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In this two-part study, we present the development and analysis of a stochastic
theory for characterizing the relative positions of monodisperse, low-inertia particle
pairs that are settling rapidly in homogeneous isotropic turbulence. In the limits
of small Stokes number and Froude number such that Fr � Stη � 1, closures are
developed for the drift and diffusion fluxes in the probability density function (p.d.f.)
equation for the pair relative positions. The theory focuses on the relative motion of
particle pairs in the dissipation regime of turbulence, i.e. for pair separations smaller
than the Kolmogorov length scale. In this regime, the theory approximates the fluid
velocity field in a reference frame following the primary particle as locally linear.
In this part 1 paper, we present the derivation of closure approximations for the
drift and diffusion fluxes in the p.d.f. equation for pair relative positions r. The drift
flux contains the time integral of the third and fourth moments of the ‘seen’ fluid
velocity gradients along the trajectories of primary particles. These moments may be
analytically resolved by making approximations regarding the ‘seen’ velocity gradient.
Accordingly, two closure forms are derived specifically for the drift flux. The first
invokes the assumption that the fluid velocity gradient along particle trajectories has a
Gaussian distribution. In the second drift closure, we account for the correlation time
scales of dissipation rate and enstrophy by decomposing the velocity gradient into
the strain-rate and rotation-rate tensors scaled by the turbulent dissipation rate and
enstrophy, respectively. An analytical solution to the p.d.f. 〈P〉(r, θ) is then derived,
where θ is the spherical polar angle. It is seen that the p.d.f. has a power-law
dependence on separation r of the form 〈P〉(r, θ) ∼ rβ with β ∼ St2

η and β < 0,
analogous to that for the radial distribution function of non-settling pairs. An explicit
expression is derived for β in terms of the drift and diffusion closures. The 〈P〉(r, θ)
solution also shows that, for a given r, the clustering of Stη � 1 particles is only
weakly anisotropic, which is in conformity with prior observations from direct
numerical simulations of isotropic turbulence containing settling particles.
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1. Introduction

This paper presents a stochastic theory for the clustering of inertial particles that
are settling rapidly in homogeneous isotropic turbulence. The theory focuses on the
relative motion of low-Stokes-number pairs for sub-Kolmogorov separations. The
study is principally motivated by the desire to understand the microphysical processes
influencing the relative motion of water droplets in cumulus clouds.

Predicting the growth of droplets in a cloud from a radius of 10–20 µm to raindrop
size (radius >100 µm) is a central problem in cloud physics. Cloud microphysical
models describe droplet growth through two main mechanisms: (i) condensation,
and (ii) droplet collision and coalescence. For radii <20 µm, droplet growth is
principally driven by condensation (Bartlett 1966). For larger radii, collision and
coalescence play an increasingly important role, eventually becoming the dominant
mechanism for radii >40 µm. Interestingly, in the 15–40 µm radius range, droplet
Stokes numbers Stη are in the 0.1–1 range. The relative motion of these droplet pairs
is strongly susceptible to the effects of air turbulence. For instance, it is now well
established that, for Stη < 1, particles exhibit strong spatial clustering arising from
the complex interactions between turbulent eddies and particle inertia (Chun et al.
2005; Bragg & Collins 2014a,b). Turbulence-induced clustering of droplets may lead
to increased collision rates, and thereby to accelerated droplet growth. In addition to
turbulence, differential gravitational settling among droplets is an important driver of
collisions, particularly for pairs of larger drops whose size ratio departs substantially
from one. Differential settling also reduces the clustering of particles with different
radii, so that the most pronounced inertial clustering occurs in drops of nearly equal
size (Ayala et al. 2008b; Parishani et al. 2015).

In cumulus and stratocumulus clouds, the Kolmogorov-scale fluid acceleration
(aη) is small relative to gravitational acceleration (g) so that the Froude number is
Fr= aη/g∼ 0.009–0.06 (Ayala, Rosa & Wang 2008a; Fouxon et al. 2015). Therefore,
the present study focuses on the relative motion of monodisperse, low-inertia
particle pairs that are undergoing rapid settling in isotropic turbulence. While Fr
characterizes fluid accelerations, the settling velocity parameter Svη is used to
quantify particle settling, where Svη is defined as the ratio of particle terminal
velocity to the Kolmogorov velocity scale. Therefore, by rapid settling, we mean
Svη � 1. Recognizing that Svη = Stη/Fr, the current stochastic theory is derived in
the parameter regime characterized by Fr� Stη� 1. Here Stokes number Stη is the
ratio of the particle viscous relaxation time τv and the Kolmogorov time scale τη. For
Stη� 1 particles, the transport equation for the probability density function (p.d.f.) of
pair separations (r) is of the drift–diffusion form (Chun et al. 2005). In this part I
paper, we present the derivation of closures for the drift and diffusion fluxes. The
p.d.f. equation is also solved analytically, giving rise to a p.d.f. with a power-law
dependence on separation r with a negative exponent. An explicit expression is
obtained for the exponent in terms of the drift and diffusion fluxes.

Turbulence-driven inhomogeneities in the spatial distribution of inertial particles
are believed to play an important role in locally enhancing particle collision rates.
Preferential concentration is one of the mechanisms of particle clustering, wherein
inertial particles denser than the fluid are ejected out of vorticity-dominated regions,
and accumulate in strain-dominated regions. Numerous computational, experimental
and theoretical studies of aerosol dynamics in isotropic turbulence have established
that inertial particles preferentially concentrate in regions of excess strain rate over
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rotation rate (Maxey 1987; Squires & Eaton 1991; Eaton & Fessler 1994; Druzhinin
1995; Druzhinin & Elghobashi 1999; Ferry, Rani & Balachandar 2003; Rani &
Balachandar 2003, 2004; Chun et al. 2005; Ray & Collins 2011).

Since the characteristic length scales of strain rate and rotation rate in isotropic
turbulence scale with the Kolmogorov length scale (η), it may be expected that
preferential concentration enhances the probability of finding a pair of particles at
separations comparable to η. However, Reade & Collins (2000) showed through
direct numerical simulations (DNS) of particle-laden isotropic turbulence that inertial
particles continued to exhibit clustering at separations much smaller than η. In fact,
they found that for separations r � η, the radial distribution function (r.d.f.), an
important measure of clustering, followed a power law given by

g(r)= c0

(η
r

)c1

, (1.1)

where g(r) is the r.d.f. The existence of a power-law r.d.f. for r/η≈ 10−3 in the DNS
of Reade & Collins (2000) suggests that the mechanism of preferential concentration
alone is insufficient to explain clustering at such small separations.

In Chun et al. (2005), we investigated the continued clustering of monodisperse
particles at sub-Kolmogorov separations, and developed a theory for the r.d.f. of low-
Stη, non-settling (i.e. Fr→∞) particle pairs. Motivated by the observation that much
of the growth of the r.d.f. occurs for separations r< η, the Chun et al. (2005) study
focused on the dynamics of pair separations in the dissipation regime of turbulence.
Analytical closures were derived for the drift and diffusion fluxes in the p.d.f. equation
of pair relative positions. The balance of these two fluxes determines the steady-state
value of the r.d.f. at a given separation. Of particular interest in that theory is the
closure form for the drift flux qd

i (r) of monodisperse pairs, given by

qd
i (r)=−

St2
η

3
ri〈P〉(r)

∫ t

−∞

〈[S2(t)− R2(t)][S2(t′)− R2(t′)]〉 dt′, (1.2)

where S2
=SijSij and R2

=RijRij are the second invariants of the strain-rate and rotation-
rate tensors, respectively, along particle paths.

It is evident from (1.2) that the net drift flux will be negative or radially inwards
provided the primary particles sample more strain than rotation along their trajectories,
a mechanism referred to as preferential concentration. One can also deduce from (1.2)
a second mechanism of clustering that is particularly relevant for sub-Kolmogorov
scale separations. We can see from (1.2) that the drift flux will continue to be negative
even for r < η provided we have a positive two-time correlation of [S2(t) − R2(t)]
along the trajectory of the primary particle. Thus, the sub-Kolmogorov scale clustering
is driven by a path-history effect in that the pair separation at time t continues to
be influenced by the preferential sampling of strain rate over rotation rate by the
primary particle at earlier times (and at larger separations, on average). It is this path
history effect that is responsible for the power-law behaviour of the r.d.f. at r� η.
To the authors’ knowledge, the Chun et al. (2005) study is the first to provide an
explicit relation for this effect through the integral in (1.2). Other mechanisms of
particle clustering, such as caustics, have also been identified – a review of the various
mechanisms may be found in Gustavsson & Mehlig (2016).

Chun et al. (2005) also derived the drift–diffusion equation of the r.d.f. for
bidisperse, non-settling pairs. Bidispersity, or more generally polydispersity, of the
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particle population is a key factor in determining clustering, and thereby the rate
of particle collisions. Bidispersity is also important when considering the effects
of gravitational settling, since differential sedimentation is thought to be a key
contributing factor to enhanced collision frequency. In the current study, we consider
a monodisperse population of settling particles. However, our theory accounts for the
effects of gravity through the modified sampling of turbulence by the settling particles.
Although cloud droplets would be polydisperse, it is noteworthy that: (a) condensation
tends to narrow the size distribution; (b) turbulence-induced coalescence is most
important for nearly equal-sized drops for which differential sedimentation is weak;
and (c) clustering is strongest for nearly equal-sized drops. In the rapid settling limit,
particles experience an essentially frozen turbulence, so that the flow time scales
along particle trajectories may be approximated as the Eulerian correlation length
scales divided by the particle terminal velocity.

