of electrokinetic models (Yang et al. 2017).

To help circumvent the challenges of interpreting electrophoresis with electrokinetic
theory, de Aguiar et al. (2010) developed a novel vibrational sum frequency scattering
experiment to determine the surface charge density. In this study, and others that follow
it (Zdrali et al. 2017, 2019), the experiments suggest that the interfacial charge of
nano-drops is anomalously low as compared to their macro-scale counterparts. One
explanation hinges on a weakly charged oil phase promoting strong repulsive electrostatic
interactions between adsorbed surfactant ions (Zdrali et al. 2017). On the other hand,
earlier electrokinetic studies of similar emulsions suggest much higher surface charge
densities (Barchini & Saville 1996; Hunter & O’Brien 1997; Djerdjev & Beattie 2008;
Kong, Beattie & Hunter 2001), but no studies have unified the electrokinetic and
adsorption-isotherm derived interfacial charges.

Upon closer inspection, questions emerge regarding the electrokinetic ‘validation’ of
the vibrational sum frequency scattering undertaken by de Aguiar et al. (2010). These
authors reported the ζ -potential furnished by a commercial electrophoretic light-scattering
instrument, also reporting (from dynamic light scattering undertaken on the same
instrument) a number-averaged drop radius a ≈ 83 ± 10 nm, implicitly inferring that the
scaled drop radius κa � 1 (radius a and Debye length κ−1). Under these conditions, the
measured mobility is often considered independent of the size, so the authors implicitly
reported a ‘Smoluchowski’ ζ -potential: ζS ≈ −116 mV.

However, if we estimate the ionic strength based on the SDS concentration ≈8 mM
(there was no added salt), then we find κ−1 ≈ 3.4 nm, furnishing κa ≈ 24. Thus,
the diffuse layer is indeed thin, but is it thin enough? The dimensionless mobility
from the reported ζ -potential is M∗ = −3ζSe/(2kBT) ≈ −7.0 (kBT/e ≈ 25 mV is the
thermal energy divided by the fundamental charge, kB is Boltzmann’s constant, and T
is the absolute temperature). Therefore, if we check the Smoluchowski interpretation, by
comparing it with the standard electrokinetic model (O’Brien & White 1978), then we
discover that there is no value of κa � 140 that can furnish such a high mobility. If,
instead, we attempt to evaluate the ζ -potential at κa ≈ 140 (e.g. allowing for a much
larger mobility-averaged drop radius), then the standard electrokinetic model infers a
considerably larger surface potential: ζ ≈ −7kBT/e ≈ −175 mV, and, therefore, a much
higher surface-charge density than suggested by de Aguiar et al. (2010). Thus, while the
conclusions drawn by de Aguiar et al. (2010) from their Smoluchowski ζ -potential seem
reasonable, the validity of the Smoluchowski formula, which is an approximation of the
standard-electrokinetic model, is questionable; and the averaged drop size and mobility
are incompatible with the standard electrokinetic model.

Note that the foregoing electrokinetic models are for rigid spheres, which drops are
not (Wuzhang et al. 2015). Nevertheless, Marangoni forces can be invoked to justify
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an immobile/rigid interface, at least at low/zero frequency (Baygents & Saville 1991).
Moreover, according to

Hunter (2001, equation (8.8.12)), the Dukhin numbers λ ≈ exp [|zeζ |/(kBT)]/κa that
accompany the Smoluchowski interpretations above are not much less than one, whereas
scaling analysis requires λ� 1 to justify the underlying Smoluchowski-slip velocity
model. For the drops in the electrophoresis experiments of de Aguiar et al. (2010), λ ≈
0.42 when (|ζ |, κa) = (116 mV, 24), whereas λ ≈ 0.24 when (|ζ |, κa) = (175 mV, 140).
Accordingly, charge-density perturbations inside the diffuse layer may cause the fluid
dynamics to depart from the Smoluchowski-slip model (Hunter 2001).

To address the high surface charge (and accompanying high surface conductivity)
and fluid characteristics of nano-drops in dynamic electrophoretic mobility experiments
(O’Brien 1988, 1990), Hill & Afuwape (2020) recently proposed a thin-double-layer
model for the dynamic mobility, valid at high frequencies for which there is no time
for diffusive ion transport. They assumed that the adsorbed surfactant is bound to the
interface while the drop is subjected to an oscillatory electric field. Electroosmotic
flow in the diffuse layer was assumed to be driven by an electrical body force that
is equal to the product of the equilibrium charge density in the diffuse layer and
an electric field that is calculated without any perturbation to the equilibrium charge
density (Smoluchowski-slip approximation at vanishing Dukhin number). Moreover, the
region outside the diffuse layer was assumed to remain uncharged, thus neglecting
charge transfer between the interface, diffuse layer and bulk (pseudo-binary) electrolyte.
These simplifications furnished a closed-form solution for when the diffuse layer is
occupied solely by (Na+) counterions of the adsorbed (DS−) surfactant, thus limiting
the accuracy to highly charged interfaces, but subject to a small Dukhin number. The
model revealed fluid-like interfacial characteristics at the MHz frequencies at which
dynamic electrophoretic mobility experiments are undertaken (via the electrokinetic sonic
amplitude, ESA) (O’Brien, Cannon & Rowlands 1995).

The ESA is an acoustic pressure arising from electric-field-induced particle motion
(dynamic electrophoresis) in a dispersion. Experiments are undertaken in at frequencies
ω/(2π) = 1–20 MHz so that the sound wavelength is large compared to the particle size,
and small compared to the sample. Momentum transfer arising from the finite particle
velocity V = M(ω)E (M(ω) is the dynamic mobility, E is the applied electric field)
generates the pressure, even though the particle displacement X ∼ V/ω (and deformation)
is vanishingly small at such frequencies (O’Brien 1988, 1990).

Combining their electrokinetic model with an isotherm from surface-tension
measurements on macro-scale (pendent) drops, the ‘unified’ model of Hill & Afuwape
(2020) provided a compelling (but incomplete) interpretation of dynamic mobility spectra
(magnitude and phase angle): owing to the high surface-charge densities, the Dukhin
numbers are readily greater than one, again casting doubt on the Smoluchowski-slip
approximation.

The present computational study removes all the foregoing simplifying approximations.
This provides a theoretical interpretation for (non-conducting) drops of all sizes and
charge, in electrolytes with multiple (fully ionized) electrolyte ions (charged surfactant
and added salt), also providing guidance on how low κa � 1 must be to apply the
thin-double-layer, high ζ -potential model of Hill & Afuwape (2020). Without limits
on the drop size, the model enables rigorous averaging for emulsions that are, in
practice, polydisperse. This may help to resolve ambiguities arising from complementary
diagnostic characterizations based on number, area or volume averaging. For example,
drop sizes from dynamic light scattering may be reported as intensity-, volume- or
number-weighted averages, whereas dynamic electrophoretic mobilities from the ESA are
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expected to reflect a volume/mass averaging (O’Brien et al. 1995). Moreover, electrical
conductivity measurements on dispersions (Hollingsworth & Saville 2003) may reflect
an area averaging (charge density proportional to interfacial area) and volume averaging
(dipole polarization proportional to volume), perhaps depending on the frequency. It is
therefore important to quantify how the dynamic mobility and polarizability depend on
drop size. The model presented here furnishes the dynamic mobility (magnitude and
phase spectra), as well as the dynamic polarizability, which is readily converted to a
complex-conductivity increment (Delacey & White 1981).

As detailed in the next § 2, the model seeks to capture interfacial dynamics arising from
exchange of surfactant between the interface and the immediately adjacent electrolyte,
and Marangoni stresses arising from interfacial surfactant concentration gradients; with
full account of nonlinear electrostatics, and ion transport by electro-migration, diffusion
and advection – albeit in the so-called weak-field limit where the dynamic fields are
linear perturbations to an equilibrium base state. Although the model is developed with
SDS-stabilized oil-in-water emulsions as an example, it may be applied to bubbles (Booth
1951; Baygents & Saville 1991) for which there has been recent interest in electrophoresis
beyond the weak-field limit (Schnitzer, Frankel & Yariv 2014). Although not undertaken
here, the present model can, in principle, be extended to emulsions in which a conducting
(e.g. aqueous) phase is dispersed in a non-conducting (e.g. oil) phase. Such systems are
more challenging to study from an experimental perspective, since the continuous phase
is typically required to have a sufficient electrical conductivity (achieved by the addition
of electrolyte).

In the present study, special consideration is given to the interface (§ 2.2), coupling
its dynamics (surfactant transport, and electrical, Marangoni and hydrodynamic stresses)
to that of the internal fluid (§ 2.1) and external electrolyte (§ 2.3) when subjected
to a weak, oscillatory electric field. After detailing how the internal and interfacial
dynamics is coupled to the external electrolyte (§ 3), the results are presented (§ 4), using
parameters for SDS-stabilized oil-in-water emulsions. These establish a lower limit on
the drop radius for the thin-double-layer model of Hill & Afuwape (2020), also explicitly
addressing the drop size and mobilities reported by de Aguiar et al. (2010). Next, more
general aspects of the model are explored (§ 5), varying parameters (e.g. viscosity ratio,
Marangoni parameter, kinetic-exchange coefficients) that influence the interfacial mobility
and surfactant exchange. Particular attention is given to understanding the electrical
polarization, its dependence on particle size and interfacial mobility, and how it couples
to electroosmotic flow.

2. Theory

A single drop (or bubble) in an unbounded electrolyte is assumed to be spherical
and non-conducting. Drops and bubbles are distinguished by their internal viscosity and
density with respect to the outer, surfactant-containing electrolyte. The spherical shape
is a consequence of the equilibrium surface tension dominating the radial interfacial
momentum balance (Taylor & Acrivos 1964). Although the internal viscosity and density
are arbitrary, the vanishing conductivity implicitly requires this fluid to be a non-ionized
gas (e.g. air) or non-polar liquid (e.g. oil). The absence of charge enables the internal flow
and electric field to be prescribed by tractable analytical formulas, for which unknown
integration constants are prescribed by coupling the interior flow to an intricate numerical
solution for the exterior domain. The external electrolyte contains an ionic (assumed
completely dissociated) surfactant, which adsorbs to the interface, and added salt; thus
forming an equilibrium diffuse double layer with an accompanying surface-charge density
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σ 0 and surface potential ζ (Russel et al. 1989; Hunter 2001). Then, with the application
of a uniform, oscillatory electric field E e−iωt (real part thereof), electrical forces due
to charge at the interface and in the diffuse layer induce an oscillatory particle velocity
V e−iωt.

Mathematically, fluctuations in the internal, interface and external fluid velocities, ion
and surfactant concentrations and electro-static potential are coupled to the particle motion
by the linear superposition of two simpler problems: the application of an electric field to
a stationary drop in a stationary electrolyte (E-problem), and the application of a uniform
flow (velocity U e−iωt, in the absence of an electric field) to a stationary drop (U-problem).
The forces on the drop for these two problems are then superposed to satisfy the particle
equation of motion, thus furnishing the complex-valued coefficient of proportionality
between the particle velocity and electric field, which is customarily termed the dynamic
electrophoretic mobility, M(ω) with V = M(ω)E.

Note that the U- and E-problems will be drawn upon to help elucidate pertinent details
of the highly coupled physical processes taking place. Section 2.1 recapitulates the internal
dynamics (velocity and electric field) as set out by Hill & Afuwape (2020). Section 2.2
details the interface, including its equilibrium thermodynamics and dynamics. Section
2.3 presents essential features of the external thermodynamics and dynamics, avoiding
details, since the model is the same as addressed in earlier well-known computational
studies, e.g. as pioneered for rigid spheres by Delacey & White (1981) (dielectric response)
and Mangelsdorf & White (1992) (dynamic mobility). Section 3 (and appendix A) details
how the internal, interfacial, and external regions are coupled in an efficient numerical
method that solves this notoriously stiff numerical problem over a wide range of the
parameter space (Hill, Saville & Russel 2003). This section also sets out notation (and
non-dimensionalization), including the superposition of the U- and E-problems. Readers
who are not concerned with theoretical and computation details may skip to the results
§ 4, perhaps referring back to §§ 2.1–3 for relevant notation.

2.1. Inside the drop
Inside the drop, which is assumed to be a Newtonian, non-conducting, dielectric fluid, we
have mass conservation, momentum conservation and Laplace equations

− iωρiu = −∇p + ηi∇2u with ∇ · u = 0 (2.1)

and

∇2ψ = 0, (2.2)

where ρi and ηi are the density and shear viscosity for ‘inside’ the drop. The velocity
u, pressure p and electrostatic potential ψ (and all other independent variables) will be
taken to have harmonic time dependence via e−iωt, where ω is the angular frequency. Note
that the nonlinear inertial term is neglected, requiring a small Reynolds number Re =
ucaρi/ηi, where a is the drop radius and the characteristic electrophoretic velocity uc =
(kBT/e)εoε0/(ηoa) (Russel et al. 1989) with kBT/e ∼ 25 mV the thermal potential and
εoε0 the dielectric permittivity of the external solution.

For a drop that is taken to be spherical, the radial velocity (in the frame moving with
the drop) of the interface vanishes. Hill & Afuwape (2020) have shown that the tangential
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velocity and traction at the interface (with inward unit normal −er) can be written

uθ (r = a−) = c1aVi(Ωia2) e−iωtX · eθeθ , (2.3)

and
tθ (r = a−) = −ηic1Ti(Ωia2) e−iωtX · eθeθ , (2.4)

where

Ω2
i a4Vi(Ωia2) = (

3 − iΩia2) sin
[
(1 + i)

√
Ωi/2a

]
− 3(1 + i)

√
Ωi/2a cos

[
(1 + i)

√
Ωi/2a

]
(2.5)

and

Ω2
i a4Ti(Ωia2) =

[
6(1 + i)

√
Ωi/2a − (i − 1)2−1/2Ω

3/2
i a3

]
cos

[
(1 + i)

√
Ωi/2a

]
+ (

3iΩia2 − 6
)

sin
[
(1 + i)

√
Ωi/2a

]
(2.6)

with Ωi = ωρi/ηi (square of the reciprocal viscous penetration depth). Moreover, the
electrostatic potential

ψ(x, t) = ψ0 + ψ ′(x) e−iωt = ψ0 + [ψ̂(r = a)(r/a)− r(E/X)] e−iωtX · er for r < a,
(2.7)

where ψ0 and ψ̂(r = a) are constants. Thus, the dynamics inside the drop is determined
to two unknown scalar integration constants: c1 and ψ̂(r = a), which will be determined
by coupling the internal dynamics to the interface and external electrolyte.

2.2. Interface
Taking the interface to be infinitesimally thin, a conservation equation for any adsorbed
species with surface number density

c(x, t) = c0 + e−iωtc′(x) (2.8)

may be written

− iωc′ = −∇s ·
(

−D∇sc′ − ∇sψ
′zec0 D

kBT
+ uθc0

)
+ kan′(r = a)− kdc′, (2.9)

where ∇s is the surface gradient operator and uθ is the interfacial (tangential) velocity. The
tangential flux comprises lateral diffusion (diffusivity D), electro-migration (charge ze),
and advection terms. Note that the flux is linearized for perturbations (primed quantities)
about the equilibrium state (superscripts ‘0’). The ‘source’ terms with adsorption
and desorption coefficients ka and kd capture exchange between the interface and the
immediately adjacent external fluid where the concentration is

n(x, t) = n0(r)+ e−iωtn′(x) (2.10)

with
n0(r) = n∞ exp(−ψ0(r)ze/(kBT)) (2.11)

the equilibrium concentration. Note that n∞ is the bulk concentration of the adsorbing
species, and ψ0(r) is the equilibrium electrostatic potential.
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At equilibrium,

kan0(r = a) = kdc0 = kan∞ exp(−ψ0(r = a)ze/(kBT)), (2.12)

so the ratio of the exchange coefficients is related to the equilibrium adsorption isotherm
c0 = Γ̂ (n∞, . . . .). Thus, with knowledge of the equilibrium isotherm, there is only one
independent kinetic-exchange coefficient. Their ratio

ka

kd
= Γ̂ (n∞, . . . .)

n∞ exp(−ψ0(r = a)ze/(kBT))
(2.13)

has the dimension of length: ka has dimensions of velocity, whereas kd has the dimension
of reciprocal time, interpreted as the frequency at which adsorbed molecules transfer
from the interface to the immediately adjacent (external) fluid. For example, for SDS
with Γ̂ = c0 ∼ 1 nm−2, n∞ ∼ 1 mM ∼ 10−3 nm−3 and exp(−ψ0(r = a)ze/(kBT)) ∼ e−8,
we find ka/kd ∼ 106 nm. Thus, if we estimate ka based on the diffusion velocity ka ∼
κD1 ∼ 0.01 m s−1, where κ−1 is the Debye length and D1 ∼ 10−10 m2 s−1 is the surfactant
diffusivity in the aqueous electrolyte, then

kd ∼ 10 Hz. (2.14)

This is significantly smaller than an estimate based on the product of a frequency
factor A = kBT/h (Planck’s constant h ≈ 6.6 × 10−34 J s) and a Boltzmann desorption
probability exp(Δε/(kBT)), where the adsorption enthalpy Δε ≈ −19kBT from the
isotherm of Hill & Afuwape (2020), which furnishes

kd ∼ kBT
h

exp(Δε/(kBT)) ∼ 10 kHz. (2.15)

Nevertheless, both estimates suggest that, at the MHz forcing of an electroacoustic
experiment, the adsorbed DS− is expected to behave as if it is irreversibly bound to the
interface, as assumed by Hill & Afuwape (2020) who implicitly set ka = kd = 0 based on
‘kinetic rates’ being much smaller than ∼1 MHz. Here, the kinetic rate implied by Hill &
Afuwape (2020) is more precisely

kd ∼ κD1
n∞ exp(−ψ0(r = a)ze/(kBT))

Γ̂ (n∞, . . . .)
. (2.16)

Table 1 provides a summary of data calculated from the isotherm of Hill & Afuwape
(2020) for SDS adsorbing at an oil–water interface with the concentration of added NaCl
in the aqueous phase fixed at Is = 1 mM. As suggested by the scaling analysis above,
the dimensionless group κka/kd is very large, spanning in the range 105–106. Similar
calculations show that other added-salt concentrations do not significantly change this
ratio. As expected, its large value reflects the strong binding of DS− ions to the oil phase
(smallness of kd). Nevertheless, by developing the present electrokinetic model to handle
kinetic- and diffusion-limited exchange dynamics (i.e. finite kd and ka), it bridges the
diffusion-limited regime of Baygents & Saville (1991), and the kinetic-exchange-limited
range of Hill & Afuwape (2020). The model may therefore be applied to other adsorbing
species, or to SDS-like systems at much lower frequencies, e.g. for emulsion synthesis and
mixing processes.
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c∞ γ 0(c∞, Is)/γ (0, 0) ζe/(kBT) c0 βc0 κka/kd
mM — — nm−2 — —

0.0001 0.992 −2.64 0.040 0.0097 0.967 × 106

0.001 0.980 −4.12 0.089 0.0236 0.948 × 106

0.01 0.951 −5.62 0.192 0.0537 0.920 × 106

0.1 0.892 −7.08 0.417 0.127 0.895 × 106

1.0 0.721 −8.29 1.03 0.413 0.996 × 106

2.0 0.605 −8.52 1.42 0.715 0.106 × 106

4.0 0.430 −8.66 1.96 1.54 0.101 × 106

6.0 0.292 −8.69 2.36 3.00 0.106 × 106

8.0 0.175 −8.68 2.65 6.21 0.101 × 106

TABLE 1. Isotherm calculations for SDS (below the critical micelle concentration) at the
hexadecane–water interface: added-salt (NaCl) concentration Is = 1 mM, oil–water surface
tension (without surfactant) γ (0, 0) = 47 mN m−1. Bulk SDS concentration c∞, equilibrium
DS− surface concentration c0.