Detailed reviews of stochastic theories for the relative motion of inertial particle
pairs are provided in Rani, Dhariwal & Koch (2014) and Dhariwal, Rani & Koch
(2017). An important study is that of Zaichik & Alipchenkov (2003), who developed
a stochastic theory for describing the relative velocities and positions of monodisperse
particle pairs. Their theory was conceived to be applicable for all Stokes numbers and
for pair separations spanning all three regimes of turbulence, i.e. the integral, inertial
and dissipation scale ranges. Zaichik & Alipchenkov (2003) derived a closure for the
phase-space diffusion current by using the Furutsu–Novikov–Donsker (FND) formula.
The FND formula relates the diffusion current to a series expansion in the cumulants
of the fluid relative velocities seen by the pairs (1u) multiplied by the functional
derivatives of the p.d.f. with respect to 1u (Bragg & Collins 2014a). Zaichik &
Alipchenkov (2003) then computed the statistics of pair separation and relative
velocity by solving the equations for the zeroth, first and second relative-velocity
moments of the master p.d.f. equation.

Bragg & Collins (2014a) performed a rigorous, quantitative comparison of the Chun
et al. (2005) and Zaichik & Alipchenkov (2007) stochastic models for inertial pair
dynamics in isotropic turbulence. The focus of the Bragg & Collins study was to
compare and analyse the predictions of particle clustering at sub-Kolmogorov scale
separations by the two theories. The Zaichik & Alipchenkov (2007) study improved
upon their earlier study (Zaichik & Alipchenkov 2003) by accounting for the unequal
Lagrangian correlation time scales of the strain-rate and rotation-rate tensors. Bragg
& Collins (2014a) showed that the power-law exponents in the r.d.f.s predicted by
the two theories were in good agreement for Stη � 1 at r� η. Through a detailed
theoretical analysis, they proved that this agreement was a consequence of the Chun
et al. (2005) drift velocity being the same as the leading-order term in the Zaichik
& Alipchenkov (2007) drift velocity. As is to be expected, for Stη ∼ 1, the theories
diverge.

Gustavsson, Vajedi & Mehlig (2014) studied the clustering of settling particles
in a two-dimensional random fluid velocity field. They developed a perturbation
expansion for the divergence of the particle velocity field, with the Kubo number as
the small parameter. Their theory shows that for Stη < 1, settling attenuates particle
clustering, but for Stη > 1, gravity enhances clustering. In a recent analytical study,
Fouxon et al. (2015) considered the clustering behaviour of fast-sedimenting particles
in isotropic turbulence. For a broad range of Stokes numbers (Stη & 1, Stη� 1) and
small Froude numbers (Fr� 1), they derived the power-law exponents characterizing
the dependence of pair clustering on separation r. The exponent that is applicable in
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the same parametric regime as in our study is (Fouxon et al. 2015)

DKY =

4τ 2
η

∫
∞

0
κ3Ep(κ) dκ∫

∞

0
κE(κ) dκ

∝ St2
η, (1.3)

where DKY is the Lyapunov power-law exponent (known as the Kaplan–Yorke
codimension), E(κ) is the energy spectrum of isotropic turbulence, and Ep(κ) is
the spectrum of pressure fluctuations. It may be noted that DKY scales as St2

η, and
is independent of Fr. The exponent β derived in the current study also shows the
same dependence on Stη. In our study, the first drift closure results in a β that is
independent of Fr. However, the second drift closure can include the effects of Fr
through the two-time correlations of dissipation rate and enstrophy along particle
trajectories. Fouxon et al. (2015) did not quantify DKY , as the spectrum Ep(κ) is not
known. In our study, however, β2 is both quantified and compared with DNS data.

In this part 1 paper, we present the derivation of closures for the drift and diffusion
fluxes in the p.d.f. equation for pair separations r of rapidly settling, low-inertia,
monodisperse particle pairs in isotropic turbulence. This study extends the Chun et al.
(2005) work by including the effects of particle settling in high-gravity conditions.
Motivated by the Chun et al. (2005) study, we approximate the fluid velocity field
following the primary particle as locally linear. An additional assumption regarding
the fluid velocity gradient ‘seen’ by the primary particle is also necessary to resolve
the third and fourth moments of the velocity gradient that appear in the drift flux.
Two types of assumption regarding the velocity gradient lead to two separate closures
for the drift flux, while the diffusion flux has only one closure. The first closure of
drift flux entails the assumption that the ‘seen’ fluid velocity gradient is Gaussian.
Modelling the fluid velocity gradient as a single unit, however, does not capture the
correlation times of the strain-rate and rotation-rate second invariants that are integral
to the mechanisms driving particle clustering. This deficiency is addressed in the
second drift closure by first decomposing the velocity gradient into the strain-rate
and rotation-rate tensors scaled by the dissipation rate and enstrophy, respectively,
and then assuming that the scaled tensors are normally distributed. In addition to the
closures, an analytical solution is also derived for the p.d.f. 〈P〉(r, θ), allowing us to
quantify both the r dependence and the anisotropy of clustering due to gravity.

The organization of the paper is as follows. Section 2 presents the stochastic theory,
including the derivation of the drift and diffusion flux closures. In § 3, an analytical
solution to the p.d.f. 〈P〉(r, θ) is derived, with a power-law dependence on r. The
results obtained from the first drift closure (in conjunction with the diffusion closure)
are presented in § 4. These results are based on using the analytical form of the energy
spectrum that is valid in the high-Reynolds-number limit. The advantages of using this
spectrum are that it obviates the need for DNS inputs, and importantly allows us to
quantify the drift and diffusion fluxes in a universal manner (i.e. independent of Reλ).
Section 5 summarizes the key findings of this part 1 paper.

2. Stochastic theory
In this section, we derive closure approximations for the drift and diffusion

fluxes in the p.d.f. equation for the relative positions r of monodisperse, low-inertia
particle pairs that are settling rapidly in stationary isotropic turbulence. The theory
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is applicable in the Fr� Stη� 1 regime, and for pair separations in the dissipation
regime of turbulence, i.e. r < η, where η is the Kolmogorov length scale. This
restriction, however, allows us to approximate the fluid velocity field as being locally
linear. The effects of hydrodynamic and interparticle interactions on pair probability
are neglected.

We begin with the drift–diffusion equation derived by Chun et al. (2005) for the
p.d.f. 〈P〉(r; t):

∂〈P〉
∂t
+
∂

∂ri
(qd

i + qD
i )= 0, (2.1)

where the drift flux is

qd
i (r, t)=−

∫ t

−∞

〈
wi(r, x; t)

∂wl

∂rl
[r(t′), x(t′); t′]

〉
〈P〉(r′; t′) dt′ (2.2)

and the diffusive flux is

qD
i (r, t)=−

∫ t

−∞

〈wi(r, x; t)wj[r(t′), x(t′); t′]〉
∂〈P〉
∂r′j

(r′; t′) dt′. (2.3)

In (2.2) and (2.3), r′= r(t′) is the pair separation at time t′, and x= x(t) is the primary
particle position at time t. As the drift and diffusion fluxes at r depend on the pair
probability and its derivative, respectively, at earlier pair separations r′, equation (2.1)
is non-local and accounts for the path history effects.

The governing equations for the relative position (separation vector) ri and relative
velocity wi of a settling, like-particle pair are

dri

dt
=wi, (2.4)

dwi

dt
= −

1
τv
{wi(t)−1ui[r(t), x(t); t]} (2.5)

≈ −
1
τv
{wi(t)− Γik[x(t); t]rk}, (2.6)

where x(t) is the location of the primary or reference particle, and 1ui[r(t), x(t); t] is
the difference in the fluid velocities seen by the secondary and primary particles of
a pair. Using the approximation of a locally linear flow field, we write 1ui ≈ Γikrk,
where Γik= ∂ui/∂xk is the fluid velocity gradient at the location of the primary particle,
x(t). In the case of monodisperse particle pairs, gravity influences pair relative motion
through the modified sampling of the fluid velocity gradient by the primary particle.