In addition to the forgoing adsorbed-species conservation equation, we have an
interfacial tangential momentum conservation equation (with zero interfacial inertia)

tθ (r = a−)+ tθ (r = a+)− γ 0β∇sc′ − c0ze∇sψ
′ = 0, (2.17)

where tθ (r = a−) and tθ (r = a+) are the (tangential) viscous tractions acting on the inside
and outside of the interface (outward unit normals −er and er), e.g.

tθ (r = a+) = {−pI + ηo[∇u + (∇u)T} · er · eθeθ . (2.18)

Moreover, −γ 0β∇sc′ is the resultant interfacial tension/Marangoni stress (γ 0β =
∂γ 0/∂c0|c0 with γ 0 the equilibrium interfacial tension), and −c0ze∇sψ

′ is the resultant
(tangential) electrical/Maxwell stress.

Finally, we have Gauss’s law at the interface

εiε0∇ψ ′ · er|r=a− − εoε0∇ψ ′ · er|r=a+ = σ ′ = zec′, (2.19)

where the interfacial-charge density is

σ(x, t) = σ 0 + e−iωtσ ′(x) = σ 0 + ze e−iωtc′(x), (2.20)

with

σ 0 = −εoε0
∂ψ0

∂r

∣∣∣∣
r=a+

(2.21)

the equilibrium interfacial-charge density (σ 0 = zec0 for a single adsorbing species), e.g.
as furnished by an equilibrium adsorption isotherm or equilibrium surface potential ζ =
ψ0(r = a).

2.3. Outside the drop
Outside the drop we have differential conservation equations for N ionic species, and
fluid mass and momentum. With Gauss’s law, these are termed the standard electrokinetic
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model, and need not be reproduced here. Note, however, that these equations are solved (for
r > a) in terms of the following independent variables (ion concentrations, electrostatic
potential and fluid velocity):

ni(x, t) = n0
i (r)+ n̂i(r) e−iωtX · er (i = 1, . . . ,N), (2.22)

ψ(x, t) = ψ0(r)− r e−iωtE · er + ψ̂(r) e−iωtX · er, (2.23)

and (Hill et al. 2003)

u(x, t) = e−iωtU + ∇ × ∇ × [h(r) e−iωtX · er]. (2.24)

One may also write (Hill & Afuwape 2020)

u(x, t) = ∇ × [ f (r) e−iωtX × er]

= ( fr + fr−1) e−iωtX + (−fr + fr−1) e−iωtX · erer, (2.25)

so

f = rU/(2X)− hr, fr = U/(2X)− hrr, and frr = −hr,rr = −g, (2.26)

where g ≡ hr,rr is an auxiliary variable to avoid derivatives in the numerical solution that
are higher than second order.

To couple the N ion-conservation equations in the standard electrokinetic model to the
interface, their (Nernst–Planck) fluxes at the interface must satisfy

(
−Di∇n′

i − ∇ψ ′zien0
i

Di

kBT
+ n0

i u
)

· er|r=a =
{

kdc′
i − kan′

i(r = a), i = 1

0, i = 2, . . . ,N
,

(2.27)
where i = 1 identifies the (single) adsorbing species. Of course, this may be generalized to
multiple adsorbing species, albeit by introducing additional kinetic-exchange coefficients
for each adsorbing species. Note that Di are the ion diffusivities, which are generally
prescribed as Di = kBT/γi with γi the friction coefficient calculated from the limiting
molar conductivity.

3. Solution and dynamic mobility

For the interface, linearity and symmetry require an interfacial concentration
perturbation that has the form

c′(x) = dcX · er, (3.1)

where dc is a constant that measures the interfacial concentration polarization. Substituting
this and all the other independent variables into the foregoing conservation equations
and boundary conditions furnishes the following N + 5 independent (algebraic and
differential) relationships (boundary conditions) evaluated at r = a:

(i) Zero radial velocity
hr = aU/(2X). (3.2)

(ii) Interfacial (tangential) momentum conservation

− (ηi/ηo)c1Ti(Ωia2)− g = [γ 0βdc + σ 0(ψ̂ − aE/X)]/(aηo). (3.3)
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(iii) Continuous tangential velocity

hrr = U/(2X)− c1aVi(Ωia2). (3.4)

(iv) Interfacial Gauss condition

εiε0(ψ̂ − aE/X)a−1 − εoε0(ψ̂r − E/X) = zdce. (3.5)

(v) Interfacial species conservation (for the adsorbing ion species, i = 1)

(iωa2/2 − D − kda2/2)dc + kan̂1a2/2 − (ψ̂ − aE/X)zec0 D
kBT

= −c0c1a2Vi(Ωia2).

(3.6)
(vi) N radial ion fluxes

−kddc + kan̂i = Din̂i,r + ψ0
r zien̂i

Di

kBT
+ (ψ̂r − E/X)zien0

i
Di

kBT
, i = 1,

0 = Din̂i,r + ψ0
r zien̂i

Di

kBT
+ (ψ̂r − E/X)zien0

i
Di

kBT
, i = 2, . . . ,N.

⎫⎪⎪⎬
⎪⎪⎭

(3.7)

These are coupled to N + 3 independent differential relationships (ordinary differential
equations) for the region outside the drop (r > a). Technical details of the numerical
solution are provided in appendix A.

When the interfacial model above is transformed to a dimensionless form that is
compatible with the non-dimensionalization of the electrokinetic conservation equations
for the electrolyte (r > a), there emerge several additional independent dimensionless
parameters. In addition to the customary κa, ζe/(kBT), ρi/ρo, εi/εo, Pei = uc/(κDi) and
Ωoa2 = ωa2/νo for the electrokinetic dynamics of a rigid sphere, we have ηi/ηo, kda2/D,
ka/D, νo/D,

Ma = γ 0β/(kBT) = MacηoD/(kBTc0a) (3.8)

and
Pe = uca/D = εoε0(kBT/e)2/(ηoD) (3.9)

to capture the internal fluid dynamics, interfacial Marangoni effects (surface tension and
lateral transport) and exchange kinetics. The concentration Marangoni number (Hill &
Afuwape 2020)

Mac = γ 0βc0a/(ηoD) � 1 (3.10)

compares interfacial diffusion and surface-tension relaxation times, whereas Ma ∼ 1 is a
dimensionless combination of intrinsic interfacial properties (comparing interfacial and
thermal energy).

The dynamic electrophoretic mobility is computed by solving the equations for a
stationary drop with U = 1 and E = 0 (U-problem), and E = 1 and U = 0 (E-problem),
from which the far-field decay of the velocity field furnishes ‘asymptotic coefficients’ (Hill
et al. 2003)

CX = lim
r→∞

hX
r r2. (3.11)

From these, a dimensionless (non-dimensionalization detailed in appendix B)
dynamic mobility (dimensional V/E scaled with uc/Ec, where Ec = kBT/(eκ−1) and
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uc = εoε0(kBT/e)2/(ηoa)) is

M = 3CE/(κa)3

3CU/(κa)3 + ρi/ρo − 1
. (3.12)

Note that the linear superposition invoked to satisfy the particle/drop equation of
motion may be used to construct the fluid velocity, perturbed electrostatic potential, and
ion-concentration perturbations, etc. under (dynamic) electrophoresis

u = uE − MuU, ψ ′ = ψ ′E − Mψ ′U, n′
i = n′E

i − Mn′U
i , etc. (3.13)

As is customary, the dimensionless mobility

M∗ = 3M
2κa

(3.14)

reported below is the (dimensional) mobility scaled with 2kBTεoε0/(3ηoe) (Russel et al.
1989). Also reported is a dimensionless drag coefficient (force exerted on a stationary drop
subject to an oscillatory flow, scaled with the steady Stokes drag force 6πηoaU) (Hill et al.
2003; Hill & Afuwape 2020)

F∗ = −2CUiΩoa2

3(κa)3
, (3.15)

where Ωo = ωρo/ηo (square of the reciprocal viscous penetration depth). Note that the
phase angle of these complex-valued functions is reported ∠(·) = −atan[Im(·)/Re(·)], for
which a positive (negative) value indicates a phase lead (lag) with respect to the applied
forcing, e.g. electric field e−iωtE. Since the drops bear an exclusively negative charge, if
Re(M∗) > 0, then ∠(·) → ∠(·)+ 180◦.

4. Results

We begin by examining electrokinetic spectra with parameters according to the emulsion
thermodynamics of Hill & Afuwape (2020) for SDS-stabilized hexadecane. Here, the
oil (hexadecane) volume fraction φ = 0.05, and the total surfactant (SDS) concentration
c∞,0 = 5 mM, as prescribed in table 2. With these, and for concentrations of added salt
(NaCl) in the aqueous phase, Is = 1, 5 and 20 mM, the equilibrium concentration of
DS− adsorbed at the oil–water interface c0, and the concentration of DS− in the bulk
aqueous phase c∞ are calculated. Note that the calculations are undertaken with N = 4
ionic species (two salts, NaDS and NaCl), DS−, Na+, Cl− and Na+, not the pseudo-binary
1-1 electrolyte in the model of Hill & Afuwape (2020), i.e. a binary electrolyte for which
the Cl− concentration is set equal to the sum of the Cl− and DS− concentrations in the
4-component electrolyte, with the mobility of Cl− adjusted to the mole-fraction-weighted
mobility of the Cl− and DS− mobilities in the 4-component electrolyte. These furnish
the bulk ionic strength I, equilibrium surface potential ζ , equilibrium surface charge
density σ 0 = c0ze, and Debye length κ−1 for each Is. Then, from knowledge of how
the equilibrium interfacial surface tension γ 0 varies with the equilibrium surface excess
c0, the Marangoni parameter βc0 is calculated. These are all summarized in table 2. To
enable direct comparisons with the thin-double-layer theory of Hill & Afuwape (2020),
the kinetic-exchange coefficients kd and ka are set to zero here, so there is no exchange of
DS− between the interface and the electrolyte. Moreover, interfacial mobility/diffusivity
of DS− is set to a value that is a factor ηo/ηi ≈ 0.89/3.5 smaller than in the aqueous phase,
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Quantity Value/s Units