We now discuss the modelling of the drift and diffusion fluxes. Two separate
closures will be considered for the drift flux, whereas a single closure is obtained for
the diffusion flux. The two drift closures, DF1 and DF2, differ in the nature of the
approximation made to analytically resolve the moments of the fluid velocity gradient
tensor. It will be seen that DF2 has the advantage of capturing key mechanisms of
particle clustering.
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2.1. Drift flux closure 1 (DF1)
Based on Chun et al. (2005), we express the pair relative velocity wi as a perturbation
expansion with Stokes number Stη as the small parameter, as follows:

wi =w[0]i + Stηw[1]i + · · · . (2.7)

Substituting this expansion into (2.5) and equating terms of equal order in Stη yields

w[0]i = Γikrk, (2.8)

w[1]i =−
1
Γη

[
dΓik

dt
+ ΓijΓjk

]
rk, (2.9)

where Γη = 1/τη is the inverse of the Kolmogorov time scale τη. We have also used
drk/dt≈w[0]k in deriving the expression for w[1]i . Thus, we can write

wi[r(t), x(t); t] = Γik[x(t); t]rk −
Stη
Γη

(
dΓik

dt
+ Γij[x(t); t]Γjk[x(t); t]

)
rk, (2.10)

∂wl

∂rl
[r(t′), x(t′); t′] = Γll −

Stη
Γη

(
dΓll

dt
+ ΓlmΓml

)
=−

Stη
Γη
Γlm[x(t′); t′]Γml[x(t′); t′], (2.11)

where Γll = 0 due to continuity.
We now substitute (2.10) and (2.11) into the drift flux given by (2.2), yielding

qd
i (r, t) = −〈P〉(r; t)rk

∫ t

−∞

{
−

Stη
Γη
〈Γik(t)Γlm(t′)Γml(t′)〉

+
St2
η

Γ 2
η

[〈
dΓik

dt
(t)Γlm(t′)Γml(t′)

〉
+ 〈Γij(t)Γjk(t)Γlm(t′)Γml(t′)〉

]}
dt′, (2.12)

where Γij(t) and Γij(t′) are shorthand notations for the fluid velocity gradients at the
locations x(t) and x(t′) along the trajectories of primary particles. In (2.12), rk and 〈P〉
have been brought out of the integral. This is reasonable under the parametric limits
being considered, and can be explained as follows. In the rapid settling limit, the
correlation times of Γij along particle trajectories scale as η/gτv, whereas rk evolves
over τv � η/gτv. Thus, the pair separation remains essentially unchanged during the
time the velocity gradient remains correlated. This allows us to pull rk out of the
ensemble averaging 〈· · ·〉, as well as the time integral. Further, we are able to write
〈P〉(r′; t′) ≈ 〈P〉(r; t), and then bring the p.d.f. out of the time integral. In § 4.4, we
will explicitly quantify the time over which the p.d.f. 〈P〉 evolves, and show that this
is �η/gτv, implying that the p.d.f. is relatively unchanged during the Γij correlation
times.

The drift flux in (2.12) contains the time integral of the third and fourth moments
of the fluid velocity gradient along particle trajectories. To analytically resolve
these moments, we apply the approximation that the velocity gradient tensor Γ is
Gaussian. The resulting closure is referred to as DF1. The fluid velocity gradient
Γij, determined primarily by small-scale turbulence, is known to be significantly
non-Gaussian. However, the contribution of the tails of the Γij p.d.f. to particle
clustering quantified by the r.d.f. is not expected to be significant. This is because
the r.d.f., being a lower- (zeroth-) order moment of the particle-pair probability, is
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expected to be less sensitive to the tails of the Γij p.d.f. A similar argument was
provided by Zaichik & Alipchenkov (2003) to assume that the p.d.f. of fluid relative
velocities is Gaussian. Consequently, the two triple moment terms on the right-hand
side (2.17) would drop out. Further, the fourth-moment term may be written in terms
of second moments as follows:

〈Γij(t)Γjk(t)Γlm(t′)Γml(t′)〉
= 〈Γij(t)Γjk(t)〉〈Γlm(t′)Γml(t′)〉 + 2〈Γij(t)Γlm(t′)〉〈Γjk(t)Γml(t′)〉. (2.13)

The process for analytically resolving the two terms on the right-hand side of (2.13)
is presented in appendix A. Substitution of the resulting expressions into (2.12) yields
the following final form of drift flux in DF1:

qd
i (r, t)=−〈P〉(r, θ)2rk

St2
η

Γ 2
η

[λ1(δik − δi3δk3)+ λ2δi3δk3]. (2.14)

Here δik is the Kronecker delta tensor, gravity acts along the −e3 direction, θ is the
spherical polar angle that accounts for anisotropy in the r.d.f., and λ1 and λ2 are given
by (A 18) and (A 19).

2.2. Drift flux closure 2 (DF2)
We now present the development of the second drift closure (DF2). In DF1, we
modelled the velocity gradient as a whole, with the consequence that DF1 does not
capture, as evident from (A 1), the two-time autocorrelations and cross-correlations
of the strain-rate and rotation-rate invariants: 〈S2(t)S2(t′)〉, 〈R2(t)R2(t′)〉, 〈S2(t)R2(t′)〉
and 〈R2(t)S2(t′)〉. As seen in (1.2), the drift flux of non-settling pairs involves the
time integration of these correlations. We anticipate that the mechanism(s) driving
the accumulation of pairs for Fr� 1 will be related to those for Fr� 1 (zero-gravity
case), albeit modulated by gravity. Therefore, our objective is to derive a closure
(DF2) that accounts for the above correlations.

Referring to the drift flux qd
i in (2.12), we first decompose the velocity gradient

tensor Γij(t) into the sum of the strain-rate and rotation-rate tensors, Sij(t) and Rij(t).
Subsequently, we non-dimensionalize Sij and Rij using the instantaneous dissipation
rate and enstrophy, ε(t) and ζ (t), respectively. These two steps allow us to write Γij(t)
as

Γij(t) = Sij(t)+ Rij(t) (2.15)

=
1
√

2ν
[

√
ε(t) σij(t)+

√
ζ (t) ρij(t)], (2.16)

where ε(t)=2νSij(t)Sij(t), ζ (t)=2νRij(t)Rij(t) (where ν is the kinematic viscosity), and
σij(t) and ρij(t) are the dimensionless strain-rate and rotation-rate tensors, respectively.
Substituting (2.16) for Γ in (2.12), and assuming σij(t) and ρij(t) to be normally
distributed, we can drop the third moments of Γ as they, in turn, give rise to third
moments of σ and ρ and to cross-correlations of third order involving σ and ρ. With
these simplifications, the drift flux in (2.12) reduces to

qd
i (r, t)=−〈P〉(r; t)

St2
η

Γ 2
η

rk

∫ t

−∞

dik dt′, (2.17)
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where

dik = 〈Γij(t)Γjk(t)Γlm(t′)Γml(t′)〉

≈
1

4ν2
{〈ε(t)ε(t′)〉[〈σij(t)σjk(t)〉〈σlm(t′)σlm(t′)〉 + 2〈σij(t)σlm(t′)〉〈σjk(t)σlm(t′)〉]

− 〈ε(t)ζ (t′)〉〈σij(t)σjk(t)〉〈σlm(t′)σlm(t′)〉 + 〈ζ (t)ε(t′)〉〈ρij(t)ρjk(t)〉〈σlm(t′)σlm(t′)〉
− 〈ζ (t)ζ (t′)〉[〈ρij(t)ρjk(t)〉〈ρlm(t′)ρlm(t′)〉 + 2〈ρij(t)ρlm(t′)〉〈ρjk(t)ρlm(t′)〉]} . (2.18)

In (2.18), we have also assumed that ε(t) and σ (t) are weakly correlated, and so
are ζ (t) and ρ(t). This is a reasonable approximation since the dissipation rate and
enstrophy vary over characteristic time scales that are quite different from those of
strain-rate and rotation-rate tensors, respectively. The former two have scales of the
order of large-eddy time scales (Chun et al. 2005). But, the components of strain rate
have time scales ∼2.3τη and those of rotation rate ∼7.2τη (Chun et al. 2005; Zaichik
& Alipchenkov 2007), where τη is the Kolmogorov time scale.

Owing to isotropy, the one-time correlations of the σ and ρ tensors in (2.18) can
be written as (Chun et al. 2005)

〈σij(t)σjk(t)〉 = 1
3δik, (2.19)

〈σlm(t)σlm(t)〉 = 1, (2.20)
〈ρij(t)ρjk(t)〉 =− 1

3δik, (2.21)
〈ρlm(t)ρlm(t)〉 = 1. (2.22)

We now have

dik =
1

4ν2

{
1
3
δik[〈ε(t)ε(t′)〉 + 〈ε(t)ζ (t′)〉 − 〈ζ (t)ε(t′)〉 − 〈ζ (t)ζ (t′)〉]

+ 2〈ε(t)ε(t′)〉〈σij(t)σlm(t′)〉〈σjk(t)σlm(t′)〉

− 2〈ζ (t)ζ (t′)〉〈ρij(t)ρlm(t′)〉〈ρjk(t)ρlm(t′)〉
}
. (2.23)

In (2.23), we will express the two-time correlation of dissipation rate as (Chun et al. 2005)

〈ε(t)ε(t′)〉 = 〈ε2
〉 exp

(
−

t− t′

Tεε

)
, (2.24)

so that ∫ t

−∞

〈ε(t)ε(t′)〉 dt′ = 〈ε2
〉Tεε, (2.25)

where Tεε is the correlation time scale of ε. In a similar manner, the correlations
〈ε(t)ζ (t′)〉, 〈ζ (t)ε(t′)〉 and 〈ζ (t)ζ (t′)〉 are expressed in terms of the correlation time
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scales Tεζ , Tζε and Tζ ζ , respectively. Thus, we have∫ t

−∞

dik dt′ =
1

4ν2

{
1
3
δik[〈ε

2
〉Tεε + 〈εζ 〉Tεζ − 〈ζε〉Tζε − 〈ζ 2

〉Tζ ζ ]

+ 2〈ε2
〉

∫ t

−∞

exp
(
−

t− t′

Tεε

)
〈σij(t)σlm(t′)〉〈σjk(t)σlm(t′)〉 dt′

− 2〈ζ 2
〉

∫ t

−∞

exp
(
−

t− t′

Tζ ζ

)
〈ρij(t)ρlm(t′)〉〈ρjk(t)ρlm(t′)〉 dt′

}
. (2.26)

In the rapid settling limit, the time scales Tεε , Tεζ , Tζε and Tζ ζ can be approximated
as the ratio of the corresponding Eulerian correlation length and the particle terminal
velocity. For example,

Tεε ≈
Lεε
gτv

, (2.27)

where Lεε is the Eulerian length scale of ε. The various Eulerian length scales are
evaluated via DNS of isotropic turbulence.

To evaluate the two integrals on the right-hand side of (2.26), we need to resolve
the two-time correlations of σ and ρ, i.e. 〈σij(t)σlm(t′)〉, 〈σjk(t)σlm(t′)〉, 〈ρij(t)ρlm(t′)〉
and 〈ρjk(t)ρlm(t′)〉. This is shown in appendix B.

The final form of drift flux for DF2 is analogous to that in (2.14) and is given by

qd
i (r, t)=−〈P〉(r, θ)2rk

St2
η

Γ 2
η

[λ′1(δik − δi3δk3)+ λ
′

2δi3δk3], (2.28)

where λ′1 and λ′2 are the coefficients for DF2. The expressions for λ′1 and λ′2 are
extremely involved and are not explicitly presented. As shown in appendix B,
equation (B 6) gives rise to 13 separate integrations of the general form shown
in (B 7), while (B 12) gives rise to three more such integrals. Each of these integrals
is evaluated through numerical quadrature, and then assembled using (B 6) and (B 12)
during runtime (of the computational code).

2.3. Diffusion flux
Applying (2.10) in the diffusion flux given by (2.3), and retaining only the leading-
order term yields the following form of the diffusion flux (Chun et al. 2005)

qD
i (r)=−Dij

∂〈P〉
∂rj

, (2.29)

with the diffusivity tensor

Dij = rmrn

∫ t

−∞

〈Γim(t)Γjn(t′)〉 dt′ = rmrnQimjn, (2.30)

where Γim(t)= Γim(x(t), t) and Γjn(t′)= Γjn(x(t′), t′).
In writing (2.29), we have invoked the assumption that the pair separation does

not change appreciably over the correlation time for the ‘seen’ fluid velocity gradient.
Such an approximation has been referred to as the local diffusion analysis in the
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Chun et al. (2005) study, and is particularly suitable for the case of rapidly settling
particle pairs. As noted by Ireland, Bragg & Collins (2016), gravity reduces the
Lagrangian time scales of strain rate and rotation rate along the particle trajectories.
Therefore, in the rapid settling limit, one would anticipate these time scales to be
significantly smaller than those in the zero-gravity case. Thus, it is reasonable to
assume the pair separation to be essentially constant in these reduced correlation
times of the fluid velocity gradient.

Analogous to the drift analysis, we can express the two-time correlation 〈Γim(t)Γjn(t′)〉
in terms of two-point Eulerian correlation as

〈Γim(t)Γjn(t′)〉 = 〈Γim(x; t)Γjn[x+ gτv(t′ − t); t]〉

=

∫
dκ κmκnΦij(κ)eiκ·gτv(t′−t)

=

∫
dκ κmκn

E(κ)
4πκ2

(
δij −

κiκj

κ2

)
eiκ·gτv(t′−t). (2.31)

Thus, the diffusivity tensor may be written as

Dij(r) = rmrn

∫
dκ κmκn

E(κ)
4πκ2

(
δij −

κiκj

κ2

) ∫ 0

−∞

eiκ·gτv t dt

=
1
2

rmrn

∫
dκ κmκn

E(κ)
4πκ2

(
δij −

κiκj

κ2

)
δ(κ · gτv)

= rmrn
1

2gτv

∫
dξ ξmξn

E(ξ)
4πξ 2

(
δij −

ξiξj

ξ 2

)
, (2.32)

where ξ = (ξ1, ξ2, 0) is the wavenumber vector in the homogeneous x1–x2 plane.
Using (2.30) and (2.32), and applying the tensor constraints on the fourth-order

tensor Qimjn, yields (details of the tensor analysis are in appendix F)

Qimjn =
1

2gτv

∫
dξ ξmξn

E(ξ)
4πξ 2

(
δij −

ξiξj

ξ 2

)
= λ5(δi3δm3δj3δn3 − δi3δj3δmn)

+ λ6 (δinδmj + δimδjn − 3δijδmn − δi3δn3δmj − δj3δn3δim − δi3δm3δjn

− δm3δj3δin + 2δi3δj3δmn + 3δm3δn3δim), (2.33)

which gives

λ5 =−
3π

16gτv

∫
∞

ξ=0
ξE(ξ) dξ, (2.34)

λ6 =
λ5

3
. (2.35)

Therefore,

Dij(r) = rmrnAimjn

= λ6[(3r2
3 − r2)δi3δj3 + 2rirj + 3(r2

3 − r2)δij − 2r3(rjδi3 + riδj3)]. (2.36)

Having derived closures for the drift and diffusion fluxes, we present the analytical
solution to the p.d.f. equation (2.1).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

20
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.204


Clustering of rapidly settling, low-inertia particle pairs. Part 1 461

3. Solution of the probability density function equation

We will solve the p.d.f. equation (2.1) in spherical coordinates. At steady state, the
governing equation for 〈P〉(r, θ) is given by

1
r2

∂

∂r
(r2qr)+

1
r sin θ

∂

∂θ
(sin θqθ)= 0, (3.1)

where qr and qθ are fluxes along the radial and polar directions. These contain both
the drift and diffusion fluxes, and are given by

qr = vr〈P〉 −Drr
∂〈P〉
∂r
−Drθ

1
r
∂〈P〉
∂θ

,

qθ = vθ 〈P〉 −Drθ
∂〈P〉
∂r
−Dθθ

1
r
∂〈P〉
∂θ

,

vr =−2r(λ1 sin2 θ + λ2 cos2 θ)St2
η,

vθ =−2r(λ1 − λ2)St2
η sin θ cos θ,

Drr = λ6r2(3 sin4 θ − 4 sin2 θ),

Drθ = 3λ6r2 sin3 θ cos θ,
Dθθ =−λ6r2(sin2 θ + 3 sin4 θ).


(3.2)

The coefficients λ1, λ2 and λ6 in the above equations are given in (A 18), (A 19)
and (2.35) respectively, while Drr, Drθ and Dθθ are the components in spherical
coordinates of the diffusivity tensor Dij(r) in (2.36). When applying DF2, we use λ′1
and λ′2 in place of λ1 and λ2.

It is evident from the qr and qθ equations that the variables r and θ are separable.
Also, the form of the p.d.f. equation (3.1) suggests a solution with a power-law
dependence on separation r. Accordingly, we write 〈P〉(r, θ) = rβ f (θ) and substitute
this form into (3.1). A change of variable µ= cos θ leads to the following equation
for f (µ):

a(µ)
d2f
dµ2
+ b(µ)

df
dµ
+ c(µ)f = 0, (3.3)

where

a(µ)= λ6(3µ2
− 4)(1−µ2)2,

b(µ)= 2(λ2 − λ1)St2µ(1−µ2)− 3λ6βµ(1−µ2)2

− λ6µ(18µ2
− 22)(1−µ2)− 3λ6(β + 3)µ(1−µ2)2,

c(µ)= 2(λ2 − λ1)St2(1− 3µ2)− 3λ6β(1−µ2)(1− 5µ2)

+ (β + 3){2[λ1(1−µ2)+ λ2µ
2
]St2
− λ6β(1+ 3µ2)(1−µ2)}.

 (3.4)

3.1. Power-law exponent β
To find the power-law exponent, we apply the constraint that, at steady state, the net
radial flux through a spherical surface of radius r is zero, given by∫ 1

−1
qr dµ= 0, (3.5)
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leading to

β =

∫ 1

−1

(
Ar f (µ)+ Brθ

√
1−µ2

df
dµ

)
dµ∫ 1

−1 Brr f (µ) dµ
, (3.6)

where

Ar =−2[λ1(1−µ2)+ λ2µ
2
]St2

η,

Brr =−λ6(1−µ2)(1+ 3µ2),

Brθ = 3λ6µ(1−µ2)
√

1−µ2.

 (3.7)

Since the drift flux scales as St2
η, we seek β = β2St2

η (β2 > 0), which then means that
the numerator of (3.6),

∫ 1
−1(Ar f (µ)+Brθ

√
1−µ2 df /dµ) dµ, should also scale as St2

η.
With these arguments, we seek a perturbation solution to (3.3) of the form

f (µ)= f0(µ)+ St2
η f2(µ). (3.8)

3.2. Perturbation solution for f (µ)

Substitution of f (µ)= f0(µ)+ St2
η f2(µ) into (3.3) and gathering terms that are O(St0)

gives

a0(µ)
d2f0

dµ2
+ b0(µ)

df0

dµ
= 0, (3.9)

where

a0(µ)= λ6(3µ2
− 4)(1−µ2)2,

b0(µ)=−λ6µ(18µ2
− 22)(1−µ2)− 9λ6µ(1−µ2)2.