φ 0.05 —
a 325 nm

εi 2 —
εo 79 —
ηi 3.5 mPa s
ηo 0.89 mPa s
ρi 768 kg m−3

ρo 998 kg m−3

Is = c∞− 1, 5, 20 mM
I 4.63, 8.38, 22.9 mM

c∞,0 5 mM
c∞ 3.63, 3.38, 2.92 mM
κa 72.7, 97.8, 162 —
λ 1.92, 1.22, 0.55 —

c0 2.02, 2.33, 2.90 nm−2

βc0 1.46, 2.27, 7.22 —
γ 0 20.3, 15.7, 6.84 mN m−1

γ (0, 0) 47 mN m−1

−ζ 227, 219, 204 mV

kd 0 s−1

ka 0 m s−1

D1 (DS−) 0.39 10−9 m2 s−1

D2 = D4 (Na+) 1.33 10−9 m2 s−1

D3 (Cl−) 2.03 10−9 m2 s−1

D (DS−) 0.39 × ηo/ηi = 0.0992 10−9 m2 s−1

TABLE 2. Parameters (T = 25 ◦C) for the spectra in figure 1: oil volume fraction φ, drop radius
a, total surfactant concentration c∞,0, added-salt concentration c∞− . Here, Is = c∞− is the ionic
strength of the added salt (NaCl) with I the total ionic strength (SDS and NaCl). Here, λ =
σs/(σ∞a) (Dukhin number) is according to O’Brien (1986, equation (A.6)) and the isotherm of
Hill & Afuwape (2020).

thus assuming, for simplicity, that the interfacial mobility is dominated by hydrodynamic
friction in the oil phase (e.g. assuming the same hydrodynamic size as in the aqueous
phase, neglecting steric hinderance, etc.).

Calculations analogous to those presented in figure 1 were undertaken with drop radii
a = 400 and 100 nm, again with a finite drop volume fraction (φ = 0.05) and bulk
surfactant concentration (cs = 5 mM). Accordingly, changing the drop radius changes
the available surface area for surfactant adsorption, thus adjusting the equilibrium
surface-charge density, interfacial tension and Marangoni parameter, etc. Note also that,
as will be demonstrated below, changing the drop radius with all other variables fixed
furnishes a non-monotonic relationship between mobility magnitude and size. These pose
new challenges for interpreting experiments on emulsions that are inherently polydisperse:
whereas surfactant adsorption is controlled by the available interfacial surface area, and
therefore weighted toward smaller drops, the ESA/mobility measurement is weighted by
droplet volume, and therefore dominated by larger drops. It may therefore be necessary to
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FIGURE 1. Dynamic electrophoretic mobility (a, magnitude and phase) and dielectric relaxation
(b, conductivity and dielectric-constant increments) spectra for (non-conducting) spherical
drops subject to a uniform electric field: drop radius a = 325 nm and bulk added-salt
concentrations Is = 1 (blue), 5 (red) and 20 (yellow) mM. Solid lines: computations for fluid
spheres. Dash-dotted lines: theory of Hill & Afuwape (2020) (two-component electrolyte, high
surface-charge density, high frequency, thin double layer). Dashed lines: standard electrokinetic
model for rigid spheres (with immobile surface charge). Parameters are listed in table 2.

compute the surface charge based on a small (area-averaged) drop size, and the mobility
based on a larger (volume-averaged) size.

The dynamic mobility spectra for these three cases are plotted in figure 1 (solid lines)
with their conductivity and dielectric-constant increments, which are calculated from the
(dimensionless) electrostatic dipole strength D∗ = limr→∞ ψ̂r2 (dimensionless ψ̂ and r,
as set out in appendix B) as

Δσ = (σ/σ∞ − 1)/φ = 3
[
Re(P∗)+ Im(P∗)ωεoε0/σ∞

]
(4.1)

and

Δε = (ε/εo − 1)/φ = 3
[
Re(P∗)− Im(P∗)σ∞/(ωεoε0)

]
, (4.2)

where P∗ = D∗/(κa)3 is the (dimensional) dipole strength scaled with a3 (Hill et al. 2003).
Note that σ and ε are the conductivity and dielectric constant (measurable using dielectric
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spectroscopy) of a dilute emulsion (φ � 1) and

σ∞ =
N∑

i=1

n∞
i (zie)2

Di

kBT
(4.3)

is the bulk electrolyte conductivity (when φ = 0).
The fluid model is also compared with the standard electrokinetic model (rigid spheres,

dashed lines), and with the thin-double-layer fluid model of Hill & Afuwape (2020)
(dash-dotted lines). As cautioned by Hill & Afuwape (2020), based on more detailed
arguments set out by Hunter (2001), the accuracy of thin-double-layer models can be
limited by a breakdown of the Smoluchowski-slip approximation if the surface charge
density is sufficiently high (see also Schnitzer & Yariv (2014), for a detailed, rigorous
analysis of rigid dielectric spheres under steady electrophoresis), as is the case here.
Nevertheless, the thin-double-layer model and the full (numerical) model are mostly closer
than the computations comparing drops and rigid spheres. Interestingly, the differences
between drops and rigid spheres, from the perspective of dielectric relaxation (measuring
Δσ and Δε), are suggested to be experimentally indiscernible, at least under these
conditions (e.g. κa � 1).

Figure 2 shows the radial variations of the dynamic perturbations to the tangential
velocity, electrostatic potential and concentrations of the added Na+ and Cl− (the
concentrations of DS− and its coion Na+ are an order of magnitude smaller, so not
shown) at ω/(2π) = 1 MHz. Note that the electrolyte is the one in table 1 with a bulk
surfactant concentration c∞ = 0.1 mM (with Is = 1 mM). To expedite a more rigorous
test of the full model (blue lines), by comparison with the thin-double-layer model of
Hill & Afuwape (2020) (red lines), the drop radius a = 1 μm, furnishing κa ≈ 110 with
ζe/(kBT) = −7.08. As expected, the velocity disturbances outside the diffuse layer (with
scaled r − κa � 1) are in excellent agreement. Of course, the thin-double-layer model
only captures the interfacial and electroosmotic slip, which manifest in the E-problem
(on the right) when r − κa ∼ 1. Note also that the tangential velocity does not vanish as
r − κa → 0, since the oil phase at the interface is mobile.

With respect to the fluctuating electrostatic potential, the numerical solution predicts
O(10−4) (scaled) values within the diffuse layer for the U-problem, whereas the
perturbation is zero according to the thin-double-layer model. For the E-problem, the
numerical and approximate models agree only with respect to the imaginary part (dashed
lines). This suggests that the real part of the electrostatic potential perturbation arises from
diffusive charge transport that is not captured by the thin-double-layer model. Finally,
note that ion-concentration perturbations oscillate with radial position, reaching large
(scaled) electric-field-induced values within the diffuse layer. Again, the thin-double-layer
approximation has zero ion-concentration perturbations (red and blue distinguish the two
ions in these figures).

Figure 3 shows the same data as described above for figure 2, but with a drop radius
a = 100 nm giving κa ≈ 11. Although κa � 1, the thin-double-layer model reveals that
the real part of the electric-field-induced velocity disturbance now departs significantly
from the numerical calculation. Clearly, the interfacial slip is much weaker, as is the
electro-osmotic slip. Interestingly, the real part of the electric-field-induced electrostatic
potential perturbation agrees with the thin-double-layer model. Under these conditions,
the signs of the ion-concentration perturbations do not change within the diffuse layer.

To examine in more detail the role of the drop radius on the dynamic mobility,
figure 4 shows the magnitude and phase versus the scaled drop radius for three bulk
surfactant concentrations c∞, all with the same added-salt concentration Is = 1 mM. Note
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FIGURE 2. Tangential velocity (a, projection onto X ∈ {U,E} for θ = π/2), electrostatic
potential perturbation (b, θ = 0) and added-salt ion-concentration perturbations (c, Cl− (blue)
and Na+ (red), θ = 0) for the U- (left) and E- (right) problems: ζe/(kBT) = −7.08, a = 1 μm,
κ−1 = 9.18 nm (κa ≈ 110), ω/(2π) = 106 Hz. In (a and b), red lines are the theory of Hill &
Afuwape (2020). Note that uU

θ and uE
θ are the velocity scaled with U and the Smoluchowski-slip

velocity, respectively. ψ̂X and n̂X
i are perturbations scaled according to Hill et al. (2003) with

solid and dashed lines denoting the real and imaginary parts.

that changing the surfactant concentration from 0.001 to 8 mM significantly changes
the equilibrium surface charge and potential, whereas the Debye length is principally
controlled by the fixed concentration of added salt. Other interfacial parameters are
available in table 1. The figures compare the dynamic mobility at three frequencies
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FIGURE 3. The same as figure 2 but with a = 100 nm (κa ≈ 11).

spanning two decades. The numerical calculations (solid lines) are compared with the
thin-double-layer theory for values of κa > 10. Note that the lowest surface potential
(|ζ | ≈ 2.64kBT/e) is large enough to ensure that the diffuse layer is predominantly
occupied by counterions (Na+), but not so large for the Smoluchowski-slip approximation
to break down. Thus, the numerical calculations and thin-double-layer model are in
excellent agreement at all three frequencies (spanning two decades). Further increasing the
surface charge density generally places increasingly stringent demands on κa to maintain
accuracy. Thus, based on these data, the thin-double-layer model demands κa � 100 when
the surfactant concentration c∞ � 0.1 mM.
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FIGURE 4. Dynamic electrophoretic mobility (magnitude and phase) spectra versus scaled drop
radius: bulk added-salt concentrations Is = 1 mM, SDS concentrations c∞ = 0.001 (a), 0.1
(b) and 8 (c) mM; frequencies ω/(2π) = 105 (blue), 106 (red) and 107 (yellow) Hz. Solid lines:
computations for fluid spheres. Dashed lines: theory of Hill & Afuwape (2020) (two-component
electrolyte, high surface-charge density, high frequency, thin double layer). (a) ζe/(kBT) =
−2.64, κ−1 = 9.61 nm. (b) ζe/(kBT) = −7.08, κ−1 = 9.18 nm. (c) ζe/(kBT) = −8.68, κ−1 =
3.21 nm.

It is pertinent to briefly address the droplet mobility as reported by de Aguiar
et al. (2010), as discussed in § 1. Recall, these experiments were conducted using an
electrophoretic light-scattering apparatus for which the frequency of the electric field
considered low enough to induce a quasi-steady dynamics. With negligible added salt, the
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c∞ γ 0(c∞, Is)/γ (0, 0) ζe/(kBT) c0 βc0 κ−1

mM — — nm−2 — nm

0.0001 0.999 −4.88 0.00436 0.00112 290
0.001 0.997 −6.20 0.0115 0.00295 215
0.01 0.989 −7.16 0.0435 0.0113 91.7
0.1 0.950 −7.92 0.193 0.0534 30.3
1.0 0.775 −8.55 0.833 0.304 9.61
2.0 0.652 −8.68 1.26 0.577 6.80
4.0 0.467 −8.76 1.85 1.31 4.81
6.0 0.323 −8.76 2.26 2.55 3.93
8.0 0.202 −8.73 2.58 5.01 3.40

TABLE 3. Isotherm calculations for SDS (below the critical micelle concentration) at the
hexadecane–water interface: added-salt (NaCl) concentration Is = 1 μM, oil–water surface
tension (without surfactant) γ (0, 0) = 47 mN m−1. Bulk SDS concentration c∞, equilibrium
DS− surface concentration c0.

0

a (nm)
102 103

2

4

6

8

10

|M
*|

FIGURE 5. Dimensionless mobility magnitude |M∗| for SDS-stabilized hexadecane droplets
(ω/(2π) = 10 kHz for which |∠M∗| � 6◦) versus drop radius a for bulk surfactant
concentrations cs = 8 (blue), 1.0 (red) and 0.01 (yellow) mM (added salt concentration Is =
1 μM). Horizontal lines are the mobilities reported (as Smoluchowski ζ -potentials) in figure
S1 of de Aguiar et al. (2010); these suggest (light-scattering, intensity weighted) drop radii
∼800–2000 nm, increasing with decreasing surfactant concentration.

isotherm of Hill & Afuwape (2020) furnishes the interfacial characteristics summarized
in table 3. It is shown that the surface potential |ζ | � 8.5kBT/e ≈ 213 mV at SDS
concentrations greater than 1 mM. Based on the Smoluchowski mobility formula (rigid
spheres with κa � 1), we would expect dimensionless mobilities |M∗| � 13, almost twice
as large as registered by de Aguiar et al. (2010) when cs = 8 mM.

Mobilities predicted by the present model for fluid drops are plotted in figure 5. Note
that these are calculated at a frequency ω/(2π) = 0.01 MHz, since the numerical solution
breaks down at lower frequencies (the far-field fluid boundary conditions apply further and
further from the interface as ω → 0). Nevertheless the small phase angle suggests that the
dynamics is quasi-steady. Thus, to register the mobility M∗ ≈ −7 reported by de Aguiar
et al. (2010), the drop radius a ≈ 790 nm, as also predicted by the standard electrokinetic
model for rigid spheres (O’Brien & White 1978).
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FIGURE 6. The dynamic drag coefficient accompanying the mobilities in figure 4.
(a) ζe/(kBT) = −2.64, κ−1 = 9.61 nm. (b) ζe/(kBT) = −7.08, κ−1 = 9.18 nm. (c) ζe/(kBT) =
−8.68, κ−1 = 3.21 nm.

Calculations with lower SDS concentrations suggest a radius and increases with
decreasing SDS concentration, reaching a � 2 μm when cs = 0.01 mM. These
are significantly larger than ascertained by the (number-weighted) radius (83 nm)
that de Aguiar et al. (2010) reported from dynamic light scattering. Note that
electrophoretic mobilities from light-scattering electrophoresis are averaged according to
the light-scattering intensity (with units of kcps), thus weighted according to a6 (Russel
et al. 1989). Therefore, if the number-averaged distribution of de Aguiar et al. could be
recalculated with a weighting proportional to a6, then the resulting average may indeed
be closer to the size inferred by the average mobility/ζ -potential. Volume-weighted size
should fall between number- and intensity-weighted values. For example, percentiles
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for a log-normal distribution (by volume) of SDS-stabilized hexadecane drops in water
containing NaCl (φ = 0.05, cs = 5 mM, Is = 1 mM) have been reported (from acoustic
attenuation) (d15, d50, d80) = (170, 314, 580) nm (Djerdjev & Beattie 2008). As expected,
these fall between the foregoing number (a ≈ 83 nm) and intensity (predicted a ∼ 790
nm) averages for similar SDS-stabilized hexadecane emulsions.

Figure 6 shows the dynamic drag coefficient accompanying the dynamic mobilities
in figure 4. As might be expected from the U-problem perturbations in figure 3,
the thin-double-layer model provides an excellent approximation of the dynamic drag,
since this problem is dominated by hydrodynamics (viscous and temporal fluid inertia)
with weak electro-viscous effects. It follows that acoustic-attenuation determinations of
emulsion drop size, which hinge on hydrodynamic drag – among many other significant
dissipative mechanisms in emulsions (Temkin 2005) – is less susceptible to Marangoni
effects than the dynamic mobility (Hill & Afuwape 2020).

5. Discussion

Here, we examine the role of model parameters when they are outside the range above
for SDS-stabilized hexadecane–water emulsions. Calculations for rigid spheres having the
same interfacial characteristics as the drops in figures 4 and 6, but with ηi/ηo � 102,
are available in appendix C. Baygents & Saville (1991) showed that the zero-frequency
mobility of spherical drops becomes independent of ηi/ηo when κa � 1, otherwise
increasing with ηi/ηo. This also seems to be the case for the dynamic mobility. However,
the differences are rather subtle for the hexadecane–water couple with ηi/ηo ≈ 3.9, thus
motivating the following more detailed examination of how the internal viscosity affects
the dynamic mobility.

5.1. Internal viscosity contrast
Figure 7 shows how the dynamic mobility transits from the fluid- to rigid-sphere limits
when varying the internal viscosity (scaled with ηo) at ω/(2π) = 1 and 10 MHz, for
drops with four radii spanning the range a = 10–104 nm. Note that the thin-double-layer
model (dashed lines) is shown only for the two radii with κa > 100. Increasing the drop
viscosity suppresses the Marangoni effects, so only the mobilities with ηi/ηo → 0 are
expected to reflect Marangoni effects. Note also that the interfacial mobility of DS− has
been allowed to vary with ηi. Here, this is accomplished – for illustrative purposes – by
adopting an interfacial DS− friction coefficient (proportional to the reciprocal interfacial
diffusivity) that is weighted so the effective viscosity is 0.1ηo + 0.9ηi; thus, crudely
assuming that 10 % of the chain-like molecule resides in the inner fluid, and that its
partitioning/conformation is independent of the change in internal viscosity.

When κa � 1 (blue lines in figure 7, κa ≈ 1.1), the mobility is independent of ηi/ηo, as
expected from the zero-frequency mobilities of (Baygents & Saville 1991). Interestingly,
the thin-double-layer model captures the mobility well at all viscosity ratios when κa is
large enough. However, even for κa ≈ 110 (yellow lines in figure 7), it breaks down when
the drop viscosity is very low (and the DS− mobility is high). Under these conditions,
the mobility is especially sensitive to the frequency, taking a very large magnitude at 1
MHz, and a very small magnitude (with large, negative phase angle) at 10 MHz. Note
that, with the prevailing κ−1 ≈ 10 nm, we find ωκ−2/D1 ∼ 1 when ω/(2π) = 1 MHz. As
highlighted by

Hill & Afuwape (2020), the large-κa limit furnishes a mobility that increases with
the internal viscosity (e.g. violet lines (κa ≈ 1100) in figures 7(a) and 7(b), and the
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FIGURE 7. Dynamic mobility (magnitude and phase) versus the internal viscosity (scaled
with the external viscosity): (a, κa) = (10, 1.1) (blue), (100, 11) (red), (103, 110) (yellow) and
(104, 1100) (violet) (nm, -). Here, the interfacial diffusivity of DS− varies as D = D1/(0.1 +
0.9ηi/ηo) with D1 = 3.9 × 10−9 m2 s−1. Here, ζe/(kBT) = −7.08, Is = 1 mM, c∞ = 0.1 mM
(other parameters derived from the isotherm are available in table 1). Solid lines: computations
for fluid spheres. Dashed lines: theory of Hill & Afuwape (2020) (κa � 1) for (a, κa) =
(103, 110) (yellow) and (104, 1100) (violet) (nm, -). (a) ω/(2π) = 1 MHz. (b) ω/(2π) =
10 MHz.

yellow lines (κa ≈ 110) in figure 7(b)), as also revealed by the steady (zero frequency)
electrophoretic mobility of drops with low, uniform surface charge (and therefore
no Marangoni effects) (Booth 1951). Thus, the increasing mobility magnitude with
decreasing internal viscosity when ηi/ηo � 1 seems to be a dynamic effect, which is
captured – only in a suggestive, qualitative manner – by the thin-double-layer model when
κa is large, but not too large.

It is therefore not clear why the mobility magnitude increases (with decreasing ηi/ηo
when ηi/ηo � 1) to such an extent that it exceeds the rigid-sphere value (e.g. solid yellow
lines (κa ≈ 110) in figure 7a, and the solid red line (κa ≈ 11) in figure 7b). Also puzzling
is that the mobility magnitude when κa ≈ 110 at ω/(2π) = 10 MHz (yellow solid line
in figure 7b) is very close to the thin-double-layer model, but the accompanying phase
angle (which is not captured by the thin-double-layer model when ηi/ηo � 1) is so large
(< −90◦) that the effective drop charge (as deduced by the sign of Re(M∗)) changes sign.