}
(3.10)

Equation (3.9) can be integrated to give

df0

dµ
= k1

(4− 3µ2)1/2

(1−µ2)2
, (3.11)

which upon further integration leads to

f0(µ)= k2 + k1

[
1
2
µ(4− 3µ2)1/2

(1−µ2)
+ 2 tanh−1 µ+ ln

(
4− 3µ+

√
4− 3µ2

4+ 3µ+
√

4− 3µ2

)]
. (3.12)

Recalling that µ = cos θ ∈ [−1, 1], it can be seen that f0→∞ as µ→±1. These
singularities prevent the normalization of the probability density f0, suggesting that
the integration constant k1 = 0. Hence, we have f0(µ) = k2. Using the normalization
constraint

∫ 1
0 f0 dµ= 1/(4π) leads to f0 = 1/(4π).

Having determined f0, we now gather terms that are O(St2) as well as use f0 =

1/(4π), giving us

a0(µ)
d2f2

dµ2
+ b0(µ)

df2

dµ
+

c2(µ)

4π
= 0, (3.13)
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where

c2(µ) = 2(λ2 − λ1)(1− 3µ2)− 3λ6β2(1−µ2)(1− 5µ2)

+ 6[λ1(1−µ2)+ λ2µ
2
] − 3λ6β2(1+ 3µ2)(1−µ2). (3.14)

Equation (3.14) is a linear, inhomogeneous first-order ordinary differential equation in
df2/dµ, and can be integrated using the integrating factor I:

I = exp
[∫

Q0(µ)

P0(µ)
dµ
]
=

(1−µ2)2

(4− 3µ2)1/2
. (3.15)

Thus, we have

I
df2

dµ
=

∫
I
−R2(µ)

P0(µ)4π
dµ+ k3, (3.16)

where k3 is a constant of integration. To find k3, we enforce symmetry df /dµ= 0 at
µ= 0. Since the first term on the right-hand side of (3.16) is zero at µ= 0, it follows
that k3 = 0 in order to satisfy the symmetry requirement. Thus

df2

dµ
=

1
4π

µ[λ2 + 2λ1 + λ6β2(−3+ 2µ2)]

2λ6(1−µ2)2
. (3.17)

Referring to (3.6), in order for β to scale as St2
η, we use f (µ) = f0 = 1/(4π) and

df /dµ= df2/dµ in the numerator of (3.6), giving us

β2 =

∫ 1

0

(
ar

4π
+ brθ

df2

dµ

)
dµ∫ 1

0

Brr

4π
dµ

, (3.18)

where

ar =−2[λ1(1−µ2)+ λ2µ
2
],

Brr =−λ6(1−µ2)(1+ 3µ2),

brθ = 3λ6µ(1−µ2)2.

 (3.19)

Substitution of (3.17) into (3.18) and simplification thereafter leads to

β2 =
λ2 + 2λ1

λ6
. (3.20)

It may noted that β2 < 0 as both λ1 and λ2 are less than 0.
Using the above form of β2 in (3.17) we get

df2

dµ
=−

1
4π

µβ2

(1−µ2)
, (3.21)

which leads to

f2 =
β2

8π
ln(1−µ2)+ k4. (3.22)
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The unknown constant k4 may be determined using
∫ 1

0 f2 dµ= 0, yielding

k4 =−
1

4π
β2(ln 2− 1). (3.23)

Thus the complete solution for f (µ) is given by

f (µ)=
1

4π

[
1+ St2

ηβ2

(
1
2

ln(1−µ2)− (ln 2− 1)
)]

. (3.24)

Therefore 〈P〉(r, µ) is given by

〈P〉(r, µ)= rβ2St2 1
4π

[
1+ St2

ηβ2

(
1
2

ln(1−µ2)− (ln 2− 1)
)]

, (3.25)

where β2 is given by (3.20).

4. Results
4.1. Discussion of the p.d.f. solution

The p.d.f. solution 〈P〉(r, µ) in (3.25) quantifies the dependence of particle clustering
on separation r and direction cosine µ (= cos θ), the latter describing the anisotropy
due to particle settling. In the DNS by Ireland et al. (2016), they referred to 〈P〉 as the
angular distribution function (a.d.f.) g(r), and expressed it in terms of the Legendre
spherical harmonic functions, as below:

g(r)
g(r)
=

∞∑
l=1

C 0
2l(r)

C 0
0 (r)

Y0
2l(cos θ), (4.1)

where

g(r)=C 0
0 (r)=

∫ π

0
dθ sin θ g(r). (4.2)

Applying the orthogonality of Legendre polynomials to (4.1), we get the leading-order
coefficient for anisotropy to be

C 0
2 (r)

C 0
0 (r)
=

5
2

∫ π

0
dθ sin θ g(r)Y0

2 (cos θ)

g(r)
. (4.3)

The corresponding coefficient from the theory is[
C 0

2 (r)
C 0

0 (r)

]
theory

=
5β2St2

η

12
. (4.4)

Ireland et al. (2016) plotted the ratio C 0
2 (r)/C

0
0 (r) as a function of r for Stη > 0.3.

These curves show that for r � η, the coefficient ratio becomes independent
of r, suggesting that both g(r) and g(r) have the same functionality in r for
sub-Kolmogorov separations. It was seen that the smaller the Stη, the quicker the
plateauing began, i.e. the spherical harmonic coefficient began flattening at larger
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separations. For instance, for Stη = 0.3, the plateauing seemed to occur for r . η,
while for larger Stη this occurred at much smaller separations. The current theory
also predicts that, for r� η, the coefficient ratio is independent of r. However, we
could not directly compare the DNS and theory values of the coefficient ratio, as
the theory is applicable for Stη� 1, while Ireland et al. (2016) gave the DNS values
only for Stη > 0.3. It is evident from (4.4) that anisotropy due to gravity is small for
Stη� 1. A similar trend is noticed in the DNS of Ireland et al. (2016).

4.2. Time scale of p.d.f. 〈P〉
We have seen in § 3 that the radial component, Drr, of the diffusivity tensor scales
as λ6r2, where λ6 has the dimensions of inverse time. Thus, a good estimate of the
characteristic time over which the p.d.f. 〈P〉 evolves is given by 1/λ6. To calculate λ6
from (2.35), we need the energy spectrum E(κ). A fully analytical and universal result
for λ6 may be obtained by using the following dimensionless form of E(κ), which is
valid in the limit Reλ→∞, and follows from Kolmogorov’s first similarity hypothesis
(Pope 2000):

E(κη)
ηu2

η

= 1.5(κη)−5/3fη(κη), (4.5)

fη(κη)= exp{−5.2([(κη)4 + c4
η]

1/4
− cη)}, (4.6)

where cη ≈ 0.4 for Reλ→∞, and η and uη are the Kolmogorov length and velocity
scales. The integral in (2.35) is then evaluated through numerical quadrature. The
characteristic time scale of 〈P〉 is obtained to be = 1.43118× (Stη/Fr)× τη� η/gτv.
Thus, the p.d.f. evolves over time scales that are much longer than the settling time
of a particle through a Kolmogorov-scale eddy.

4.3. Mechanism for clustering of rapidly settling particles
Gustavsson et al. (2014) raised the question that, since rapidly settling particles fall
too quickly through eddies for preferential sampling to be a clustering mechanism,
what then is the mechanism of clustering for rapidly settling particles? They went
on to provide a qualitative explanation for this phenomenon. However, the drift
closure(s) developed in this study provide a clear and quantitative explanation for
the clustering of rapidly settling particles. As discussed in § A.2, particles experience
frozen turbulence, with the implication that the spatial correlations of eddies give
rise to temporal correlations in the frame of settling particles. Temporal correlations
of fluid velocity gradients contribute to the drift flux driving the clustering. More
specifically, DF2 shows us that the temporal autocorrelations and cross-correlations
of the strain-rate and rotation-rate second invariants are responsible for clustering.

4.4. Prediction of clustering through universal scaling
The first drift closure DF1 and the diffusion flux have the advantage that the only
statistical input they require is the energy spectrum E(κ). In contrast, DF2 additionally
requires the correlation length scales of dissipation rate and enstrophy. The spectrum
in (4.5) allows us to obtain universal values of the DF1 drift flux, as well as
the diffusion flux. To determine the power-law exponent β = β2St2

η for the spatial
clustering of particles, we first non-dimensionalize the drift and diffusion fluxes
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0
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DNS, Fr = ∞ 

DNS, Fr = 0.052

Theory 1
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St˙

ı

0.15 0.20

FIGURE 1. Power-law exponent β obtained from DF1 based on the universal energy
spectrum (referred to as theory 1 in the plot legend). Also shown are the DNS data of
Ireland et al. (2016) for Fr=∞ and Fr= 0.052 at Reλ = 398.

using the Kolmogorov length and time scales. We then substitute (4.5) into the
dimensionless forms of (A 18) and (A 19) for λ1 and λ2 of DF1, and also into the
dimensionless forms of (2.33) and (2.35) for the diffusion flux. Finally, the integrals
are evaluated through numerical quadrature. These integrals converge as the energy
spectrum in (4.5) has an inertial-range dependence of the form κ−γ with γ > 1,
along with a dissipation-range dependence given by fη. The κ−γ functionality of E(κ)
dominates in the inertial range, and fη dominates for κ→∞ in the dissipation range,
both contributing to the convergence of the integrals.