5.2. Electrostatic and interfacial concentration polarization
The foregoing suggest a mode of electrical polarization that is not completely captured
by the thin-double-layer model, even when κa � 1 and ωa2/D � 1. To help identify this
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FIGURE 8. Dimensionless electrostatic polarizability versus the internal viscosity (scaled with
the external viscosity): (a, κa) ≈ (10, 1.1) (blue), (100, 11) (red), (103, 110) (yellow) and
(104, 1100) (violet) (nm, -) with ω/(2π) = 1 MHz. Here, the interfacial tension γ 0 ≈ 0, but
the results are practically the same as with γ 0 = 0.892 × 47 mN m−1. Similarly to figure 7, the
interfacial diffusivity of DS− varies as D = D1/(0.1 + 0.9ηi/ηo)with D1 = 3.9 × 10−9 m2 s−1.
ζe/(kBT) = −7.08, Is = 1 mM, c∞ = 0.1 mM (other parameters derived from the isotherm are
available in table 1). Solid and dashed lines denote real and imaginary parts. For (a, κa) ≈
(10 nm, 1.1) (blue), Re(P∗) ∼ 6 and is therefore outside the range shown.

polarization, figure 8 shows the real and imaginary parts of the electrostatic polarizability
(scalar measure of the net electrostatic dipole strength, elaborated upon below) that
accompany the mobilities in figure 7 at ω/(2π) = 1 MHz. A careful inspection reveals
that the real part (solid lines) scales in a much more systematic and significant manner
with κa. When κa ≈ 110 and ηi/ηo � 1, Re(P∗) becomes especially large and positive,
which is characteristic of drops for which κa is much smaller (e.g. figure 8 with κa ≈ 11
(red) and 1.1).

To help identify the origin of the large positive polarization, consider the
thin-double-layer model of Hill & Afuwape (2020), for which the dipole strength
(dimensional d̂E

ψ , defined by ψ ′ = r(−1 + d̂E
ψr−3)E · er for r > a) is

d̂E
ψa−3 =

iωεoε0 − iωεiε0 + 2σs/a − σ∞ + 2(ze)2c0D iωa2/(2D)
akBT(iωa2/(2D)− 1)

−2 iωεoε0 − iωεiε0 + 2σs/a + 2σ∞ + 2(ze)2c0D iωa2/(2D)
akBT(iωa2/(2D)− 1)

, (5.1)

where σs is the surface conductivity arising from the diffuse-layer charge (O’Brien
1986), and the terms proportional to (ze)2c0 = zeσ 0 capture interfacial diffusion and
electro-migration of the adsorbed charge (adding these furnishes an effective surface
conductivity σ ′

s). Note that the dimensionless d̂E
ψa−3 ≡ P∗, d̂E

ψκ
3 ≡ D∗, and dimensionless

λ′ = σ ′
s/(σ∞a) (also termed the Dukhin number).

If we now focus on frequencies (∼1 MHz) and emulsions for which ωa2/D � 1,
ωεiε0/σ∞ � 1, ωεoε0a/σ ′

s � 1 and εi/εo � 1 (e.g. σ∞/(εoε0) ∼ 53 MHz for an NaCl,
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(a) (b) (c)

FIGURE 9. Isocontours of the perturbed electrostatic potential ψ ′ satisfying Laplace’s equation
for three values of the dimensionless dipole strength. The applied field E is directed from left
to right. Blue (red) at the interface denotes (schematically) an excess of negative (positive)
interfacial charge. See figure 10 for (complex-valued) counterparts calculated from the full
model. (a) P∗ = −1/2, (b) P∗ = 1, (c) P∗ = 2.

SDS electrolyte with ionic strength I = 4.6 mM (Hill & Afuwape 2020)), then

P∗ ≈ 2λ′ − 1
2λ′ + 2

with λ′ ≈ σs + (ze)2c0D/(kBT)
σ∞a

. (5.2)

Thus, P∗ → −1/2 and 1 for λ′ → 0 and ∞, respectively; these correspond to limits in
which the polarization is dominated by dielectric polarization (λ′ � 1, negative dipole)
and tangential free-charge migration (λ′ � 1, positive dipole). Figure 9 shows isocontours
of the electrostatic potential satisfying Laplace’s equation inside and outside a sphere
with three representative dipole strengths. Note that electrical current (in the external
electrolyte) flows along the electric field lines, i.e. perpendicular to the isocontours. Thus,
when P∗ = −1/2, this current is directed around the drop. However, when P∗ > 0, current
is directed into and out of the interfacial region, thus requiring an interfacial space-charge
perturbation.

As acknowledged by Hill & Afuwape (2020), Hunter (2001, § 8.9.1) has pointed out
that thin-double-layer approximations founded on the Smoluchowski-slip analysis should
break down when the ‘back field’ from the tangential migration of charge in the diffuse
layer is not small compared to the applied field. Hunter shows that the ratio of the back field
to the applied field is ∼λ′, so increasing the surface charge density (increasing |ζ |) with
κa � 1 (thin double layer) places increasingly stringent demands on κa � 1 to maintain
λ′ � 1. A comparison of the full model with the thin-double-layer approximation of Hill
& Afuwape (2020) will therefore identify how large κa must be at the high surface-charge
densities expected for SDS-stabilized emulsion drops. According to thin-double-layer
calculations summarized in table 2 for drops with a = 325 nm, λ � 1 (based on the
diffuse-layer conductivity according to O’Brien (1986)), so variations in the drop size
a and the adsorbed-charge (DS−) mobility D/(kBT) are expected to significantly influence
the sign and magnitude of the polarization.

Figure 10 shows isocontours of the perturbed electrostatic potential ψ ′ at ω/(2π) = 1
MHz, as furnished by the full model, for values of κa spanning the range ≈1–103.
This sequence highlights the significant influence that drop size has on the electrical
polarization. The smallest particle, with the largest (positive) dipole strength (figure 10a),
produces a field that drives current (perpendicular to the iso-potential contours) radially at
the oil–water interface; this necessitates diffusion to satisfy a no-flux boundary condition.
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FIGURE 10. Isocontours of the perturbed electrostatic potential [ψ̂E(r)− r] cos θ
(dimensionless) with the model parameters in figure 7(a) for ηi/ηo ≈ 3.93 (hexadecane
in water) at ω/(2π) = 1 MHz. The applied field E is directed from left to right. Blue
and red lines denote the real and imaginary parts. (a) κa ≈ 1.09, P∗ ≈ 5.3 − 0.25i.
(b) κa ≈ 10.9, P∗ ≈ 0.90 − 0.065i. (c) κa ≈ 109, P∗ ≈ −0.052 + 0.097i. (d) κa ≈ 1090,
P∗ ≈ −0.44 + 0.014i.

For the largest particle (figure 10d), the (negative) dielectric polarization of the drop
enables the tangential current in the (very thin) diffuse layer to balance the radial current,
without inducing a space-charge perturbation. With κa ∼ 100 (figure 10c), however, the
electric-field perturbation is very weak (vanishing dipole strength), suggesting a balancing
of the dielectric polarization with the dynamic space-charge polarization. The fluctuating
space charge is not accounted for in the thin-double-layer model, and so this seems to
explain the breakdown of the Smoluchowski electroosmotic-slip formula, for which the
electrical body force in the diffuse layer arises from the induced electric field acting on
the equilibrium space charge.

5.3. Profiles for high- and low-viscosity drops
Figures 11 and 12 (with figures 18 and 19 in appendix D) show profiles of the velocity,
electrostatic potential, and ion-concentration perturbations (as described in the caption of
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FIGURE 11. The profiles as described in figure 2 with the model parameters in figure 7(a)
(ω/(2π) = 1 MHz) for (a, κa) = (103 nm, 110), ηi/ηo = 0.01 and γ 0 ≈ 0 (fluid-behaving
interface without Marangoni stresses).

figure 2), but now with vary large and small values of the internal viscosity, for values
of κa ≈ 102 and 103. Note that the ion-concentration perturbations (bottom panels) are
plotted with a linearly scaled ordinate. While obscuring oscillations in the far field (e.g.
figure 2), this helps to identify the sign and phase of the ion-concentration perturbations,
particularly within the diffuse layer, where the electric-field-induced perturbations are
especially large.

In figure 11, the electric-field-induced (right panels) ion-concentration perturbations
inside the diffuse layer are large and negative. Moreover, there is a larger depletion of
Na+ counterions (red lines), suggesting that the net charge perturbation in the diffuse
layer is negative, and, therefore, that the interfacial charge perturbation is positive,
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FIGURE 12. The same as figure 11, but with ηi/ηo = 100.

thus necessitating a negative interfacial concentration perturbation. The positive sign of
the accompanying electrostatic potential perturbation suggests that the net electrostatic
polarization principally reflects the interfacial-charge distribution that comes from the
negative interfacial concentration perturbation.

In figure 12, where the interfacial charge is now tightly coupled to the interface by virtue
of a high internal viscosity (ηi/ηo = 100), the ion-concentration perturbations are very
weak, with a net charge that changes sign within the diffuse layer. While the imaginary part
of the electrostatic potential perturbation is similar to the case above (figure 11), the real
part has changed sign, taking a large negative value. Moreover, while the imaginary part
of the electrostatic potential perturbation agrees with the thin-double-layer model, the real
part has a significantly larger magnitude. Contrary to figure 11, the velocity perturbations
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are in good agreement with the thin-double-layer model, as expected from the comparable
magnitude and phase of the mobility in figure 7 when ηi/ηo = 100.

5.4. Interfacial-charge mobility
Figure 18 (appendix D) shows the profiles for a larger drop, (a, κa) ≈ (104 nm, 1100),
with a fluid-behaving interface. Recall, we have already established that the mobility
under these conditions is consistent with the thin-double-layer model, as the velocity and
electrostatic potential perturbation profiles confirm. However, in contrast to figure 11 with
(a, κa) ≈ (103 nm, 110), the electrostatic potential perturbation has a large, negatively
signed real part. This suggests that the underlying interfacial concentration (charge)
perturbation is positive (negative), as one might expect if an advection-dominated
interfacial charge migration were hydrodynamically coupled to electro-osmotic flow in
the diffuse layer. As expected, tightly coupling the interfacial charge to the interface by
virtue of a very high internal viscosity (ηi/ηo = 100), as seen in figure 19 (appendix D),
attenuates the ion-concentration perturbations in the diffuse layer, but has no significant
impact on the large, negatively signed real part of the electrostatic potential perturbation.
Thus, the interpretation of the profiles in figures 11 and 12 (also appendix D) points to the
thin-double-layer model breaking down due to the interfacial charge perturbation being
coupled to the diffuse-layer charge perturbation rather than to the diffuse-layer flow.

The data in figure 13 have no Marangoni effects, but the interfacial mobility has
been set – again for illustrative purposes – to a very large (and physically unacceptable)
value. This makes the interfacial Péclet number for DS− vanishingly small. Comparing to
figure 7(a), setting Mac � 1 and Pe � 1 significantly impacts the mobility, particularly
when κa � 1. Most noteworthy is that the mobility decreases with increasing ηi/ηo,
and that, even for the largest values of κa, there is no correspondence with the
thin-double-layer model of (Hill & Afuwape 2020). When κa ≈ 110 (yellow lines in
figure 13), the mobility is dominated by its large, negative imaginary part (dashed lines
in figure 13b), with an electrical polarization that is dominated by a positive real part
Re(P∗) ≈ 1 (figure 13c). This suggests that the polarization is dominated by the interfacial
concentration/charge polarization. If this is rapid, as evidenced by Re(P∗) ≈ 1 being
largely in phase with the electric field, then it would induce an electric field in the diffuse
layer that opposes the applied field. The resulting electroosmotic flow would therefore
be in the same direction as the force on the interfacial charge, as suggested by the large
negatively signed mobility under these conditions.

Figure 14 is the same as figure 13, but the interfacial mobility is set to make the
interfacial Péclet number very large, so the interfacial charge is strongly coupled to the
interfacial velocity (again without Marangoni effects). Now the mobility and polarization
are closer to the base case (figures 7 and 8), with a notably smaller mobility when κa ≈ 110
and ηi/ηo � 1 (yellow lines). Thus, while the interfacial mobility is hindered by its
vanishingly small diffusion coefficient, the charge is now immobilized on a mobile/fluid
interface. The weaker electrical polarization (Re(P∗) < 0) drives a weaker reverse-acting
electroosmotic flow.

5.5. Kinetic exchange
Lastly, figure 15 explores the role of the kinetic-exchange coefficients. Recall, all the
previous calculations are with kd = ka = 0, ensuring that there is no exchange of surfactant
between the interface and electrolyte. Here, the mobility and polarizability are plotted
versus the scaled desorption kinetic coefficient kd/ω with ω/(2π) = 1 MHz. Note that the
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FIGURE 13. The same as figure 7(a), but with γ 0 ≈ 0 (Mac ≈ 0) and D = 106D1/(0.1 +
0.9ηi/ηo) (Pe � 1). Under these conditions, the dynamic polarizability P∗ = D∗/(κa)3 ≈ 1 for
κa � 1; such strong (positive) polarization drives electroosmotic flow in the opposite direction
to that of the applied electric field.

adsorption kinetic coefficient ka has been set so that kd/(κka) = 1.1, whereas, as discussed
in the theory section, this ratio is required by the adsorption isotherm for DS− to be very
small. Here, the electrokinetic response is confirmed to transit from a kinetic-rate-limited
regime to a diffusion-limited regime when kd/ω ∼ 1. This transition is significant only for
the smallest drops with κa ∼ 1, otherwise the diffusion-limited regime is maintained by
the high frequency, i.e. ωa2/D1 � 1 (D1 is the DS− diffusivity in the electrolyte) for all
but the smallest drops.

6. Summary

A computational model has been developed for the electrokinetic response of spherical
drops to oscillatory forcing, accounting for interfacial dynamics (Marangoni, electrical
and hydrodynamic stresses, coupled to ion electro-migration, diffusion and advection in
the weak-field limit). The focus was on the dynamic electrophoretic mobility spectrum,
which provides a theoretical foundation for interpreting electrokinetic sonic amplitude
experiments. However, the model also furnishes the electro-static polarizability as a
theoretical foundation for dielectric relaxation spectroscopy.

The calculations undertaken in this study centred about the charged drops encountered
in SDS-stabilized oil-in-water emulsions. While these have served as electro-sterically
stabilized emulsion models for many decades, they are still not well understood (as
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FIGURE 14. The same as figure 7(a), but with γ 0 ≈ 0 (Mac ≈ 0) and
D = 10−6D1/(0.1 + 0.9ηi/ηo) (Pe � 1).

discussed in § 1). Here, computations established practical limits on the parameters for
which a recent thin-double-layer model was derived by Hill & Afuwape (2020).

Owing to the very high surface-charge density (and accompanying surface
conductivity), unusually stringent conditions are imposed on κa, with the Smoluchowski-
slip approximation requiring κa � 102; otherwise, numerical solutions of the model are
necessary, since there is no analytical-approximate theory available for κa � 1.

The model was used to explore the significant role of electrical polarization and how it
is influenced by interfacial-charge mobility. Unifying the interfacial thermodynamics (via
an adsorption isotherm) and electrokinetic dynamics, over a wide range of frequencies,
provides a framework for probing emulsion drops that have more complex interfacial
dynamics; for example, as arising from self-assembled (e.g. Pickering) layers (Ortiz
et al. 2020) with interfacial visco-elasticity (Kim et al. 2011).

The present study was limited to weak electric fields, so it may be pertinent to advance
the model to account for finite electric-field strengths. The case for which κa � 1, but the
Dukhin number is not small, might be handled using the so-called small Dukhin number
approximation, which has been applied to the steady electrophoretic mobility of dielectric
particles in the thin-double-layer limit (Schnitzer & Yariv 2014). The more general case
seems to require a computational approach to handle broken fore–aft symmetry, and,
possibly, shape perturbations.

Applying the present model to interpret experimental data may benefit from specific
attention to the droplet size distribution. Having prescribed the interfacial properties from
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FIGURE 15. Dynamic mobility (M∗, magnitude and phase, and real and imaginary) and
polarizability (P∗ = D∗/(κa)3, real and imaginary) versus the scaled desorption kinetic
coefficient kd/ω with kd/(κka) ≈ 1.1: (a, κa) ≈ (10, 1.1) (blue), (100, 11) (red), (103, 110)
(yellow) and (104, 1100) (violet) (nm, -) with ω/(2π) = 1 MHz. Other parameters: ηi/ηo =
3.5/0.89, D = 1.08 × 10−10 m2 s−1, ζe/(kBT) = −7.08, Is = 1 mM, c∞ = 0.1 mM (other
parameters derived from the isotherm are available in table 1). Solid and dashed lines denote
real and imaginary parts. Note the transition from kinetic- to diffusion-limited exchange kinetics;
however, ka is set (for illustrative purposes only) to a value that is 6 orders of magnitude smaller
than prescribed by the adsorption isotherm.

an adsorption isotherm, the mobility magnitude and phase were demonstrated here to
be a sensitive and complex (e.g. non-monotonic magnitude) function of the drop size.
The (number-weighted) dynamic light-scattering size distribution of de Aguiar et al.
(2010) indicates a large number density of small (a ≈ 83 nm) drops, much smaller than
reported from acoustic attenuation (e.g. a ≈ 85–290 nm, Djerdjev & Beattie (2008)) and
intensity-averaged light scattering (e.g. a ≈ 276–576 nm, Barchini & Saville (1996)). Note
that Barchini and Saville also performed centrifugal fractionation steps (on silicone–oil
emulsions), thus narrowing the size distribution.

Note that the electrophoretic mobility from electrophoretic light scattering is weighted
toward scattering from the largest drops. On the other hand, the dynamic mobility,
as measured by electro-acoustic instrumentation, is weighted by particle volume. The
recommendation here is to adopt consistent determinations of particle size and mobility
from light scattering, i.e. interpret the intensity-averaged mobility with an accompanying
intensity-average size.

The present model suggests that electro-sterically stabilized bubble mobilities may be
unusually high due to a high interfacial charge mobility. However, these conclusions were
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drawn from a crude analysis in which the interfacial-charge mobility is dominated by the
(low) viscosity of the dispersed phase. In practice, the mobility of the interfacial charge is
expected to depend on the geometry and thermodynamic affinity of the adsorbing species
at a specific interface. This highlights, once again, the importance of complementing
electrokinetic measurements with a specific adsorption isotherm.

Finally, the present model provides a quantitative theoretical framework for studying
kinetic exchange of the adsorbing charge. For strongly adsorbing surfactants, this
dynamics seems to be so slow (under MHz forcing of an ESA experiment) that it can be
neglected. This might not be the case for much smaller adsorbing ions, such as OH−, which
are also known to charge oil–water interfaces (Marinova et al. 1996). The present model
may provide new opportunities for interpreting interfacial charging dynamics, perhaps in
micro-fluidic as well as electrokinetic diagnostic settings.
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Appendix A. Numerical solution

The interfacial model has two unknown constants dc and c1, which, recall, measure
the interfacial concentration perturbation and interfacial velocity. Moreover, the functions
with superscript ‘0’ come from a numerical solution of the equilibrium problem,
furnishingψ0(r) and n0

i (r) from the spherical nonlinear Poisson–Boltzmann problem. The
‘hatted’ functions come from solving N ion conservation equations, the Poisson equation,
one scalar momentum/vorticity equation and the auxiliary relationship (g = hr,rr), thus
furnishing n̂i(r), ψ̂(r), hr(r) and g(r). These complex-valued functions can vary on
multiple, widely separated length scales, so the solution is very challenging. The method
adopted here is the one developed by Hill et al. (2003) by which the first- and second-order
partial derivatives are approximated using centred finite differences on a non-uniform
grid that adapts to the curvatures of the N + 3 functions. Typically ∼104 grid points are
required on a domain that may extend ∼102κ−1 from the interface. Boundary conditions on
the outer-boundary respect the far-field asymptotic form for each function. The solution is
accomplished in an efficient manner by adopting a single mesh on which all the functions
are solved. This enables the algebraic finite-difference relationships for each equation at
each grid point to be solved as a block-diagonal system. To preserve the block-diagonal
form, the next section details how to implement the interfacial relationships above as
boundary conditions.