The β values obtained using the above process are shown as a function of Stokes
number in figure 1. Also included are the DNS data from Ireland et al. (2016) with
and without gravity (Fr= 0.052 and Fr=∞, respectively) at Reλ = 398. We see that
the theory-predicted β values are lower than the DNS values for both Fr= 0.052 and
Fr=∞. This is probably because the theory is derived for Fr�1, while the DNS runs
are for larger Fr. Another contributing factor is that DF1 does not capture the two-
time auto- and cross-correlations of the strain-rate and rotation-rate invariants, which
are key to predicting particle clustering (Chun et al. 2005).

In the part 2 paper (Rani, Dhariwal & Koch 2019), we shall present a direct
comparison of the theory predictions of particle clustering with our DNS data for the
same Stokes numbers. Results obtained using both DF1 and DF2 will be presented.
Turbulence and particle statistics needed as inputs to the theory will be obtained from
the DNS runs. The dependence of clustering on both separation and angular direction
will be quantified.

5. Conclusions
In this part 1 of this two-part study, we presented the derivation of closures for the

drift and diffusion fluxes in the p.d.f. equation for the pair relative positions r. The
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theory focuses on pair separations smaller than the Kolmogorov length scale, at which
separations the theory approximates the fluid velocity field as being locally linear. This
allows us to express the fluid velocity difference between the secondary and primary
particles of a pair in terms of the fluid velocity gradient at the location of the primary
particle and their relative position. Drift flux closures are obtained by expressing the
pair relative velocity wi as a perturbation expansion in the Stokes number Stη.

The drift flux contains the time integral of the third and fourth moments of
the ‘seen’ fluid velocity gradients along the trajectories of primary particles. These
moments are analytically resolved by making approximations regarding the velocity
gradient. Accordingly, two closure forms, DF1 and DF2, are derived specifically for
the drift flux. DF1 is based on the assumption that the fluid velocity gradient ‘seen’
by the primary particle has a Gaussian distribution. In DF2, instead of modelling
the velocity gradient as a whole, we decompose it into the ‘seen’ strain-rate and
rotation-rate tensors scaled by the dissipation rate and enstrophy, respectively. The
scale strain rate and rotation rate are then assumed to be normally distributed.
This decomposition followed by normalization enable DF2 to capture the two-time
autocorrelations and cross-correlations of the strain-rate and rotation-rate invariants.
Time integrals of these correlations form a key contribution to the radially inward
drift flux responsible for particle clustering. An analytical form of the p.d.f. 〈P〉(r, θ)
is then obtained with a power-law dependence on separation r. Analogous to the
theoretical result of Chun et al. (2005) for non-settling pairs, and that of Fouxon
et al. (2015) for rapidly settling pairs, the power-law exponent scales as St2

η. The
anisotropy in clustering due to gravity is also quantified by deriving an analytical
expression for the leading-order coefficient of anisotropy in the spherical harmonics
expansion of the p.d.f. As observed in the DNS of Ireland et al. (2016), when Stη< 1,
the p.d.f. obtained from the theory is only weakly anisotropic. Predictions of particle
clustering obtained from DF1 in conjunction with the universal Kolmogorov energy
spectrum are presented, and compared with the DNS data of Ireland et al. (2016). A
more detailed and rigorous comparison of theory and DNS results is presented in the
part 2 paper.
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Appendix A. Drift flux closure 1 (DF1)
A.1. First term on the right-hand side of (2.13)

We resolve this term by writing Γlm= Slm+Rlm, where Slm and Rlm are the fluid strain-
rate and rotation-rate tensors. Thus, we have

〈Γij(t)Γjk(t)〉〈Γlm(t′)Γml(t′)〉 = 〈Γij(t)Γjk(t)〉〈S2(t′)− R2(t′)〉 = 0, (A 1)

where S2
= SlmSlm and R2

= RlmRlm. The steps for showing that 〈Γij(t)Γjk(t)〉 = 0 are
presented below (〈S2(t′)− R2(t′)〉 6= 0 since the strain rate and rotation rate are along
inertial particle trajectories).

Consider

〈Γij(t)Γjk(t)〉 =
〈
∂ui

∂xj
(x, t)

∂uj

∂xk
(x, t)

〉
. (A 2)
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Expressing the fluid velocities ui and uj in terms of Fourier coefficients in the
wavenumber space yields

∂ui

∂xj
(x, t)=

∫
iκjûi(κ, t)eiκ·x dκ, (A 3)

∂uj

∂xk
(x, t)=

∫
iκ ′kûj(κ

′, t)eiκ ′·x dκ ′, (A 4)

where i =
√
−1, κ and κ ′ are both wavenumber vectors, and ûi(κ, t) is a Fourier

component of the fluid velocity corresponding to the wavenumber κ .
Since the covariance 〈Γij(t)Γjk(t)〉 consists of velocity gradients at the same time t,

it is homogeneous and isotropic. Therefore, using spatial homogeneity, we can further
average the covariance over x-space giving (Pope 2000)〈〈

∂ui

∂xj
(x, t)

∂uj

∂xk
(x, t)

〉
L

〉
= −

∫∫
dκ dκ ′ κjκ

′

k〈ûi(κ, t)ûj(κ
′, t)〉〈ei(κ+κ ′)·x

〉L

= −

∫∫
dκ dκ ′κjκ

′

k〈ûi(κ, t)ûj(κ
′, t)〉δ(κ + κ ′)

=

∫
dκ κjκk〈ûi(κ, t)û∗j (κ, t)〉

=

∫
dκ κjκkΦij(κ), (A 5)

where 〈· · ·〉L denotes the averaging over x, δ(· · ·) denotes the Dirac delta function,
and û∗j is the complex conjugate of ûj. The velocity spectrum tensor Φij(κ) can be
written in terms of the energy spectrum E(κ) as (Pope 2000)

Φij(κ)=
E(κ)
4πκ2

(
δij −

κiκj

κ2

)
. (A 6)

It is now straightforward to show that κjκkΦij(κ) = 0. Thus, the first term on the
right-hand side of (2.13) = 0, and thereby makes no contribution to the first drift
closure DF1.

A.2. Second term on the right-hand side of (2.13)
Let us now consider the second term on the right-hand side of (2.13):

2 〈Γij(t)Γlm(t′)〉︸ ︷︷ ︸
I

〈Γjk(t)Γml(t′)〉︸ ︷︷ ︸
II

. (A 7)

We will consider the correlations I and II separately. In the rapid settling limit,
particles fall through Kolmogorov-scale eddies in the time η/(gτv)� τη. Thus, during
the settling times through the smaller eddies, particles experience frozen turbulence,
enabling us to express the two-time correlation of fluid velocity gradients as a two-
point correlation with a spatial separation of xg = gτv(t′ − t). Therefore,

I = 〈Γij[x(t), t]Γlm[x(t′), t′]〉 = 〈Γij[x(t), t]Γlm[x(t)+ xg, t]〉

=

〈
∂ui

∂xj
(x, t)

∂ul

∂xm
(x+ xg, t)

〉
. (A 8)
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We now use the process presented in § A.1 to resolve I . This involves: (1) expressing
the fluid velocities ui and ul in terms of Fourier coefficients in the wavenumber space,
and (2) using the spatial homogeneity of the one-time, two-point correlations. These
steps give us

I =

〈〈
∂ui

∂xj
(x, t)

∂ul

∂xm
(x+ xg, t)

〉
L

〉
=

∫
dκ κjκmΦil(κ)e−iκ·xg . (A 9)

Similarly,

II = 〈Γjk[x(t), t]Γml[x(t)+ xg, t]〉 =
〈
∂uj

∂xk
(x)
∂um

∂xl
(x+ xg)

〉
=

∫
dκ ′ κ ′kκ

′

lΦjm(κ
′)e−iκ ′·xg . (A 10)

The time integral of the product of I and II is∫ 0

−∞

dt 〈Γij[x(0), 0]Γlm[x(0)+ xg, 0]〉〈Γjk[x(0), 0]Γml[x(0)+ xg, 0]〉

=

∫∫
dκ dκ ′ κjκmΦil(κ)κ

′

kκ
′

lΦjm(κ
′)

∫ 0

−∞

dt e−i(κ+κ ′)·gτv t

=

∫∫
dκ dκ ′ κjκmΦil(κ)κ

′

kκ
′

lΦjm(κ
′)

{
1
2
δ

[
−
(κ + κ ′) · gτv

2π

]
−

1
i(κ + κ ′) · gτv

}
.

(A 11)

where we have used the Fourier transform identity for the time integral∫ 0
−∞

dt e−i(κ+κ ′)·gτv t. Let us consider the two terms in the above integral separately.
The first term given by the integral

1
2

∫∫
dκ dκ ′ κjκmΦil(κ)κ

′

kκ
′

lΦjm(κ
′)δ

[
−
(κ + κ ′) · gτv

2π

]
(A 12)

is non-zero only when (κ + κ ′) · g= 0, or (κ + κ ′) is perpendicular to g=−gê3. Let
(κ + κ ′)= ξ = (ξ1, ξ2, 0) such that this property is satisfied. Using the sifting property
of the Dirac delta function, as well as the identity δ(ax)= (1/|a|)δ(x), the integral in
(A 12) now becomes

1
2

2π

gτv

∫∫
dκ dξ1 dξ2 κjκmΦil(κ)(ξk − κk)(ξl − κl)Φjm(ξ − κ). (A 13)

Next, we consider the second term in the integral in the last line of (A 11). Unlike the
first term, it will be seen subsequently that this term does not make any contribution
to the drift.