At the interface, a ‘ghost’ grid point with index i = −1 is positioned at radial position
r = a − δ (see figure 16), so the centred difference approximations of the first and second
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FIGURE 16. Finite-difference coupling the interfacial and bulk conservation relationships.
(a) Finite-difference grid at the drop–electrolyte interface. The grid point with index i = 0
resides at the interface. (b) Global block-diagonal system.

derivatives of a function φ(r) at r = a are

φr = φ1 − φ−1

2δ
and φrr = φ−1 + φ1 − 2φ0

δ2
. (A 1a,b)

The interfacial equations above then take the linear form

a−1 · φ−1 + a0 · φ0 + a1 · φ1 + b · x = c, (A 2)

where x = [dc, c1]T, and φi = [n̂1, . . . ., n̂N, ψ̂, g, h]T
i . Here, the subscripts distinguish the

grid points at the interface.
The vectors x and φ−1 (variables peripheral to the global block-diagonal system) can

now be expressed in terms of φ0 and φ1 (variables in the global block-diagonal system) as

x = c̄ − ā0 · φ0 − ā1 · φ1, (A 3)

and
φ−1 = ĉ − â0 · φ0 − â1 · φ1, (A 4)

where
[x,φ−1]T = [b, a−1]−1 · [c − a0 · φ0 − a1 · φ1]. (A 5)

Next, with φ−1 expressed in terms of φ0 and φ1, the global system of equations for the grid
point at the interface (index i = 0),

A−1φ−1 + A0φ0 + A1φ1 = B0, (A 6)

is transformed to
Â0 · φ0 + Â1 · φ1 = B̂0, (A 7)

where

Â0 = A0 − A−1 · â0, Â1 = A1 − A−1 · â1, B̂0 = B0 − A−1 · ĉ. (A 8a–c)

A conceptually similar approach is adopted for the outer (far-field) boundary, but the
boundary conditions are sufficiently simple so as to avoid a formal matrix methodology.
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The global system reduces to a block-diagonal square matrix with global vector of
unknowns [φ0; φ1; . . .].

To implement the foregoing methodology, the following details must be addresses, since
the full matrix [b, a−1] turns out to be singular. Firstly, the independent variable g = hr,rr
is expressed as the finite-difference second derivative of hr:

g0 = hr,−1 + hr,1 − 2hr,0

δ2
, (A 9)

thus eliminating g from the interfacial system (it appears only in the interfacial momentum
balance). Next, dropping the zero radial velocity condition furnishes a square (N + 4)×
(N + 4) non-singular matrix [b, a−1] with x = [dc, c1]T and φi = [n̂1, . . . , n̂N, ψ̂, hr]T

i
(i = −1, 0, 1). The matrix inversion then provides x and φ−1, from which (A 9) can be
used to eliminate hr,−1, thus enabling g0 to be expressed in terms of all the other variables
in φ0 and φ1:

g0δ
2 +

N+2∑
j=1

â0(k, j)φ0(j)+
N+2∑
j=1

â1(k, j)φ1(j)− hr,1 + 2hr,0 = ĉ(k). (A 10)

Here, the index k identifies the row of the ‘hatted’ matrices furnishing hr,−1. With (A 10),
there are N + 3 independent relationships with which to eliminate the peripheral A−1
from the global system (see figure 16). Note that ai are (N + 4)× (N + 2) matrices, âi
are (N + 2)× (N + 2) and āi are 2 × (N + 2). Moreover, c is an (N + 4)× 1 vector, ĉ
is (N + 2)× 1, and c̄ is 2 × 1. The momentum equation in the global system is coupled
to g−1, which is not provided by the foregoing interfacial model and matrix inversion.
Nevertheless, this is remedied by simply replacing the momentum equation in the global
system (for the grid point at the interface with i = 0) with the previously discarded
zero radial velocity condition. With this prescription, the electrokinetic model faithfully
reproduced computations for rigid spheres, and, as will be demonstrated below, provided
accurate numerical validations of the analytical model of Hill & Afuwape (2020) for
highly charged drops with Marangoni effects when κa � 1.

The matrix inversion was accomplished using Gauss–Jordon operations with full
pivoting (Press et al. 1988), adapted for complex arithmetic. Note that computing
[b, a−1]−1 and then performing matrix multiplications proved to be inaccurate (e.g.
[b, a−1]−1 · [b, a−1] /= I). Accordingly, the inversion and subsequent matrix–vector
multiplications were accomplished by simultaneously row reducing an augmented matrix
of ‘right-hand’ vectors (e.g. [c, a0, a1]) accompanying the row and column operations to
invert [b, a−1].

Appendix B. Non-dimensionalization

The numerical solution is undertaken with variables scaled according to Hill et al.
(2003), summarized as follows. Characteristic scales (subscript ‘c’) for time, radial
position, electrostatic potential, electric field, velocity, ion bulk concentration, and ion
surface concentration are, respectively

tc = ω−1, rc = κ−1, ψc = kBT/e, Ec = κkBT/e

uc = εoε0(kBT/e)2/(ηoa), nc = 2I, cc = 2Iκ−1.

}
(B 1)
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It follows that the dimensional groups [·] used to scale each variable/function (·) are

[n̂X
i ] = 2I/X, [ψ̂X] = kBT/(eX), [ f X] = [hX

r ] = ucκ
−1/X, [gX] = ucκ/X,

(B 2a–d)
and

[dX
c ] = 2Iκ−1/X, [cX

1 ] = κuc/X. (B 3a,b)

Note that we also have (dimensional ψ0
r , σ 0, c0)

ψ0
r = − σ 0

κεoε0kBT/e
, σ 0 = zec0, (B 4a,b)

so (dimensionless ψ0
r , c0)

ψ0
r = − zc02Ie2

κ2εoε0kBT
= −zc0. (B 5)

For example, in dimensionless variables, the electrostatic potential is

ψ(x, t) = ψ0(r)+ [ψ̂E(r)− Mψ̂U(r)− r] e−itE · er → D∗r−2E · er as r → ∞,
(B 6)

and the ion-concentration perturbations are

ni(x, t) = n0
i (r)+ [n̂E

i (r)− Mn̂U
i (r)] e−itE · er → 0 as r → ∞. (B 7)

Now the scaled/dimensionless interface and boundary conditions (compatible with the
MPEK software package (Hill et al. 2003) solution of the standard electrokinetic model)
can be written as follows:

(i) Zero radial velocity

hr = κaU/(2X). (B 8)

(ii) Interfacial (tangential) momentum conservation

− ηi

ηo
Ti(Ωia2)c1 − g = Ma dc + (ψ̂ − κaE/X)c0z, (B 9)

where Ma = γ 0β/(kBT) = MacηoD/(kBTc0a)with concentration Marangoni number
Mac = γ 0βc0a/(ηoD) (Hill & Afuwape 2020). Note that Ma ∼ 1 is a dimensionless
number of intrinsic interfacial properties (comparing interfacial and thermal
energy), whereas the concentration Marangoni number Mac � 1 compares
interfacial diffusion and surface-tension relaxation times.

(iii) Continuous tangential velocity

hrr = U/(2X)− c1κaVi(Ωia2). (B 10)

(iv) Interfacial Gauss condition

εi

εo
(ψ̂/(κa)− E/X)− (ψ̂r − E/X) = zdc. (B 11)
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(v) Interfacial species conservation (for the adsorbing species, i = 1)

(
iωa2

2D
− 1 − kda2

2D

)
dc + kaκa2

2D
n̂1 − (ψ̂ − κaE/X)c0z = −c0κa Pe Vi(Ωia2)c1,

(B 12)
where the interfacial Péclet number Pe = uca/D.

(vi) N radial ion fluxes

0 = n̂i,r + ψ0
r zin̂i + (ψ̂r − E/X)zin0

i , i = 1

− kd

Diκ2
dc + ka

Diκ
n̂i = n̂i,r + ψ0

r zin̂i + (ψ̂r − E/X)zin0
i , i = 2, . . . ,N.

⎫⎪⎬
⎪⎭ (B 13)

With finite-difference approximations of the radial derivatives, these furnish (for
demonstrative simplicity with N = 1)

a−1 · φ−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 0 1/(δ2)

0 0 −1/(2δ)

0 1/(2δ) 0

−1/(2δ) −zin0
i /(2δ) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

n̂i,−1

ψ̂−1

hr,−1

⎞
⎟⎠ , (B 14)

a0 · φ0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

kaκa2/(2D) −c0z 0

0 c0z −2/δ2

0 0 0

0 (εi/εo)/(κa) 0

ψ0
r zi − ka/(Diκ) 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

n̂i,0

ψ̂0

hr,0

⎞
⎟⎠ , (B 15)

a1 · φ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0

0 0 1/δ2

0 0 1/(2δ)

0 −1/(2δ) 0

1/(2δ) zin0
i /(2δ) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎝

n̂i,1

ψ̂1

hr,1

⎞
⎟⎠ , (B 16)

b · x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

iωa2/(2D)− 1 − kda2/(2D) c0κa Pe Vi(Ωia2)

Ma (ηi/ηo)Ti(Ωia2)

0 κaVi(Ωia2)

−z 0

kd/(Diκ
2) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
(

dc

c1

)
, (B 17)
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c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−κac0zE/X

κac0zE/X

U/(2X)

(εi/εo − 1)E/X

zin0
i E/X

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (B 18)

where the rows are ordered (top to bottom): interfacial species conservation, interfacial
(tangential) momentum conservation, continuous tangential velocity, interfacial Gauss
condition and interfacial species conservation (for the adsorbing species, i = 1).

Appendix C. Rigid-sphere calculations
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FIGURE 17. The same as figure 4 in the main text, but for rigid drops (achieved by setting
ηi/ηo � 102 with D ≈ 10−12 m2 s−1). (a) ζe/(kBT) = −2.64, κ−1 = 9.61 nm. (b) ζe/(kBT) =
−7.08, κ−1 = 9.18 nm. (c) ζe/(kBT) = −8.68, κ−1 = 3.21 nm.
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Appendix D. Profiles for large drops
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FIGURE 18. The same as figure 11 in the main text (low-viscosity drop without Marangoni
effects), but with larger (a, κa) ≈ (104 nm, 1100).
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FIGURE 19. The same as figure 11 in the main text (low-viscosity drop without Marangoni
effects), but with larger (a, κa) ≈ (104 nm, 1100) and ηi/ηo = 100.
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