Recognizing that the particles preferentially sample the velocity gradients along
the −e3 or gravity direction, we apply the tensorial constraints for a field that is
homogeneous along the x1 and x2 directions. Expressing the integral in (A 13) in
terms of these tensor constraints, we have

π

gτv

∫∫
dκ dξ1 dξ2 κjκmΦil(κ)(ξk − κk)(ξl − κl)Φjm(ξ − κ)

= λ1(δik − δi3δk3)+ λ2δi3δk3. (A 14)
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Multiplying the above equation with (δik − δi3δk3) gives λ1 and with δi3δk3 gives λ2:

λ1 =
π

2gτv

∫∫
dκ dξ1 dξ2 κjκmΦjm(ξ − κ)(ξl − κl)[Φil(κ)(ξi − κi)+Φ3l(κ)κ3], (A 15)

λ2 =−
π

gτv

∫∫
dκ dξ1 dξ2 κjκmΦ3l(κ)κ3(ξl − κl)Φjm(ξ − κ). (A 16)

Using spherical coordinates to represent the κ vector and cylindrical coordinates to
represent ξ , we have

κ = (κ1, κ2, κ3)= (κ sin θ cos φ, κ sin θ sin φ, κ cos θ),
ξ = (ξ1, ξ2, 0)= (ξ cosψ, ξ sinψ, 0).

}
(A 17)

Using (A 17) in the equations for λ1 and λ2, i.e. (A 15) and (A 16),

λ1 =
π

2gτv

∫ 2π

φ=0
dφ
∫ π

θ=0
dθ
∫
∞

κ=0
dκ
∫ 2π

ψ=0
dψ
∫
∞

ξ=0
dξ × [integrand 1 ], (A 18)

λ2 =
π

gτv

∫ 2π

φ=0
dφ
∫ π

θ=0
dθ
∫
∞

κ=0
dκ
∫ 2π

ψ=0
dψ
∫
∞

ξ=0
dξ × [integrand 2 ], (A 19)

where

integrand 1 =
E(|ξ − κ |)

4π[ξ 2 + κ2 − 2ξκ sin θ cos(ψ − φ)]
ξ 3κ4
[1− sin2 θ cos2(ψ − φ)] sin θ

ξ 2 + κ2 − 2ξκ sin θ cos(ψ − φ)

×
E(κ)
4πκ2

{
ξ 2
[1− sin2 θ cos2(ψ − φ)] −

ξκ cos θ
2

sin 2θ cos(ψ − φ)
}
,

(A 20)

integrand 2 =
E(|ξ − κ |)

4π[ξ 2 + κ2 − 2ξκ sin θ cos(ψ − φ)]
ξ 3κ4
[1− sin2 θ cos2(ψ − φ)] sin θ

ξ 2 + κ2 − 2ξκ sin θ cos(ψ − φ)

×
E(κ)
4πκ2

ξκ cos θ
2

sin 2θ cos(ψ − φ). (A 21)

Let us now consider the second term in the integral of (A 11) (it has already been
mentioned earlier that this term goes to zero), given by

−

∫∫
dκ dκ ′ κjκmΦil(κ)κ

′

kκ
′

lΦjm(κ
′)

1
i(κ + κ ′) · gτv

= λ3(δik − δi3δk3)+ λ4δi3δk3 = λ3

(
δik −

gigk

g2

)
+ λ4

gigk

g2
, (A 22)

where gi is the gravity vector that is non-zero only when i= 3. The integral on the
left-hand side of (A 22) is odd in g, but the right-hand side is even in g. Hence the
integral will be zero.

Appendix B. Drift flux closure 2 (DF2)
In this appendix, we evaluate the two integrals on the right-hand side of (2.26)

that contain the two-time correlations of σ and ρ, i.e. 〈σij(t)σlm(t′)〉, 〈σjk(t)σlm(t′)〉,
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〈ρij(t)ρlm(t′)〉 and 〈ρjk(t)ρlm(t′)〉. Analogous to the process leading to (A 9), we will
transform the two-time correlations of σ and ρ into two-point correlations with a
spatial separation of xg= gτv(t′− t), and express the two-point correlations as Fourier
integrals. Subsequently, we apply the tensorial constraints arising from the particles
sampling the flow field preferentially along the x3 direction, but homogeneously in
the x1–x2 plane. Accordingly, 〈σij(t)σlm(t′)〉 can be expressed as

〈σij(x, t)σlm(x′, t′)〉

=

∫
dκ 〈σ̂ij(κ, t)σ̂ ∗lm(κ, t)〉e−iκ·xg =Lijlm

= α1δijδlm + α2(δimδjl + δilδjm)+ α4δi3δj3δl3δm3

+α5(δi3δj3δlm + δijδl3δm3)+ α6(δi3δl3δjm + δi3δm3δjl + δj3δl3δim + δj3δm3δil), (B 1)

where

α1 =−
1
8(2B1 − B2 − 4B3), α2 =

1
8(2B1 + B2 − 4B3),

α4 =
1
8(2B1 + 35B2 − 20B3), α5 =

1
8(2B1 − 5B2 − 4B3),

α6 =−
1
8(2B1 + 5B2 − 8B3),

 (B 2)

B1 =
ν

2〈ε〉

[
1
π

∫
dκ E(κ)e−iκ·xg

]
, (B 3)

B2 =
ν

2〈ε〉

[
4
∫

dκ κ2
3

E(κ)
4πκ2

(
1−

κ2
3

κ2

)
e−iκ·xg

]
, (B 4)

B3 =
ν

2〈ε〉

[∫
dκ κjκj

E(κ)
4πκ2

(
1+

κ2
3

κ2

)
e−iκ·xg

]
. (B 5)

In (B 3)–(B 5), E(κ) is the energy spectrum of isotropic turbulence, and κ3 is
the component of κ along the x3 direction. Appendix C presents the process for
determining the form of the tensorial constraints in (B 1), as well as the coefficients
α1, α2 and others. Appendix D presents the evaluation of 〈σ̂ij(κ, t)σ̂ ∗lm(κ, t)〉.

The term 〈σjk(x, t)σlm(x′, t′)〉 may also be expressed analogously to (B 1). Thus, the
product 〈σij(t)σlm(t′)〉〈σjk(t)σlm(t′)〉 in (2.26) can now be written as

〈σij(t)σlm(t′)〉〈σjk(t)σlm(t′)〉
= δik(3α1α1 + 4α1α2 + 2α1α5 + 8α2α2 + 4α2α6 + α5α5 + 2α6α6)

+ δi3δk3 (2α1α4 + 6α1α5 + 8α1α6 + 4α2α4 + 8α2α5

+ 20α2α6 + α4α4 + 4α4α5 + 8α4α6 + 5α5α5 + 16α5α6 + 18α6α6). (B 6)

Terms such as α1α1, α1α2 and others give rise to wavenumber integration of the form∫
dκ dκ ′ e−i(κ+κ ′)·xg × (· · ·), which upon substitution into (2.26) leads to time integrals

of the following form:∫ t

−∞

exp
(
−

t− t′

Tεε

)
e−i(κ+κ ′)·xg dt′ =

1(
1

Tεε

)
− i(κ + κ ′) · gτv

=

(
1

Tεε

)
+ i(κ + κ ′) · gτv(

1
Tεε

)2

+ [(κ + κ ′) · gτv]2
. (B 7)
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It may be noted that in (B 7), the imaginary part on the right-hand side is odd in g,
whereas the drift flux is tensorially constrained to be even in g. Thus, the imaginary
part does not contribute to the overall drift flux. Further details of the evaluation of
the right-hand side of (B 6) are presented in appendix E.

Next we evaluate the term 〈ρij(t)ρlm(t′)〉〈ρjk(t)ρlm(t′)〉 in (2.26). This again involves
applying the appropriate tensorial constraints on each of the two correlations as
follows:

〈ρij(x, t)ρlm(x′, t′)〉 =
∫

dκ〈ρ̂ij(κ, t)ρ̂∗lm(κ, t)〉e−iκ·xg =Mijlm

= β2(δimδjl − δilδjm)+ β6(δi3δl3δjm − δi3δm3δjl − δj3δl3δim + δj3δm3δil). (B 8)

The criteria for determining β values – provided in appendix C – yield

β2 =
1
2(2C2 −C1), β6 =

1
2(3C2 −C1), (B 9a,b)

where

C1 =
ν

2〈ζ 〉

[
1
π

∫
dκ E(κ)e−iκ·xg

]
, (B 10)

C2 =
ν

2〈ζ 〉

[∫
dκ κjκj

E(κ)
4πκ2

(
1+

κ2
3

κ2

)
e−iκ·xg

]
. (B 11)

Thus, the product 〈ρij(t)ρlm(t′)〉〈ρjk(t)ρlm(t′)〉 in (2.26) can now be written as

〈ρij(t)ρlm(t′)〉〈ρjk(t)ρlm(t′)〉 = δik(−4β2β2 + 4β2β6 − 2β6β6)+ δi3δk3(4β2β6 − 2β6β6).

(B 12)

Terms on the right-hand side of (B 12) such as β2β2, β2β6 and β6β6 contain
wavenumber integration of the form

∫
dκ dκ ′ e−i(κ+κ ′)·xg× (· · ·), which upon substitution

into (2.26) leads to a time integration similar to that in (B 7), with the Tεε replaced
by Tζ ζ .

Recalling the integral
∫ t
−∞

dik dt′ in (2.26), we can evaluate terms such as∫ t

−∞

dt′ 〈ε(t)ε(t′)〉〈σij(t)σlm(t′)〉〈σjk(t)σlm(t′)〉 (B 13)

by applying the time integral in (B 7) along with (B 1)–(B 6).

Appendix C. Tensorial constraints
C.1. The tensor 〈σij(t)σlm(t′)〉 =Lijlm

Gravitational acceleration induces anisotropy along the x3 direction, but homogeneity
is satisfied along the x1 and x2 directions. Accordingly, the fourth-order tensor Aijlm in
(B 1) may be represented as

Lijlm = α1δijδlm + α2δimδjl + α3δilδjm + α4δi3δj3δl3δm3 + α5δi3δj3δlm

+α6δi3δl3δjm + α7δi3δm3δjl + α8δj3δl3δim + α9δj3δm3δil + α10δl3δm3δij, (C 1)

where

Lijlm =

∫
dκ 〈σ̂ij(κ, t)σ̂ ∗lm(κ, t)〉e−iκ·xg . (C 2)

Evaluation of the correlation 〈σ̂ij(κ, t)σ̂ ∗lm(κ, t)〉 is presented in appendix D. The
coefficients α1 through α10 in (C 1) are determined using the following criteria.
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(i) Continuity: Liilm = 0; Lijmm = 0.
(ii) Symmetry: Lijlm =Lijml; Ljilm =Llmij.

(iii) Additional independent equations:

Lijij = B1,

L3333 = B2,

L3j3j = B3,

 (C 3)

where

B1 =
ν

2〈ε〉

[
1
π

∫
dκ E(κ)e−iκ·xg

]
, (C 4)

B2 =
ν

2〈ε〉

[
4
∫

dκ κ2
3

E(κ)
4πκ2

(
1−

κ2
3

κ2

)
e−iκ·xg

]
, (C 5)

B3 =
ν

2〈ε〉

[∫
dκ κjκj

E(κ)
4πκ2

(
1+

κ2
3

κ2

)
e−iκ·xg

]
. (C 6)

C.2. The tensor 〈ρij(t)ρlm(t′)〉 =Mijlm

The tensor Mijlm may be represented as

Mijlm = β1δijδlm + β2δimδjl + β3δilδjm + β4δi3δj3δl3δm3 + β5δi3δj3δlm

+β6δi3δl3δjm + β7δi3δm3δjl + β8δj3δl3δim + β9δj3δm3δil + β10δl3δm3δij, (C 7)

where

Mijlm =

∫
dκ 〈ρ̂ij(κ, t)ρ̂∗lm(κ, t)〉e−iκ·xg . (C 8)

The unknown β coefficients are determined using the following constraints.

(i) Continuity: Miilm = 0; Mijmm = 0.
(ii) Symmetry: Mijlm =Mlmij; Mlmij =−Mijml.

(iii) Additional independent equations:

Mijij =C1,

M3j3j =C2,

}
(C 9)

where

C1 =
ν

2〈ζ 〉

[
1
π

∫
dκ E(κ)e−iκ·xg

]
, (C 10)

C2 =
ν

2〈ζ 〉

[∫
dκ κjκj

E(κ)
4πκ2

(
1+

κ2
3

κ2

)
e−iκ·xg

]
. (C 11)

Appendix D. Evaluation of 〈σ̂ij(κ, t)σ̂ ∗lm(κ, t)〉

Using the normalization of the strain-rate tensor defined in (2.16), we can write σ̂ij
in terms of the Fourier coefficients of the fluid velocity as

σ̂ij(κ, t)=

√
2ν
ε(t)

1
2
[iκjûi(κ, t)+ iκiûj(κ, t)], (D 1)
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where i=
√
−1. We now have

〈σ̂ij(κ, t)σ̂ ∗lm(κ, t)〉 = −
ν

2

〈
1
ε(t)

(iκjûi + iκiûj)(iκmû∗l + iκlû∗m)
〉

≈
ν

2〈ε〉
[κjκm〈ûiû∗l 〉 + κjκl〈ûiû∗m〉 + κiκm〈ûjû∗l 〉 + κiκl〈ûjû∗m〉]

=
ν

2〈ε〉
[κjκmΦil(κ, t)+ κjκlΦim(κ, t)+ κiκmΦjl(κ, t)+ κiκlΦjm(κ, t)],

(D 2)

where we have applied σ̂ ∗lm(κ, t)= σ̂lm(−κ, t), and Φil(κ, t)= 〈ûi(κ, t)û∗l (κ, t)〉 is the
velocity spectrum tensor (see (A 6)).

The constraint Lijij = B1 can now be obtained from (D 2) as follows:

B1 =

∫
dκ 〈σ̂ij(κ, t)σ̂ ∗ij (κ, t)〉e−iκ·xg

=
ν

2〈ε〉

∫
dκ [κjκjΦii(κ, t)+ κjκiΦij(κ, t)+ κiκjΦji(κ, t)+ κiκiΦjj(κ, t)]e−iκ·xg . (D 3)

Using in (D 3) the velocity spectrum tensor Φij(κ, t) (see (A 6)), it is relatively
straightforward to show that κjκiΦij(κ, t) = 0, and the remaining terms together are
equal to B1 in (C 4). The integrals contained in B2 and B3 ((C 5) and (C 6)) can be
arrived at in a similar manner.

Analogous to (D 2), we can also write

〈σ̂jk(κ, t)σ̂ ∗lm(κ, t)〉

=
ν

2〈ε〉
[κkκm〈Φjl(κ, t)〉 + κkκl〈Φjm(κ, t)〉 + κjκm〈Φkl(κ, t)〉 + κjκl〈Φkm(κ, t)〉], (D 4)

〈ρ̂ij(κ, t)ρ̂∗lm(κ, t)〉

=
ν

2〈ε〉
[κjκm〈Φil(κ, t)〉 − κjκl〈Φim(κ, t)〉 − κiκm〈Φjl(κ, t)〉 + κiκl〈Φjm(κ, t)〉], (D 5)

〈ρ̂jk(κ, t)ρ̂∗lm(κ, t)〉

=
ν

2〈ε〉
[κkκm〈Φjl(κ, t)〉 − κkκl〈Φjm(κ, t)〉 − κjκm〈Φkl(κ, t)〉 + κjκl〈Φkm(κ, t)〉]. (D 6)

Appendix E. Evaluation of time integrals containing α1α1, α1α2, . . .

Reproducing (2.26)∫ t

−∞

dik dt′ =
1

4ν2

{
1
3
δik[〈ε

2
〉Tεε + 〈εζ 〉Tεζ − 〈ζε〉Tζε − 〈ζ ζ 〉Tζ ζ ]

+ 2〈ε2
〉

∫ t

−∞

exp
(
−

t− t′

Tεε

)
〈σij(t)σlm(t′)〉〈σjk(t)σlm(t′)〉 dt′

− 2〈ζ 2
〉

∫ t

−∞

exp
(
−

t− t′

Tζ ζ

)
〈ρij(t)ρlm(t′)〉〈ρjk(t)ρlm(t′)〉 dt′

}
, (E 1)

the term
∫ t
−∞

exp(−(t− t′)/Tεε)〈σij(t)σlm(t′)〉〈σjk(t)σlm(t′)〉 dt′, in turn, contains integrals
such as (see (C 1) and (C 2))∫ t

−∞

exp
(
−

t− t′

Tεε

)
α1α1, (E 2)
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which leads to integrals of the form∫ t

−∞

exp
(
−

t− t′

Tεε

)
e−i(κ+κ ′)·xg dt′

∫
dκ dκ ′ E(κ)E(κ ′) (E 3)

=

∫
dκ dκ ′ E(κ)E(κ ′)

(
1

Tεε

)
(

1
Tεε

)2

+ [(κ + κ ′) · gτv]2
. (E 4)

The integral
∫

dκ dκ ′ E(κ)E(κ ′) × (· · ·) is then evaluated in spherical coordinates
through numerical quadrature.

Appendix F. Diffusion flux tensor constraints
The fourth-order tensor Qimjn may be represented as

Qimjn = α1δimδjn + α2δinδmj + α3δijδmn + α4δi3δm3δj3δn3 + α5δi3δm3δjn

+α6δi3δj3δmn + α7δi3δn3δmj + α8δinδm3δj3 + α9δijδm3δn3 + α10δimδj3δn3, (F 1)

where the coefficients α1 through α10 are determined using the following criteria.

(i) Continuity: Qiijn = 0, Qimjj = 0, Qiijj = 0.
(ii) Symmetry: Qimjn =Qjmin, Qimjn =Qjnim.

(iii) Additional independent equations:

Q3m3m =
π

2gτv

∫
∞

ξ=0
ξE(ξ) dξ,

Qimim =
π

gτv

∫
∞

ξ=0
ξE(ξ) dξ .

 (F 2)
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